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Chapter 2

Hypergeometric Integrals

2.1 Local System Cohomology
Definition 2.1.1. A sheaf $\mathcal{L}$ on $M$ is locally constant if there is a cover $\{U_{i}\}$

of $M$ so that each restriction $\mathcal{L}_{U_{x}}$ is a constant sheaf.
One of our central objects is alocally constant sheaf $\mathcal{L}_{\lambda}$ on $M$ which we define

next. Recall the holomorphic l-forms $\omega_{H}=d\alpha_{H}/\alpha_{H}$ . Given the complex weight
system $\lambda=\{\lambda_{H}|H\in \mathcal{A}\}$ , define

$\omega_{\lambda}=\sum_{H\in A}\lambda_{H}\omega_{H}$
, $\nabla_{\lambda}=d+\omega_{\lambda}\wedge$

where $d$ is the ordinary exterior differential. Define a presheaf on $M$ as follows. For
$U\subset M$ , let $\mathcal{L}_{\lambda}(U)=\{f : U\rightarrow \mathbb{C}|\nabla_{\lambda}(f)=0\}$ where $f$ is a holomorphic function
and the restriction maps are ordinary restrictions.

Proposition 2.1.2. Define a multivalued holomorphic function on $M$ by $\Phi_{\lambda}=$

$\prod_{H\in A}\alpha_{H}^{\lambda_{H}}$ . The presheaf $\mathcal{L}_{\lambda}$ is a locally constant sheaf whose local sections are
isomorphic to constant multiples of $\Phi_{\lambda}^{-1}$ .

Proof. Since $\omega_{\lambda}=d(\log\Phi_{\lambda})=d\Phi_{\lambda}/\Phi_{\lambda}$ , we get

$\nabla_{\lambda}(\Phi_{\lambda}^{-1})=-\Phi_{\lambda}^{-2}d\Phi_{\lambda}+(d\Phi_{\lambda}/\Phi_{\lambda})\Phi_{\lambda}^{-1}=0$ .

If $\nabla_{\lambda}(f)=0$ , then $df=-f\omega_{\lambda}=-fd\Phi_{\lambda}/\Phi_{\lambda}$ . Thus $d(f\Phi_{\lambda})=df\Phi_{\lambda}+fd\Phi_{\lambda}=0$ so
$f\in \mathbb{C}\Phi_{\lambda}^{-1}$ . Cover $M$ with contractible open sets to see that the sheaf $\mathcal{L}_{\lambda}$ is locally
constant. $\square $

We are interested in $\mathcal{L}_{\lambda}$ because the function $\Phi_{\lambda}$ occurs as the integrand of
multidimensional hypergeometric integrals and hypergeometric functions. Euler’s
Beta function identity, Introduction (3), is related to the arrangement $\{0,1\}\subset \mathbb{C}$

17
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and $\lambda=(x-1, y-1)$ . Similar considerations apply to the Appell, Dirichlet
and Selberg integrals. These groups are called local system cohomology groups
in the literature. This name is justified as follows. We use Spanier [Sp] as a
general reference for local systems and sheaf cohomology. Local systems are defined
in [Sp, Ch.1, Ex. $F$]. Let $m\in M$ be a base point. Let $\Gamma$ be a local system on
$M$ with $\Gamma(m)=\mathbb{C}$ . Since $M$ is path connected, it follows from this exercise
that a local system is determined by a homomorphism $\rho$ : $\pi_{1}(M, m)\rightarrow Aut(\mathbb{C})$ .
We call the corresponding local system $\Gamma_{\rho}$ . Homology and cohomology groups
with coefficients in a local system are defined in [Sp, Ch.5, Ex.I and $J$ ]. Local
systems and sheaves are discussed in [Sp, Ch.6, Ex. $F$]. To each local system $\Gamma$ a
locally constant (pre)sheaf $\overline{\Gamma}$ is associated. Since $M$ is locally path connected and
semilocally l-connected, the exercise implies that this association is a bijection
between the respective equivalence classes. It follows from the exercise that in
our case $H^{p}(M, \Gamma)\simeq H^{p}(M,\overline{\Gamma})$ where the left side is local system cohomology
and the right is sheaf cohomology. Since a local system is determined (up to its
equivalence class) by a representation $\rho$ : $\pi_{1}(M, m)\rightarrow Aut(\mathbb{C})$ , it is natural to
ask what representation is induced by $\mathcal{L}_{\lambda}$ . The group $\pi_{1}(M, m)$ has a presentation
with one generator for each hyperplane [OT1, 5.3]. Let $\gamma_{H}\in\pi_{1}(M, m)$ be the
standard generator around the hyperplane $H$ . Since the homology classes $[\gamma_{H}]$

freely generate $H_{1}(M, \mathbb{Z})$ , it suffices to determine $\rho(\gamma_{H})$ .

Proposition 2.1.3. The locally constant $sheaf\mathcal{L}_{\lambda}$ corresponds to a local system $\Gamma_{\rho}$

induced by the representation $\rho$ : $\pi_{1}(M, m)\rightarrow Aut(\mathbb{C})$ with $\rho(\gamma_{H})=\exp(-2\pi i\lambda_{H})$ .
An equivalent local system arises if we replace $\lambda_{H}$ by $\lambda_{H}+k_{H}$ for $k_{H}\in \mathbb{Z}$ .

Proof. We may consider the image of $\gamma_{H}$ represented by an embedded circle around
$H$ . Cover it by contractible open sets $U_{i},$ $1\leq i\leq r$ so that for each $i$ the sets
$U_{i-1}\cap U_{i}$ and $U_{i}\cap U_{i+1}$ are nonempty and contractible and all other intersections
are empty. (Here $U_{r+1}=U_{1}.$ ) Choose a nonzero holomorphic function $f_{i}$ : $U_{i}\rightarrow \mathbb{C}$

so that $\mathcal{L}_{\lambda}(U_{i})\simeq \mathbb{C}f_{i}$ . Then there are nonzero constants $a_{i}$ so that $f_{i}=a_{i+1}f_{i+1}$

on $U_{i}\cap U_{i+1}$ . (Here $f_{r}=a_{1}f_{1}.$ ) It follows that $\rho(\gamma_{j})=a_{1}a_{2}\cdots a_{r}$ .
Now let $g_{1}$ be a branch of $\Phi_{\lambda}^{-1}$ on $U_{1}$ . Let $g_{2}$ be the analytic continuation so that

$g_{1}$ and $g_{2}$ agree on $U_{1}\cap U_{2}$ . It follows from Proposition 2.1.2 that if we continue in
this fashion, we get a branch $g_{r}$ on $U_{r}$ with the property that on $U_{1}\cap U_{r}$ we have
$g_{r}=\exp(-2\pi i\lambda_{j})g_{1}$ . Write $g_{i}=b_{i}f_{i}=b_{i}a_{i+1}f_{i+1}$ . Since $g_{i}=g_{i+1}$ for $1\leq i<r$ ,
we get $b_{i+1}=a_{i+1}b_{i}$ in this range. Finally,

$g_{r}=b_{r}f_{r}=b_{r}a_{1}f_{1}=\exp(-2\pi i\lambda_{H})g_{1}\square =$

$\exp(-2\pi i\lambda_{H})b_{1}f_{1}$ . Thus $\rho(\gamma_{H})=a_{1}a_{2}\cdots a_{r}=\exp(-2\pi i\lambda_{H})$ .

In particular, $H^{p}(M, \mathcal{L}_{\lambda})\simeq H^{p}(M, \Gamma_{\rho})$ . This justifies reference to $H^{p}(M, \mathcal{L}_{\lambda})$

as local system cohomology groups. Until further notice we fix the arrangement
$\mathcal{A}$ and the complex weights $\lambda$ and no longer indicate dependence on them. For
example, we may write $\Phi=\Phi_{\lambda},$ $\nabla=\nabla_{\lambda},$ $\mathcal{L}=\mathcal{L}_{\lambda}$ .
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2.2 Homology with Local Coefficients
The local system $\mathcal{L}^{\vee}$ on $M$ dual to $\mathcal{L}$ is the sheaf whose sections over $U\subset M$ form
the abelian group $\mathcal{L}^{\vee}(U)=\mathbb{C}\Phi_{U}$ .

Definition 2.2.1. The p-th chain group $C_{p}(M, \mathcal{L}^{\vee})$ with coefficients in $\mathcal{L}^{\vee}$ is the
complex vector space with basis $\sigma\otimes\Phi_{\sigma}$ where $\sigma$ is a singular p-simplex of $M$ and
$\Phi_{\sigma}$ is a branch of $\Phi$ on the image of $\sigma$ . Let $\sigma^{j}$ denote the j-th face of $\sigma$ and let
$\Phi_{\sigma}$, denote the restriction. Define $\partial$ : $C_{p}(M, \mathcal{L}^{\vee})\rightarrow C_{p-1}(M, \mathcal{L}^{\vee})$ by

$\partial(\sigma\otimes\Phi_{\sigma})=\sum_{j=0}^{p}(-1)^{j}\sigma^{j}\otimes\Phi_{\sigma},$ .

The homology groups of this complex are denoted $H_{p}(M, \mathcal{L}^{\vee})$ .

Example 2.2.2. In $V=\mathbb{C}$ let $\mathcal{A}=\{0,1\}$ with $\alpha_{0}=u$ and $\alpha_{1}=u-1$ . Fix
$\lambda_{0},$ $\lambda_{1}\in \mathbb{C}-\mathbb{Z}$ .

Let $\epsilon<<1$ and let $\triangle$ be a small simple closed curve with center $0$ oriented
counterclockwise, see Figure 2.1. Write $c_{j}=\exp(2\pi i\lambda_{j})$ for $j=0,1$ . Fix a branch
of $\Phi$ on $(0,1)$ . Then

$\partial(\triangle\otimes\Phi)=[\epsilon]\otimes c_{0}\Phi_{\epsilon}-[\epsilon]\otimes\Phi_{\epsilon}=([\epsilon]\otimes\Phi_{\epsilon})(c_{0}-1)$ .

Let $\triangle^{*}$ be a small simple closed curve with center 1 oriented counterclockwise. A
similar calculation gives

$\partial(\triangle^{*}\otimes\Phi)=([1-\epsilon]\otimes\Phi_{1-\epsilon})(c_{1}-1)$ .

Since $\partial([\epsilon, 1-\epsilon]\otimes\Phi)=[1-\epsilon]\otimes\Phi_{1-\epsilon}-[\epsilon]\otimes\Phi_{\epsilon}$ , we conclude that

$(c_{0}-1)^{-1}(\triangle\otimes\Phi)+[\epsilon, 1-\epsilon]\otimes\Phi-(c_{1}-1)^{-1}(\triangle^{*}\otimes\Phi)$

is a twisted cycle. It is called a regularization of the open interval $(0,1)$ .
$0$ 1

Figure 2.1: A Twisted Cycle

The groups $H^{p}(M, \mathcal{L})$ and $H_{p}(M, \mathcal{L}^{\vee})$ are algebraic duals so they provide a
perfect pairing

(1) $\langle, \rangle$ : $H^{p}(M, \mathcal{L})\times H_{p}(M, \mathcal{L}^{\vee})\rightarrow \mathbb{C}$
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induced from the evaluation of an $\mathcal{L}$-valued cochain $f=\sum_{\sigma}\ell_{\sigma}f_{\sigma}$ on an $\mathcal{L}^{\vee}$-valued
(finite) chain $ c=\sum_{\tau}m_{\tau}\tau$ . Here $\ell_{\sigma}=a_{\sigma}\Phi_{\sigma}^{-1}$ with $a_{\sigma}\in \mathbb{C},$ $f_{\sigma}$ is a characteristic
function, and $m_{\tau}=b_{\tau}\Phi_{\tau}$ with $b_{\tau}\in \mathbb{C}$ . Thus $\langle f, c\rangle=\sum_{\tau}a_{\tau}b_{\tau}$ is a finite sum. Let
$C_{p}^{lf}(M, \mathcal{L}^{\vee})$ denote the p-th locally finite chain group with coefficients in $\mathcal{L}^{\vee}$ and let
$H_{p}^{lf}(M, \mathcal{L}^{\vee})$ denote the corresponding locally finite homology group. Let $H_{c}^{p}(M, \mathcal{L})$

denote compactly supported cohomology. Since $M$ is an open $ 2\ell$-manifold, Poincar\’e
duality gives isomorphisms

(2) $H^{p}(M, \mathcal{L})\simeq H_{2\ell-p}^{lf}(M, \mathcal{L})$ , $H_{p}(M, \mathcal{L})\simeq H_{c}^{2\ell-p}(M, \mathcal{L})$ .

This provides another perfect pairing

(3) $\langle, \rangle$ : $H_{c}^{p}(M, \mathcal{L})\times H_{p}^{lf}(M, \mathcal{L}^{\vee})\rightarrow \mathbb{C}$ .

These dualities and the fact that $M$ is a Stein manifold of the homotopy type of a
finite cell complex of dimension $\leq\ell$ yield the following:

Proposition 2.2.3. (1) $H^{p}(M, \mathcal{L})=H_{2\ell-p}^{lf}(M, \mathcal{L})=0$ for $ p>\ell$ ,
(2) $H_{p}(M, \mathcal{L})=H_{c}^{2\ell-p}(M, \mathcal{L})=0$ for $ p>\ell$ ,

Our goal is to interpret hypergeometric integrals as values of either pairing.
Clearly, we must give $M$ a locally finite smooth triangulation and represent each
twisted cycle by a locally smooth cycle (finite or locally finite). If our model is the
hypergeometric integral of Gauss, formula (3) in the Introduction, then neither of
these two pairings will suffice. In that integral we integrate over the open interval
$(0,1)$ , which is a cycle in locally finite homology, while the integrand is a globally
defined holomorphic form which has noncompact support. We will show in The-
orem 7.1.1 that under suitable conditions locally finite cycles are represented by
finite cycles. Representation of local system cohomology classes by global holo-
morphic differential forms requires the holomorphic de Rham theorem of the next
section.

2.3 Hypergeometric Pairing

Let $\mathcal{O}=\mathcal{O}_{M}$ denote the sheaf of germs of holomorphic functions on $M$ and let
$\Omega=\Omega_{M}$ be the de Rham complex of germs of holomorphic differentials on $M$ ,
where $\Omega^{0}=\mathcal{O}$ .

Theorem 2.3.1. The operator $\nabla$ : $\Omega^{0}\rightarrow\Omega^{1}$ is a flat connection whose kernel is
$\mathcal{L}$ . The sequence

$ 0\rightarrow \mathcal{L}\rightarrow\Omega^{0}\rightarrow\nabla\Omega^{1}\rightarrow\nabla$ . . . $\rightarrow\nabla\Omega^{\ell}\rightarrow 0$

is exact. We call $(\Omega, \nabla)$ the twisted de Rham complex.
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Proof. We defined $\mathcal{L}$ as the kernel of $\nabla$ . Since $d\omega_{\lambda}=0=\omega_{\lambda}\wedge\omega_{\lambda}$ , we have

$\nabla\nabla(\eta)$ $=$ $\nabla(d\eta+\omega_{\lambda}\wedge\eta)$

$=$ $d(d\eta+\omega_{\lambda}\wedge\eta)+\omega_{\lambda}\wedge(d\eta+\omega_{\lambda}\wedge\eta)$

$=$ $ dd\eta+d\omega_{\lambda}\wedge\eta-\omega_{\lambda}\wedge d\eta+\omega_{\lambda}\wedge d\eta+\omega_{\lambda}\wedge\omega_{\lambda}\wedge\eta$

$=$ $0$

Thus the connection is flat. To show exactness, consider the diagram of stalks at
$x\in M$

$\Omega_{x}^{p-1}\rightarrow^{\nabla}\Omega_{x}^{p}$

$\Omega_{x}^{p-1}\Phi\downarrow\rightarrow^{d}\Omega_{x}^{p}\downarrow\Phi$

where the bottom row is the ordinary de Rham complex. The diagram commutes
because

$d(\Phi\eta)=d\Phi\wedge\eta+\Phi d\eta=\Phi(\frac{d\Phi}{\Phi}\wedge\eta+d\eta)=\Phi(\nabla\eta)$ .

Exactness of the twisted complex follows from the Poincar\’e Lemma for the ordinary
de Rham complex. $\square $

Since $M$ is a Stein manifold, Cartan’s Theorem $B$ implies that $H^{n}(M, \Omega^{p})=0$ for
$n>0$ and all $p$ . Thus the exact sequence of Theorem 2.3.1 is an acyclic resolution
of $\mathcal{L}$ . We obtain the holomorphic de Rham theorem

$H^{p}(M, \mathcal{L})\simeq H^{p}(\Gamma(M, \Omega),$ $\nabla$ )

where $\Gamma$ denotes global sections. In order to define the hypergeometric pairing, we
need a twisted version of Stokes theorem.

Proposition 2.3.2. Let $\eta\in\Gamma(M, \Omega^{p})$ and $\sigma\otimes\Phi_{\sigma}\in C_{p}(M, \mathcal{L}^{\vee})$ . Define $\langle\eta,$ $\sigma\otimes$

$\Phi_{\sigma}\rangle=\int_{\sigma}\Phi_{\sigma}\eta$ and extend this to a bihnear pairing. Then

$\langle\eta, \partial c\rangle=\langle\nabla\eta, c\rangle$ .

Proof. We may assume that $c=\sigma\otimes\Phi_{\sigma}$ . Then

$\langle\eta, \partial c\rangle$ $=$ $\langle\eta, \partial(\sigma\otimes\Phi_{\sigma})\rangle=\langle\eta,\sum_{j=0}^{p}(-1)^{j}\sigma^{j}\otimes\Phi_{\sigma}, \rangle$

$=$ $\sum_{j=0}^{p}(-1)^{j}\langle\eta, \sigma^{j}\otimes\Phi_{\sigma^{g}}\rangle=\sum_{j=0}^{p}(-1)^{j}\int_{\sigma^{g}}\Phi_{\sigma^{g}}\eta=\int_{\partial\sigma}\Phi_{\sigma}\eta$

$=$ $\int_{\sigma}d(\Phi_{\sigma}\eta)=\int_{\sigma}\Phi_{\sigma}(\nabla\eta)=\langle\nabla\eta, \sigma\otimes\Phi_{\sigma}\rangle=\langle\nabla\eta, c\rangle$ .

Equality at the second line break follows from the usual Stokes theorem. $\square $
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Definition 2.3.3. The hypergeometric pairing

$\langle, \rangle$ : $H^{p}(M, \mathcal{L})\times H_{p}(M, \mathcal{L}^{\vee})\rightarrow \mathbb{C}$

is defined as follows. Let $[\eta]\in H^{p}(M, \mathcal{L})$ be represented by a global holomorphic
form $\eta$ and let $[c]\in H_{p}(M, \mathcal{L}^{\vee})$ be represented by a locally smooth $\mathcal{L}^{\vee}$ -valued finite
chain $ c=\sum_{\tau}m_{\tau}\tau$ where $m_{\tau}=b_{\tau}\Phi_{\tau}$ with $b_{\tau}\in \mathbb{C}$ . Then

$\langle[\eta], [c]\rangle=\sum_{\tau}b_{\tau}\int_{\tau}\Phi_{\tau}\eta$ .

Let $\Omega^{p}(*\mathcal{A})$ denote the group of globally defined rational p-forms on $V$ with
poles on $N$ . These forms are holomorphic on $M$ so $\Omega^{p}(*\mathcal{A})\rightarrow\Gamma(M, \Omega)$ is an
inclusion. Note that $(\Omega(*\mathcal{A}), \nabla)$ is a complex because $\omega_{\lambda}\in\Omega^{1}(*\mathcal{A})$ . It follows
from the algebraic de Rham theorem of Deligne and Grothendieck that the inclusion
is a quasiisomorphism of complexes and hence

$H^{p}(M, \mathcal{L})\simeq H^{p}(\Omega(*\mathcal{A}), \nabla)$ .

This reduces the original analytic problem to the algebraic problem of computing
cohomology of rational forms on $V$ , but it is still very difficult. Deligne’s work
[D1] may be used to reduce the problem to computing in a complex of forms with
logarithmic poles, but in order to apply the results of [D1] we must compactify $M$

with a normal crossing divisor. Thus we must resolve the singularities of $N$ .


