SYMMETRIC FUNCTIONS AND THE YANGIAN
DECOMPOSITION OF THE FOCK AND BASIC MODULES OF
THE AFFINE LIE ALGEBRA sly

DENIS UGLOV

ABSTRACT. The decomposition of the Fock and basic modules of the affine
Lie algebra sly into irreducible submodules of the Yangian Y (gly) is con-
structed. Each of the irreducible submodules admits the unique up to nor-
malization eigenbasis of the maximal commutative subalgebra of the Yangian.
The elements of this eigenbasis are identified with specializations of Macdon-
ald symmetric functions where both parameters of the latter approach an Nth
primitive root of unity.

CONTENTS

1. Introduction 184
2. The Spin Sutherland Model 186

2.1. Preliminary remarks and notations ‘

2.2. The space of states Fyy , and its wedge basis

2.3. Scalar product
3. The spectrum and an eigenbasis of the Hamiltonian 189
4. The Cherednik-Dunkl operators 191

4.1. Non-symmetric Jack polynomials

5. The Yangian Y(gly) and its maximal commutative subalgebra
A(gly) 193
5.1. Finite-dimensional irreducible modules of Y (gly)
5.2. Realization of a certain class of Y (gl )-modules

6. Eigenbases of the algebra A(gly) in tensor products of fundamen-
tal modules - 197

7. The action of the Yangian on the space of states of the Spin
Sutherland Model 199

7.1. The Drinfeld correspondence »
7.2. Some properties of the Yangian action Y (gly;8)

183



184 DENIS UGLOV

7.3. The decomposition of the space of states into irreducible Yangian
submodules
7.4. The eigenbasis of the commutative algebra A(gly; 3)

8. An isomorphism between the space of states of the Spin Suther-
land Model and the space of symmetric Laurent polynomials 206
8.1. Scalar products on the space of Laurent polynomials
8.2. An isomorphism between the space of states of the Spin Sutherland
Model and the space of symmetric Laurent polynomials
8.3. Macdonald polynomials
8.4. Jack(gly) polynomials
8.5. Jack(gly) polynomials as eigenvectors of the maximal commutative
subalgebra of the Yangian action

9. Fock space representation of the affine Kac-Moody algebra sly 214
9.1. Fock space representation of sly
9.2. Constructions of the Fock space by inverse limits
9.3. Symmetric functions
9.4. Jack(gly) symmetric functions

10. Yangian action on the Fock space representation of sly 224
10.1. Intertwining relations
10.2. Yangian action on the Fock space
10.3. Decomposition of the Fock space into irreducible Y (gl )-submodules

11. Yangian action on the basic representation of sly 231

11.1. The basic representation of sly

11.2. The projection map and a Yangian action on the basic representa-
tion of ::[N

11.3. Projecting the Jack(gly) symmetric functions

11.4. Yangian decomposition of the basic representation of sly

11.5. Irreducibility of the Yangian decomposition of the basic represen-
tation of sly

References ' 240

1. INTRODUCTION

In 1992 Ha, Haldane, Talstra, Bernard and Pasquier [13] discovered that each of
the level-1 irreducible highest weight modules of the affine Lie algebra sly admits
an action of the Yangian Y (gl,). Since that time there have been a number of
further works devoted to this subject. Notably in [3] and [4] the decomposition of
the irreducible highest weight modules of slo under the action of the Yangian was
constructed and used to derive a new class of character formulas for these modules.
These results were generalized to the case of sly in the works [24],[5].
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Our intention in the present notes is not to give a review of this intriguing and
still not completely understood subject, but rather to concentrate narrowly on one
of its particular aspects which we will now describe.

The Yangian algebra Y (gl, ) comes equipped with a distinguished maximal com-
mutative subalgebra, A(gly ), which is sometimes called the Gelfand-Zetlin algebra
of Y(gly). A finite-dimensional irreducible Yangian module is called tame if A(gly)
acts on this module semi-simply. The study of tame Yangian modules was initiated
by Cherednik in [6] and continued by Nazarov and Tarasov [21] who, among other
things, gave a classification of tame modules and an explicit construction for any
given tame module. By definition a tame Y (gly)-module admits an eigenbasis of
the commutative algebra A(gly). Moreover, one of the results of [21] is that such
an eigenbasis is unique up to normalization of its elements. In this way each tame
Y (gl )-module is equipped with a distinguished, called the Yangian Gelfand-Zetlin
basis of this module. ‘

We consider the Fock space module of the affine Lie algebra sly [14, 15]. We
show, that the Fock space admits a one-parameter family of Y (gly)-actions. The
parameter of this family runs through all non-zero complex numbers. We find that
at positive real values of the parameter the decomposition of the Fock space into
Yangian submodules is irreducible, and each of the components of this decomposi-
tion is tame. Moreover, each of these components is isomorphic to a tensor product
of the so-called fundamental Y (gly )-modules. The union of the Yangian Gelfand-
Zetlin bases of the irreducible Yangian submodules gives a certain basis of the Fock
space, and the main problem which we deal with in these notes is to give a detailed
description of this basis. X

It is well-known [14, 15|, that the Fock space module of sly can be realized as the
linear space of symmetric functions [19]. This realization is often referred to as the
principal bosonization of the Fock space. The union of the Yangian Gelfand-Zetlin
bases gives rise to a basis in the space of symmetric functions, and the natural
question we ask is which symmetric functions are elements of this basis.

The answer is provided in terms of the Macdonald symmetric functions [19]. A
Macdonald symmetric function depends on two parameters ¢ and ¢t. When both ¢
and ¢ approach an Nth primitive root of unity in a controlled way, the Macdonald
symmetric function degenerates into what we call the Jack(gly) symmetric func-
tion. This symmetric function depends on one parameter and may be regarded as
an analogue of the Jack symmetric function to which it reduces when N = 1. In
the case of polynomials with two variables this degeneration is known as Sieved
Ultraspherical Polynomial of the second kind [1].

The basis of the Jack(gly) symmetric functions labeled by all partitions is pre-
cisely the union of the Yangian Gelfand-Zetlin bases associated with the decom-
position of the Fock space into Y'(gly)-submodules. Each partition is uniquely
determined by the coordinate configuration and spin configuration associated with
this partition. The set of all coordinate configurations labels irreducible compo-
nents of the Yangian action, and the set of all partitions with a fixed coordinate
configuration labels the Yangian Gelfand-Zetlin basis of the Yangian submodule
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which corresponds to this coordinate configuration.

In addition to the Fock space we also consider the irreducible basic module of
the affine Lie algebra sly. This module is realized as a certain subspace of the
Fock space. When the parameter of the Yangian action on the Fock space is fixed
in an appropriate way, this action can be projected onto the basic module. The
decomposition of the basic module relative to the Yangian action is again irreducible
and each of the irreducible components is tame. The union of the Yangian Gelfand-
Zetlin bases is now identified with the set of all Jack(gly) symmetric functions
labeled by the N-regular partitions. Moreover the parameter in these symmetric
functions is fixed in a certain way.

The irreducible components of the Yangian action on the basic module can be
labeled by the ribbon skew Young diagrams, this labeling was proposed in the
paper [16]. We point out which N-regular partitions parameterize the Yangian
Gelfand-Zetlin basis in a Yangian submodule that corresponds to a given ribbon
diagram and compute the associated Drinfeld polynomials.

Acknowledgments The present article is an extensively expanded version of
the series of lectures which I gave at RIMS, Kyoto University in February-March
1996. I am grateful to Professors M.Kashiwara and T.Miwa who gave me the
opportunity to deliver these lectures and gave me ample time to incorporate much
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and suggestions. Special thanks are due to Kouichi Takemura who took the notes of
the lectures and with whom we subsequently collaborated on several topics related
to the subject of these notes. A number of results contained in the present article
were first obtained in our joint works [26],[27],[23].

2. THE SPIN SUTHERLAND MODEL

We consider the spin generalization of the Sutherland Model [25] which was
proposed in (8] and [2]. This Model describes n quantum particles with coordinates
Y1,---,Yn moving along a circle of length L (0 < y; < L). Each particle carries a
spin with N possible values, and the dynamics of the Model are governed by the
Hamiltonian

_ 1 <~ 82 2 B(B + F;;)
(2.1) Hon=—5 5+ 5737 R —
22O O 2 - )

In this Hamiltonian the symbol P;; stands for the spin exchange operator for parti-
cles 7 and j, and the 3 is the coupling constant. We will take the 3 to be a positive
real number.

The expression (2.1) is only a formal one. To define it as an operator acting on
a Hilbert space it is convenient to make a gauge transformation of (2.1) by taking
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W = Tl « <j<n S0 T(¥; — y;) and defining the gauge-transformed Hamiltonian
Hgn by |

2

L i —
(2.2) Hg n = 2—7;—2-W ﬁHg,NWﬁ.

If we set z; = exp(3Fy;), then Hg v assumes the form

2

n n
(2.3) Hgn = %W—B‘H‘ﬁwwﬁ =Y D}+B) (2i-n—-1)D; +

=1 =1
1<i<j<n
where we defined: D; = 2;0/0z; and 6,; = z;/(z; — z;).

The gauge-transformed Hamiltonian Hg y acts on the linear space

(2.4) Fnn = (Clef, ..., 25 o (CV)®")

B%n(n? —1)
12 ’

antisymm

where antisymm stands for the total antisymmetrization. In what follows we will
always be working with the gauge-transformed Hamiltonian rather than with the
Hamiltonian (2.1), and will regard the Fy , as the space of quantum states of the
Spin Sutherland Model.

Now let us give a complete description of the space of states Fy ,, and introduce
on this space a scalar product.

2.1. Preliminary remarks and notations. Let N be a positive integer, it will
have the meaning of the number of spin degrees of freedom of each particle in the
Spin Sutherland Model. For any integer m define the unique m € {1,...,N} and
the unique @ € Z by setting m = m — Nm. And for a k = (k1,k2,...,k,) € Z"
set k = (ky,k2,...,kn), k= (k1, k2, .., kn).

For any sequence k = (ky, k2, ...,kn) € Z™ let |k| be the weight: |k| = k; + ko +
-+ + kn, and define the partial ordering ( the natural or the dominance ordering
[19] ) on Z™ by setting for any two distinct k,1 € Z™:

(2.5) k>1
iff |kl=]l, and ki +---+k>hL+---+1; forall i=1,2,...,n.

For r € N let £\ be a subset of Z" defined as
(2.6)
L ={k = (ki,kz,...,kn) € Z" | k; > kiy1 and Vs € Z #{k; | ki = s} < r}.

In particular the E%n) is the set of non-increasing sequences of n integers and the

£V is the set of strictly decreasing sequences, i.e. such k = (k1,k2,...,k,) € Z™
that k; > ki+1.
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Let V = CV with the basis {v;,vs,...,vn}, and for a formal variable z let V (z)
= C[z*'] ® V with the basis {um, | m € Z} where un, = 2™ ® Um. For monomials

in the vector spaces C[z31,...,2E1], V®" and V(2)®" = C[zi},..., 25 ® (V&™)
we will use the convention of multi-indices:

(2.7) 2t =22l gl t=(t1,t2,...,tn) € Z™;
(2.8) v(a) =v4, ®Va, ® "+ ® Vg, a=(a,as,...,a,) € {1,...,N}";
(2.9) U = Uk, @ Uk, ® - O U, k=(k1,k2,...,kn)ezn.

2.2. The space of states Fiy , and its wedge basis. Let K;; be the permuta-
tion operator for variables z; and z; in C[zif', ..., 2£1] ( the operator of coordinate
permutation ), and let P;; be the operator exchanging ith and jth factors in the
tensor product V®” ( the operator of spin permutation ).

Let A,, be the antisymmetrization operator in V(z)®™:

(2.10)

An(ukl ® uk2 ® ot ® ukn) = Z Sign(w)ukw(l) ® ukw(2) ® T ® ukw(") ’
wES,

where S, is the symmetric group of order n. We will use the notation 4y =
Uk, A Uk, A --- A ug, for a vector of the form (2.10), and will call such a vector
o wedge. A wedge iy is normally ordered if and only if k € L%l), that is k; >
ks > -+ > kp. Let Fn, be the image of the operator A, in V(2)®™. Then
Fx n is spanned by wedges and the normally ordered wedges form a basis in Fy p,.
Equivalently the vector space Fi , is defined as the linear span of all vectors f €
Clzi!, ..., 251 ® (®™V) such that for all 1 < i # j < n one has

(2.11) Kijf=—-F;f.

This is the meaning of the total antisymmetrization in the equation (2.4).

2.3. Scalar product. Here we define a scalar product on the space of states Fiy .
Our definition has three steps. First we define scalar products on the vector spaces
V®™" and C[zf“, ...,2X1] separately. Then we define a scalar product on the tensor
product V(2)®" = C[z{?, ..., 2¥] ® (V®"). Finally we define a scalar product on
Fn . considered as a subspace of V(z)®".

On V®" define a sesquilinear, i.e., C-anti-linear in the first argument and C-
linear in the second argument, scalar product ( - , - )5 by requiring that monomials
in V®" be orthonormal:

(2.12) (v(a), v(d) )y = bab, a,be {1,...,N}".

For a Laurent polynomial f(z) € C[zi!,...,2E!] let f(z) be the Laurent poly-
nomial with complex conjugated coefficients. For a non-negative real number § and
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wi,...,w, € C define the weight function A(w;§) as follows

(2.13) Aw;6)= [ 1 -wwh)?’.

1<i#j<n

This weight function is obviously a symmetric Laurent polynomial when § is a
non-negative integer. Otherwise it is a single-valued function on the product of n
unit circles in C*".

Now for all f(z),g(z) € C[zf!,...,2¥1] define a sesquilinear scalar product
(-, -)s by setting

1 dw; —_—
/ — 7 . —1
@1 (@, 9= 1 | e A Tatw)
where the integrations are taken over the unit circle in the complex plane.

On the linear space V(2)®" = C[2{, ..., 21]®(V®") we define a scalar product
(-, -);’N as the composition of the scalar products (2.14) and (2.12), i.e. for
f(2),9(2) € Clz, ..., 25 ]; u,v € @V we set:

(2.15) (f(2)®u, g(2) ®v )5 = (f(2), 9(2) Js(u, v)y,
and extend the definition on all vectors by requiring that ( -, - );’ n be sesquilinear.

Finally, on the subspace Fy_, C V(2)®" a scalar product (-, -) s, is defined

as the restriction of the scalar product ( -, - )'6, ~- Note, that the normally ordered

wedges form an orthonormal basis of Fiv , relative to this scalar product when
6 =0, i.e. we have

(2.16) (e, @ oy =06 (k1€ LD).

3. THE SPECTRUM AND AN EIGENBASIS OF THE HAMILTONIAN

In this section we compute the eigenvalue spectrum of the Hamiltonian (2.3) and
describe the corresponding eigenbasis of Fy ,. First of all we observe, that on the
space Fy , we may, as implied by (2.11), replace the spin permutation operators
P;; that appear in (2.3) with the operators —Kj;;. This gives

n n
(3.1) Hpn=Hfy:=> D}+B8) (2i—-n-1)D;+
=1 =1

+28 Y i (Di—Dj—6;(Ki; — 1)) +

1<i<j<n

'32n(n2 _ 1).
12

where the equality is understood as that of operators acting on Fi . Notice that
the right-hand side of this equality commutes with all coordinate permutation
operators K;;.

Let £k = (k1,k2,...,kn) € £$,1). Note that k3 > ks > --- > k, implies, in
particular, that k; < k; < --- < k,. We wish to compute the action of the
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Hamiltonian Hg n on the normally ordered wedge @t = ug, A Uk, Ao Aug, =
Ay (ug). Since K;; commute with the Héf ~» the last operator commutes with the
A,, and we have

(3'2) Hﬂ,N-'ak = Hé{,N'An(uk)'= An(HBIfN-uk)°

The action of the H é{ N on the uy is easy to compute, for the H é( N acts non-trivially

only on the first factor in ux = 2F ® v(k). The computation gives

(3.3) Hpnig = E(k)gnie +28 ) hiji,
1<i<j<n
where
n n 2 2
2 . — , Bn(n®-1)
(3.4) E(k)g N = ;k, + ,3;(22 n— 1k + ——,
(3.5) and  hij(ug, Ao Ak, Ao Aug, Ao Aug,) =
ki—ki

i —1
= Z (kj —Fi = 7)(ury A Aug,onr Ao At yne A= Aug,).
=1

T

Normally ordering the wedges in the right-hand side of (3.3) we find from (3.5)
that

(3.6) Hp iy = E(k)p nik + > w@Na,
lelV, 1>k, i<k

with certain real coefficients hscf N
Now recall (cf.[19] §VI.4 Example 3(b)) that for a positive 3 we have: E(k) B,N 7
E(l)s,n when ! > k. Then (3.6) leads to

Proposition 3.1. (i) For any k € LY there is a unique etgenvector \I/Sf ) of
Hg, N with the following expansion in the basis of normally ordered wedges

(3.7) vV =g+ Y PNy @Y eR).
lec®, ik

(ii) The coefficient 1/),(5 M) yanishes unless 1 < k.
(iii) The eigenvalue of Hg N on this eigenvector is E(k)g n.

Note that for any integer M the wedge
(3.8) vac(M) =up Aup—1 A Aup_ni

is an eigenvector of the Hamiltonian Hp n as implied by either (3.7) or (3.3, 3.5).
We will call any vector of the form (3.8) a vacuum vector.
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From the above proposition we see that {\IISC’6 ) |k € L%l)} is a basis of the space

of states Fiy ,, since the {ax|k € E%l)} is. The spectrum of the Hamiltonian is highly
degenerate because the eigenvalue E(k)g n depends only on k. This means that
there are other eigenbases of the Hg n. The eigenbasis {lllgcﬂ ’N)} is not orthogonal
relative to the scalar product ( -, -) 5.~ and one of our tasks will be to construct
an orthogonal eigenbasis by using the Yangian symmetry of the Spin Sutherland
Model. In this construction the basis {\Ilscﬁ ’N)} will appear in a supplementary
role, and the triangularity with respect to the dominance order of its expansion in
terms of the normally ordered wedges expressed by Proposition 3.1 (i),(ii) will be
important. '

4. THE CHEREDNIK-DUNKL OPERATORS

There is an intimate relationship between the gauge-transformed Hamiltonian
Hp N and the representation of the degenerate affine Hecke algebra given by the
Cherednik-Dunkl operators and the operators of coordinate permutation.

The degenerate affine Hecke algebra of the type gl,,, H, is the unital associative
algebra over C with generators

(4.1) si,s;t (i=1,...,n—1); 5 (G=1,...,n);
and the following relations

(4.2) sis;t =s71s; =1, s? =1, si8; =858 ifle—j|>1,

(4.3) 8i8i4+18; = 8i415iSi41,
(44) 6j5k = (5k6j, 8i0; — 8;418; = 1, S,;(Sj = 6j31; if 7 #£4,24+ 1.
The subalgebra of H generated by the elements s;,s; ! is isomorphic to the group

(2
algebra of the symmetric group S,,. Note also that the map

(4.5) si— —8i, 6 —§;

extends to an automorphism of the algebra H.
Let us recall, that the Cherednik-Dunkl operators [7] are defined as follows

(4.6) di(B)=B"'Di+n—i+ Y 0u(Kij—1)— 3 8:;(Ki; — 1),
i<j<n i>521
(:=1,2,...,n).
These operators act on C[zf!,...,2¥!] and together with the operators of the

coordinate permutations Kj;; give a representation of the degenerate affine Hecke
algebra. This representation is defined by the assignment

(4.7) 6; — d;(B), 8+ Kijt1.
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Note that the space C[zif',...,z¥!] with the above action is simultaneously left
and right module of H as implied by the defining relations (4.2)-(4.4).

The relation between the gauge-transformed Hamiltonian and the Cherednik-
Dunkl operators is expressed by (3.1) and the equality [7]

n 2
l1-n
K 2
. = E d; .
In the above equality we consider the HX, as an operator on C[z{™!, ..., 23]

The following proposition is obtained by a straightforward computation.

Proposition 4.1. The Cherednik-Dunkl operators are self-adjoint relative to the
scalar product ( -, - )23

Corollary 1. The Hamiltonian Hg n is self-adjoint relative to the scalar product
( R )ﬁ, N:

Let us make explicit in our notations the dependence of the Cherednik-Dunkl
operators on the number of variables zi,...,2,. We will write d;(8)(™ for the
operator d;(8) (4.6). For m < n there is a natural action of the d;(8)(™ on the
space C [zf:l, ...,231] which is non-trivial only with respect to the first m variables.

Lemma 1. Let the sequence t = (t1,...,t,) € Z™ be such that t1,ts,...,t, <
tm41 = tmyz = -+ = t, for some 1 < m < n. With these notations let L(m,n,t,)
be the linear span of monomials 2" = z]*---z}» such that r; < t, for alli =
1,...,n, and #{rilr; =t,} <n—m.

Then d;(B)(™ leave L(m,n,t,) invariant and, moreover, the following identities
hold
(4.9)

di(3)™ .zt = d;(8)(™.2t mod L(m,n,ty,) (t=1,...,m),
(4.10)

di(B)™.2t = (8 'ty — i + n + m)z* mod L(m,n,t,) i=m+1,...,n).

4.1. Non-symmetric Jack polynomials. For any ¢ € Z™ let t+ denote the

element of the set Estn) (2.6) obtained by arranging parts of ¢ in non-increasing
order. The following proposition summarizes results of the papers [22] and [18]
which we use in this article.

Proposition 4.2.
(i) In the space C[z!,. .., 2X] there is the unique up to normalization common

eigenbasis {Et(ﬂ )(z)lt € Z"} of the Cherednik-Dunkl operators.

(ii) The Laurent polynomials Et(ﬂ )(z) have a triangular expansion in the mono-
mial basis of C[zi!, ..., zt!]. Which means that one has

(4.11) EP) () =2+ el
r<t
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(ﬂ)

where e;,." are real coefficients and

tt >rt or
T<t & . . .
tt =rt  and the last non-zero difference t; — r; is negative.

(iii) The Laurent polynomials Eﬁﬁ )(z) are eigenvectors of the Cherednik-Dunkl
operators:

(4.12) L(BEL(2) = i B)EP (2),  (i=1,2,...,n),
(4.13) where  fi(t;8) = B i +n — pi(t),
(4.14) and pi(t) = #{j <ilt; > t.}+#{ >i|t; > t;}.

(iv) The action of the operators of coordinate permutation in the basis {Et(ﬁ )(z)}
s given by the following formulas

(4.15)
Kiin1 B (2) = At) B (2) + Bi(H) B, 1), (2),

where for a given t = (t1,...,tn) the (i,1 + 1)t stands for the t where the elements
t; and t;+1 are exchanged, and

(4.16)
(fi (t:8)— fi+1(t:0))% —1 . .
A | 1 B (fi(t§B)_;;]-;-l(t;ﬁ))2 (t: > tita),
W= FEhm—fnga ZO=) 0 (b = tiya),

1 (ti < ti+1).

5. THE YANGIAN Y(gly) AND ITS MAXIMAL COMMUTATIVE SUBALGEBRA
A(gln)

With the paper [21] as our primary source we review several known facts about
the Yangian of the Lie algebra gly. This is a complex associative unital algebra

Y (gl ) with the set of generators T(b) where s =1,2,... and a,b=1,...,N. The
defining relations of the algebra Y (gl ) are usually wntten in terms of the formal
power series in © ™!

(5.1) Top(u) = 605 - 1+ T Vw1 4+ THy~2 4 .|

and are

(5.2) (v — )[Tap(w), Tea(v)] = Tep(0)Tag(w) — Top(u)Taa(v).
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Let E;;, € End(C") be the standard matrix units. Sometimes it is convenient to
combine all the series T,,(u) into the single element

N |
T(u) = Y Eab ® Tap(u) € End(CV) ® Y (gly)[[u™"]].
a,b=1 .

This element is invertible in the algebra End(C") ® Y (gly)[[v~]]; denote
N -~
(5.3) T(uw)=Tw)™ =Y Eab ® Tas(u).
a,b=1
Let h € C, and let f(u) be a formal series from 1 + u~1C[[u"!]].

Proposition 5.1. FEach of the maps

(5.4) wr:  Top(u) = f(u)Tes(u),
(55) f(h) : Tab(u) — ab(u + h),
(5.6) on:  Tab(u) = Top(—u),
determines an automorphism of the algebra Y (gly).
Due to the defining relations (5.2) every sequence of distinct indices 1 = (I3, ...,I5)
where 1 <1, < M + N, determines an embedding of algebras
(5.7) é1:Y(glpy) = Y(glyyn) 2 Tan(u) = Ty, ().
The embedding ¢; with 1 = (1,..., M) is called standard.
For m = 1,..., N define the series
(5.8) Am(u)= ) sign(w)Tiw) (@) Tow@) (@ = 1) .. Truym) ( = m + 1),
WESm

and set Ap(u) = 1. The series An(u) is called the quantum determinant of the
Yangian. The following proposition is well-known. A detailed proof can be found
in [20].

Proposition 5.2. The coefficients at u=',u~2,... of the series Ax(u) are free

generators for the centre of the algebra Y (gly).

Consider the ascending chain of algebras
(5.9) Y(gly) CY(gl,) C---CY(gly)

determined by the standard embeddings. Denote by A(gly) the subalgebra of
Y (g!)) generated by the centers of all algebras in (5.9); this subalgebra is clearly
commutative. By Proposition 5.2 the coefficients of the series A;(u),..., An(u)
generate the subalgebra A(gly ). It is proven by I.Cherednik [6], that the subalgebra
A(gly) is a maximal commutative. However we will not use this fact in what
follows. '
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5.1. Finite-dimensional irreducible modules of Y (gly). Let W be a finite-
dimensional irreducible module of Y (gly). A non-zero vector w € W is called
singular provided it is annihilated by all coefficients of the series T,5(u) with
a > b. The following classification theorem is due to Drinfeld [11].

Theorem 5.3. Every finite-dimensional irreducible Y (gly)-module contains a
unique up to a multiplier singular vector, say w. The w is an eigenvector of all
coefficients of the series Aj(u),..., An(u). Furthermore, one has

Amt1(w)Am—1(u - 1) _ Pup(u-1)
AnWAnu—-1) U7 "Pow

for certain monic polynomials Py(u),...,Pn_1(u) with coefficients in C. Every
collection of N — 1 monic polynomials arises in this way. Up to an isomorphism
of Y(gly)-modules, modules with the same polynomials Py(u),...,Pyx_1(u) may
differ only by an automorphism of the algebra Y (gly) of the form wf.

(5.10)

m=1,...,N—-1

The N —1 polynomials that characterize an irreducible Y (gl )-module are called
the Drinfeld polynomials of this module. From (5.10) it follows that if w is a singular
vector, then we have '

Tm+1,m+1(u—m),w=M.w; m=]_,,N—1
Trm(u —m) Pp(u)

Denote by “W the irreducible Y (gl )-module obtained from W by the pullback
through the automorphism oy. Let P (u),...,° Py_;(u) be the Drinfeld polyno-
mials of the module “W.

(5.11)

Proposition 5.4. For eachm =1,...,N — 1 we have
7 Pm(u) = (—1)98Pm P (—u+m —1).

5.2. Realization of a certain class of Y (gl )-modules. An explicit construc-
tion of an arbitrary finite-dimensional irreducible Y (gl )-module is an open prob-
lem. A realization of any tame module, which by definition is a finite-dimensional
irreducible Y'(gly)-module with a diagonalizable action of the subalgebra A(gly),
was proposed in [6] and [21]. Here we recall some elements of this construction.
Let Eqp with a,b=1,..., N be generators of the Lie algebra gl,. The universal
enveloping algebra U(gly) is embedded into Y (gly) as a subalgebra by the map

By, — Té;). Moreover there is a homomorphism
(5.12) N Y (gly) = U(gly) : Tup(v) = 8.5 + Epgu™1t.

This homomorphism is called the evaluation homomorphism. It is an important
tool in construction of Yangian modules.

Let1=(M+1,...,M + N), and let ¥ = oy NnP10N be a twisted version of
the embedding (5.7). Thus the 1 is a homomorphism from Y (gly) into Y (gl n)-
The algebra U(gl,,) is realized inside U(glys, ») by the standard embedding.
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Proposition 5.5 ([21]). The image of the homomorphism

(5.13) Tm+ny 1 Y(gly) = Uglaryn)
commutes with the subalgebra U(gly) in U(glpry N)-

Let M > 0. Consider a pair of partitions A D p such that A = (A1,...,AMm4nN)
and p = (i1,-..,4nm). Let V) be the irreducible gl,,, y-module with the highest
weight A, and let V) , be the subspace of V) spanned by all highest weight vectors
of gl,, with the weight p, where U(gl,,) is realized inside U(gls, ) by the stan-
dard embedding. Due to Proposition 5.5 the V) , is a Y (gly)-module. Nazarov
and Tarasov [21] proved that this module is irreducible tame, and determined its
Drinfeld polynomials. To describe these Drinfeld polynomials it is convenient to
represent the pair of partitions ), u by the skew Young diagram of the shape A/p.
This diagram is the set

(5.14) {(,7) € Z%)i > 1,) > 5 > pi}-

In this definition we do not distinguish between partitions that differ by zeroes.
We employ the usual graphic representation of a skew Young diagram: a point
(i,7) € Z? is represented by a unit square on the plane R? with the centre (3, ),
the coordinates 7 and j increase downward and from left to right respectively. The
content of a square (3, 5) is the difference j — 1.

Example 5.6 The diagram \/u with A = (5,5,3,3,1) and p = (3,3,2,2) is

-1

-4

where a number represents the content of the square in the bottom of each column.

Proposition 5.7 ([21]). Let A\/p be the skew Young diagram associated with a
non-zero module V, ,. Then the height of each column of the A/ is less or equal
to N. The Drinfeld polynomials of the Vy , are

(5.15) Prw)=]Je+¢); m=1,...,N-1;

where the product is taken over contents of bottom squares of columns of the height
m in the skew Young diagram \/p.

For an irreducible Y (gl )-module W, and h € C denote by W (k) the pullback
of W trough the automorphism &(h). Clearly the module W (h) is irreducible and
its Drinfeld polynomials are obtained from the Drinfeld polynomials of the W by
shifting all roots by —h.
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The Yangian is a Hopf algebra [11]. In particular it has the coproduct A :
Y(gly) — Y (gly)®? defined by the map

N
(5.16) Top(w) = Y Tae(u) ® Tep(w),

where the tensor product is taken over C[[u~1]].

Definition 1. The irreducible modules V(1)(h), V{12)(h),...,V1n)(h) (h € C) are
called the fundamental Y(gIN)-modules The Drinfeld polynomials of the funda-
mental module V(1»y(h) are

if m # p,
(5.17) Prn(u) = {'u,+h+1 -m ifm=p.

To finish our review of the Yangian algebra, we will quote the theorem, due
to Nazarov and Tarasov, which gives classification of the tame modules, and an
explicit construction for every tame module of Y (gly ).

Theorem 5.8. Let W be any finite- dzmenszonal irreducible module of Y (gly ). Let

P, (u) = Hdegp'" (v + z,m) (m = 1,...,N — 1) be the corresponding Drinfeld
polynomials.
The following three conditions are equivalent.
(1) For allm > 1 one has zj; — zmj # 0,...,m —  unless (m,j) = (I, 1).

(ii) Up to some automorphism ws of Y(gly) the module W is isomorphic to a
tensor product

(5.18) V)‘(x)/ﬂ(x) (h(l)) ® VA(z)/u(z) (h(2)) Q- ® VA(n)/u(n)(h(n))

for certain A(¥) > ) KD e C, (s=1,... ,n); such that h(") — h(®) ¢ Z for all

T # 8.
(iii) The action of the subalgebra A(gly) on the module W is diagonalizable.

6. EIGENBASES OF THE ALGEBRA A(gly) IN TENSOR PRODUCTS OF
FUNDAMENTAL MODULES

In this section we will consider tensor products of fundamental modules of the
form

(6.1) Viaen) (B) ® Vi) () ® - - ® Viaor) (7)),

where p; € {1,..., N} and h{®) € R.-We will see, that if the numbers A1), ... A"
satisfy certain conditions, this module admits a unique up to normalization eigen-
basis of the subalgebra A(gly), and the eigenvalue spectrum of this subalgebra is
simple. Our main goal will be to deduce a certain triangularity property for the
elements of this eigenbasis.
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Let V = CV be the vector module of gly. Let E,; € End(V) be the matrix
unit. It acts on the basis v1,...,vn by Egpv: = 6pcve. Let h € R and define the
Yangian homomorphism

(6.2) m(h) : Y(gly) = End(V) : Tap(u) — 6ap + Epe(u + h) L.

For a sequence of real numbers f = (fi,..., f,) we denote by w(f) the tensor
product of the homomorphisms (6.2): #(f) = 7(f1) ® --- @ 7(fr) : Y(gly)®" —
End(V®"). The assignment Tpp(u) — w(f)A™Typ(u) defines a Y (gly)-module
structure on V®",

With the numbers p,,...,p, introduced in (6.1) set go = 0 and for each s =
1,...,r define the unique ¢s; by ps = q¢s — gs—1-

For a pair (¢,7) such that 0 < i < 7 < n define the partial antisymmetrization
operator A(; ;) € End(V®") by setting for each a = (a1,...,a,) € {1,...,N}™
(63) A(i,j)(val X 'Uan) =

E : sign(w)ve, ®- - *®Va; ®Va, 01y OVaituim @ OVaiyiis—i) OVajys @ - ®a,.
wES'j_,'

Denote the sequence (p;,...,p,) by p and let n = p; + - - - + p,. Let the subspace
(V®™), be the image in V®" of the operator

(6'4) Ap = H A(Qa—lﬂ]s)'
s=1

The subspace (V®"), is obviously isomorphic to the tensor product (6.1) as a
gly-module.
Furthermore, suppose the sequence f = (fy,..., f,) satisfies the condition

(C1) fi=fis1 +1 when ¢;_; <i<gqs foreach s=1,2,...,7.
For each s = 1,...,r define h(®) = f1,, ..

Proposition 6.1. The coefficients of all the series w(f)AMT,y(u) leave the sub-
space (V®"), invariant. The Y (gly)-modules (V®™), and (6.1) are isomorphic.

Proof. The standard fusion procedure (cf. eg. [17]) gives the required state-
ment. [J

Define the set 7, labeled by the sequence p as follows
(6.5) T,={a=(a1,...,a,) € {1,...,N}" | a; < a;41
wheng,_; <i<gqs for s=1,...,r}
then the set
(6.6) {¢(a) = 4(a) | a € Tp}

is a basis of (V®"),,.
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Let now the sequence f satisfy the condition (C1) and the condition
(C2) fo. > foo41+1 for s=1,2,...,M — 1.
The conditions (C1) and (C2) imply
(6.7) R —hG~1) > p. foreach s=1,...,r — 1.
A proof of the following proposition is contained in [29] Appendix A.
Proposition 6.2.

(i) In the module (V®") there is a unigque up to normalization of eigenvectors
eigenbasis of the commutative algebra w(f)A(™ (A(gly)). Denote this eigenbasis by

{x(a) | a € Tp}.
(ii) The ezpansion of this eigenbasis in the basis {¢(a)} is lower unitriangular
in the natural ordering (cf.2.5). Which means that we have

(6.8) x(a) = p(a) + Y _ c(a, b)p(b)
b>a

with certain real coefficients c(a,b).
(iii) The eigenvalues of the algebra w(f)A™ A(gly) are given by the formula

6.9  m(HAM(An(W)x(a) = Am(u; f;0)x(a), m=1,2,...,N;

where A, (u; f;a) = H u+ f; :j(;, < m)

=1
(iv) The N-tuples of rational functions in the variable u :
A1 (u; fia),..., An(u; f;a)

are distinct for distincta € T,. In other words the spectrum of the w(f)A(™ (A, (u))
on (V®7"), is simple.

In the expression for the eigenvalue A,,(u; f;a) above we used the convention
that for a statement P, §(P) = 1 if P is true, and §(P) = 0 otherwise.

7. THE ACTION OF THE YANGIAN ON THE SPACE OF STATES OF THE SPIN
SUTHERLAND MODEL

In this section we will define an action of the Yangian Y (gl,) on the space of
states Fiy,, of the Spin Sutherland Model. This action is constructed by using
the Drinfeld correspondence [10] between right modules of the degenerate affine
Hecke algebra H and left modules of the algebra Y (gly). We will also find the
decompositon of the space of states Fy , into invariant subspaces of this action.
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7.1. The Drinfeld correspondence. Let M be a right module of the degenerate
affine Hecke algebra H. Fora,b=1,...,Nand: =1,...,n define E‘(:b) € End(V®™)
by Et(li) = 1%-1 ® E,, ® 1®"~%, Here the E,; is the matrix unit in End(V'). Let u
be a formal variable, and define the L-operator

(7.1) LO(w) = bap1 + (u — 6;)"' ® B\ € End (M @ V") [u™Y]],

where the denominator (u — §;)~! is to be expanded into a series in u 1.

The symmetric group S, acts from the left on the tensor product V®" by the
permutation of factors. The S, also acts from the right on the module M as the
subalgebra of H.

The following theorem is due to Drinfeld [10].

Theorem 7.1. The coefficients of the following series leave the space M ®s, V®"
tnvariant

N N
(7.2) Tas(w)= >+ 3 LY @)L, (w)--- L, (u).
L‘1=1 C.,._1=l

The assignment Typ(u) +— Aab(u) defines a left Y(gly)-module structure on the
space M ®g, VO™,

Let us apply the Drinfeld correspondence to the H-module C[zitl,...,z,:‘f1
where the action of the degenerate affine Hecke algebra is given by the assign-

ments (cf. (4.5))
(7.3) 6i = —di(B),  si— —Kiiq1.

Note that we may regard the above action as either left or right due to the special
structure of the defining relations of the algebra H. Due to the definition (2.11)
of the space Fin ., we have C[zlil, e zfl] ®s, V@™ = Fi ,,. In view of Theorem
7.1 the left action of the Yangian Y (gly) on the space Fy , is defined. We will
denote this action by Y (gly;3), and the corresponding matrix of the generators
by Tus(u; B).

7.2. Some properties of the Yangian action Y(gly;3). Let us denote by
A(gly; B) the commutative subalgebra in End(F ) defined by the maximal com-
mutative subalgebra A(gly) C Y(gly) and the action Y(gly) — Y(gly;83). Let

Ai(u; B),...,An(u; B) be the corresponding generating series. In particular we
have
| w4 14+ di(B)
7.4 An(u; 8) = =
(74) ~ (i ) 11;11 u + d;(8)

and hence the Hamiltonian Hg n (2.3) is an element in A(gly;3), and commutes
with Y (gly;3). In other words the Y (gly; 8) is the Yangian symmetry of the Spin
Sutherland Model [2].
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For an operator B acting on Fx , let B* be its adjoint relative to the scalar
product (-, - )g » and for a series B(u) with operator-valued coefficients we will
use B(u)* to denote the series whose coefficients are adjoints of coefficients of the
series B(u).

The following proposition is proven in [27].

Proposition 7.2. Foralla,b=1,..., N we have T,p(u; 8)* = Tpo(u; 3). Moreover
forallm =1,...,N we have A,,(u; B)* = An(u; ).

7.3. The decomposition of the space of states into irreducible Yangian
submodules. Our aim now is to describe the decomposition of the space of states
FN,n into irreducible Yangian submodules with respect to the action Y (gly;A3).
Let s = (s1,...,5,) be an element of the set Fual (2.6), and let r be the number of
distinct elements in sequence s. With this s we associate: the sequence of integers
g = 0,q1,...,4r—1,¢r = n uniquely defined by the condition sq; > s4.41 (j =
1,2,...,7 — 1); and the sequence of integers p(s) = (p1,...,pr) defined by p; =
g —qi—1 (7 = 1,2,...,7). Compare these definitions with those made in Section
6. Clearly we have 1 <p, < N and p; + -+ + p, = n.

Further, let f(s) = (f1, f,..., fn) be defined by f; = fi(s; 3), where the fi(s;3)
is the eigenvalue of the Cherednik-Dunkl operator (4.13) on the non-symmetric Jack
polynomial E{®). Note that the sequence f(s) satisfies the condition (C1) of Section
6. In view of this, and Proposition 6.1, the space (V®"), ) is the Y (gl )-module
with the action given by m(f(s))A(™T,;(u). The following theorem is proven in
[27]

Theorem 7.3. Consider the space of states F , as the Yangian module with the
action Y (gly; B). We have

(7.5) - N = @, pon F,

where for each s € E%N) the subspace Fy is invariant with respect to Y (gly; 8) and
is isomorphic to (V®"),s) as a Y (gly)-module.

The isomorphism between (V®"),) and F; is explicitly given by the operator
U(s; B) : (V®™)s) — Fs which is defined for any v € (V®")p(s) as follows

(7.6) Uls; By = Y B (2) ® R{",

t~s

where the sum is taken over all distinct rearrangements ¢ of s, and Rgﬁ ) e End(V®7")
is defined by the recursive relations:

(7.7) R®) =1,
(7.8) Rgﬁzﬂ)t = —Riit1(fi(t;8) — firn(t B8RS for t; > tiys.
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Here R;;11(u) = u=' 4 P41 and (4,7 + 1)t denotes the element of Z™ obtained by
interchanging t; and ¢,41 in ¢t = (¢1,...,tn).
With notations of Section 6, for each a € 7,) define

(7.9) 2¥(s,a) = U(s; Bel(a),
(7.10) XB)(s,a) = U(s; B)x(a).

Observe now that, since 3 is a positive real number, the condition (C2) of Section
6 is satisfied by the sequence f(s). Proposition 6.2 and Theorem 7.3 imply the
following

Proposition 7.4.

(i) {X®)(s,a) | a € Ty} is the unique up to normalization of eigenvectors
eigenbasis of the commutative algebra A(gln;B) in the module Fj.

(ii) The expansion of this eigenbasis in the basis {®P)(s,a)} is lower unitrian-
gular. Which means that we have

(7.11) XB)(s,a) = @P)(s,a) + > _ c(a,b)dP)(s,d)
b>a

with certain real coefficients c(a,b).
(iii) The eigenvalues of the algebra A(gln;3) are given by the formula

(7.12)
Ap(u; 8)XP)(s,a) = Am(u; f(s);a)XP)(s,a), m=1,2,...,N;
5w+ fi(s; B) + 6(a; < m)

where  Am(u; f(s);a) = H u+ fi(s; 8) -

i=1
(iv) The N -tuples of rational functions in the variable u :

A1 (u; f(s);a), ..., An(u; f(s); a)

are distinct for distinct a € Tp(s).

7.4. The eigenbasis of the commutative algebra A(gly;3). We will now
describe properties of the eigenbasis {X(¥)(s,a) | s € £ a € Tps)} in some
detail. Our main goal is to establish the unitriangularity of the expansion of the
elements of this basis in the basis of normally ordered wedges.

For any pair (s = (81,...,8,) € C%N),a = (a1,..-,an) € Tps)) and each

1 = 1,...,n define k; = ap,—i4+1 — NSp—;4+1. It is easy to see that the sequence
k = (k1,...,ks) is an element of the set s (cf. (2.6)). Moreover we have (cf.
Section 2.1) k = (an,@n-1,...,01) and k = ($,,87-1,-..,81). The described cor-

respondence between the set of all pairs (s € £ a € Tp(s)) and the set £y
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is one-to-one, therefore we may label the elements of the bases {®(®)(s,a)} and
{X®)(s,a)} by sequences from L. Let us define

n(n—1)

(7.13) XN = (—1)5 XB)(s,q).

Recall that in Proposition 3.1 we introduced the eigenbasis {\IJECﬁ ’N)lk € l:%l)} of
the Hamiltonian Hg y.

n(n—1)

Lemma 2. We have the equality (=1)— 2z ®B)(s,a) = \Ilfcﬁ’N).

Proof. Using the expression (7.6) for the operator U(s; 3) we have

(7.14) 20(s,0) = 3" B (2) ® R p(a),

t~s
where ¢ ~ s means that ¢t belongs to the set of all distinct rearrangements of the
sequence s. In view of the triangularity (4.11) of the non-symmetric Jack polynomial
Ef'a)(z) we may split the Et(ﬂ)(z) with ¢ ~ s as follows

(7.15) EP(2) = B (2) + B (2)",
(7.16) where EP(z) = Z ez, and EP (2)" = Z eP .
: r=t, r~s rt<s

The vector ®¥)(s,a) belongs to the subspace Fy, C C[zil,..., 21 @ (V®").
Therefore both of the vectors

(7.17) Y EP(2) @ BPp(a) and Y EP)(2)" @ RPp(a)
t~s t~s
also belong to this subspace since monomials z” which appear in the decomposition
of the E{?)(2)' as a vector in ClzE!, ..., 25 ® (V®") are distinct from monomials
2" which appear in the decomposition of the Egﬁ )(z)” as implied by (7.16).
Taking into account the triangularity of the non-symmetric Jack polynomial
Et(ﬁ )(z), and the equality R = 1, we may write

(7.18)
ZEgB)(z)' ® Rgﬁ)go(a) =2°® p(a) + Z 2' ® @i(a), (@i(a) € VE).
t~s trs, t<s

Since the expression above is a vector in Fi ,, by using the definition of the vector
»(a) given in (6.6) we obtain
n(n—-1)
(719) Y EP(2) @ RPp(a) = Au(z* ®v(a)) = (-1) T i
t~s
where A, (2.10) is the operator of the total antisymmetrization in the space
Clzf, ..., 25 ® (V&n).
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The expansion of the vector

(7.20) > EP(2)" ® R p(a)
t~s
in C[zf!,. .., 2X]®(V®") contains only monomials 2" such that r+ < s. Therefore

the expansion of the (7.20) in the basis of normally ordered wedges {i; |1 € Eszl)}
contains only ; such that [ > k. Taking this, and (7.19) into account we have

'n(n 1) A~
(721)  (-DTT ePsa) =+ > oD, (9 € Q).
lec®, 1>%

The vector ®(¥)(s,a) is an eigenvector of the quantum determinant Ay (u;3) as
implied by the equations (4.13), (7.4) and (7.14). Hence it is an eigenvector of the
Hamiltonian Hg n.

However according to Proposition 3.1 (i) an eigenvector of the Hamiltonian Hg n
with the expansion (7.21) in the basis {4, |l € E%l)} is unique and equals to ‘Ilgf’N).
This proves the lemma.

(]

Theorem 7.3 and Proposition 7.4 imply that the set {X ,(cﬁ ) |k € L%l)} is the
unique up to normalization eigenbasis of the commutative algebra A(gly;3) in the
space Fin n.

Theorem 7.5.
(i) The transition matriz between the bases {X,gﬁ’N) |k € ESLI)} and {i |k € ££L1)}
15 upper unitriangular. Which means that we have

(7.22) XN =+ 320 4
<k
(BN,

with certain real coeﬁ‘iczents T
(ii) For eachm =1,...,N we ha’ue

(7.23) Am(u; B) XN = A (u; B ) X PN
u+ B ki +i— 1+ 68(k; <m)
u+ Bk +i—1

where Apn(u;B;k) = H
i=1
(iii) The N-tuples of rational functions in u: Aq(u;B;k),...,An(u;B;k) are

distinct for distinct k € £$Ll). In other words the spectrum of the commutative
algebra A(gly; B) is simple.

(iv) (XN, XPM ) =0 ifk#L
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Proof. (i) Lemma 2 and Proposition 7.4 (ii) give

(7.24) xPM ey 3 Y (cueR).
1ec®, 1=k, i<k

Observe that I = k and I < k imply I < k. The transition matrix between the bases
{\Ilscﬁ Mk e E%l)} and {ix | k € LISLI)} is upper unitriangular by Proposition 3.1
(ii). Hence (7.24) leads to (i).

(ii) Follows immediately from Proposition 7.4 (iii) and the explicit expressions
for the eigenvalues of the Cherednik-Dunkl operators given by (4.13).

(iii) Proposition 7.4 (iv) shows that the sets of the eigenvalues A;(u;8;k),...,
An(u; B; k) are distinct for distinct k which have equal k. In other words eigen-
values of the commutative algebra A(gly;3) separate eigenvectors that belong to
the same irreducible component of the Yangian action Y (gly;3). We will prove
that eigenvalues of the quantum determinant Ay (u;3) separate between these ir-
reducible components. Eigenvalue Ay (u;8; k) depends only on k and is a rational
function of the form P(u + 1)/P(u) where P(u) is a monic polynomial. Roots of
this polynomial are 1 — i — 3~ Lk;, they are pairwise distinct due to the assump-
tion that 3 is a positive real number. Hence the polynomial P(u) determines the
sequence (ki,...,k,) uniquely. This proves (iii).

(iv) Follows from (iii) and Proposition 7.2. O

The Y (gly)-action Y (gly;3) gives rise to an action of the Lie algebra gly C

Y (gly) on the space of states Fy . The generators of this action are Té;)(ﬁ)
(a,b=1,...,N). As a corollary to Theorem 7.5 we obtain

Proposition 7.6.

(i) Elements of the basis {X,(CB’N) | k € E%l)} are weight vectors of gly. For each
a=1,...,N we have

(1)(ﬂ)X(ﬂN) Z&(k _a)X(ﬂN)

=1

(ii) Elements of the baszs {X; (8.N) | k € L(l)} are eigenvectors of the degree operator
D =22 2. - +zn3z We have

DX(ﬂN) |k|X(ﬁN)

Let m = (m,,...,m,) be a non-decreasing sequence of integers such that
each element m; appears in m with multiplicity less or equal to N. We denote

the set of all such sequences by My (N ), and represent an element m of M) as
((r1)Pr(r2)P2 ... (r)") where r; < ry < --- < r; and p; (1 < p; < N) denotes the
multiplicity of r; in m. If k is an element of cS} ) then % is an element of My, (M)
Conversely for each m € MY there is at least one k € £V such that & = m.
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Proposition 7.7. For each m = ((r1)P1(r2)P2...(r)") € M) the linear space
Fnn(m) =@ { k|E=m}CX1(cﬁ M) is invariant and irreducible with respect to the Yan-

gian action Y (gly; B). Moreover Fy ,(m) is isomorphic as a Y (gly)-module to the
tensor product

(7.25) Vv(lm)(al) ® ‘/(11’2)(&'2) X---® ‘/(11‘1)(0'!)
whereas =B lrs—1+p1+---+ps (s=1,...,0.

Proof. In notations of Theorem 7.3 Fy ,(m) = Fy where

s = ((r)?' (ri—1)P=* ... (1)),

Theorem 7.3 and Proposition 6.1 imply the required statements.
O

8. AN ISOMORPHISM BETWEEN THE SPACE OF STATES OF THE SPIN
SUTHERLAND MODEL AND THE SPACE OF SYMMETRIC LAURENT
POLYNOMIALS

In this section we will introduce an isomorphism between the space of states
of the Spin Sutherland Model and the space of symmetric Laurent polynomials.
This isomorphism may be regarded as a finite-particle version of the well-known
fermion-boson correspondence in the representation theory of infinite-dimensional
Kac-Moody algebras [15]. We will determine the image of the eigenbasis of the
commutative algebra A(gly;3) under this isomorphism. This image is a basis of
the space of symmetric Laurent polynomials. A subset of this basis gives a basis
of the space of symmetric polynomials which coincides with a degeneration of the
basis of Macdonald polynomials [19]. This degeneration is described as follows.
A Macdonald polynomial depends on two parameters g and t. Let wy be an Nth
primitive root of unity, and let p be a parameter. Set ¢ = wyp, t = wypNA+!
and take the limit p — 1. In this limit a Macdonald polynomial degenerates into a
polynomial which we call a Jack(gly) polynomial. When N = 1 this polynomial
is just the usual Jack polynomial. The Jack(gly) polynomials were recently used
to compute certain dynamical correlation functions in the Spin Sutherland Model
[29]. We, however, will not consider this subject in the present notes.

8.1. Scalar products on the space of Laurent polynomials. Let L, =

C[xi“, ...,zX1] be the algebra of Laurent polynomials in variables T1,...,Zy. For
each f = f(z1,...,z,) € L, let f(z1,...,z,) be the Laurent polynomial with
complex conjugated coefficients. And let f* = f(z7!,...,zn"). We use [f]; to de-

note the constant term in f. Throughout this section we let b denote an arbitrary
positive integer.
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Now let us introduce

(8.1)
v, N)= [ a-zNz;Ny
1<i#j<n
and
(8.2)
AGN) = JI @-efz;MPA-ziz;)=VEe,N) [[ (1 -ziz;?).
1<i#j<n . 1<i#j<n

Both V(b, N) and A(b, N) are symmetric Laurent polynomials since b is a positive
integer.
We define two scalar products on the linear space L, by

(83) (F s 9 Mo = 5[V, N)f "l
and
(8.4 (F+9)ow = [AG,N) g

Using (( f , g)), as a shorthand notation for ({ f , g ))o.n We have
(85) (( f ) g ))b,N - (( f ’ V(b7 N)g ))0,

where we regard V (b, N) as a multiplication operator on L,,.
Let A be the subspace of skew-symmetric Laurent polynomials in L,,. For each

l=(l,...,l;) € Z" define the antisymmetric monomial a; as follows:
(8.6) =z Az A AL = 25; sign(w)xi}}(l)a:ijm .- -:vi;‘(n).
wWES,

The set {a; |l € £} is a basis of AE.

Let 6 = (n —1,...,0). The monomial a4 is equal to the Vandermonde determi-
nant [], . (@i —z;). Let A be the subspace of symmetric Laurent polynomials in
L. For each I = (I3,...,l,) € Z™ define the symmetric Laurent polynomial s; by

a5 -
8.7 = 2
(8.7) =

The set {s;|! € C%n)} is a basis of ALX. A sequence | € £{™ which contains only
non-negative elements is obviously identified with a partition A of length less or
equal to n. For any such ! the s; is a symmetric polynomial equal to the Schur
polynomial sy. Schur polynomials sy where A runs through all partitions of length
less or equal to n form a basis in the space of symmetric polynomials A,,.
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8.2. An isomorphism between the space of states of the Spin Sutherland
Model and the space of symmetric Laurent polynomials. Now we define
an isomorphism which maps the space of states F , into the space of symmetric
Laurent polynomials AX. Let us fix the sequence o = (0,—1,...,—n + 1). We will
call this o the vacuum sequence . Recall the definition of the vacuum wedges in
(3.8). We have the equalities

(8.8) o = XPN) = vac(0).

Forany k € £V the difference k—o is an element of £{™. Define the isomorphism
of linear spaces

(8.9) Q: FN,n — A,,d: . ﬁk = Sk_o-

The isomorphism € is a composition of the two isomorphisms w, and w,, defined
by
(8.10) Wi : FNp — A,:'f S o Gk Was t AT o A,jf : Ak M Sk—o;

n

so that Q = w..w.. Note that for any @ € A we have

a
(8-11) w**(a) - (ZL']SL'Q M mn)n_lj—.

as
Lemma 3. Let P = P(z1,...,2n) be a symmetric Laurent polynomial in the vari-
ables z1,...,2zn. Regard P as a multiplicative operator on the space Fn n. For any

f € Fn , we have
(8.12) wa (Pf) = P(a7N, ...,z M)we (f) .

Proof. The algebra of symmetric Laurent polynomials in the variables 2y,..., 2, is
generated by the elements

(8.13) pr=pr(21,---y2n) =2] + 253+ -+ 2] (r=0,%£1,£2,...).

Therefore it is sufficient to prove the equality (8.12) for P = p,. Since wedges i,
span the space Fy , we may assume f = . We have

n
(8.14) W (Pritg) = wa (Zukl A---/\uki__N,./\---/\uk,_> =
=1
n
=Zxk‘ Ao AgB=NT A A ZE = p (27N, 2 Y.
=1

This proves the required statement. O
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Recall the definition of the scalar product ( -, - )B, N given in Section 2.3. This
definition implies that for any f,g € F, and b € N we have the identity

(8.15) (f,9)en=C(F, A(20)9 ) N>

where we regard the symmetric Laurent polynomial

(8.16) A(z;b) = H 1- zizj_l)b
1<i#j<n

as a multiplication operator on the space Fi .
The basis of normally ordered wedges {ix | k € Eg)} is orthonormal relative
to the scalar product ( -, - ), 5. Likewise the basis {ax | k € Es,l)} is orthonormal

relative to the scalar product (( - , - ))o- The definition of the isomorphism w, now
implies that for any f,g € Fy , we have
(8.17) (f,9 )o,N = ((w«(f) , wi(g) )o-

We are ready now to formulate one of the important technical statements of this
section.

Lemma 4. The isomorphism w, is an isometry. Which means that for any f,g €
Fy ., we have

(8.18) (f,g )b,N = ((w«(f) , wl(g) ))b,N'

Proof. Observe that A(z;b) is a symmetric Laurent polynomial. The following
chain of identities gives the required result:

((wa(f) s wilg) Monv = {wi(f), V(b,N)wa(g) )y (by 8.5)
= ((w«(f) , ws(A(2;0)9) )y (by Lemma 3)
=(f, A(zb)g )o N (by 8.17)
=(f,g )b,N (by 8.15).
O

The following proposition is the main point of this section.

Proposition 8.1. The isomorphism  is an isometry. Which means that for any
f,9 € Fn . we have

(8.19) (fs9)en=(R0F), g )y n-

Proof. Definitions of the scalar products ( 5 *Jp,nv and ((-, - )), 5 along with the
definition of the isomorphism w,, immediately lead to

(820) ‘ (w**(f) ) w**(g) )b,N = (( f y 9 ))b,N’

for any f,g € AE. The required statement now follows from Lemma 4. [
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8.3. Macdonald polynomials. Let A = (A1, 2,... ) be a partition. As in Sec-
tion 5.2 we represent A by its diagram. For example below is the diagram for the
partition A = (6,4,4,3,1).

For a square s € A arm-length a(s), leg-length [, (s), arm-colength a’(s) and leg-
colength !’(s) are defined as the number of squares in the diagram of A to the
east, south, west and north from s respectively. The content of a square s is
c(s) = a’(s) — I'(s) and the hook-length is hy(s) = ax(s) + Ix(s) + 1. All partitions
which we will encounter in this section have length less or equal to n.

For a partition A a tableau T of shape A [19] is a sequence of partitions:

(8.21) P=20 AW c...ca =)

such that each skew diagram () = X(9)/A(6=1) (1 <4 < r) is a horizontal strip.
The sequence (|81, ...,]8(7)|) is called the weight of 7.

The symmetric monomial associated with partition )\ is an element of A,, defined
by

(8.22) my = Zx‘l’“wgz R e

with the sum taken over all distinct rearrangements (a,...,a,) of A\. Symmetric
monomials my where A runs through all partitions of length less or equal to n
form a basis of A,,. The transition matrix between this basis and the basis of Schur
polynomials is upper unitriangular in the natural ordering. That is to say s, has
the expansion of the form

(8.23) sx=ma+ Y Kym,
pn<A

with suitable coefficients K, called Kostka numbers.
Let ¢ and t be parameters. For each partition of length < n the Macdonald

polynomial P (g, t) is an element of A,®cC(g, t) defined by the following expansion
in the basis of symmetric monomials my (cf. [19] §VI.7 (7.13’), §VI.10 ):

(8.24) Pi(g,t) =ma+ D uau(g, tymy,
u<i
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where the summation is over partitions of length < n and the coefficients u,,(g,t)
are given by

(825) u)\,u(q, t) = ZwT(q7t)
T

summed over all tableaux of shape A and weight u. To describe the quantity
Yr(q,t), for partitions A and p such that p C A

let R\, (resp. Cj\,) denote the union of the rows (resp. columns) that intersect
A/p. Then

(8.26) Pr(a,t) = [[ ¥aorjae-0(a,1),
=1
where
b,(s;q,t
(8.27) bulen= ] wsed

bx(s;q,t)’
S€ERM,—Cavp }\( ' 4, )

1— qa,\(s)tl,\(s)+1
1— qa,\(s)+ltl)‘(s) :

(8.28) and by(s;q,t) =

Symmetric monomials and Schur polynomials are obtained as specializations of
Py (q,t). We have

Py(q,1) = m, and Py(q,q) = sa.

Another well-known specialization of Py(q,t) is the Jack polynomial J ga) defined
for a positive real a by

(8.29) J® = lim P\(g,q%).
q-—-)

Let k be a non-negative integer number. Introduce the symmetric Laurent
polynomial

k—1
(8.30) O(,¢") = JI TIQ-qzaz;t).
0

1<i#j<n r=

And define on A,, ®c C(q) a scalar product by

(8.31) (f1 9 = 70 gl

Polynomials Py (g, q*) are known to be pairwise orthogonal relative to this scalar
product.
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8.4. Jack(gly) polynomials. Here we will consider a certain specialization of
Macdonald polynomials, other than the specializations we have mentioned above.
Let wy be an Nth primitive root of unity. That is to say (wy )" = 1 and (wn)* # 1
foralli=1,...,N — 1.

Definition 2. For any positive realy the limit of the Macdonald polynomial Py(q,t)
defined by

(8.32) P{"") = lim P\(wnp,wnp")
p—b
is called the Jack(gly) polynomial.

Note that if we take N = 1 in this definition we get the usual Jack polynomial
(3)

Ix
Taking the limit (8.32) in the expansion (8.24) we see that
N N
(8.33) PO =my + 3 uYm,
<A
where the sum runs over partitions of length < n, and the coefficients uf\L’N) are

given by
(8.34) u§T =57 i)
T

summed over all tableaux of shape A and weight u. In the same notations as in
(8.21) and (8.27) we now have

I
N )
(8.35) ’l,b'(z:y ) = H"/’g}.’)}?\(i—na
i=1
where
(~,N)
(vN) _ b (s)
(8.36) v = 1l M 5y’
SERNL—Cx\p "2 (8)

ax(8)+vha(s)+r _
(837)  and 60M(s) = {A%M&%ﬂ%ﬁ if ha(s) = 0 mod N,
1

otherwise.

These formulas show that each uf\'LN ) is a rational function of v with positive
rational coefficients. In particular, u():L’N) is positive for all positive real ~.
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Now let b be a positive integer. Consider the behavior of the scalar product
(8.31) in the limit (8.32) wherein we put v = Nb+ 1. We have

Nb
(8.38) lim O(wnp, wnp™ ) = I Tl - whzait)
P 1<i#j<nr=0
= H (l—mNa: Nyb (l—mzx"l)
1<i#j<n

The right-hand side of this equation is exactly the weight function A(b, N) of the
scalar product (-, - )b, n Which was introduced in (8.4). Thus for v = Nb+ 1
the scalar product for Macdonald polynomials ( -, * )q.qv degenerates in the limit
(8.32) into the scalar product ( -, - ), » defined in (8. 4)

The orthogonality of Macdonald polynomlals entails that for all non-negative
integer b the Jack(gly ) polynomials P(Nb+1 N) are pairwise orthogonal relative to
the scalar product (8.4).

Since the basis of symmetric monomials and the basis of Schur polynomials are
related by an upper unitriangular matrix (8.23), the expansion (8.33) gives

(8.39) PN =5+ 3 o1,

p<

where the coefficients 'vg\”’N) are rational functions of . Let b € N. The upper

unitriangularity of either the expansion (8.39) or the expansion (8.33), and the
condition
(8.40) ( pNOHLN) | p(Nb+1N) boy =0 i A#p

P’SNb+1,N)

define the polynomials uniquely by Gram-Schmidt orthogonalization.

8.5. Jack(gly) polynomials as eigenvectors of the maximal commutative
subalgebra of the Yangian action. Recall the definition of the vacuum sequence
o given in Section 8.2. For any two elements k = (k1,...,k,) and | = (I,...,1,)
of Z™ let us write k Cliff k; < l; foralli =1,...,n. Supposekeﬁsz) Ikao
then k C 6. Moreover, if n = 0 mod N, then % C 0 implies k D o. Let F} , be the
linear subspace of the space of states Fy , defined by

(8.41) FY o = ®rik20Clli.
If n = 0 mod N, then an equivalent definition of this subspace is
(8.42) FN n — ®k kC—Cuk

The condition k£ D o is equivalent to the inequality k, > o0,. Therefore k O o and
k > 1 imply ! D 0. Due to Theorem 7.5 (i) we have X(ﬁ’ ) e F}, , provided k 2 o.

Moreover, again by Theorem 7.5 (i), the set {X, (8, N) | k € E(l),k D o} is a basis
of Fg .. The vectors X (B:N) such that & C @ form the same basis of FY, , provided
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n = 0 mod N. Since X ’(cﬂ M) with fixed % form a basis of an invariant subspace of
the Yangian action Y (gly,3), we see that Fy , is invariant with respect to this
action when n = 0 mod N.

Consider now the image of the subspace FR ,, under the action of the isomor-
phism Q (8.9). The conditions k € £$L1) and k D o imply that k — o is a partition,
say A, of length less or equal to n. Therefore 2 maps FR,,n isomorphically into the
space of symmetric polynomials A,. By definition of this isomorphism and in view
of Theorem 7.5 (i) we have

(8.43) Q(xEN) =sr+ 38N s,
n<
where x&ﬁ#’N) are certain rational functions of 8.

Theorem 8.2. For each partition A of length less or equal to n we have
(8.44) Q(xGL) = piver.
Proof. Theorem 7.5 (iv) and Proposition 8.1 give
(b,N) (b,N) P
(8.45) (o (x4 ) ,Q(X,,W ))b’N_o if A #p

for all b € N. This and the upper unitriangularity (8.43) define the basis of sym-
metric polynomials 2 (X((,Z_I)Y)) uniquely by Gram-Schmidt orthogonalization. The
Jack(gly) polynomials P)(\Nb“’N) satisfy the same two conditions. Therefore the
statement of the theorem follows for all # € N.

(B M) of the expansion (8.43) are rational functions in 8, and

1,N
so are the coefficients vf\IZﬁ +1,N)

The coefficients Ty

of the expansion (8.39). Since we have

N
(8.46) oM = (VA1)

for all non-negative integer 3, these coefficients are equal as rational functions.
Hence the statement of the theorem. [

9. FOCK SPACE REPRESENTATION OF THE AFFINE KAC-MOODY ALGEBRA sf[N

In this sectionj we review the Fock space representation of the affine Kac-Moody
algebra, sly. This review is to be considered as a preparation to Section 10 where
we define a Yangian action on the Fock space and describe how it is decomposed
into irreducible Yangian submodules.

9.1. Fock space representation of sly.
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9.1.1. The affine Lie algebra sly. Let N > 2 and let h be a NV 4 1-dimensional
vector space over Q with basis {ho,h1,...,hn-1,D}. Let {Ag,A1,...,An_1,6} be
the corresponding dual basis of the dual space h*. That is

(Azah_j) = 6ij, <A’LaD) = 0’ <6’ h'L) = 07 (6’ D) =1

It will be convenient to extend the index set so that A; = A(i (mod n)) for all integer
i.Foralli € Z weset o; = 2A;—A;y1 —Ai_1+6;06, where §;; = 1ifi—5 =0 mod N
and 6;; = 0 otherwise.

The N x N matrix ||(cs, hj)|| is the generalized Cartan matrix of type AS&)_l.

The associated affine Kac-Moody algebra, is denoted by slx. It is defined as the Lie
algebra generated by D and e;, f;, h; with 0 < i < N subject to the relations
[hi, hi] =0, [hi,D] =0,
[hi,e5] = (a;, hi)ej,  [D,e;] = joe;,
[hi, 5] = —(aj, hi) i, (D, f5] = =650 f;,
les, f5] = bijhi,

(ade;)!~(@hide; =0 (i # j),

(adf)' =@M f; =0 (3 # j).
The centre of the algebra s:[N is one-dimensional. It is generated by the element

¢=ho+hi+---+hny_1. The A; are known as the fundamental weights and the
a; as the simple roots of sly.

9.1.2. Fock space representation of sly. The space of states Fiy , admits an action
of the algebra sly determined by the assignments

n n
ei e =30 oED,, fim fM=Y 2 eED
Jj=1 Jj=1

n n
hi — h{™ =Y 1®EY -109EY,,.,, Dw~— D™ =3"D;®1,
i=1 j=1

where the indices 7 are considered modulo N.

Let Z*° be the set of all semi-infinite sequences k = (ki, k2, k3, ...) with integer
elements k; such that k; = —i + 1 for all but finite number of i € N. The set Z>®
contains the distinguished sequence o = (0,—1,—2,...). We will call it the vacuum
sequence.

The Fock space F' is defined as a C-linear space generated by the set of semi-
infinite expressions

(9.1) {’llk = Uy NUgy, Aug, A ... | k= (kl,kz,k3,...) € Zoo},

modulo the relations ug; A ug;,, = —ug; Aug,,, for each pair of indices ¢ and ¢ + 1.
An element 4, € F will be called a semi-infinite wedge. Let L',Si,) be the subset of
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Z> which consists of strictly decreasing sequences. Then the set {ux | k € Eg,)} is
a basis of F. An element of this basis is called a normally ordered wedge.

Let us reserve the notation |m) for the formal expression wm Atum—1 AlUm—_2A... .
There is an obvious homomorphism of linear spaces Fi,, — F determined by the
assignment

(9.2) Uy AUpy Ao AUg, — Uk, AUk, A-- - Aug, A|—n).
Conversely, for each v € F there is a large enough n and v(*) € Fn » such that
(9.3) v=vM™A|-n).

For all integer m define the action of e;, fi,h; (0 <i < N — 1) on |m) by

(9.4) ei|m) =0,
Um+1 A|m —1) if i = m mod N;
9.5 A =
(9:5) film) {0 otherwise,
|m) if £ = m mod N;
9.6 h; =
(9:6) im) { 0 otherwise.

Let = be any of the generators e;, fi,h; (0 < i < N — 1). The action of z on the
Fock space is then defined by

(9.7) zv = (zMvM)A | = n) + 0 A x| — n).

The Fock space F' has two gradings. Let i be a normally ordered wedge. The
homogeneous grading is defined by

(9.8) degy (i) = [0 — k| = > 77 — k.
i>1

And the principal grading is defined by

(9.9) deg, (@) =k —o| =D ki — o
i>1
The action of the degree generator on F is then defined as Dv = — deg(v)v on

any vector v of homogeneous degree deg, (v).

9.2. Constructions of the Fock space by inverse limits.
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9.2.1. Principal construction. Let the sequence (ki,k2,...,kn) be an element of
the set £ (2.6). In this section for any such sequence we will use the shorthand
notation k) to indicate explicitly that it contains n elements. If kj,,) € ES%,) and
m > n, we will use kj,) to denote the element of ﬁ%l) obtained by deleting last

m — n elements in Ky,
Recall that the subspace Fy ,, C Fyn,, (8.41) is defined by

(9.10) , FI?/,n = Ok(n) 20[n] Cﬁk[nl’

where o) = (0,—1,...,—n + 1) is the vacuum sequence.

For any ki, € E( ) such that kj,) 2 of,), the difference kj,) — o[, is a partition
of length less or equal to n. We define the principal grading on FI(\), by setting the
principal degree of iy, to be equal |k[n) — o] For each s =0,1,..., let Fz?f,(:) be
the homogeneous component of Fl?,,n of principal degree s.

For m > n define the projection

7 if I(kim) — O[m1) < M
9.11 wis) F0 {s) _, F0 ( S y J Uk 1 [m] [m])] = Ty
(0-11) man T N,m Ko 0 otherwise.
This projection is a surjective homomorphism of linear spaces for all m > n. More-
over if m > n > s it is a bijection.
Let us now form the inverse limit

(9.12) Fp'® = lim F{¥
n

0() ()

relative to the homomorphisms 7,’n. By definition a

(8) +

of the linear spaces Fy
vector in the linear space FN is a sequence (fn)n>0 such that f, € FO <s) and

w,(,f)n( fm) = fn for all m > n. Since w,(,f,)n is an isomorphism for m > n 2 s, the
definition (9.11) implies

(9.13) fm=fa AU AU 1 A - AU_mp1

provided m > n > s. Let F{*) be the component of the Fock space F' of principal
degree s. From (9.13) it follows that the-map

(9.14) ‘ T(s> 0 :{e) — F(s> (fn)n)O = fm A I - m)

does not depend on m as soon as m > s, and for any such m is an isomorphism of
linear spaces.
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9.2.2. Homogeneous construction. Now consider the linear space FY, .y for some
r > 0. On this space we introduce the homogeneous grading by setting the homo-

geneous degree of dy,, to be equal |0 n] — k{rn]|- For each d = 0,1,... let F,(\),”(rdg,
be the homogeneous component of Fy ,.» of homogeneous degree d.
Similarly to the principal case, for [ > r we define the projection
“ U, if l(k[”v] - O[IN]) < ’l"N;
9.15 : FY Fy i — (i)
(915) mir: Fvunw = Fyven & e {O otherwise.
This projection obviously preserves the homogeneous degree. Let wl(:f,) : Fg,’,(l‘f& —

Fj?,’,(rdg, be the restriction of m; , onto the component FK,”(I%. The projection wl(i) is

a surjective homomorphism of linear spaces for all [ > r. Moreover if | > r > d it
is a bijection because I(kyn] — oyn]) < dN if the homogeneous degree of i, ,, is
less or equal to d.

Again we form the inverse limit
(9.16) Fy'® = lim FR'%,,

—_—
T

d)

now of the linear spaces F;\),’,(T ~ relative to the homomorphisms 7@

1, - By definition
a vector in the linear space F](Vd ) is a sequence (g.,-)rzg such that g, € Fﬁ,’frdg, and

Wl(,(‘ir)(gl) = gr for all [ Z r. Since Wl(,"ir)

(9.15) implies

is an isomorphism for [ > r > d, the definition

(9.17) G =9r NU_Nr AU_Nr—1 A  AU_NI141

provided | > r > d.
Let F(4) be the component of the Fock space F of homogeneous degree d. From
(9.17) it follows that the map

(9.18) T Fy® - FY : (g,)r50 = g, A = N7)

does not depend on r if r > d, and for any such r is an isomorphism of linear
spaces.

Proposition 9.1. Let s > 0, and let (fn)n>0 be a vector in F,?,’<s). Suppose that

for allT > 0 we have f.ny € F,(i,’,(,.dg] for a certain d > 0. Then the sequence (frN)r>0

: . 10,(d
s a vector in FN( ), and moreover we have

(9.19) Y (Frw)r20) = T (fa)nzo) -

Proof. From the definition of the inverse limit F,?,’(s) it follows that
(9.20) D(fin) = fon

for all | > r. Hence (fr-~n)r>0 is a vector in Fg,’(d).
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Let us choose r to be large enough, so that both of the inequalities r > d and
rN > s hold. Then by (9.14) and (9.18) we obtain

(9.21) TS (fr)r0) = T8 ((fa)nzo) = fon A| —7N)
which completes the proof. [

9.3. Symmetric functions. Let A, be the linear space of symmetric polyno-

mials in variables z1,...,z,. This space has the basis which consists of all Schur
polynomials sy (1, ...,Z,) labeled by partitions A of length less or equal to n. The
space A,, is graded. We have

(922) An == @SZOA%

where A$ consists of all homogeneous symmetric polynomials of degree s. Schur
polynomials sy(z1,...,zy) such that |A| = s and I(A\) < n form a basis of AZ. Since
length I(A) of any partition X is less or equal to its weight |A|, Schur polynomials
labelled by all partitions of s form a basis of A provided s < n.

Let m > n, and let f(z1,...,2mn) be an element of A$,. Consider the projection

(9.23) P s Asy = A f(z, .. 2m) = f(Z1,...,T0,0,...,0).

The effect of this projection on Schur polynomials is well-known: it sends
Sa(Z1,y.--Zm) to sx(x1,...,Zp) if I(A) < n, and to 0 if I(A) > n. Thus this projec-
tion is an isomorphism of linear spaces for m > n > s.

Form the inverse limit

(9.24) A® = lim A%,
n

of linear spaces Aj, relative to the homomorphisms pj, ,,. The linear space
(925) A= 63201\8
is called the space of symmetric functions. :

Now recall, that we have the isomorphism (8.9) of linear spaces Fy , and A,.
In this section we denote this isomorphism by €2,. Thus for each ki, € .C%l) such
that kjn) 2 o) we have
(9.26) Qn(uk[n]) = sk[n]—o[n] (.'131, ey xn).

Obviously this isomorphism respects the principal grading of F}\’,,n and the grading
of A,,. Moreover comparing definitions of the projections (9.11) and (9.23) we see
that for each s > 0 the map

(9.27) Q5 FO 5 A2 (fa)nso = (Qn(fn))n0

is an isomorphism of linear spaces.
The Fock space F is the direct sum @;s>0F(*). Recall that for each s > 0 we

have the isomorphism of linear spaces F{*) and Fg,’(s) by (9.14). From (9.27) it now
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follows that F' with principal grading and A are isomorphic as graded linear spaces.
Let Qo : F — A be the corresponding isomorphism map. For each partition A the
element of A defined by Qo (@r+0) is known as Schur function sy. Let II be the set
of all partitions. Since the set of normally ordered wedges {ix4,|X € I} is a basis
of F, the set of all Schur functions {sx | A € IT} is a basis of A.

Proposition 9.1 entails

Proposition 9.2. Let s > 0, and let h = (hn)n>0 be a vector in A°. Suppose that
for each T > 0 we have Q5 (hn) € FI(\’,”(;?, for some d > 0.

Then the sequence h = (Q, % (hrn)), 5, i @ vector in F,?,’(d). Moreover
(9.28) Qoo (Tﬁf’(ﬁ)) = h.

The space of symmetric functions is isomorphic as a linear space to the polyno-
mial algebra C[p1, p2,Ps, - .- ]. The generators p; (i =1,2,3,...) are known as the
power-sums. For each partition A = (A1, A2,...), the vector px € C[p1,p2,ps,- - ]
is defined by

(9.29) pA = pxlp/\sza cee

The set {px | A € II} is a basis of A = C[p1,p2,p3,... |. For each partition A =
(A1, A2, ...) let m;(X\) be the multiplicity of ¢ in A. Set

(9.30) zx = [Ji™Mmi(M)!
i>1

and define a scalar product on A by

(9.31) (Prs Pu ) = 2a0xp.

The basis of Schur functions is orthonormal relative to this scalar product:
(9.32) (sx, Su) =6xu-

Consider the automorphism

(9.33) wiA—A:pi— (=1)71p,.

This automorphism is clearly an involution. Its action on the basis of Schur func-
tions is given by

(9.34) W(SA) = Sy

where )\’ stands for the partition conjugated to .
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9.4. Jack(gly) symmetric functions. Let A be a partition of s > 0, i.e. |A| = s.
Let
(935) Px\(Q) t)(xl) cee 91“71) € A:z ®c C(qa t)

be the Macdonald polynomial labeled by A. If {(A) > n we set Py(q,t)(z1,...,T,) =
0. It is well-known that the sequence

(936) P)\(q, t) = (PA (qs t)(xl’ R xn))nzo

is an element of the inverse limit ASC( o= A* ®c C(g,t) (see 9.24). In other words
P,(q,t) is a symmetric function of degree s. This symmetric function is called the
Macdonald symmetric function.

Introduce on Agqt) = @SZOASC(q,t) a scalar product by

1— g
(9.37) (pr, Pu )q,t = zx6xu H 1 — N’
i>1
For each A which is a partition of s, let
(9.38) ma(T1,...,Zn) € A
be the corresponding symmetric monomial. We set my(z1,...,Z,) = 0if {(A) > n.
One easily checks that the sequence
(9.39) mx = (MxA(Z1,. .-, Zn))p>0

is an element of the inverse limit A®. It is called the monomial symmetric function.

Proposition 9.3 ([19]). The set of Macdonald symmetric functions {Py(q,t)| X €
IT} is the unique basis of Ac(q,t) which satisfies the following two properties:
(a) The transition matriz that expresses these symmetric functions in terms of

monomial symmetric functions is upper unitriangular. That is the expansion of
P,(q,t) has the form

(9-40) Pr(g,t) =ma+ Y uau(g, t)ym,.
n<X

with certain coefficients uy,(q,t) in C(q,t). ‘
(b) Symmetric functions P\(q,t) are pairwise orthogonal relative to the scalar prod-
uct (9.37).

Let A be a partition of s. And let
(9.41) PO gy, ... z,) € A
be the Jack(gly) polynomial defined in Section 8.4. If I(A) > n we set
POM)(zy,...,z,) = 0. Taking the limit (8.32) in (9.36) we see that

(v,N) _ (7,N)
(9.42) P = (P (:rl,...,zn))nzo
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is an element of the inverse limit A®. Thus P§7’N) is a symmetric function of degree
s. We will call it the Jack(gly) symmetric function.
Now let us introduce on A another scalar product. Define

(9.43) (DA s Pu )y = 2262y~

where for each partition A we set Ix(A) = #{\; > 0| A\; = 0 mod N}. This scalar
product is the degeneration of the scalar product (9.37) in the limit (8.32).

From the characterization of Macdonald symmetric functions given by Propo-
sition 9.3 we immediately obtain the following characterization of Jack(gl, ) sym-
metric functions:

Proposition 9.4. The set of Jack(gly) symmetric functions {Pf”m | A € 11} is
the unique basis of A which satisfies the following two properties:

(a) The transition matriz that expresses these symmetric functions in terms of
monomial symmetric functions is upper unitriangular. That is the expansion of
P)("Y’N) has the form

(9.44) P =my + 3 WY m,
pn<A

with certain coefficients uf\'L’N) in C.

(b) Symmetric functions P/{%N) are pairwise orthogonal relative to the scalar prod-
uct (9.43).

Let us now mention two other properties of Jack(gly ) symmetric functions. The
first is the explicit formulas for their normalizations with respect to the scalar prod-
uct (9.43). These formulas are obtained as limiting cases of the well-known formulas
for normalizations of Macdonald symmetric functions [19]. For any partition A and

a square s € ) let bf\"’N)(s) be the expression introduced in (8.37). Set

(9.45) M) =TT o0 (s).
SEA

Then the normalization of the Jack(gly) symmetric function P{""™ is given b
N by g y

N N ,

(9.46) (P Py =160

Another property is the so-called duality. Introduce the automorphism

(9.47) Wy, N 1A = A pi o (—1)FT Ty (=0med Ny,

The duality for Jack(gly) symmetric functions is expressed by the relation

(9.48) wyn (P{N) =M,

Now we will describe an important relationship between the eigenbases of the
commutative algebra A(gly;B) described by Theorem 7.5 and Jack(gly ) symmetric
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functions. Let k = (ki,k2,...) € ,C(l) Then k — o is a partition, say \. Let
d = |6 — k|. In other words d is the homogeneous degree of the normally ordered
wedge @ € F. Observe that we have I(k — 0) < dN. For each n > 0 we set
kin) = (K1, ..., kn). Then kp,) — op,) = A as soon as n > I(k — o).

Let n > I(k—o0). Then the vector X,gi’] ) is an element of F0 (d) .Letn < Il(k—o),

in this case we set X(ﬂ ]N) 0.

By Theorem 8.2 for all n > 0 we have
(9.49) Q, (X,gle)) PNBHLN) (g ).

Recall that the sequence

(NB+1,N)
(9.50) (PA (z1,... ,xn)) 1o

is an element of Al*, that is a symmetric function of degree |A|. Of course it is

just the Jack(gl, ) symmetric function P(NB +1L.N) . Taking into account (9.49) and
Proposition 9.2 we conclude that the sequence

(9.51) (Xlﬁi’g))rzo

is an element of the linear space F0 (D),

We have the isomorphism 'I‘( ) (see 9.19) of linear spaces Fy (4 and F@), Let
us define the vector X, (6.N) F(d) by

B,N d N
(9.52) XN — (@) ((X'(cf—m))»o) .

Proposition 9.2 and (9.49) lead to the semi-infinite analogue of Theorem 8.2:

Proposition 9.5. Let Qy, : F — A be the isomorphism of the Fock space and the
space of symmetric functions defined by the assignment Qo : iy +— sy for each

ke £l and A=k —o.
Then we have

(9.53) Qoo (X((ﬁ,i\f)) = PVA+LN)

for all partitions .
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10. YANGIAN ACTION ON THE FOCK SPACE REPRESENTATION OF sly

The homogeneous construction of the Fock space F' given in Section 9.2.2 allows
to define an action of the Yangian Y (gly) on F.

The defining relations (5.2) of the algebra Y (gly) imply that this algebra is
generated by the coefficients of the quantum determinant Ay (u) (cf. Proposition
5.2) and the elements Té;),T‘Eg) (a,b=1,...,N). Recall that for any series f(u) €
C[[u~!]] of the form

(10.1) fu) =14+u"1f0 4o 2f@ 4

the map wy : Top(u) — f(u)Tas(u) extends to an automorphism of Y(gly). The

effect of this map on the quantum determinant and the generators Ttg),Tg) is
given by

(10.2) ws: An(u)— f(u)f(u—1)... f(u — N +1)An(u),
(10.3) wp: TV o T + 646 f O,
(10.4) wr TP 5 TE 4 fOTE) 1 5, fP.

In Section 7 we introduced the Yangian action Y (gl ; 8) on the linear space Fi .

In this section we will denote the generators of this action by Téz)(ﬂ; n) (s =
1,2,...) and the corresponding generating series by Tys(u; 8; n). The explicit forms

of Té},)(ﬂ; n) and Tg)(ﬂ; n) are
(10.5)
1 n . 2 n . N . .
T (Bim) =Y B TR Bim) = -> d@®WEQ + 3 Y ERED,
i=1 i=1 1<i<j<n c=1
where d;(8)("™) (i =1,...,n) are the Cherednik-Dunkl operators (4.6).

Proposition 10.1. Let T > 0. For alls =1,2,... and a,b=1,..., N the opera-

tors Té;)(ﬂ;'rN ) leave invariant the following two subspaces of FnN N :
(a) The linear space F .y defined in (8.41).

(b) For each d > 0 the linear space Fz?f,(r% C FY ,n defined in Section 9.2.2.
Proof. From the definition (8.41) it follows that
(10.6) F.n=FnevN((21--2n) Clar ..., 2n] @ VETY).

The Cherednik-Dunkl operators leave (21 - - - z-n)"C[z1 , . . ., 27 ] invariant, hence
the statement (a).

The Cherednik-Dunkl operators commute with the degree operator D(rN) —
2152 + - + ZrN 52— - This implies (b). O
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10.1. Intertwining relations. Foreachr > 0 define the series 1+ .5, = f(*)(r)
as the expansion in u~! of the rational function
r
u+(B1+N)s—1
Flusm) = [T 2 s -1

(10.7) u+(B~1+ N)s

s=1
The first two coefficients of this series are
(10.8)  fN(ry=-r;  fO@E)=r(r-1)/2+ (87! + N)r(r +1)/2.
Consider the following renormalized generating series

(10.9) Tap(u; B;7N) = f(u;1)Tap(u; B;TN).

Proposition 10.2. Foreachr > 0let i1, : FR . nyn — Fi ,.n be the projection
defined in Section 9.2.2.
For alla,b=1,..., N we have the intertwining relations

(10.10) Tr+1,rLap(u; ;7N + N) = Tob(u; B;7N)Tpg1 e

Proof. Since the algebra Y (gly) is generated by the elements Té;),Téf) (a,b =
1,...,N) and the coefficients of the quantum determinant Ay (u), it is sufficient to
prove the intertwining relations

—(1 —(1 .
(10.11) Tra1,Top (BN + N) = T3 (B, Ny v,
—(2 —
(10.12) Tr1 T (837N + N) = T (8 *N)Tpy1.rs
(10.13) 7r'r'+l,rZN('U'; B;TN + N) = XN('u'; B; TN)"r'r+1,r-

We will prove the first two relations. The relation (10.13) is proved in a similar
way.

Let k = (k1,...,krn+n~) be an element of the set [ZS\)H_N such that k O o where
o= (0,-1,...,—7N—N+1) is the vacuum sequence. By the definition (see 8.41) of
the linear space F .y, n the set of normally ordered wedges {i |k € ,CS.IA), N k2
o} is a basis of Fy, .y, n. We will prove (10.11) and (10.12) by comparing actions
of both sides on elements of this basis.

First we prove the relation (10.11). Consider the expression

rN+N
(10.14) T(B;7N + N)iy, = Y wr A A Bk, A Apy g

=1

Suppose @€ Kernmry1,,. By definition (9.15) this means that I(k—o0) > rN and,
consequently, k. ny4+1 < 0rn+1- The right-hand side of (10.14) is a linear combination
of normally ordered wedges @, such that M@ = k. Hence, in particular, m,ny4+1 <
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OrN+1- The last inequality implies {(m — o) > rN. Therefore 4, € Kermr,4; ., and
we have

(10.15) Tri1,2 T3y (BN + N)iy = 0 = T (857 N) gy ol

Suppose now that ix € FY .y, n, G & Kermiy . Then for all i = rN +

1,...,7N + N the definition (9.15) implies k; = k{®) = —i + 1. The right-hand side
of (10.14) takes the form

(10.16) (Té},)(ﬂ; rN)ak,) AN A AUy Na1 + Bapile
where k' = (ki,...,krn). Therefore we have

(10.17)  mrg1 o TG (Bs N + Ny = (TG (B;7N) + bap1) mp 1,
Which is equivalent to

(10.18) Trs1 o T (B;7N + N)ag = T (857 N) i1 i

because of (10.3) and (10.8). Thus (10.11) is proven.
We come now to the proof of the intertwining relation (10.12).

Lemma 5. Let A, be the operator (2.10) of the total antisymmetrization in the

linear space Clzit',...,2X | ®@ V®". For all a,b = 1,..., N we have on the space
Clzf!,..., 2| ® V" the following operator identity:

(10.19) T3 (B;n)An = AnTS (B;n)

where

n N
IS Bin) = - > d@MED + > S EDED.
=1

1<j<i<n c=1

Proof. Taking into account the relation (K;; + P;;)A, = 0 we obtain

n
(10.20) TS (B;n)An = — (Z Ei(ﬂ)(")Eﬁl)) An
=1
where foreachi =1,...,n:
d(B)™ = di(B)™ + > Ki;.
i<i

The operators d;(3)(™ are covariant with respect to the permutation operators
K.,;j. That is

Ki;di(B)™ =dy(B) MKy, Kijd(B)™ =de(B)MK,; ifk#3,j .
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This implies that > - , Ei(ﬁ)(")E,(n? commutes with A,. Application of A, (K;; +
P;;) = 0 proves the lemma. [

For each r > 0 define L, C C[ziﬂ, NP N] as the linear span of monomials z™
such that m; <rforall¢=1,...,7N and #{m; | m; =71} < N.

Lemma 6. Let r > 0 and suppose z™ € L,,,. Then for any v € VOIN+N) 4
have

(1021) 7rr+1,7-A7-N+N(Zm X ’U) = 0.

Proof. The expression A,n4+n(2™ ® v) is either zero, or is equal to a linear com-
bination of normally ordered wedges i such that k is a permutation of m. Since
for a normally ordered wedge i we have k1 < ko < -+ < k, N+N, it follows that
k.n+1 < 7+ 1. On the other hand OorNy1 =T+ 1 by deﬁnltlon Thus the length
of the partition k — o is greater than rN. Definition (9.15) of the projection 7,41 ,
gives now the required statement. []

Let 4 be a normally ordered wedge from F§ . n. Consider the expression

(1022)  TQ(B;rN + Nt = Aewew (TP (BN + N)2F @ (k) =
_ N ' ) rN+N _ )
=Anin [Fo > STEDEDwkR) - > di(B) TV F @ EDu(k) | .
1<j<i<rN+N c=1 i=1

Suppose to start with that @y € Kerm,41,r, that is I(k—0) > rN. Then kry41 <

0rN+1 and hence 2k € L,,1. By Lemma 1 we have d,-(,B)(’N“LN)zE € L, for all
t=1,...,N. By Lemma 6 we now have

(10.23) TP (8, 7N + N)iy € Kermpyy.r.
Which gives
(10.24) Try1,: T (BN + N)iig = 0 = T3 (837 N) Ty o

Now suppose i, € Kermry1,,. Thenforalli =rN+1,...,7N+ N we necessarily
have k; = 0; = —i + 1, and hence k; =3; = r + 1. Smce k can have no more than
N equal elements, we also have k; <7+ 1if i < rN.

By Lemma 1(eq.4.9) we obtain

d;i(B) TNt F = 4B ™M)k mod Ly (i =1,...,rN).

And by Lemma 1(eq.4.10) we obtain

di(B)TN+NZF = (871 (r 4 1) — 5 + 2rN + N)z* mod Ly4,
G=rN+1,...,rN + N).
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Application of Lemma 6 and Lemma 5 allows to transform the right-hand side of
(10.22) and get

(10.25) T3 (B;rN + N)ay, =
= (T,Sf,)(ﬂ;rN)ﬁk') AU_Nr N - NU_Nr_N41 +
+ (Té;)(ﬂ; TN)ﬁk') Au_Nyr A" AU_Nr_N31 —
85 (B + N)(r+1)—1) 4 mod Kermpyy r
where k' = (ky,...,k-n). This entails
7rr+1,'rT¢§§)(ﬂ; TN + N)iy = {Téf) + TS) — b (B~1+ N)(r+1) - 1)} Tr41,ri.

Which is equivalent to

=(2 . (2 "
(10.26) Tt TN(B;rN + N)ig = T (B NY Ty 1 i
because of (10.4) and (10.8). Thus (10.12) is proven.
|

10.2. Yangian action on the Fock space. Now we are ready to define an action

of the algebra Y (gl ) on the Fock space module F' of the affine Kac-Moody algebra

sly. Propositions 10.1 and 10.2 allow us to define a Yangian action on the inverse

limit FI(\),’(d) (see (9.16)) for each d > 0. Let g = (g-)r>0 be a vector in Fg:(d). For

each generator Té;) of the Yangian algebra Y (gl ) we define the corresponding
. 0,(d)

action on F\/"" by the map

(s)
(10.27) T 2 (9r)rs0 (Tab (BrN )g")r>o'

Proposition 10.2 guarantees that this action is well-defined.

The inverse limit FI(\),’(d) is isomorphic as a linear space to the component F(4) of
the Fock space F' by (9.18). By this isomorphism the Fock space admits a homo-
geneous degree preserving Y (gly)-action. Let us denote this action by Y (gly; 3),

and by TC(L;)(,B) (a,b=1,...,N), (s =1,2,...) the generators of this action.

10.3. Decomposition of the Fock space into irreducible Y (gl )-submodules.
From now on we will identify the Fock space module F' of the algebra sly and the
space of symmetric functions A by the isomorphism of linear spaces

(10.28) Qoo : F o Azl — sk (ke L)),

In Section 10.2 we introduced the Y (gl )-action Y (gl ; 8) on the Fock space F.
Let A(gly;3) be the corresponding action of the maximal commutative subalgebra
A(gly) C Y(gly). And let the A;(u;B),...,An(u;3) € End(F)[[u!]] denote the
_generating series for elements of A(gly;3).
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The Fock space has a basis formed by the Jack(gly ) symmetric functions P>(‘Nﬂ +1L.N)
(see Section 9.4) where A runs through the set of all partitions II.

Proposition 10.3. Let 8 be a positive real number. Then the set {Pf\NﬂH’N) BXS

IT} is the unique, up to normalization of eigenvectors, eigenbasis of the commutative
algebra A(gly; B) in the Fock space F. For eachm = 1,..., N we have

(10.29) A (u; B)PVEYEN) = A (u; B 2) PLVAFLN)
where
u+ B o+ A); +i—1+68((0+A).<m) 44815 +i—1
Am(u; 5;2) =11 Wt Ao, T i1+ 6(e <m) —/18_'— :
iS1 i 9; < u+ B o+ A),+i—-1

and o = (0,—1,—2,...) is the vacuum sequence.

Proof. Theorem 7.5, Proposition 9.5 and the definition of the action Y (gly;8)
given in Section 10.2 give the required statement. [

Definition 3 (Coloring). A partition X is said to be colored if, for alli = 1,2,...
and 3 =1,..., A, the (¢,7)th square of X is filled with value 7 — i (mod N).

For example, coloring the partition (6,4,4,3,1) for N = 3 we obtain

0112

—lNlo|—

N[O N
p—t

N[O IN]O

In what follows we will consider each partition to be coloured.

Definition 4. For each partition XA andi =0,1,...,N —1 let ¢; be the multiplicity
of the col-our i in \. Define

N-1
(10.30) wt(A) = Ao — D i
1=0

Propositions 7.6 and 9.5 now imply

Proposition 10.4. For each partition X the Jack(gly) symmetric function
P)(‘NBH‘N) is a weight vector of sly of the weight wt()).

Let o = (0,—1,—-2,...) be the vacuum sequence. The corresponding sequence
o (see Section 2.1) is ((1)™(2)V(3)V...), and the corresponding sequence o is
((N,N —1,...,1)®).
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Definition 5. A semi-infinite sequence of integers m = (my, ma, m3,...) is called
a coordinate configuration iff the following three conditions are satisfied

(i) miy1 > m; for alli € N.

(ii) Multiplicity of each element in m does not exceed N. That is myn > m;
for all i € N.

(iii) m; = 0; for all but finite number of ¢ € N.

The set of all coordinate configurations will be denoted by W. If m € W, we may
represent m as ((r1)P*(r2)P?(r3)P*...) where r; < ro < r3 < ..., and p; denotes
the multiplicity of r; in m. Due to the condition (ii) in Definition 5 we have p; < N,
and due to the asymptotic condition (iii) we have p; = N for all large enough 1.
We set I(m) to be equal the maximal 7 such that p; < N.

Definition 6. A semi-infinite sequence (€;);>1 such that ¢; € {1,...,N} (i € N)
is called a spin configuration iff we have the equalities €¢; = o; for all but finite
number of i € N. The sequence (9;)i>1 is called the vacuum spin configuration.
The set of all spin configuration is denoted by X.

It is easy to see that for each partition A the sequence m(\) = o + ) is a coordi-
nate configuration, and the sequence €(\) = o + ) is a spin configuration, moreover,
the map

(10.31) (mye) : I - W x Z: A (m(N),e(N))

defines a one-to-one correspondence between the set of all partitions, II, and the
set W x I. For each partition A we will call m()) (resp. €())) the coordinate (resp.
spin) configuration of .

Proposition 10.5. Let 3 be a positive real number. As a Y (gly)-module the Fock
space representation of sly decomposes as

(10.32) F= @ F(m;B)
mewW ‘
where for each m = ((r1)P* (r2)P?(r3)P*...) € W the linear space
(10.33) F(m;p) = @ CP§NB+1,N)
{Alm(A)=m}

15 tnvariant and irreducible with respect to the Yangian action Y (gly;3). Moreover
up to some automorphism of the form wy, F(m;fB) is isomorphic as a Y(gly)-
module to the tensor product

(10.34) Viary(a1) ® Vizrz)(az) ® -+ - ® Viyriem) ) (a1(m))
where as = B~ lrs—1+p1+ - +ps (s=1,...,1(m)).

Proof. Propositions 7.7 and 9.5 give the required statement in view of the definition
of the Y (gl )-action Y (gly; B3) given in Section 10.2. O
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For a given m € W the set of partitions A such that m(\) = m contains the

unique partition A™#®* of minimal degree |A|. By Proposition 10.4 the sly weight
of this partition is maximal among all sl weights of the irreducible submodule
F(m;B). Thus the Jack(gly) symmetric function Pﬁﬁffl’m is the singular vector
of the irreducible Yangian submodule F(m;g).
Example 10.6 Let N = 3. The basis of the irreducible Y (gl;)-submodule which
corresponds to the coordinate configuration m = ((0)2(1)(2)3(3)3...) is given by
the Jack(gl;) symmetric functions P/Sw +13) Jabeled by the nine partitions dis-
played below. At the right of each partition A are shown the first three entries of
the corresponding spin configuration e(\) with entries displayed from the top to
the bottom. The rest of the entries of each €()\) coincide with the vacuum spin
configuration.

0[1] 2 0[1[2] 3 0[] 2 0[1[2] 3
210] 1 2]0 1 2[0] 1 2[0[1] 2
1 1 1] 2 1

0[1[2] 3

2[0 1

1] 2
0[1] 2 0[1]2] 3 0[1[2] 3 0[1][2] 3
210| 1 2[0[1] 2 2[0 1 2[0(1] 2
1/2] 3 1] 2 1]2 3 1]2 3

Partition (2,2) corresponds to the singular vector of this submodule.

11. YANGIAN ACTION ON THE BASIC REPRESENTATION OF s:lN

11.1. The basic representation of sly. Under the action of sly the Fock space
F decomposes as [14]:

(11.1) F=VyNa®Sy

where Vy = U(sln)so = C[p; |i € N,i # 0 mod NJ, and Sy is the ideal generated
by pxn (k € N). Moreover one has the isomorphisms of sly-modules

(11.2) VN 2 F/Sy =V (Ao)

where V(Ag) is the basic representation of sly.

Our first goal in this section is to define an action of the algebra Y (gly) on the
linear space V starting from the Y (gl )-action Y (gly;3) on the Fock space.
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11.2. The projection map and a Yangian action on the basic represen-
tation of sly. The projection map « from F onto the linear space Vyy is defined
in the basis of the power-sums {p)|\ € II} as follows:

0 if 3X; > 0 such that A; = 0 mod N,

(113)  mF=Vvipae {P,\ otherwise.

Consider the Yangian action Y (gly;38) on the Fock space F. Thus far we have
assumed that the parameter 8 is a positive real number. If we are concerned only
with the definition of the action Y (gly;3), and not with the decomposition of the
Fock space into irreducible Yangian submodules, this assumption is not essential.
Indeed, all the results of Sections 10.1 and 10.2 are easily seen to be valid for all
B in C\ {0}. In particular taking the limit 3 — oo in Y (gly;B) gives rise to a
well-defined Y (gl )-action on the Fock space which we will denote by Y (gl ; 00).

The following proposition is obtained as corollary to Proposition 14 in the paper
[23].

Proposition 11.1. The Y(gly)-action Y (gly;00) commutes with the multiplica-
tion operator by p;jn for each j € N.

This proposition allows to define a Yangian action on the linear space Vy as a
projection of the action Y (gly;00). Precisely we have

Proposition 11.2. For each generator Tég) of the algebra Y (gly) define W(T(E;)) €
End(Vy) by

(11.4) w(T))m(v) = 7 (TS5 (o))

for all v in the Fock space F.
Then the assignment

(11.5) TS = n(T3)
gives rise to a Y (gly)-action on the linear space V.
Proof. This follows from Proposition 11.1 and the definition of the projection 7. O

We will denote by n(Y(gly)) and 7(A(gly)) the Y(gly)-action and the action
of the maximal commutative subalgebra A(gly) C Y(gly) defined by the above
proposition.
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11.3. Projecting the Jack(gly) symmetric functions. An examination of
explicit expressions for the coefficients (8.34) shows that these coefficients have no
poles at v = oo and v = 0. Therefore for each partition A we have well-defined
Jack(gly) symmetric functions P>(\°°’N) and Pio’N). We will now consider the effect
of the projection 7 on these symmetric functions.

Definition 7. A partition A = (A1, A2, ...) is said to be N-regular iff \;— ;11 < N
for allt=1,2,.... The set of all N-regular partitions is denoted by Il .

Remark. Our definition of N-regular partitions differs from the standard defini-
tion by conjugation of partitions.

Recall from Section 9.4 that there is an automorphism of the Fock space defined
by

(11.6) wynN:F = F:pgs (_l)k—l,y—&(kEOmodN)pk
and that we have the duality of Jack(gly) symmetric functions expressed by
1 1
(11.7) Wy N (P§7’N)) _ b)&”N)P)‘,"’ N)
where for each partition A
(11.8) p(N) = II ax(s) +vixr(s) +7
. N

{s€X|hr(s)=0mod N} ax(s) +vl(s) +1

Let w be the standard involution of the Fock space defined by
(11.9) w:F = F:pg— (—1)*1p,.

This involution clearly leaves the subspace Vy invariant. Moreover the definition
(11.3) of the projection = and the definition (11.6) of w., n give the equalities

(11.10) wWwoo, N (f) = woo,nw(f) = m(f)
for any f € F.
Proposition 11.3. For any partition A\ we have
, (07N) 3 .

(11.11) (PN = byw(Py) i Ae I.IN’

0 otherwise
where for each X € Tl

Ix(s)
11.12 by = ——— > 0.

( ) A IL(s)+1

{s€XlhA(s)=0mod N}

Proof. From (11.8) it follows that b = 0 if A ¢ Iy and b$™) = by > 0 if
A € IIn. Setting v = oo in (11.7) and taking into account (11.10) we obtain the
required statement. [
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Corollary 2.
(i) For each A € Iy we have P\ € Vy.
(i) The sets {x(P{®"™)| A e Iy} and {P{"™) | A € TIn} are bases of V.

Proof. (i) Follows from (11.11) since w leaves Vi invariant.

)

The symmetric functions P)(\O’N are linearly independent. This implies (ii). [0

In the sequel for each A € IIxy we will use the notation P)(‘N) defined by
(11.13) PN = r(P{M)y = by (PO,
Thus {P,SN) | A € IIn} is a basis of V.

11.4. Yangian decomposition of the basic representation of sly. Each N-
regular partition X is completely determined by its spin configuration e(A) = o + A,
moreover, it is straightforward to verify that the map

(11.14) €: Iy = E: A e(N)
gives a one-to-one correspondence of sets. Hence one can label N-regular partitions

by the corresponding spin configurations which is sometimes convenient to do.

Proposition 11.4. The set {P>(‘N) | A € IIN} is an eigenbasis of the commutative
algebra w(A(gly)). For each m =1,...,N we have

(11.15) T(Am )P = A (u; )PV
u+1—146(e(A)i <m)

where  Ap(u; ) = H u+i—1+6(e(0); <m)’

i>1

Proof. Set B = oo in the statement of Proposition 10.3 and apply the projection
. O

When 8 = oo, the decomposition of the Fock space into invariant subspaces
relative to the action Y (gl ; 00) is still described by Proposition 10.5 with the only
difference from the case of positive real 8 that now these invariant subspaces are
not, in general, irreducible Y (gl )-modules. Setting 8 = oo in (10.32) and (10.33)
we have

(11.16) F= P F(m;),
meWw

where F'(m;o0) is a Y (gl )-submodule given by

(11.17) Fimoo)= @  cp™M.
{xel|m(A)=m}

From Proposition 11.3 and Corollary 2 we know the effect of the projection =«
(11.3) on the elements of the basis {P§°°’N) | A € II}. This allows to derive the
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decomposition of the basic representation of sly simply by applying 7 to the both
sides of (11.16).

Let Wy be the set of all coordinate configurations which correspond to N-
regular partitions. That is to say Wy = {m(X)| X € Iy }. If an element m appears
in Wy with multiplicity, discard all the copies of m but one. In this way we
obtain the set Wy all of whose elements are distinct, and for each element m of
W there is at least one N-regular partition A such that m = m()). It is easy
to describe the set Wiy . It consists of all semi-infinite sequences of non-negative
integers m = (my,ms,...) such that m; = ; for all but finite number of z € N
and for each 7 € N we have

(i) miy1 —M; € {0, 1},

(ii) miyrn > m;.

Since each N-regular partition X is uniquely determined by its spin configuration
€(A), the coordinate configuration m()) is also determined by €()). The formula
which, together with the asymptotic condition, gives m()\) in terms of €()) reads
as follows:

) mA)ir =1 i €(N)ig1 > e(A);,

Now we describe the decomposition of the basic representation Vy relative to the
Y (gly)-action 7(Y(gly)).

Proposition 11.5. As a Y (gly)-module the basic representation of sly decom-
poses as

(11.19) V= € Vn(m)

meWn

where Viy(m) is a Y (gly)-submodule given by

(11.20) Va(m) = P cpPM,
(Al |m(X)=m}

Proof. Set B = oo in (10.32) and (10.33) and apply the projection w (11.3). The
required statement now follows from the definition of the Yangian action 7 (Y (gly))
given in Section 11.2. [J

Example 11.6 Let N = 3, we continue from Example 10.3. The coordinate config-
uration m = ((0)2(1)(2)3(3)3...) is an element of W3. The corresponding invariant
subspace of the Yangian action 7(Y'(gl3)) has the basis formed by symmetric func-
tions P>(\3) labelled by the 3-regular partitions shown below. As in Example 10.3
we display the corresponding spin configuration alongside each partition.
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0[1] 2 0[1[2] 3 0[1] 2
2]0] 1 210 1 2[0] 1
1 1 1] 2
0[1[2] 3
210 1
1] 2
0[1] 2 0[1[2] 3 0[1[2] 3 0[1[2] 3
2]0] 1 2[0[1] 2 20 1 210[1] 2
i[2] 3 1] 2 12 3 1[2 3

Partition (3, 3) which was present in the decomposition of the submodule F'(mn; c0)
is not 3-regular and therefore the corresponding Jack(gly) symmetric function
P((;;’)s ) vanishes under the action of the projection .

11.5. Irreducibility of the Yangian decomposition of the basic represen-
tation of sly. Our goal now is to prove irreducibility of each of the Yangian
submodules Vy(m) (m € Wy) and to compute corresponding Drinfeld polynomi-
als. To do this it is convenient to parameterize the set of all N-regular partitions,
or, equivalently, the set of all spin configurations by reverse semi-standard tableaux
of ribbon (Young) diagrams. This parameterization was introduced and its relation
to the Yangian decomposition was conjectured in the paper [16].

11.5.1. Ribbon diagrams. Let 6 be a skew diagram. Two squares in § are adjacent
if they share a common side. A skew diagram 6 is connected if for any pair of
squares s and s’ in @ there is a series of squares s; = 8,82,...,8p = s’ in @ such
that s; and s;41 are adjacent. A skew diagram is called a ribbon if it is connected
and contains no 2 x 2 blocks of squares. The length of a ribbon is the total number
of squares it contains. We will let [p1,...,p;] denote the ribbon of I columns such
that the height of ith column from the right is p;. A ribbon is said to be of rank N
if heights of all its columns do not exceed N.

Example 11.7 Here is the ribbon [3,2,1,1,1,2,1,1,1,2]. It has the length 15 and
is of the rank 3.

.

1

[ L

L

Let Ry be the set of all rank N ribbons € which satisfy the following two
conditions

(i) The leftmost column of 6 is of the height less than N.

(ii) The length of @ is divisible by N.
Thus the ribbon of Example 11.5.1 belongs to each of the sets R3, Rs, R;5.

Let m = (m;)i>1 be a coordinate configuration from the set Wy . Recall that by
the definition of Wy the difference m;.; — m; is either 0 or 1 for all 2. Moreover
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if we represent m as ((r1)P(r2)P2(r3)?*...) then r,4; = 7, + 1 (i € N), and the
multiplicities p; do not exceed N. For a given coordinate configuration m € Wy
we associate a ribbon §(m) by the following procedure

1. Write the first square.

2. Foralli=1,2,...,p1 + p2 + -+ + Pym) — 1 attach the 7 + 1th square at the
bottom (resp. at the left) of the ith square if m;+1 = m; (resp. miy1 = m; + 1).
It is easy to see that 8(m) = [p1,...,pym)]- Hence 8(m) is of rank N, its leftmost
column has the length p;(,n) < N by the definition of [(m) (see Section 10.3) and the
length of §(m) is divisible by N due to the asymptotic condition on the coordinate
configuration m. :

Proposition 11.8. The correspondence of sets

(11.21) 6:Wn — Ry :m— 6(m)

s one-to-one. “

Proof. The injectivity of 8 follows since each coordinate configuration
(11.22) m = (mi)iz1 = ((r1)? (r2)?(r3)? ...) € Wi

is uniquely determined by its multiplicities p1,...,p;m) in view of the condition
ri+1 =1; + 1 (¢ € N), and the asymptotic condition m; = o; (¢ > 1).

Let [p1,...,m] be a ribbon from the set Ry, in particular we have p; +---+p; =
sN for a certain s > 0. The sequence

(11.23) m=((s=1+1)P(s=14+2)P2...(s)P(s+ DN (s+2)V...)

is an element of the set Wy such that 8(m) = [p;,...,p]. This shows that 8 is
surjective. [

Example 11.9 The coordinate configuration m = ((0)2(1)(2)3(3)3...) is an ele-
ment of the set W3 with I{(m) = 2. The ribbon which corresponds to this m is

11.5.2. Reverse semi-standard tableauz. In each square of a given ribbon 6 inscribe
one of the numbers 1,2,..., N. We will call such an arrangement of numbers a
reverse semi-standard tableau T of shape 0 if the numbers decrease downward along
each column and do not increase from left to right along each row.

Let n be the length of the ribbon @, then T is uniquely represented as the
sequence (€1, €s,...,€,) where ¢; is the number inscribed in the ith square along 6
counting from the right to the left and from the top to the bottom. Now we have
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a natural map ¢,, from the set of reverse semi-standard tableaux of shape 6(m) to
the set of spin configurations ¥ defined by

(11.24) Om :(€1,€2,...,6p) (61,62,...?€n,(N,N —-1,...,1)®).

For each element m of the set Wy we define ¥(m) C ¥ by

(11.25) T(m) = || {e(M)}.

{Xelly|m(X)=m}
The following proposition is proved in [16].

Proposition 11.10. For each m € Wy the map ¢, gives a one-to-one correspon-
dence between the set of reverse semi-standard tableauz of shape 8(m) and spin
configurations in X(m).

Since spin configurations and N-regular partitions are in one-to-one correspon-
dence, we now may label the basis {P§N) | A € IIny,m(A) = m} of the Y(gly)-
submodule V(m) by reverse semi-standard tableaux of shape 8(m).

Consider a ribbon 8(m) for some m € Wy . Construct a reverse semi-standard
tableau by filling all columns of #(m) with numbers 1,2,..., N so that a column of
height n is filled with 1,2,...,n. We will call this tableau the mazimal tableau of
shape 8(m). This tableau corresponds to the maximal partition ( i.e. the partition
of minimal degree |A|) of the set {A € IIxy | m(A) = m} and hence the sly weight
of the basis vector labeled by this tableau is maximal in the Yangian submodule
VN(m)

Example 11.11 Let N = 3. Continuing from Example 11.4 we find that the basis
of the Y (gly)-submodule V3(m) with m = ((0)2(1)(2)3(3)3...) is labelled by the
following eight reverse semi-standard tableaux

2 011 3 0[112]
1|1 210 1|1 210
2 0[1 3 0[112]
210 210

2|1 H 2 | 1 3
2 011 3 o[i[2
270 2101

311 210 2| 2 :
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3 0TiT2] 3 o712
370 910(1
3|1 12 312 i[9

where the corresponding (colored) 3-regular partition is shown on the right of each
tableaux. The tableau (2,1,1) is the maximal tableau of shape 6(m).

11.5.3. Irreducibility and Drinfeld polynomials. Let m € Wy and let 8(m) be the
corresponding ribbon from the set Ry. With this ribbon we associate the unique
pair of partitions v = (v1,v2,...) and p = (u1, p2,...) such that §(m) = v/u and
the length of 1 (resp. p') is less than the length of v (resp. v’). Let V,, , be the tame
Y (gl )-module associated with the skew diagram v/u in the manner described in
Section 5.2. We will denote by °V,,, the tame Yangian module obtained from
V... by the pullback through the automorphism oy defined in (5.6). Lemma 6.2
contained in [16] implies that the dimension of V, , is equal to the number of
reverse semi-standard tableaux of shape #(m) = v/u. Hence dimensions of the
Yangian modules Vx(m) and ?V,, , are equal. For a complex number h we denote by
?V,,u(h) the tame Yangian modul e obtained from ?V, , through the automorphism

&(h) (5.5).

Proposition 11.12. The Y (gly)-modules Vi (m) and °V,, ,(v1—1) are isomorphic
up to an automorphism of the algebra Y (gly) of the form (5.4).

Proof. Let A™2* be the unique partition from the set {A € IIy | m(\) = m} such
that its degree |A™2*| is minimal among degrees of all partitions contained in this
set. Then the sly weight of the basis vector P/&ﬁ,)x is maximal among the sly
weights of the submodule Vy(m). This implies that for all N > a > b > 1 and
s=1,2,... we have

(11.26) (T PER), = o.

By Proposition 11.4, P)(ﬁa)x is an eigenvector of the maximal commutative subalge-
bra w(A(gly)). Using the eigenvalue formula given in Proposition 11.4 we obtain
forallm=1,...,N -1

T(Am 1 (W) (Am-1(u = 1)) vy _ Pm(u=1) ;v
T(Am(w))m(Amn(u — 1)) Amax P () '\ max

where P,,(u) are polynomials given by

(11.27)

(11.28) Pm(u)zn(u+1/1—c—m); m=1,...,N -1,

with the product taken over contents of bottom squares of all columns of height m
in the ribbon 8(m) = v/pu.
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Let Vn(m)' be the submodule of Vy(m) generated by the vector P(I,,YQX. Suppose
Vn(m)" is the maximal proper submodule of Vn(m)'.

Without loss of generality we may assume that PN ¢ Vn(m)”. Then compar-
ing polynomials (11.28) with the Drinfeld polynomials of the module °V,, , given by
Proposition 5.7 and Proposition 5.4 we see that Viy(m)'/Vy(m)"” and °V,, ,(v1 — 1)
are isomorphic up to an automorphism of the form (5.4). The required statement
now follows since dimensions of °V, ,(v; — 1) and Vn(m) are equal. O
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