Chapter 4

‘Quasilinear non-strictly

hyperbolic systems

In Chapter 3, we discussed the global existence and the blow-up phenomenon,
particularly the life span and the breakdown behaviour of classical solutions to
Cauchy problem for quasilinear strictly hyperbolic systems with small and decay
initial data. This chapter aims to generalize the result presented in Chapter 3 to

the case that system (1.1) might be non-strictly hyperbolic.

§4.1. Generalized null condition

Consider quasilinear hyperbolic system (1.1), where we assume that the eigen-
values A;(u) and left (resp. right) eigenvectors li(u) = (I;1(u), -, lin(u)) (resp.
ri(u) = (ri(u),--- ,rm(u))T ) of A(u) have the same regularity as a;;(u) (3,7 =
1,---,n), and (1.4)-(1.6) holds. However, we do not require system (1.1) must be
strictly hype‘rbolic.

Without loss of generality, we may suppose that

Mo 2 A (0) ==y (0) < App1 (0) < -+ < A (0). (4.1.1)
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When p = 1, system (1.1) is strictly hyperbolic in a neighbourhood of u = 0; while,
when p > 1, (1.1) is non-strictly hyperbolic.
Rewrite (1.1) as

we + AO)uy = A(w)uy + Blu), (4.1.2)

where

A(u) = A(0) — A(u).

Definition 4.1. System (1.1) satisfies the null condition, if each small plane wave
solution u = u (s) (u(0) = 0), where s = az + bt (a, b constants), to the linearized

system

us+ A(0)ug =0 (4.1.3)

is always a solution to system (1.1) or (4.1.2). O
Similar to the strictly hyperbolic case, we have (see [LZK1])

Lemma 4.1. The property that system (1.1) satisfies the null condition or not is
invariant under any invertible linear transformation u = Q, where @ is a nonsin-

gular matrix with constant elements. 0O

By Lemma 4.1, without loss of generality we may suppose that
A(0) = diag {A1 (0), A2 (0),---, A, (0)}. (4.1.4)

Then, system (4.1.3) simply reduces to the following system in diagonal form:

Bui
s Ai (0)

3’ui .

S2=0 (i=1-,n), (4.1.5)

the general solution of which can be expressed as
ui=u; (z—X;(0)t) (i=1,---,n), (4.1.6)

where u; (-) stands for an arbitrary C! function of a single variable for each i =

1,---,n. Hence, by (4.1.1), each plane wave solutin u = u (s) (u (0) = 0) to system
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(4.1.5) must be in the following form: either

u = Zuh (s)er (s =z — Aot) (4.1.7)

h=1

or there exists an index 5 € {p+1,---,n} such that

u=mu;(s)e; (s=z—A;(0)t), (4.1.8)

where e; = (0, -+, 0, (i),O, e ,O)T and u; (s) is a C* function of s with u; (0) = 0
(i=1,---,n).

Thus, under hypothesis (4.1.4), system (1.1) (or (4.1.2)) satisfies the null con-
dition if and only if for any given small C! functions u;(s) with u;(0) = 0

(izl,"'an)a

fi (Z Up (S) €h> Z 'LL;Z (8) €p = 0, (419)

Auj(s)ej)u;(s)e; =0 (j=p+1,---,n), (4.1.10)
B (zp:uh(s)eh) =0 (4.1.11)
h=1 .
and
B(uj(s)e;) =0 (j=p+1,---,n). (4.1.12)

It follows from (4.1.9)-(4.1.10) that
~ P
A (Z uheh) e, =0 (i=1,---,p), Vl|up| small (h=1,---,p) (4.1.13)
h=1

and

A(ujej)e; =0, Vuj| small (j=p+1,---,n). (4.1.14)
By the definition of A (u), (4.1.13) and (4.1.14) are equivalent to

P
A (Zuheh) e =Xoe; (1=1,---,p), V]ug|small (h=1,---,p) (4.1.15)

h=1

and
A(uje;)e; = X (0)e;, Vl|u;| small (j=p+1,---,n) (4.1.16)
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respectively. Hence we have

Lemma 4.2. Under hypotheses (4.1.1) and (4.1.4), system (1.1) satisfies the null

condition if and only if
P
A <Z uheh) =X (=1,---,p), V]|up|small (h=1,---,p), (4.1.17)
h=1
Aj(use;) = A;(0), VYiujl small (j=p+1,---,n), (4.1.18)

P
T (Z uheh) =e (i=1,---,p), V|up| small (h=1,---,p), (4.1.19)
h=1

T;(uje;) =e;, Vluj| small (j=p+1,---,n), (4.1.20)
P
B (Zuheh) =0, V|up| small (h=1,---,p) (4.1.21)
h=1
and
B(uje;) =0, Vlu;| small (j=p+1,---,n). (4.1.22)
|

Definition 4.2.  System (1.1) satisfies the generalized null condition, if there
exists an invertible smooth transformation v = u () (u(0) = 0) such that the

system for u satisfies the null condition. O

Definition 4.3. If there exists an invertible smooth transformation v = u (%)

(u (0) = 0) such that in @-space

P
T (Z 11ht‘fh) =e ((t=1,---,p), V|tap| small (h=1,---,p) (4.1.23)
h=1

and

f]' (ﬁjej) = ey, V,’EJI small (j=p+ 1,-",71,), (4124)

then the transformation is called the normalized transformation, and the corre-
sponding unknown variables @ = (4, --,u,) are called the normalized variables

or normalized coordinates. O
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Remark 4.1. The assumption that system (1.1) satisfies the generalized null

condition implies the existence of the normalized transformation. O

Remark 4.2. If system (1.1) is strictly hyperbolic, then there always exists the
normalized transformation (see [LZK1]). In the case that system (1.1) might be
non-strictly hyperbolic, in §4.6 we will give some conditions to guarantee the exis-

tence of the normalized transformation. O

Definition 4.4. The ¢-th characteristic A; (u) is weakly linearly degenerate, if there

exists the normalized transformation and in the normalized coordinates

D
i (Z uh,6h> =Xo, V|ua| small (h=1,---,p), wheni€{l,--,p};

h=1
(4.1.25)

Ai (uze;) = X, (0), Vu,| small, when i€ {p+1,---,n}. (4.1.26)
If all characteristics A; (u) (¢ = 1,---,n) are weakly linearly degenerate, then system

(1.1) is called to be weakly linearly degenerate. O

Definition 4.5. The inhomogeneous term B(u) is said to satisfy the matching

condition, if there exists the normalized transformation and in the normalized co-

ordinates
p
B (Z uheh> =0, Vuy| small (h=1,---,p) (4.1.27)
h=1
and
B(uje;) =0, Vl|u;| small (j=p+1,---,n). (4.1.28)
O

Thus, we have

Lemma 4.3. System (1.1) satisfies the generalized null condition if and only if

(1.1) is weakly linearly degenerate and B(u) satisfies the matching condition. O

§4.2. Some relations in the normalized coordinates



102 Quasilinear non-strictly hyperbolic systems

Similar to §3.2, in this section we give some relations on the decomposition of
waves in the normalized coordinates.
Noting (4.1.23)-(4.1.24) and using (2.2.10)-(2.2.11), we observe that in the nor-

malized coordinates (if any!)

p
ﬂijk (Zu}leh) an VZE{l,,n}, V33k€{1a7p}’

h=1

(4.2.1)
V|up| small (h=1,---,p),

Bijj (u;e;) =0, Vie{l,---,n}, V|u,lsmall, Vjije{p+1,---,n}, (42.2)

P
Vijk (Zuheh) =0, Vie{l,---,n}, Vi3ke{l,---,p},

h=1 (423)

V |up| small (h=1,---,p)

and
Vijg (ujej) = O, Vi€ {1,' --,n}, v Iujl small, V] € {p+ 1,'”,71}. (424)

When B(u) satisfies the matching condition, it follows from (1.6), (2.2.3) and
(4.1.27)-(4.1.28) that in the normalized coordinates (if any!)

bi(uw)= Y bir(wugug, Vi€ {l,---,n}, V|u| small, (4.2.5)
A, (0)#A1(0)

where b;;x(u) are continuous functions of u, which are produced by Taylor’s for-

mula.

Noting (4.2.1)-(4.2.2) and using (2.2.16), in the normalized coordinates (if any!)

we have

P
ﬂi]k (ZUh@h)EO, VlE{p—i—l,,ﬂ}, V]ake{lavp}’
h=1

YV |up| small (h=1,---,p)

(4.2.6)

and

Bij; (use;) =0, VYluy| small, Vi€ {p+1,---,n} and j#i.  (4.2.7)
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Furthermore, when the i-th characteristic A; (u) is weakly linearly degenerate, in

the normalized coordinates we have

)
Bijk (Zuheh) =0, Vi ke{l,---,p}, V|up| small (h=1,---,p),
h=1

(4.2.8)
Biiz’ (uiei) =0, V ]u,] small, if 7€ {p +1,--- ,n}. (429)
Moreover, by (2.2.12) we have
Biji (W) =0, Vj+#4 (4.2.10)
while
Bisi (w) = VA (w) 75 (u) (4.2.11)

which identically vanishes only in the case that A; (u) is linearly degenerate in the

sense of P.D.Lax.
Moreover, by (4.1.23)-(4.1.24), in the normalized coordinates (if any!) we have

'y
Yijk (Zuheh>507 Vze{p—}—l,,n}, v]’ke{laap}y
h=1

V|up| small (h=1,---,p).

(4.2.12)

Furthermore, when A; (u) is weakly linearly degenerate, in the normalized coordi-

nates we have

14
Vijk (Zuheh> =0, Vjke{l,---,p}, V|up small (h=1,---,p),
h=1
if 1e{1,---,p}
(4.2.13)
Yiii (uiei) =0, v |uz-| small, if 7€ {p +1,.-- ,n}. (4214)

In the present situation, (3.2.7) is still valid, namely, we have

(bi(w)), = D bux (w)wr, (4.2.15)
k=1
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where

bin(u) = Zabi(u)ru(u). (4.2.16)

ou
=1 /

In the normalized coordinates (if any!), by (4.1.23) and (4.1.24) we have

P
) p 0b,h<Zu/,e;,)
- (Zuheh) =—% Vfugl, Jugl small (b =1,---,p),
h=1

Auy ’

Vie{l,---,n}, when ke {1,---,p};
(4.2.17)

bu(uper) = PHA™ Vi€ {l,---,n}, V|ux| small, (4.2.18)

when ke {p+1,---,n}.

When B(u) satisfies the matching condition, noting (2.2.3) and (4.1.27)-(4.1.28)

we observe that in the normalized coordinates
p
b; (Zuh,e,l> =0, Vie{l,---,n}, Viup| smal (h=1,---,p) (4.2.19)
h=1

and

bi(urer) =0, Vie{l,---,n}, V|ugl small (k=p+1,---,n), (4.2.20)

then
P
o (Z)
el /L o=0, Vie{l,--,n}, Vke{l,--,p}, (4.2.21)
V |upl, lug| small (h=1,---,p)
and
b; (urex .
0 g’l:tkek) = 0, Vi€ {1,--.,7’[,}, Vke {p+ 1,"',”}, v lu‘kl Small, (4222)
k
and then

p
Bik (Zuheh) 507 VzE{l,,n}, VkE{l,,p},
h=1

V|up| small (h=1,---,p)

(4.2.23)



Main results 105
and

bir(uger) =0, Vie{l,---,n}, Vke {p+1,---,n}, V|ug| small. (4.2.24)

Finally, noting (4.1.23) and (2.2.26) we obtain that in the normalized coordi-

nates (if any!) we have

p
:Y'Iljk (Zuheh> = O, Ve {1a e ’Tl}, v]vk € {17 T 7p}7
h=1

(4.2.25)
V |up| small (h=1,---,p).
§4.3. Main results
Consider the Cauchy problem
us + A(w)u, = B(u), (4.3.1)
t=0: u=yp(x), (4.3.2)

where A(u) = (a;;(u)) is an n x n matrix with suitably smooth elements a;;(w),
B(u) = (Bi(u),---,By(u))7T is a suitably smooth vector function of u, and p(x) is
a C! vector function of z. Suppose that in a neighbourhood of 4 = 0, (4.3.1)is a

hyperbolic system with

2

Ao = AL(0) == Ap(0) < Aps1(0) < - < A(0) (P> 1), (4.3.3)

Without loss of generality, we may suppose that in a neighbourhood of u = 0, the

following normalized conditions hold
l?l(u)rj (U) = 6ij (Z,] = la U ,TL) (434)

and

rl(wriu) =1 (i=1,---,n). (4.3.5)
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Furthermore, we suppose that all A;(u), l;(u) and r;(u) (¢ = 1,---,n) have the
same regularity as A(u) in a neighbourhood of v = 0. Finally, we suppose that

B(u) satisfies

B(0)=0 and VB(0)=0. (4.3.6)
In §4.4 we shall prove the following theorem similar to Theorem 3.1.

Theorem 4.1. Under the hypotheses mentioned above, suppose that A(u) and
B(u) are C? in a neighbourhood of u = 0. Suppose furthermore that system (4.3.1)
is weakly linearly degenerate and B(u) satisfies the matching conditon. Suppose
finally that ¢(z) is a C! vector function satisfying that there exists a constant

> 0 such that
= sup {(1+ lal) ™ (I ()] + 19/ (@)} < oo | (4.3.7)

Then there exists 8, > 0 so small that for any given 6 € [0, 6y], the Cauchy problem
(4.3.1)-(4.3.2) admits a unique global C! solution u = u(t,z) on¢t > 0. O

In particular, we have

Corollary 4.1. If in a neighbourhood of u = 0, system (4.3.1) is linearly de-
generate in the sense of Lax and B(u) satisfies the matching condition, then the

conclusion of Theorem 4.1 holds. O

In the case that system (4.3.1) is not weakly linearly degenerate but all multiple
characteristics are weakly linearly degenerate, we will show that for a quite large
class of initial data, the first order derivatives of C! solution to the Cauchy problem
(4.3.1)-(4.3.2) must blow up in a finite time and we will give a sharp estimate on

life span of the C! solution.

In the present situation, there exists a nonempty set J C {1,2,---,n} such that

X; (u) is not weakly linearly degenerate if and only if ¢ € J.

Similar to Chapter 3, we observe that for any fixed ¢ € J, either there exists an
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integer a; > 0 such that

d'A; (u (s)) datiy; (u (s))
7al 3 =0 (I=1,---,a;) but e . #0
- T (4.3.8)
or
d'x; (u (s)) '
— = 0 (=12, (4.3.9)

‘where u = u(9 (s) is defined by (3.1.2). In the case that (4.3.9) holds, we define
a; = +00.

In the normalized coordinates, conditions (4.3.8)-(4.3.9) simply reduce to

881;\1: (0)=0 (=1,---,a;) but %(0) #0 (4.3.10)
and
%l,;\{ 0)=0 (=12,-) (4.3.11)
respectively. |

Similar to Theorem 3.2, the following theorem will be proved in §4.5.

Theorem 4.2. Under the assumptions mentioned at the beginning of this section,
suppose that A (u) is suitably smooth and B (u) € C? in a neighbourhood of u = 0.
Suppose furthermore that ¢ (z) = ey (x), where € > 0 is a small parameter and

2 (x) is a C! vector function satisfying that there exists a constant x> 0 such that
sup {(1+ )™ (9 (2) | + 14/ (2) D} < oo (4312)
T

Suppose finally that B(u) satisfies the matching condition, system (4.3.1) is not
weakly linearly degenerate, but all multiple characteristics are weakly linearly de-

generate. Set

a=min{a;| i € J} < oo, (4.3.13)

where «; is defined by (4.3.8)-(4.3.9). Let

Ji={i|lieJ ai=a}. (4.3.14)
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If there exists 79 € J; such that
L, (0) ¥ (z) £ 0, (4.3.15)

where [;, (u) stands for the ig-th left eigenvector, then there exists €g > 0 so small
that for any fixed € € (0, go] the first order derivatives of the C'! solution u = u (¢, z)
to the Cauchy problem (4.3.1)-(4.3.2) must blow up in a finite time and the life

span T (¢) of v = u (¢, z) satisfies

lim (aa"‘lf(e)) .

e—0
d“+1AL u(l) s o , (4.3.16)
max sup {—i —-T,(.Hﬁl [1:(0)y(z)]™ L:(0)y (I)} )
1€J1 xeR s=0

where u = u(?(s) is defined by (3.1.2). O

Similarly, Theorem 3.3 and Theorem 3.4 can be generalized to the present case,

and similar conclusions are valid.

§4.4. Global existence of C! solution
— Proof of Theorem 4.1

The main results in this chapter can be proved in a way similar to the proof of
Theorem 3.1 and Theorem 3.2 in Chapter 3. In what follows we only point out the
essentially different part in the proof.

Without loss of generality, we may suppose that
0<AEA0)==2x,(0) < Aps1 (0) < -+ < An (0). (4.4.1)
Moreover, we have

AP-*-l (U) - >‘i (’U) Z 460’ v |'LL|, Ivl _<_ 6 (’L = 13 e 7p)a
/\j+1(u)—)\j(v)2460, V[u[, l’UlS(S (j=p+1,---,n—1)

(4.4.2)

and
|Ai(w) — Ai(v)] < %q, Viul, v <6 (=1,---,n), (4.4.3)
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where ¢ and 6y are two suitably small positive constants.
For the time being it is supposed that on the existence domain of the C?! solution
u = (t,r) we have

lu(t,z)| < 6. (4.4.4)

At the end of the proof of Lemma 4.6, we shall explain the reasonableness of this
hypothesis.
By (4.4.1) and (4.4.4), on the existence domain of the C'! solution we have

0 <Ap(u), -, Ay (u) < Api1 (u) < - < Ay (u), (4.4.5)

provided that 6 > 0 is suitably small.
Similar to §3.4, for any fixed T' > 0, let

DI ={(t,z)|0<t< T, v < —t}, (4.4.6)

D ={(t,2)|0<t<T, —t <z < (Ao —bo)t}, (4.4.7)

DT ={(t,2)|0<t < T, (Ao — &)t <z < (A (0) + o) t}, (4.4.8)

DI ={(t,x)[0<t<T, x> (X (0)+ &)t} (4.4.9)
and forz=1,---,n,

DI = {(t,z)|0<t<T,
—[bo + 1 (X: (0) = X))t <& = A, (0) ¢ < [8o + n (A, (0) — X; (0))] £},

(4.4.10)
where 1 > 0 is suitably small.
Noting (4.4.1)-(4.4.2), when 5 > 0 is suitably small, we have
A

Dl =Dy =---=DpI'= DL, (4.4.11)
DINDT =0, Vi#j, i,j€{mp+1,---,n} (4.4.12)

and i
prlJ U pfco”. (4.4.13)

i=p+1
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Let
- 1440
V(DY) = max [[(1+z)""" v (t,2) |~ (pr),
- Ty _ 1+p
‘/ (DO) —l:I{lya’}(’nII(l+t) () (t’x)'le(Dg)’

W (DI) = max [|(1+]z)"" wi(t,2) ||~ (1),

W (D) = max 111+ 0" wi (t.2) || o),

Uo(T)= max  sup (142 = A (0)¢)' ™ fu, (¢,2) |,

=lhesn (4 r)yeDT\DT

VE(T) = max sup (14 ]z — X (0) ) v, (¢, ) |,

= (4 2)eDT\DT

WS (T)== max  sup  (1+|z =X (0)t)'* |w, (t,2)],

1=l (4,2)eDT\DT

U, (T)= max sup / lu; (¢, z) |dz,
DT(t)

1=1,---.n 0<t<T

V1 (T) = max  sup |v; (¢, x) |dz,
i=1,---,n 0<t<T Dlr(t)

Wi (T) = max  sup / |w; (¢, z) |dz,
1=Ln 0<t<T JDT(¢)

Voo (T') = max sup lvz (t,z) |
=hom oce<T
T€R

and

Woo (T) = max  sup |w;(t,7)],
1=1,-,n 0<t<T
z€R
where DT (t) (t > 0) denotes the t-section of D7
Df (t) = {(r,z) |t =t,(r,z) €D]} .

Noting (4.4.11), we get

m

pT(t)=Df (t)=---=DX (t) 2 DT (1).

(4.4.14)

(4.4.15)
(4.4.16)
(4.4.17)

(4.4.18)

(4.4.19)

(4.4.20)

(4.4.21)

(4.4.22)

(4.4.23)

(4.4.24)

(4.4.25)

(4.4.26)

(4.4.27)
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Therefore, by (4.4.1) and (4.4.11) we have

US (T) = max<{ max sup (1+ |z — Xot) ™ Ju, (t,2) |,
i=1,P (¢,0)e DT\ DT,
. max sup (14 |z = X (0)¢)" ™ s (t,2) | p
=PFLun (4 gye DT\ DT
VS (T) = max<{ max sup 1+ |z — Aot|)1+u lvs (t, ) |,
i=1,-p (¢ 2)eDT\DT
~ max sup (1+ |z — A; (0) t|)1+u lvi (&, 2) | o
t=p+1,--,n (t,m)EDT\DT
WS (T)= max{ max  sup  (1+]z— ot |w, (t,2)],
v=1,-P (¢,2)eDT\DT,
 max sup (L4 lz = X\ (0) ) s (8, 2) |
1=p+1,--n (t,z)eDT\DT

Uy (T)= max<{ max sup / lu; (t,x) |dzx ,
DT, (¢)

i=1,p 0<t<T

- max sup/ |us (¢, 2) |dz
=p i o2ver Jorcy

Vi (T)= maxq max sup / lv; (¢, 2) |dz
DT (1)

i=1,-p 0<t<T

- max sup / |’U1' (t, .’E) Idl} )
1=p+1,n g<t<T . DT (t)

i=1,p 0<¢<T

Wi (T)= max{ max sup / lw; (t,z) |dz
DT.(t)
. max sup / lw; (t,z) |dz 3 .
i=p+1,--n 0<t<T . D:I"(t)
Noting (4.4.4), V (T) is obviously equivalent to
U (T) = max_ sup |u, (t,2)].

i=1,n gcpor
TzER

111

(4.4.18a)

(4.4.19a)

(4.4.20a)

(4.4.21a)

(4.4.220a)

(4.4.23a)

(4.4.28)

In the present situation, Lemma 3.2 and Lemma 3.3 are still valid and can be

stated as follows:
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Lemma 4.4. For each ¢ =1, ---,n, on the domain DT\DiT we have
ct <lz— A (0)t] < Ct, (4.4.29)
cr < |z — X, (0)t] < Cz, (4.4.30)

where ¢ and C are positive constants independent of (¢,z) and 7. O

Lemma 4.5. Suppose that (4.3.3) and (4.3.6) hold, and A(u),B(u) € C? in a
neighbourhood of © = 0. Suppose furthermore that ¢ (z) is a C* vector function
satisfying (4.3.7). There exists 8y > 0 so small that for any fixed 6 € [0, 6o}, on any
given existence domain 0 < t < T of the C! solution u = u (¢t,z) to the Cauchy
problem (4.3.1)-(4.3.2) there exist positive constants k; and k, independent of 6

and T, such that the following uniform a prior:i estimates hold:

v (DT), W (DI) < k.8 (4.4.31)
and

V (DY), W (DT) < k26. (4.4.32)

O

Lemma 4.6. Suppose that (4.3.3) and (4.3.6) hold, A (u), B () € C? in a neigh-
bourhood of v = 0, and (4.3.4)-(4.3.5) hold. Suppose furthermore that system
(4.3.1) is weakly linearly degenerate and B(u) satisfies the matching condition.
Suppose finally that ¢ (z) is a C! vector function satisfying (4.3.7). In the normal-
ized coordinates there exists 8y > 0 so small that for any fixed 6 € [0, 6], on any "
given existence domain 0 < t < T of the C! solution v = u (t,z) to the Cauchy
problem (4.3.1)-(4.3.2) there exist positive constants k; (¢ = 3,---,9) independent

of # and T, such that the following uniform a prior: estimates hold:
US, (T) < k30, (4.4.33)

VE (T) < kb, (4.4.34)

WE (T) < ksb, (4.4.35)
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V1 (T) < kgb, (4.4.36)
Wi (T) < kq8, (4.4.37)
Voo (T) < kg (4.4.38)
and
0o (T') < kof. (4.4.39)
O

Proof. This lemma will be proved in a way similar to the proof of Lemma 3.4. In
what follows we only point out the essentially different part in the proof. Without
loss of generality, the following discussion is always carried out in the normalized
coordinates.

We first prove that when 6 > 0 is suitably small, we have
U (T) S CLVL(T) + CoVe (TY UL (T, (4.4.40)

henceforth C; (5 = 1,2, --+) will denote positive constants independent of 6 and 7.

In fact, the proof of (4.4.40) is basically the same as that of (3.4.73) in Chapter
3 and all we have to supply is the following: For any given point (¢,x) € DT\D?,
if (t,z) € DL, then ¢ ¢ {1,---,p} and (t,2) ¢ DI (k=p+1,---,n). Noting
(4.1.23), we have

"
u; (t,z) = ul(t,x)e, = ka'rz’ (u) e,
p =1 . (4.4.41)
= Zvj (ro (w) —rF (Zuheh)> e; + Z oty (u)e;.
g=1 h=1 k=p+1
By Hadamard’s formula, for j = 1,---,p we have
P " Oy |
r; (u)—r; (Zuheh> / Z =L (ug,- - yUp, TUpt1, -+ TUn) UkdT, (4.4.42)
h=1 0 k- p+1
we get

(14 |z = X (0) ) |ug (1, ) | < C3VE (T) 4+ CuVoo (TYUS, (T).  (4.4.43)
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This leads to (4.4.40).

Similar to 13.4.74), we have

U (T) < CsVi(T) + Ce VL (T).

Let

U, (T) = max{ max max sup/ |lu; (t,x)|dt ,
i=1,,p jE{p+1,"',n} é, (;J

max | maxsup [ fus(to)lde p
=prlen gt a0 Je,

ffl (T) = max max max sup/_ |vq (£, ) |dt
t é‘, C}

=1,-.p je{p+1,--,n}

max  max sup/ |v; (t, x) [dt} \
gy

i=p+1,-,n j#i &
J

W, (T) = max{ max max sup/ lw, (¢, z)|dt ,
! - n} (‘7} (",'J

=1.p jE{p+1.-

max max su / lw; (t,x)|dt
i=p+1,-n j#i (-7! C-'_,

(4.4.44)

(4.4.45)

(4.4.46)

(4.4.47)

where, when ¢ € {1,---,p}, C~'>,- stands for any given j-th characteristic in DT

(j€{p+1,---,n}); while, wheni € {p+1,---,n}, C‘j stands for any given j-th

characteristic in DY (5 # 1) .

Similar to (3.4.101), we have

1 (T) < CiVy (T) + CsVE(T).

(4.4.48)
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In the present situation, (3.4.84) can be rewritten as

/zlwi (& z5(8)) | 1A (u(t, z;(1))) — Xi(u(t, z;(t)))]dt

1) Vo
< /OA,,,(U)HU |w¢(t, (/\n(o) + 60)t)| ()\n(O) + 6o — /\i(ta ()\n(o) + 50)t))dt

n

+// Z Fijk(w)w;w | dtdx

PyO Aq Py k=1
T hg{

3 1..--.p}

8 9%

+// Z Yije(w)wjwg + (bi(u))z| dtdz.

PyOAy Py |7,k=1

(4.4.49)
By the corresponding estimates given in §3.4, we only need to estimate the last

term on the right-hand side of (4.4.49).

Noting (4.2.25) and using Hadamard’s formula, for j,k € {1,---,p} we have

h=1

1 n
_ OViju
= / E Tl (U, Up, TUp41, 7, TUn )W dT.
0

P
Fije(w) = Fgre(u) — Yije (Z%%)

(4.4.50)

On the other hand, noting (4.2.23)-(4.2.24) and using Hadamard’s formula again,
from (4.2.15) we obtain

(bi(w), = > ( — bk (Zuheh)) Wy, +Z ( - bzk(ukek))

k=1 k=p+1
p
= Z/ 8312: (ula"'1up’7-up+1a'"7T/un)uld7—wk
k=170 1= pi1
Z / Z%%‘?(Tulf")Tuk—lyukaTuk—f-la'"7Tun)uldka-
k=p+1 I#k
(4.4.51)
Hence, similar to (3.4.88), using (4.4.48) we obtain from (4.4.49) that
Wi(T) < Co {0+ (Wa(D)’ + Wi (DIWi(T) + U, (T)W(T) (0452

+ WMV (T) + WS (T)VA(T) + UL (T)Wi(T)}
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Similarly, we have

Wi(T) < Cio {8+ (WE(D)* + WS (TIWL(T) + U (TIWE(T)
+ WL (DVE(T) + WL (TWVA(T) + U (T)W1 (T)}

(4.4.53)

Moreover, similar to (3.4.103), using (2.2.21), (4.2.12) and (4.4.48) we obtain

WE(T) < Cu {8+ (Wa(T)) + WS (T)W(T) + UL (D)W (T)

~ i (4.4.54)
+ Vi(T)WS(T) + VE(T)WE(T) + Ugo(T)Wl(T)} .

Noting (4.2.5)-(4.2.9), we may rewrite (3.4.90) as

/ s (62, (8) | 1A (e, 25(8))) — A(ult, 2 (1)) dt

to

Yo

< 7T e, n0) + 80)0)I (00 (0) + B = A (An(0) + B0)e))t
0

+ Z Buk(u)v]wk dtdz
=1
(1

PyO A3 k=
kg

Og,

r}

4

+// Z Z Vijk (w)brig(u)v;uiug| dide

PyOAy Py |3,6=1 X (0)#X,(0)

. p
+ Z bijk(u)ujuk dtdm-i'// Z Bijlc(u)vjwk dtdzx.
PyOAs Py | Xj(0)F#AL(0) PaOA, P, |3,k=1

(4.4.55)
Noting the corresponding estimates given in Chapter 3, we only need to estimate the
last term on the right-hand side of (4.4.55). Since system (4.3.1) is weakly linearly
degenerate, for j,k € {1,---,p}, noting (4.2.6) and (4.2.8) and using Hadamard’s

formula we have

/Bijk (u) = ﬂzyk ﬂz]k (Zukek)
n
- %z_&(u e d
- du; 1 yUp, TUpy1, ,T’an)U[ T,
0 l=p+1

vie{l,---,n}, Vjke{l,---,p}.

(4.4.56)

Then, using (4.4.48) we can also obtain a similar estimate for the last term on the
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right-hand side of (4.4.55). Finally, we get
Vi(T) < Cu {6+ VE(T)WE(T) + Vi(T)WE(T)
FVE(TYWL(T) + US, (TYWy(T) + US, (TYWS, (T) (4.4.57)
+ (UL (T)? + UL(TVI(T) + UL (DVE(T) }
Similarly, we have
Vi(T) < Cu{d+ VL (T)WS(T) + Vi(THYWE(T)
+VL(TYWL(T) + U (TYW(T) + US (TYWE(T) (4.4.58)
+ (US (1)) + U, (TVA(T) + U (T)V(T) }
Moreover, similar to (3.4.104), noting (4.2.1) and (4.2.5) we obtain
Ve(T) < Cu {9 +VE(DWE(T) + VE(TWi(T) + Vi(T)WE(T)
HUS(TI)W5(T) + U (T)W(T) + Vi(T)W5(T) (4.4.59)
+ (US(T))? + UL (T)VA(T) + US(TVE(T) } .

Furthermore, similar to (3.4.109) we have
Voo (T) < C15 {0 + WE(T) + Wi(T)}. (4.4.60)

Thus, using a procedure similar to that in Chapter 3, by (4.4.40), (4.4.52)-
(4.4.54) and (4.4.57)-(4.4.60), we can easily obtain (4.4.33)-(4.4.38).

We finally prove (4.4.39).
Noting that system (4.3.1) is weakly linearly degenerate and using (4.2.13)-
(4.2.14) and (4.2.23)-(4.2.24), corresponding to (3.4.110) we have

t
w; (t,x) = w, (m,y) +/ 1 Z Vijk (W) wjwe (s, z:(s;t, x))ds
ot (()/)+m) k=1
J 1 kEg{
t
+/ Z (%y/c — Yijk (Zuheh>> ww (8, Ti(s; ¢, T))ds
P OET g N

+/ Z ~z’k. (u) = bs k(ukek)) wi(8,7i(s; 1, 7))ds

X0V FRG k=p+1
t P

+ Z (bzk u) — by, (Zuheh)) wi (s, x(s;t,x))ds.

An (n)+m,k 1
(4.4.61)
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Noting the corresponding estimates given in Chapter 3 and using Hadamard’s for-

mula we can still obtain the same estimate as (3.4.112):

We (T) < Cie {9 + W (T) + (WS (T))? + W, (T) Weo (T)
+Uso (T) (WS, (T))? + US, (T) (Weo (T))? + UL (T) WE(T)

+ Uso (TYWE(T) + UL (T)Weo(T) } .
(4.4.62)
As in Chapter 3, from (4.4.62) we get (4.4.39) immediately.

Finally we point out that (4.4.38) implies the reasonableness of hypotheses
(4.4.4), provided that 6y > 0 is suitably small. The proof of this Lemma is finished.
Q.E.D.

By Lemma 4.6 we get Theorem 4.1 immediately.

§4.5. Blow-up phenomenon and life span of C! solution
— Proof of Theorem 4.2

Under the hypotheses of Theorem 4.2, Lemma 4.5 is still valid and can be stated

as

Lemma 4.7. Suppose that (4.3.3) and (4.3.6) hold, and A (u),B(u) € C? in a
neighbourhood of v = 0. Suppose furthermore that p(z) = ey (z), where € > 0
is a small parameter and ¥ (z) is a C! vector function satisfying (4.3.12). There
exists g > 0 so small that for any fixed € € (0,&¢], on any given existence domain
0 <t < T of the C! solution u = u (¢,z) to the Cauchy problem (4.3.1)-(4.3.2)
there exists a positive constant k; independent of € and T, such that the following

uniform a priori estimate holds:

v (DI), v (DY), w(D{), W (DI) < kie. (4.5.1)
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Let
W2 (T) = max sup |w; (¢, z)], (4.5.2)
iEJ o<i<T
z€R

where J is defined in §4.3. We have

Lemma 4.8. Under the assumptions of Theorem 4.2, in the normalized coor-
dinates there exists g > 0 so small that for any fixed ¢ € (0,¢&o], on any given
-existence domain 0 <t < T of the C! solution v = u (¢,z) to the Cauchy problem
(4.3.1)-(4.3.2) there exist positive constants k; (¢ = 2,---, 10) independent of ¢ and

T, such that the following uniform a priori estimates hold:

US(T) < ke, (4.5.3)
VE(T) < kse, (4.5.4)
WE(T) < kae, (4.5.5)
Wi (T), Wi(T) < kse, (4.5.6)
Vi(T), Vi(T) < kge + kre?toT, (4.5.7)
Uso(T), Voo (T') < ke, (4.5.8)
WP (T) < kee, (4.5.9)
where |
Tezte < 1. (4.5.10)
Moreover,
Weo (T) < kioe, (4.5.11)
where
Telte < kyy. (4.5.12)
O

Proof. Thislemma will be proved in a way similar to the proof of Lemma 4.6. In

what follows we only point out the essentially different part in the proof and g¢ > 0
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is always supposed to be suitably small. As before, all discussions are carried out

in the normalized coordinates.
In the present situation, (4.4.40) and (4.4.48) are still valid.

Noting that the proofs of (4.4.52)-(4.4.54) and (4.4.59)-(4.4.60) are not based
on the hypothesis of weak linear degeneracy and that {1,---,p} N J = 0, in the

present situation we still have

Wi(T) < Ci {a + (WS (T))? + W (T)Wi(T) + US, (TYWS,(T)

(4.5.13)
+ WE(T)WVL(T) + W (T)Vi(T) + U (T)W1(T)},

WiT) € G {e+ (VL) + WMD) + USMWED) o
+ WS (T)VL(T) + W5 (T)YVi(T) + UL (T)W(T)}

WE(T) < Cs{e+ (We(D))® + WL (T)Wi(T) + US(TIWE(T) (4.5.15)

+ Vi(T)WE(T) + VE(T)WE(T) + UgO(T)Wl(T)} :

Vo(T) < Cife+VE(TIWLT) + VE(DWIT) + Vi(T)WE(T)
+US (TYWS(T) + UL, (T)YWi(T) + Vi(T)WE(T) (4.5.16)
+ (US(T))* + UL (DTA(T) + UL (T)VE(TD) },

Uso(T), Voo (T) < Cs {e + WS (T) + W1 (T)}, (4.5.17)

henceforth C; (j = 1,2,---,) will denote positive constants independent of ¢ and
T.

For i ¢ J, we can estimate (4.4.55) just as in the proof of Lemma 4.6; while, for
i € J, noting (4.2.6)-(4.2.7) and the fact that JN{1,---,p} = 0, instead of (4.4.55)
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we have
t2
/ v (£, 25(8) | 125 (u(t, @;(8))) = As(ult, z;(¢)))|dt
Jto
< / 10:(t, (An(0) + 60))] (An(0) + 8o — Au(t, (An(0) + 80)t))dt
Jo
n 5 D N
+// Z ﬁij';c(u)v]wk dtdx + Z ﬂijk(u)vjwk dtdx
PyOAy Py | JFK PyOAyPy [J,k=1
JOr kg{1.p)
n
+// > (/31'13'(11/) - /ﬁzjj(wej)> vjwy | dtds
PO APy |7=1
n
+// Z Z V.,;jk(u)bqu(u)fujuluq dtdx
PgOAg Py [7,k=1 X (0)#X,(0)
+// Z bijr(u)uju, | dtde + Bm-(uiei)viwi dtdz,
PaOA Py 1A (0)#X(0) PyO APy
(4.5.18)
hence, we only need to estimate the last term of the right-hand side of (4.5.18).
Noting the fact that in the normalized coordinates
B“’i (uiei) — aA‘L (07"'707111170:"',0) (4519)
8ui
and the difinitions of «; and «. we have
|Bii (uses) | < Colusl®. (4.5.20)
Thus, similar to (3.6.17) we have
Bisi(uwie)viw; | dtdz < Cr (Vo (T)' T (WS (T) + Wi (T)) T, (4.5.21)
PO A, Py
then we have
Vi(T) < Cs{e+VE(MWEL(T)+W(T)W(T)
TV (TW(T) + UL (TWH(T) + US(TYWS(T) (4.5.22)

+(US(T))? + UL (T)Vi(T) + U (T)VE(T)
+ (Voo (D) (WE(T) + WA(T) T }.
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Similar to (4.4.58), we obtain

W(T) < Col{e+VL(MWEL(T)+ Vi(TYWS(T)
+VS(TYWI(T) + UL (T)W1(T) + UL (YW (T)
+(US(T)? + UL(T)V(T) + UL (T)VE(T)

+ (Vao( 1)) (WS (T) + WA(T)T }.

(4.5.23)

Since \;(u) (i € J) is weakly linearly degenerate, similar to (4.4.62), we get

WE(T) < Cio{e+Wa(T)+ (W& (D)’ + WE(T)Weo(T)
FUoo (T) (WE(T))? + U (T) (WE(T))? + UL (TYWE(T)

+ Uno(T)WE(T) + U, (TYWE(T)} .
(4.5.24)

Thus, using a procedure similar to that in the proof of Lemma 4.6, by (4.4.40),
(4.5.13)-(4.5.17) and (4.5.22)-(4.5.24) we can easily prove (4.5.3)-(4.5.9), provided
that (4.5.10) holds.

We finally show (4.5.11).
In the present situation, if i ¢ J, then |w,(¢t,z)| can be bounded by WZ (T).
Otherwise, noting the fact that J N {i,---,p} = 0, similar to (3.6.54) we have

wi(t.2)] < Cu{e+ (W (1) + W (T) W (T)
+Uoo (T) (W5 (T))? + U (T) (Woo (T))*
+US (T)WE (T) + Uso (T) WS, (T)
+ U (T) Wae (T) + (Voo (T))™ (Wee (T))? T} .

(4.5.25)

Then, noting (4.5.3), (4.5.5), (4.5.8) and (4.5.9), and using Lemma 4.5, we get
W (T) < Cha {e (1 + W (T) + (We (T))z) 4 eOT (W (T))'z} . (4.5.26)

where T satisfies (4.5.10).

As in Chapter 3, (4.5.11) follows from (4.5.26) immediately, provided that
(4.5.12) holds.

Thus, the proof of Lemma 4.8 is completed. Q.E.D.
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Restricting the domain under consideration such that 0 < ¢t < 5'(%‘*'0‘), using
(4.5.3)-(4.5.8), noting the fact that J N {1,---,p} = 0, repeating completely the

procedure of proving Theorem 3.2 in Chapter 3, we can prove Theorem 4.2 easily.

§4.6. Quasilinear hyperbolic systems of conservation laws
with characteristics with constant multiplicity

In order to apply Theorems 4.1-4.2, we have to consider the following problem:
under what conditions does system (4.3.1) possess the normalized coordinates?

Using Frobenius’ Theorem we can easily prove the following.

Lemma 4.9. Suppose that in a neighbourhood of u = 0, A(u) € C*, where k
is an integer > 1, and (4.3.3)-(4.3.5) hold. Suppose furthermore that p > 1 and
the right eigenvectors r; (u) (¢ = 1,-- -, p) corresponding to the multiple eigenvalues

Ai (uw) (i =1,---,p) satisfy the following completely integrable condition:

[riy7;] € span{ry (u),---,7p (w)}, Vi, j=1,---,p, (4.6.1)
where span {ry(u),---,7,(u)} stands for the linear space spanned by the right eigen-
vectors 7y (u), --,7, (u), and [-,-] denotes Poisson’s bracket defined by

[ri,ri]l = (7 - V)r; — (r] - V) rs. (4.6.2)

~k+1

Then there exists an invertible £ transformation v = u(@) (u (0) = 0) such that

in u-space
p
7 ( '&h,eh) =e (i=1,---,p), Vl|ap|small (h=1,---,p)  (4.6.3)

and

7; (Ue;) =e;, V|, smal (j=p+1,---,n), (4.6.4)

namely, system (4.3.1) possesses the normalized coordinates. O

Now we investigate an important special case.
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Consider the following quasilinear hyperbolic system of conservation laws

ou  OF(w) _ (4.6.5)

ot or

where v = (ug,---,u,)" is the unknown function and f (u) = (fi (u),- -, fr (u))T
is suitably smooth.
Suppose that all the eigenvalues of A (u) = V f (u) has constant multiplicity.

Without loss of generality, we suppose that on the domain under consideration
Alw)y=M(w) == A, () < App1(u) < -~ < Ay (), (4.6.6)

where p > 1 is an integer.
By [Boj}-[Fr] we have

Lemma 4.10. The eigenvalue A (u) with constant multiplicity p (> 1) must be
linearly degenerate in the sense of P.D.Lax, i.e., on the domain under consideration

we have

VA(u) -r(u)=0 (i=1,---,p); (4.6.7)

moreover, the completely integrable condition (4.6.1) holds. O

By Lemma 4.9 and Lemma 4.10, the quasilinear hyperbolic system of conser-
vation laws with eigenvalues with constant multiplicity must have the normalized
coordinates. Therefore, Theorems 4.1-4.2 can be applied to obtain the correspond-

ing results.



