
Chapter 3

Cone-Manifolds

To find a geometric structure on a topological 3-orbifold $Q$ , we will typically
start with a complete hyperbolic structure on $ Q-\Sigma$ (a Kleinian group) and
try to deform this to a hyperbolic structure on the 3-orbifold $Q$ (another
Kleinian group). The intermediate stages will be hyperbolic metrics with
cone-type singularities - $3$-dimensional hyperbolic cone-manifolds.

3.1 Definitions

An n-dimensional cone-manifold is a manifold, $M$, which can be triangu-
lated so that the link of each simplex is piecewise linear homeomorphic to a
standard sphere and $M$ is equipped with a complete path metric such that
the restriction of the metric to each simplex is isometric to a geodesic sim-
plex of constant curvature $K$ . The cone-manifold is hyperbolic, Euclidean
or sphertcal if $K$ is-l, $0,$ $or+1$ .
Remark: We could allow more general topology, for example $M$ a rational
homology n-manifold. Most arguments still apply in that setting.

The singular locus $\Sigma$ of a cone-manifold $M$ consists of the points with
no neighbourhood isometric to a ball in a Riemannian manifold. It follows
that
$\bullet$

$\Sigma$ is a union of totally geodesic closed simplices of dimension $n-2$ .
$\bullet$ At each point of $\Sigma$ in an open $(n-2)$ -simplex, there is a cone angle
which is the sum of dihedral angles of n-simplices containing the point.
$\bullet$ $ M-\Sigma$ has a smooth Riemannian metric of constant curvature $K$ , but
this metric is incomplete if $\Sigma\neq\emptyset$ .
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We will see that many of the techniques and results from Riemannian
geometry also apply to cone-manifolds. Useful references on the geometry
of cone-manifolds and more general spaces of piecewise constant curvature
include [12] and [47].

Example 3.1.
Let $\Delta$ be the lune (or bigon) in $S^{2}$ contained between two geodesics making
an angle $\alpha$ . The double of $\Delta$ gives a cone-manifold structure on $S^{2}$ with two
cone points each with cone angle $ 2\alpha$ . This cone-manifold is called a football.
Example 3.2.
Let $\Delta$ be a triangle with angles $0<\alpha,$ $\beta,$ $\gamma<\pi$ in
$\bullet$

$\mathbb{H}^{2}$ if $\alpha+\beta+\gamma<\pi$ ,
$\bullet$

$E^{2}$ if $\alpha+\beta+\gamma=\pi$ ,
$\bullet$

$S^{2}$ if $\alpha+\beta+\gamma>\pi$ .
Doubling the triangle $\Delta$ gives a cone-manifold structure on $S^{2}$ with three
cone points with cone angles $2\alpha,$ $2\beta,$ $ 2\gamma$ . These cone-manifolds are called
tumovers and are hyperbolic, Euclidean or spherical respectively. These
cone-manifolds are denoted $S^{2}(2\alpha, 2\beta, 2\gamma)$ .

Remark: In the spherical case, not all angles satisfying $\alpha+\beta+\gamma>\pi$ are
possible: $\pi-\alpha,$ $\pi-\beta,$ $\pi-\gamma$ represent the edge lengths of the “dual” or
“polar” spherical triangle, so must satisfy three triangle inequalities (see,
for example, [5]).

Example 3.3.
A closed, orientable, constant curvature orbifold of dimension 2 or 3 is a
cone-manifold with cone angles of the form $2\pi/m$ , where $m\geq 2$ is an integer.
The singular locus locally looks like:
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$\Sigma$

$2\pi/m$ $1/m+1/p+1/q>1$

In 3.6 below, we will see that if $M$ is an orientable 3-dimensional cone-
manifold with cone angles at most $\pi$ then the singular locus is again a
trivalent graph, and the link of every point in the singular locus is a football
or turnover.

Example 3.4.
Let $T^{3}=S^{1}\times S^{1}\times S^{1}$ be a 3-torus and let $\Sigma$ consist of three simple closed
curves in orthogonal directions, say $S^{1}\times p\times q,$ $q\times S^{1}\times p,p\times q\times S^{1}$ where $p,$ $q$

are distinct points in $S^{1}$ . Then $ T^{3}-\Sigma$ is homeomorphic to the complement
of the Borromean rings, as can be seen in 2.32.

We will construct hyperbolic cone-manifold structures on $T^{3}$ with arbi-
trary cone angles $0\leq\alpha,$ $\beta,$ $\gamma<2\pi$ along the three components of $\Sigma$ . (Cone
angle “zero” corresponds to a cusp.) Further, these hyperbolic structures
on $T^{3}$ degenerate as any angle approaches $ 2\pi$ .

We begin with a polyhedron $Q$ in $\mathbb{H}^{3}$ as shown below.

$Q$

Such a polyhedron can be constructed whenever $\alpha,$
$\beta,$

$\gamma$ are less than $ 2\pi$ .
For example, $Q$ can be obtained from four copies of a hyperbolic cube $C$

with dihedral angles as shown below; such a cube exists by a theorem of
Andreev [3] which characterizes the convex polyhedra in $\mathbb{H}^{3}$ with all dihedral
angles $\leq\pi/2$ .
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All other dihedral
angles are $\pi/2$

$C$

Gluing together the opposite vertical faces of $Q$ gives a hyperbolic struc-
ture on $T^{2}\times I$ bent along a curve with angle $\alpha/2$ on top and a curve with
angle $\beta/2$ on the bottom, and with a vertical axis with cone angle $\gamma$ . Fi-
nally, doubling this gives a hyperbolic cone-manifold structure on $T^{3}$ with
cone angles $\alpha,$

$\beta,$
$\gamma$ along the components of $\Sigma$ .

Here is a direct construction of $Q$ , which also gives some idea of the
variation in the shape of $Q$ as the angles $\alpha,$

$\beta,$
$\gamma$ are varied. Begin with a

“vertical” geodesic in $\mathbb{H}^{3}$ and two pairs of planes: one pair meeting in a ridge
line with angle $\alpha/2$ , the other meeting along a valley line with angle $\beta/2$ .
Further, the geodesics defining the ridge and the valley should be orthogonal
to the vertical geodesic and to each other (after vertical translation).

There is a one parameter family of planes orthogonal to the ridge meeting
one side of the valley; with angles of intersection varying monotonically from
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$0$ to $\pi-\beta/4$ . Hence, there is a unique such plane for which the angle is $\pi/2$ .

Similarly, we find three other vertical planes; by symmetry these meet
at the same angle $\gamma$ . Finally, it is easy to see that the angle $\gamma$ varies from
$\pi/2$ to $0$ as the vertical distance from the valley to ridge varies from $0$ to
$\infty$ .

From this description of $Q$ we can see how the hyperbolic cone-manifold
structures on $T^{3}$ degenerate as any cone angle approaches $ 2\pi$ .

(a) As $\alpha,$
$\beta\rightarrow 2\pi$ , with $\gamma<2\pi$ fixed, the polyhedra flatten out to give

a 2-dimensional hyperbolic limit: a hyperbolic torus with one cone point of
angle $\gamma$ .

(b) As $\alpha,$
$\beta,$ $\gamma\rightarrow 2\pi$ , the geometric limit (see chapter 6) can be either a

point, circle or a line, depending on the exact mode of convergence. In each
case there is a limiting Euclidean structure after rescaling.
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$\rightarrow\bullet$

$\sim$

$rescale\downarrow$

(c) If $\gamma\rightarrow 2\pi$ with $\alpha,$ $\beta<2\pi$ fixed, then the hyperbolic structures
have diameter going to infinity, while two tori (with cone angle $\gamma$ ) become
smaller and smaller, looking more and more like Euclidean tori as $\gamma\rightarrow 2\pi$ .
The limiting polyhedra give a hyperbolic structure on the manifold obtained
from $T^{3}-$ (two horizontal curves) by splitting open along two incompressible
tori.

(This process is a 3-dimensional analogue of the process of creating a
cusp in a hyperbolic surface by pinching a curve to a point, in going to the
boundary of Teichm\"uller space. Compare example 6.9.)

Exercise 3.5.
(a) Show that there are hyperbolic cone-manifold structures on $S^{3}$ with the
Borromean rings as the singular locus, with arbitrary cone angles satisfying
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$0\leq\alpha,$ $\beta,$ $\gamma<\pi$ . [Hint: reassemble 8 copies of a cube $C$ of the type described
above.]
(b) Describe how these hyperbolic structures degenerate as any angle ap-
proaches $\pi$ .
(c) Show that $ T^{3}-\Sigma$ is homeomorphic to the complement of the Borromean
rings in $S^{3}$ .

Many other examples of 3-dimensional hyperbolic cone-manifolds arise
from Thurston’s theory of hyperbolic Dehn surgery. A detailed discussion
of this will be given in section 5.6 below.

3.2 Local structure

Each point in an n-dimensional cone-manifold has a neighbourhood called
a standard cone neighbourhood which is an open cone $Cone_{K}(S;R)$ with
constant curvature $K$ and radius $R$ , based on a spherical cone-manifold $S$

of dimension $(n-1)$ .
Topologically, $Cone_{K}(S;R)$ is $S\times[0, R$) with $S\times\{0\}$ collapsed to a

point. The metric is
$ds^{2}=dr^{2}+s_{K}^{2}(r)d\theta^{2}$

where $d\theta^{2}$ denotes the metric on $S,$ $r\in[0, R$) and

$s_{K}(r)=\left\{\begin{array}{ll}\frac{1}{\sqrt{K}}\sin(\sqrt{K}r) & if K>0,\\r & if K=0,\\\frac{1}{\sqrt{|K|}}\sinh(\sqrt{|K|}r) & if K<0.\end{array}\right.$

If $K\leq 0$ then $Cone_{K}(S;R)$ is defined for $ 0<R\leq\infty$ . If $K>0$ then
$Cone_{K}(S;R)$ is defined for $0<R\leq\frac{\pi}{\sqrt{K}}$ and we define the suspension
$Susp_{K}(S)$ of $S$ to be the completion of $Cone_{K}(S;R)$ where $R=\frac{\pi}{\sqrt{K}}$ This
suspension is obtained by gluing together two closed cones of radius $\frac{\pi}{2\sqrt{K}}$ ;
the centres of these cones are called the suspension points. These cones
and suspensions are analogues of standard balls and spheres for constant
curvature cone-manifolds.

3.3 Standard cone neighbourhoods

Given a point $p$ in a n-dimensional cone-manifold, let $S_{r}(p)$ denote the set
of points at distance $r$ from $p$ . Then for $r$ sufficiently small, $S_{r}(p)$ with the
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induced path metric is an $(n-1)$-dimensional cone-manifold of constant
positive curvature.

Let $\mathbb{H}^{n}(K)$ denote the complete, simply connected n-manifold of con-
stant curvature $K$ . Then each non-singular point of an n-dimensional cone-
manifold has a neighbourhood which is a metric ball in $\mathbb{H}^{n}(K)$ .

If $n=2$ , each singular point has a cone neighbourhood which is a metric
ball as shown below:

wedge in
$H^{2}(K)$

In polar coordinates the metric has the form:
$ds^{2}=dr^{2}+s_{K}^{2}(r)d\theta^{2}$ ,

where $0\leq\theta\leq\alpha,$ $r\geq 0$ .

If $n=3$ , then each point has a neighbourhood which is a cone on a
spherical 2-orbifold. We will see in 4.2 that every orientable spherical cone
2-manifold with cone angles at most $\pi$ is either a sphere, a football (as in
example 3.1) or a turnover (as in example 3.2).

Proposition 3.6. Every point in the singular locus of an orientable 3-
dimensional cone-manifold with cone angles at most $\pi$ has neighbourhood
which is the cone on a football or tumover. Thus the singular locus is a
trivalent graph.

A cone neighbourhood of singular point which is not a vertex looks like:
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glue

In cylindrical coordinates the metric has the form:

$ds^{2}=dr^{2}+s_{K}^{2}(r)d\theta^{2}+c_{K}^{2}(r)dz^{2}$ ,

where $0\leq\theta\leq\alpha,$ $r\geq 0,$ $z\in \mathbb{R}$ , and $c_{K}(r)=s_{K}^{\prime}(r)$ . (For example,
$S_{K(r)}=\sinh(r),$ $c_{K}(r)=\cosh(r)$ in the hyperbolic case where $K=-1.$ )

A vertex has a neighbourhood which is obtained by taking two isometric
tetrahedra in $\mathbb{H}^{3}(K)$ and identifying along the three faces containing the
vertex. A standard cone neighbourhood is a metric ball centred on the
vertex inside this neighbourhood.

cone neighbourhood of a vertex

3.4 Geodesics

A cone-manifold has a path metric in the sense of Gromov and Alexandrov:
the distance between two points is the infimum of lengths of paths joining
the points. A geodesic in a cone-manifold is a curve which is locally length
minimizing. At each point $p$ of a cone-manifold $M$ there is a tangent cone
$T_{p}M$ isometric to a Euclidean cone: $T_{p}M$ is the union of the Euclidean
tangent cones to all the n-dimensional simplices containing $p$ . The subset
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$S_{p}$ of unit tangent vectors at $p$ is a spherical cone-manifold –the visual
sphere at $p$ .

Next we outline some important results on geodesics in cone-manifolds;
see [47] and [12] for more details.

Lemma 3.7 (Hopf-Rinow). Let $M$ be a complete, connected cone-manifold.
(i) Then any two points in $M$ can be joined by a geodesic of length equal to
the distance between the points.
(ii) Given any vector $v$ in $T_{p}M$ , there is a constant speed geodesic $g_{v}$ in $M$

with initial tangent vector $v$ , and $g_{v}$ is uniquely defined in some neighbour-
hood of $p$ .

Proof. Part (i): Take a sequence of constant speed curves $\gamma_{i}$ : $[0,1]\rightarrow M$

joining $p$ to $q$ , with 1ength $(\gamma_{i})\rightarrow dist(p, q)$ as $ i\rightarrow\infty$ . This is bounded
and equicontinuous, so has a convergent subsequence by Ascoli-Arzela. The
limit is a geodesic. Part (ii) is easy. $\square $

Exercise 3.8. Check the details in the above argument.

Lemma 3.9 (Lemma A). In a cone-manifold with all cone angles $<2\pi$ ,
if the interior of a geodesic contains a point in the singular locus then the
entire geodesic is contained in a single stmtum of the singular locus.

First we will sketch the main idea of the proof in the 2-dimensional case.
If a curve meets $\Sigma$ at a point $p$ and is not entirely contained in $\Sigma$ , then (the
smallest) angle between the incoming and outgoing arcs at $p$ is $<\pi$ . Hence,
the curve can be shortened by smoothing the corner at $p$ .



3.4. GEODESICS 63

Note: This result fails if cone angles larger than $ 2\pi$ are allowed. In this
case length minimizing geodesics may pass through cone points. In fact,
there is a pencil of extensions of any geodesic at any cone point with angle
$>2\pi$ , consisting of all outgoing geodesic arcs making an angle $\geq\pi$ with the
incoming arc.

Lemma 3.9 implies that if a vector $v$ is not tangent to $\Sigma$ then the geodesic
$g_{v}$ can be extended until it meets the singular locus. If $v$ is tangent to $\Sigma$

then $g_{v}$ is contained in $\Sigma$ and can be extended until it meets a different
strata of the singular locus.

Lemma 3.10 (Lemma B). A connected spherical cone-manifold of dimen-
sion at least 2 and curvature 1 with all cone angles $<2\pi$ has diameter $\leq\pi$ ,
with equahty if and only if the cone-manifold is a suspension. Further, the
only two points at distance $\pi$ apart are the suspension points.

Proof. We prove Lemmas 3.10 and 3.9 simultaneously by induction on di-
mension, following an argument of Thurston (compare [44]). Let $(A_{n}),$ $(B_{n})$

be the statements of Lemmas A and $B$ for n-dimensional cone-manifolds.
The statement $(A_{1})$ is trivially true. Lemma $B$ does not apply in dimension
1.
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Assume $(A_{n-1})$ and $(B_{n-1})$ are true for $n\geq 2$ . Let $g$ be a length
minimizing geodesic in an n-dimensional cone-manifold. Suppose $p$ is a
singular point in the interior of $g$ , and let $v$-and $v+be$ the unit tangent
vectors to $g$ at $p$ , directed away from $p$ . Then $v$-and $v_{+}$ give two points in
the unit tangent cone $S_{p}$ , which is a spherical cone-manifold of dimension
$(n-1)$ . The angle between these tangent vectors is the distance between $v_{-}$

and $v_{+}$ measured in $S_{p}$ so is $\leq\pi$ , by the hypothesis on cone angles if $n=2$
and by the induction hypothesis $(B_{n-1})$ if $n>2$ . If this angle is $<\pi$ then
the length of $g$ could be reduced by smoothing the corner at $p$ , so $g$ would
not be locally length minimizing. If the angle is equal to $\pi$ then $n>2$ and
it follows from $(B_{n-1})$ that $g$ is tangent to $\Sigma$ at $p$ , hence contained in $\Sigma$ .
This proves $(A_{n})$ .

To prove $(B_{n})$ , we consider a length minimizing geodesic $g$ in an n-
dimensional spherical cone-manifold $S$ of curvature 1. By $(A_{n})$ , either the
interior of $g$ is disjoint from $\Sigma$ or the entire geodesic $g$ is contained in a
single stratum of $\Sigma$ . Elementary spherical geometry therefore shows that $g$

has length $\leq\pi$ ; hence $S$ has diameter $\leq\pi$ . Further, if $g$ has length $\pi$ then
its interior has a neighbourhood which is a suspension. Now suppose that
$S$ contains two points $p,$ $q$ at distance $\pi$ apart. Let $U$ be the set of unit
tangent vectors $v\in S_{p}$ such that the geodesic $g_{v}$ with initial tangent vector
$v$ is length minimizing on $[0, \pi]$ and joins $p$ to $q$ . Then $U$ is an open subset
of $S_{p}$ by our previous remark. Suppose that $v$ is a vector in the closure
of $U$ . We claim that the geodesic $g_{v}$ is defined on $[0, \pi]$ . If not, then $g_{v}$

ends at some singular point $ p_{0}\in\Sigma$ . Let $g^{\prime}$ be a shortest geodesic from $p_{0}$

to $q$ . Then $g_{v}\cup g^{\prime}$ has length $\leq\pi$ since $v$ lies in $\overline{U}$ . But this curve has
a corner at $p_{0}$ , so can be shortened to give a path from $p$ to $q$ of length
less than $\pi$ , contradicting the choice of $p$ and $q$ . Since the exponential map
is continuous, it now follows that $v\in U$ . Hence, $U=S_{p}$ and $M$ is the
suspension of $S_{p}$ , with $p$ and $q$ as suspension points. $\square $

3.5 Exponential map

Recall that $g_{v}$ denotes the constant speed geodesic starting at $p$ with initial
tangent vector $v$ . Let $\mathcal{D}_{p}\subset T_{p}M$ be the subset consisting of all $v$ in $T_{p}M$

such that $g_{v}$ is defined and globally length minimizing up to time 1. We also
say that $g_{v}([0,1])$ is a segment.
Then there is a well-defined, continuous exponential map

$exp:\mathcal{D}_{p}\rightarrow M$,
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defined by $exp(v)=g_{v}(1)$ .

From the previous lemmas we obtain:

Lemma 3.11. If $M$ is a complete, connected cone-manifold with all cone
angles $<2\pi$ then the exponential map $exp:\mathcal{D}_{p}\rightarrow M$ is onto.

To study $\partial \mathcal{D}_{p}$ and the cut locus $exp(\partial \mathcal{D}_{p})$ , we need to understand:
How can a geodesic from $p$ stop minimizing length?

If $f$ : $M\rightarrow N$ is a continuous map between cone-manifolds, then it is
possible to consider directional derivatives at each point of $M$ . If all such
directional derivatives exist, then one obtains a map $df$ : $T_{p}M\rightarrow T_{f(p)}N$ .
We say that $q$ is a conjugate point of $p$ in $M$ if dexp$(v)=0$ for some non-zero
$v\in TM_{p}$ such that $exp(v)=q$ .
Lemma 3.12 (Key Lemma). A point $q\in M$ lies in the cut locus $exp(\partial \mathcal{D}_{p})$

if and only if at least one of the following cases occurs:
(1) There are two minimizing geodesics from $p$ to $q$ in $M$ .
(2) $q$ is a conjugate point of $p$ .
(3) $q$ is in the singular locus $\Sigma$ and there is a length minimizing geodesic
from $p$ to $q$ which doesn’t extend past the point $q$ .

Proof. Use the usual arguments from Riemannian geometry plus Lemma
3.9.
Note: (2) is very special in our context: it only occurs when the curvature
$K>0$ , and the diameter of the cone-manifold is $\pi/\sqrt{K}$ .

Further, if (2) occurs then (1) also occurs for our constant curvature
spaces.
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Picture for case (1):

3.6 Dirichlet domains

Define the (open) Dirichlet domain $D_{p}^{\circ}$ at a point $p$ as the subset of $q\in M$

such that there is a unique minimal geodesic from $p$ to $q$ , and if $ q\in\Sigma$ then
the entire geodesic is in $\Sigma$ .

By the previous lemma, this is just the image of the interior of $\mathcal{D}_{p}$

under the exponential map: $ D_{p}^{\circ}=exp(\mathcal{D}_{p})\circ$ . Hence $ D_{p}\circ$ is a union of geodesic
segments starting at $p$ , so is star-shaped with respect to $p$ .

Example 3.13. A Dirichlet domain for the Euclidean orbifold $S^{2}(2,4,4)$

(the double of a triangle with angles $\pi/2,$ $\pi/4,$ $\pi/4.$ )

$D_{p}$

Let $M$ be a cone-manifold of curvature $K$ , let $p$ be a point in $M$ , and $S_{p}$ the
unit tangent cone (or visual sphere) at $p$ . Define the global cone $C_{p}$ at $p$ to
be the infinite cone $Cone_{K}(S_{p};\infty)$ if $K\leq 0$ , or the suspension $Susp_{K}(S_{p})$

if $K>0$ .
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Now assume that $p$ has no conjugate points. Then the exponential map
$exp:\mathcal{D}_{p}\rightarrow M$ has no critical points, and we can pull back the metric on
$M$ to obtain a constant curvature metric on $\mathcal{D}_{p}$ .

Since $\mathcal{D}_{p}$ is star-shaped, it also embeds by a local isometry into the
global cone $C_{p}$ . The image $D_{p}$ of this embedding will be called the Diri chlet
domain for $M$ based at the point $p$ . Then $D_{p}$ is isometric to $\mathcal{D}_{p}$ , and there
is a natural map

$q$ : $D_{p}\rightarrow M$

which is onto by Lemma 3.11 if all cone angles are at most $ 2\pi$ .
If $p$ is a non-singular point, then the global cone $C_{p}$ is just the simply

connected n-manifold $\mathbb{H}^{n}(K)$ of constant curvature $K$ , and $D_{p}$ is a subset of
$\mathbb{H}^{n}(K)$ . If $M$ is a complete non-singular manifold, then $D$ can be obtained
by taking the usual Dirichlet region based at any preimage of $p$ in the
universal cover $\tilde{M}\cong H^{n}(K)$ . Note that this is always a convex polyhedron
in $H^{n}(K)$ .
Special Case: If $p$ has a conjugate point, then Lemma 3.10 shows that
$M$ is a suspension and $p$ is a suspension point. In this case, we will regard
$C_{p}=Susp_{K}(S_{p})=M$ as the Dirichlet domain for $M$ at $p$ , and consider this
to be a convex polyhedral subset of $C_{p}$ .

Next we examine the structure of the Dirichlet domain in more detail.
The following result, in particular the convexity conclusion, will play a key
role at several places in the proof of the orbifold theorem.

Proposition 3.14. Let $D$ be the Diri chlet domain based at a point $p$ of a
cone-manifold $M$ of constant curwature $K$ .
(1) If $M$ has cone angles $<2\pi$ , then $D$ is a star-shaped (geodesic) polyhe-
dron in the global cone $C_{p}$ . ($i.e$ . $D$ is a union of totally geodesic simplices
with one vertex at $p.$) Further, $M$ is obtained from $D$ by identifying pairs
of faces by isometries.
(2) If $M$ has cone angles $\leq\pi$ , then the polyhedron $D$ is convex ($i.e$ . any
two points of $D$ can be joined by a minimal geodesic lying in $D.$)

Before giving a detailed proof, we will sketch the main ideas in the 2-
dimensional case.
Sketch of proof (assuming $K\leq 0$): We look at the local picture near a
point $q$ in the cut locus $exp(\partial \mathcal{D})\subset M$ .
Case 1: $q$ is non-singular. Then there are at least two shortest geodesic in
$M$ from $p$ to $q$ , say $\gamma_{1},$

$\ldots,$
$\gamma_{k}$ .
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These come out from $q$ in $k$ different directions, and end at points
$p_{1},$ $\ldots$ , $p_{k}$ (corresponding to different “lifts” of $p.$ )

Then the shortest geodesics from $p$ to points $x$ near $q$ are perturbations
of $\gamma_{1},$

$\ldots,$
$\gamma_{k}$ joining $p_{1},$ $\ldots,p_{k}$ to $x$ . So the part of $ D\circ$ near $q$ consists of the

Voronoi regions

$D_{i}=$ {$x;d(x,p_{i})\leq d(x,p_{j})$ for all $j\neq i$ }.

These are bounded by planes equidistant from two points, so the bound-
ary of $D$ is polyhedral and locally convex near $q$ .
Case 2: $q$ is singular and there is one shortest geodesic from $p$ to $q$ . Then a

$w.e\Sigma$

dge of angle $ 2\pi$ -cone angle is excluded from the Dirichlet domain near
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$D$ locally convex
at $q$

$\Leftrightarrow\alpha\leq\pi$

Again the boundary of $D$ is polyhedral near $q$ . It is locally convex if
and only if the cone angle is $\leq\pi$ .

Another view: Have 2 shortest geodesics

. Case 3: $q$ is singular and there are at least two shortest geodesics from $p$

to $q$ .
Exercise. Prove case 3 by combining the arguments from cases 1 and 2.

Proof of 3.14. We will prove a slightly more general result by induction
on $\dim M$ . Given a finite set of points $P=\{p_{i}\}$ in a cone-manifold $M$ then
the (open) Voronoi region at $p_{i}$ is the set $V(p_{i})$ consisting of points $q\in M$

satisfying:
(1) $d(q,p_{i})\leq d(q,p_{j})$ , for all $j\neq i$ ,
(2) there is a unique shortest geodesic $\gamma$ from $q$ to $P$ , and
(3) if $ q\in\Sigma$ , then the global cone $C_{q}$ is a suspension, and the unit tangent
vector to $\gamma$ at $q$ gives a suspension point in $C_{q}$ .
We also define the cut locus of $P,$ $Cut(P)$ , to be the complement of $\bigcup_{i}V(p_{i})$

in $M$ .
If $P$ contains a single point $p$ , then the cut locus is Cut $(p)=exp(\partial \mathcal{D}_{p})$ ,

and $V(p)$ is just the complement of Cut $(p)$ in $M$ , i.e. an “open Dirichlet
domain” at $p$ .
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We inductively prove the following statement.
Convex(n): Let $M$ be a cone-manifold of dimension $n$ with cone angles
$\leq 2\pi$ . Let $P=\{p_{1}, \ldots,p_{k}\}$ be a set of points in $M$ . Also assume that if
$k=1$ then the point in $P$ has no conjugate point in $M$ .
(a) Then each Voronoi region $V(p_{i})$ is a (geodesic) polyhedron contained in
the global cone at $p_{i}$ .
(b) Further, if $M$ has cone angles $\leq\pi$ , then each Voronoi region is convex.
Proof. If $\dim M=1$ , then each $V(p_{i})$ is an interval so the result is clear.

To show that Convex$(n-1)\Rightarrow Convex(n)$ , we study the local structure
of the cut locus Cut $(P)$ near a point $q_{0}$ . The condition on $P$ means that that
$q_{0}$ is not conjugate to any point $p_{i}$ . Hence, there exists $\delta>0$ such that only
finitely many geodesics of length $<d(p, q_{0})+\delta$ join $q_{0}$ to $P$ . In particular,
there are finitely many shortest geodesics from $q$ to $P$ for all $q$ near $q_{0}$ and
these are obtained by small perturbations of the shortest geodesics from $q_{0}$

to P. (Compare [8], Lemma 1.3.)
Let $\gamma$ be a shortest geodesic joining $q_{0}$ to a point $p\in P$ , with length $d_{0}$ .

Then if $\gamma^{\prime}$ is a geodesic sufficiently close to $\gamma$ joining a point $q$ to $p$ , then
the law of cosines in $H^{n}(K)$ expresses 1ength $(\gamma^{\prime})$ as an explicit function
depending only on $d_{0}$ , the distance from $q_{0}$ to $q$ , and the angle $\theta=\angle pq_{0}q$

between $\gamma$ and $q_{0}q$ . Further, 1ength $(\gamma^{\prime})$ is an increasing function of $\theta$ for
$ 0\leq\theta\leq\pi$ , if we fix $d_{0}$ and $d(q_{0}, q)$ .

Let $v_{1},$ $v_{2},$
$\ldots,$

$v_{k}\in S_{qo}$ be initial unit tangent vectors of the shortest
geodesics from $q_{0}$ to $P$ . Then the observation above gives us an explicit
local description of the sets $V(p_{i})$ near $q_{0}$ as cones on the Voronoi regions
of the collection of points $\{v_{1}, v_{2}, \ldots , v_{k}\}$ on $S_{q0}$ . (Note that this is a spher-
ical cone-manifold of dimension $n-1.$ ) To finish the argument, we look
separately at the geometry of these cones for the cases where $n=2$ and
$n\geq 3$ .

If $n=2,$ $S_{q0}$ is circle of length equal to the cone angle $\alpha$ of $M$ at $q_{0}$ . If
we have at least two shortest geodesics from $q_{0}$ to $P$ , then we have $k\geq 2$

points $v_{i}$ on a circle of length $\alpha\leq 2\pi$ . Hence each Voronoi region $V(v_{i})$ has
length $\leq\pi$ , and the cone on this is polyhedral with angle $\leq\pi$ at the cone
point.

If $q_{0}$ is a singular point of $M$ , it is possible that there is only one shortest
geodesic from $q_{0}$ from $P$ . In this case, the Voronoi region of the correspond-
ing point on $S_{q0}$ is an interval of length $\alpha$ , and the cone on this is polyhedral
with angle $\alpha$ at the cone point. This will be locally convex if and only if
$\alpha\leq\pi$ .

So for $n=2$ we see that the Voronoi regions in $M$ are locally polyhedral,
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and have corner angles $\leq\pi$ , provided that all cone angles are $\leq 2\pi$ .
If $n\geq 3$ , we use the inductive hypothesis directly. By Lemma 3.12

and the following remarks, the points $v_{1},$
$\ldots,$

$v_{k}$ satisfy the assumption for
Convex$(n-1)$ applied to the $(n-1)$ -dimensional spherical cone-manifold
$S_{q0}$ . By induction each of these Voronoi regions $V(v_{i})$ is polyhedral and
is convex if the cone angles are $\leq\pi$ . But the cone on such a region is
always polyhedral and locally convex if $n\geq 3$ . This shows that the $V(p_{i})$

satisfies the conclusions of Convex(n) locally near each point $q_{0}$ in Cut $(P)$

and completes the proof by induction. $\square $

3.7 Area and volume of cone-manifolds

For 2-dimensional cone-manifolds we have the following following version of
the Gauss-Bonnet theorem relating topology and geometry:

Theorem 3.15. Let $M$ be a closed, 2-dimensional cone-manifold of con-
stant curvature $K$ with $n$ cone points with cone angles $\theta_{1},$

$\ldots,$
$\theta_{n}$ . Then

$\int_{M}KdA+\sum_{i}(2\pi-\theta_{i})=2\pi\chi(M)$ . (1)

Exercise 3.16. Prove this Gauss-Bonnet formula.

In particular, this gives an explicit formula relating the area $A$ to the
cone angles for a 2-dimensional cone-manifold of constant curvature $K$ :

$KA=2\pi\chi(M)-\sum_{i}(2\pi-\theta_{i})$ .

For higher dimensional cone-manifolds, there is a remarkable formula
for the variation of volume when constant curvature cone-manifolds are
deformed. The basic ingredient needed is the following theorem, originally
proved in the spherical case by Schl\"afli [70] in 1858. For modern proofs see,
for example, [86], [63], or [21].

Theorem 3.17 (Schl\"afli Formula for Polyhedra). Let $P_{t}$ be a smooth
one-parameter family of polyhedra in the simply-connected n-dimensional
space $\mathbb{H}^{n}(K)$ of constant curvature K. (Thus the faces of $X_{t}$ are totally
geodesic planes in $\mathbb{H}^{n}(K)$ which vary smoothly with $t.$) Then the derivative
of the volume $V_{t}$ of $P_{t}$ satisfies the equation:

$(n-1)K\frac{dV_{t}}{dt}=\sum_{F}V_{n-2}(F)\frac{d\theta_{F}}{dt}$ (2)
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where the sum is over all codimension-2 faces of $X_{t}$ , and $V_{n-2}$ denotes the
$(n-2)$ -dimensional volume, and $\theta_{F}$ denotes the dihedral angle at $F$ .

In the 2-dimensional case, the theorem is equivalent to the Gauss-Bonnet
theorem for constant curvature polygons. The formula becomes

$K\frac{dA_{t}}{dt}=\sum\frac{d\theta_{v}}{dt}$

where $\theta_{v}$ is the angle at vertex $v$ and $A$ denotes area. Integrating this gives

$KA=\sum\theta_{v}+constant$ .

Exercise 3.18. Determine the constant of integration by considering the
case where the polygon flattens out to a straight line segment.

Remark: As Milnor notes in [63], the theorem also applies to the case of hy-
perbolic polyhedra with some ideal vertices. When $n\neq 3$ , no change in the
statement of the theorem is needed. In the 3-dimensional case, some edge
lengths $V_{n-2}(F)$ become infinite. However, the theorem remains valid if we
remove small horoball neighbourhoods of the ideal vertices before measuring
edge lengths. (The right hand side of (2) is easily seen to be independent
of the choice of horoballs, using the fact that the sum of dihedral angles at
an ideal vertex is constant.)

Exercise 3.19. Use the Schl\"afli formula for ideal simplices to prove that
the regular ideal simplex is the unique simplex of maximal volume in $\mathbb{H}^{3}$ .

Following Hodgson [43] we can apply the Schl\"afli formula to study the
volume of constant curvature cone-manifolds. The following theorem shows
that the variation in volume for a family of cone-manifold structures is
completely determined by the changes in geometry along the singular locus.

Theorem 3.20 (Schl\"afli Formula for Cone-Manifolds).
Let $C_{t}$ be a smooth family of cone-manifold structures of constant curva-
ture K. Assume that the underlying space and singular locus are of fixed
topological type. Then the derivative of volume $V_{t}$ of $C_{t}$ satisfies

$(n-1)K\frac{dV_{t}}{dt}=\sum_{i}V_{n-2}(\Sigma_{i})\frac{d\theta_{i}}{dt}$ (3)

where the sum is over all strata $\Sigma_{i}$ of the singular locus $\Sigma$ , and $\theta_{i}$ is the
cone angle along $\Sigma_{i}$ .
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Proof. Divide $C_{t}$ into geometric simplices, varying smoothly with $t$ , such
that the singular locus remains a subcomplex. Applying the Schl\"afli formula
(2) to each simplex and adding shows that the variation of volume is given
by

$(n-1)K\frac{dV_{t}}{dt}=\sum_{F}V_{n-2}(F)\frac{d\theta_{F}}{dt}$

summed over all codimension 2 faces of the triangulation of $C_{t}$ , where $\theta_{F}$

denotes the cone angle along $F$ . However, at any non-singular face $F$ the

cone angle is $ 2\pi$ for all $t$ so $\frac{d\theta_{F}}{dt}=0$ . So the right hand side reduces to a
sum over faces $F$ in the singular locus $\Sigma$ . $\square $

As a corollary we see that the volumes of cone-manifolds satisfy the
following remarkable monotonicity property:

Corollary 3.21. Let $C_{t}$ be a smooth family of cone-manifolds of constant
curvature K. If $K>0$ , then the volume increases strictly monotonically as
any cone angle is increased. If $K<0$ , then the volume decreases strictly
monotonically as any cone angle is increased.


