Advanced Studies in Pure Mathematics 77, 2018 The 50th Anniversary of Gröbner Bases pp. 121–128

A necessary condition for an edge ring to satisfy Serre's condition (S_2)

Akihiro Higashitani and Kyouko Kimura

Abstract.

Let G be a finite simple connected graph. We give a necessary condition for the edge ring of G to satisfy Serre's condition (S_2) in terms of a graph.

§1. Introduction

Let G be a finite simple connected graph. We denote by V = V(G)the vertex set of G and E(G) the edge set of G. We set V = [d] := $\{1, 2, \ldots, d\}$ and $E(G) = \{e_1, \ldots, e_r\}$, where $e_\ell = \{j_{\ell 1}, j_{\ell 2}\}$. Let K be a field. Consider the polynomial ring $K[\mathbf{t}]$ with d variables t_1, t_2, \ldots, t_d . The edge ring of G, denoted by K[G] is the subring of $K[\mathbf{t}]$ generated by $\mathbf{t}^{e_1}, \ldots, \mathbf{t}^{e_r}$, where $\mathbf{t}^{e_\ell} := t_{j_{\ell 1}} t_{j_{\ell 2}}$. Let $\rho(e_\ell)$ be the (0, 1)-vector of \mathbb{R}^d which has 1 only $j_{\ell 1}$ -, $j_{\ell 2}$ -entries, and let S_G be the affine semigroup generated by $\rho(e_1), \ldots, \rho(e_r)$. Then K[G] is the affine semigroup ring of S_G .

In [6], Ohsugi and Hibi characterized when K[G] is normal in terms of the graph; see Section 3 for detail. Since K[G] is an affine semigroup ring, by Hochster [5, Theorem 1], it is known that if K[G] is normal then K[G] is Cohen-Macaulay. Hence it is natural to ask when K[G]is Cohen-Macaulay. For a general affine semigroup ring, the characterization of its Cohen-Macaulayness has been investigated by Goto and Watanabe [3] and Trung and Hoa [8, Theorem 4.1]. The purpose of our study is to illustrate the characterization in terms of the graph. Note that K[G] is normal if and only if K[G] satisfies Serre's conditions (R_1) and (S_2) ; see [2, Theorem 2.2.22]. Hibi and Katthän [4] give the characterization for K[G] satisfying (R_1) . On the other hand we try

Received August 30, 2016.

²⁰¹⁰ Mathematics Subject Classification. 13H10.

Key words and phrases. Serre's condition (S_2) , edge ring, toric ideal, finite graph.

to characterize K[G] which satisfies (S_2) . Note that Serre's condition (S_2) is a necessary condition for K[G] to be Cohen–Macaulay. The main result of the present report is a necessary condition for K[G] to satisfy (S_2) in terms of a graph; see Theorem 4.1.

The organization of the present report is as follow. In Section 2, we recall the characterization of a Cohen-Macaulay affine semigroup ring. In Section 3, we recall the properties of an edge ring. Finally, in Section 4, we give a necessary condition for an edge ring to satisfy Serre's condition (S_2) in terms of a graph.

§2. Cohen–Macaulayness of affine semigroup rings

Recall that K[G] is an affine semigroup ring, as stating at Introduction. In this section, we recall the characterization of a Cohen–Macaulay affine semigroup ring investigated by Goto and Watanabe [3] and Trung and Hoa [8].

Let $S \subset \mathbb{N}^d$ be an affine semigroup. Then the affine semigroup ring of S, denoted by K[S], is the subring of the polynomial ring $K[\mathbf{t}]$ with d variables t_1, t_2, \ldots, t_d generated by $\{\mathbf{t}^x : x \in S\}$, where $\mathbf{t}^x = t_1^{x_1} t_2^{x_2} \cdots t_d^{x_d}$ for $x = (x_1, x_2, \ldots, x_d)$. Let C_S be the convex rational polyhedral cone spanned by S in \mathbb{Q}^d . We may assume that C_S is d-dimensional. Let F_1, \ldots, F_m be all the facets of C_S . Also let \mathcal{G} be the group generated by S. We set

$$S_i := S - S \cap F_i$$

= {x \in \mathcal{G}} : there exists y \in S \cap F_i such that x + y \in S}

and $S' = \bigcap_{i=1}^{m} S_i$. Let J be a subset of $[m] := \{1, 2, \dots, m\}$. Set

$$G_J := \bigcap_{i \notin J} S_i \setminus (\bigcup_{j \in J} S_j)$$

Also set

$$\pi_J := \left\{ I \subset J : I \neq \emptyset, \bigcap_{i \in I} S \cap F_i \neq (0) \right\} \cup \{\emptyset\}.$$

Then π_J is a simplicial complex.

Theorem 2.1 (Trung and Hoa [8, Theorem 4.1]). Let S be an affine semigroup ring. Assume that C_S has m facets. Then K[S] is Cohen– Macaulay if and only if the following two conditions are satisfied:

(i) S' = S;

(ii)
$$G_J = \emptyset$$
 or π_J is acyclic for all proper subsets J of $[m]$.

Remark 2.2. The first condition of Theorem 2.1 corresponds to Serre's condition (S_2) ; see [1, Exercise 4.17].

§3. Edge rings

As noted in Remark 2.2, the condition (i) of Theorem 2.1 corresponds to Serre's condition (S_2) . Thus we investigate which graph Gsatisfies the condition. In order to do this, we need the facets of C_{S_G} . Fortunately, these have been studied by Ohsugi and Hibi [6]. In this section, we recall their result.

Let G be a finite simple connected graph. We denote V(G) its vertex set and E(G) its edge set. Let $W \subset V(G)$. The induced subgraph of G on W, denoted by G_W , is the graph whose vertex set is W and whose edge set is given by $\{e \in E(G) : e \subset W\}$. Also we set

$$N(G;W) := \{ v \in V(G) : \{v, w\} \in E(G) \text{ for some } w \in W \}.$$

A subset T of V(G) is said to be independent if $\{v_1, v_2\}$ is not an edge of G for any distinct vertices $v_1, v_2 \in T$. Let T be an independent set of G. Then we can consider the bipartite graph on $T \cup N(G;T)$ whose edge set is given by

$$\{\{v, w\} \in E(G) : v \in T, w \in N(T; G)\}.$$

We call such a graph the bipartite graph induced by T.

A pair (C_1, C_2) of odd cycles of G with no common vertex is said to be *exceptional* if it has no bridge, that is, for any vertices $v_1 \in V(C_1)$ and $v_2 \in V(C_2)$, $\{v_1, v_2\}$ is not an edge of G. The graph G is said to satisfy the *odd cycle condition* if it has no exceptional pair. We have already known a graph G whose edge ring is normal:

Theorem 3.1 (Ohsugi and Hibi [6]). Let G be a finite simple connected graph. Then K[G] is normal if and only if G satisfies the odd cycle condition.

Since we have already known a normal graph, we focus on a nonnormal graph, namely, the graph whose edge ring is not normal, and in what follows, we always assume that the graph G is non-normal. Note that G is not bipartite.

In order to illustrate the facets of C_{S_G} , we need some notion.

Definition 3.2. The vertex $i \in V$ is said to be regular in G if each connected component of $G_{V \setminus \{i\}}$ has at least one odd cycle.

Definition 3.3. A non-empty subset T of V is said to be fundamental in G if the following three conditions are satisfied:

- (i) T is an independent set;
- (ii) the bipartite graph induced by T is connected;
- (iii) if $T \cup N(G;T) \neq V(G)$, then each connected component of $G_{V(G)\setminus (T\cup N(G;T))}$ has at least one odd cycle.

The facets of C_{S_G} are given by the intersection of supporting hyperplanes of C_{S_G} , which are defined by the regular vertices in G and fundamental sets in G.

Theorem 3.4 (Ohsugi and Hibi [6, Theorem 1.7]). Let G be a non-normal finite connected simple graph. Then all the supporting hyperplanes of C_{S_G} are the following ones:

- (i) $\mathcal{H}_i = \{(x_1, x_2, \dots, x_d) \in \mathbb{R}^d : x_i = 0\}, \text{ where } i \text{ is a regular vertex in } G.$
- (ii) $\mathcal{H}_T = \{(x_1, x_2, \dots, x_d) \in \mathbb{R}^d : \sum_{i \in T} x_i = \sum_{j \in N(G;T)} x_j\},$ where T is a fundamental set in G.

We close the present section by recalling the characterization of the graph G whose edge ring satisfies Serre's condition (R_1) given by Hibi and Katthän [4].

Theorem 3.5 (Hibi and Katthän [4, Theorem 2.1]). Let G be a finite simple connected graph. Assume that G is not bipartite. Then K[G]satisfies Serre's condition (R_1) if and only if G satisfies the following two conditions:

- (i) $G \setminus \{i\}$ is connected for all regular vertex i in G;
- (ii) for each fundamental set T in G with $T \cup N(G;T) \neq V(G)$, the induced subgraph $G_{V(G)\setminus (T\cup N(G;T))}$ is connected.

We note that if a non-normal graph G satisfies Serre's condition (R_1) , then G does not satisfy Serre's condition (S_2) .

§4. Main result

Our purpose of the study is to characterize a Cohen-Macaulay edge ring K[G] in terms of the graph G. As the first step of our study, we try to characterize the Serre's condition (S_2) ; see Theorem 2.1 and Remark 2.2. In this section, we give a necessary condition for G satisfying the Serre's condition (S_2) , namely, satisfying $S_G = S'_G$.

Before stating our result, we define one notation. Let C be an odd cycle. Set

$$\mathbf{e}_C := \sum_{i \in V(C)} \mathbf{e}_i \in \mathbb{N}^d,$$

where \mathbf{e}_i is the *i*-th elementary vector of \mathbb{R}^d .

The following theorem is the main result of the present report.

Theorem 4.1. Let G be a finite simple connected graph. Suppose that there exists an exceptional pair (C_1, C_2) satisfying following two conditions:

- (i) for each regular vertex $i \in V(G) \setminus (V(C_1) \cup V(C_2))$ in G, both C_1 and C_2 belong to the same connected components of $G \setminus \{i\}$;
- (ii) for each fundamental set T in G with $(V(C_1) \cup V(C_2)) \cap (T \cup N(G;T)) = \emptyset$, both C_1 and C_2 belong to the same connected components of $G_{V(G)\setminus (T\cup N(G;T))}$.

Then $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} \in S'_G$. In particular, $S_G \neq S'_G$.

Theorem 4.1 is restated as follows:

Theorem 4.2. Let G be a finite simple connected graph. If $S_G = S'_G$, then for each exceptional pair (C_1, C_2) , one of the following is satisfied:

- (i) there exists a regular vertex i in G such that both C₁ and C₂ belong to different connected components of G \ {i}.
- (ii) there exists a fundamental set T in G such that both C_1 and C_2 belong to different connected components of $G_{V(G)\setminus(T\cup N(G;T))}$.

Before proving Theorem 4.1, we consider which elements can be the elements of S_G or S'_G . Note that $S_G \subset S'_G$ holds in general. Hence we would like to know which element belongs to $S'_G \setminus S_G$.

We need some more notation. Let $\Gamma = (e_{j_1}, \ldots, e_{j_q})$ be a walk. We set

$$\mathbf{e}_{\Gamma,o} = \sum_{\ell} \mathbf{e}_{j_{2\ell+1}}, \qquad \mathbf{e}_{\Gamma,e} = \sum_{\ell} \mathbf{e}_{j_{2\ell}}.$$

Note that \mathbf{e}_{ℓ} is the ℓ -th elementary vector of \mathbb{R}^r and $\mathbf{e}_{\Gamma,o}, \mathbf{e}_{\Gamma,e} \in \mathbb{N}^r$. Also for $f = (f_1, \ldots, f_r) \in \mathbb{N}^r$, we set

$$\rho(f) := \sum_{j=1}^{r} f_j \rho(\mathbf{e}_j).$$

Let *i* be a regular vertex in *G*. Then we denote by Γ_i , the subsequence of Γ whose edges contain *i*. Let *T* be a fundamental set in *G*. Then we denote by Γ_T , the subsequence of Γ whose edges contain an element of N(G;T) and do not contain any element of *T*.

For $f = (f_1, \ldots, f_r), g = (g_1, \ldots, g_r) \in \mathbb{N}^r$, we denote $g \leq f$ if $g_i \leq f_i$ for all *i*. Katthän proved the following proposition.

Proposition 4.3 (Katthän). Let G be a finite simple connected non-normal graph. Let (C_1, C_2) be an exceptional pair of odd cycles of G and $f \in \mathbb{N}^r$. Then $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(f) \in S_G$ if and only if there exists a walk Γ which combine C_1 and C_2 with either $\mathbf{e}_{\Gamma,o} \leq f$ or $\mathbf{e}_{\Gamma,e} \leq f$.

We give a proof of this proposition for the convenience of the reader.

Proof. "If" part is obvious. We consider "Only if" part.

Take $v_1 \in V(C_1)$ and $v_2 \in V(C_2)$. Set $e' := e_{r+1} := \{v_1, v_2\}$. (Recall that $E(G) = \{e_1, \ldots, e_r\}$.) Then $e' \notin E(G)$ since (C_1, C_2) is exceptional. Let G' be the graph obtained by adding an edge e' to the graph G. Then there exists a (0, 1)-vector $g = (g_1, \ldots, g_{r+1}) \in \mathbb{N}^{r+1}$ with $g_{r+1} = 1$ such that $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} = \rho(g)$ for the graph G'.

On the other hand, since $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(f) \in S_G$, there exists $h \in \mathbb{N}^r$ with $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(f) = \rho(h)$ for the graph G.

Identifying an element \mathbb{N}^r with the element \mathbb{N}^{r+1} whose (r+1)-th entry is 0, we have $\rho(g+f) = \rho(h)$ for the graph G'. Then the binomial $\mathbf{t}^{\rho(g+f)} - \mathbf{t}^{\rho(h)}$ belongs to the toric ideal of G'. By [7, Lemma 1.1], there exists an even closed walk $\Gamma' = (e', e_{j_2}, \ldots, e_{j_q})$ with $\mathbf{e}_{\Gamma',o} \leq g + f$. Let $e_{j_{\alpha}}$ be the last edge of Γ' which contains the vertex of C_2 and let $e_{j_{\beta}}$ be the first edge of Γ' which contains the vertex of C_1 after $e_{j_{\alpha}}$. Then the subwalk Γ of Γ' starting at $e_{j_{\alpha}}$ and ending at $e_{j_{\beta}}$ has the desired property. Q.E.D.

On the other hand, we have the following proposition.

Proposition 4.4. Let G be a graph with the same conditions as in Proposition 4.3. Let (C_1, C_2) be an exceptional pair and $f \in \mathbb{N}^r$. Then $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(f) \in S'_G$ if and only if the following two conditions are satisfied:

- (i) for any regular vertex *i* in *G* such that C_1 and C_2 belong to different connected components of $G \setminus \{i\}$, there exists a walk $\Gamma^{(i)}$ which combine C_1 and C_2 with either $\mathbf{e}_{\Gamma^{(i)}, \rho} \leq f$ or $\mathbf{e}_{\Gamma^{(i)}, \rho} \leq f$;
- (ii) for any fundamental set T in G such that C_1 and C_2 belong to different connected components of $G_{V(G)\setminus(T\cup N(G;T))}$, there exists a walk $\Gamma^{(T)}$ which combine C_1 and C_2 with either $\mathbf{e}_{\Gamma_T^{(T)},o} \leq f$ or $\mathbf{e}_{\Gamma_T^{(T)},e} \leq f$.

Proof. "If" part is obvious. We consider "Only if" part.

Let *i* be a regular vertex such that C_1 and C_2 belong to different connected components of $G \setminus \{i\}$. Since $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(f) \in S'_G \subset$ $S_G - S_G \cap \mathcal{H}_i$, we can write

$$\mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(f) = \sum_{e \in E(G)} a_e \rho(e) - \sum_{e' \in E(G), \, i \notin e'} b_{e'} \rho(e').$$

Then $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(f) + \sum_{e'} b_{e'}\rho(e') = \sum_{e \in E(G)} a_e\rho(e) \in S_G$. Let $f' = (f'_1, \ldots, f'_r)$ be the element of \mathbb{N}^r such that $\rho(f') = \sum_{e'} b_{e'}\rho(e')$. By Proposition 4.3, there exists a walk $\Gamma^{(i)}$ combining C_1 and C_2 with either $\mathbf{e}_{\Gamma^{(i)},o} \leq f + f'$ or $\mathbf{e}_{\Gamma^{(i)},e} \leq f + f'$. Note that $f'_\ell = 0$ if $i \in e_\ell$. Then focusing on the entry ℓ with $i \in e_\ell$, we see that $\mathbf{e}_{\Gamma^{(i)},o} \leq f$ or $\mathbf{e}_{\Gamma^{(i)},e} \leq f$.

Let T be a fundamental set such that C_1 and C_2 belong to different connected components of $G_{V(G)\setminus(T\cup N(G;T))}$. Since $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(f) \in$ $S'_G \subset S_G - S_G \cap \mathcal{H}_T$, we can write

$$\mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(f)$$

= $\sum_{e \in E(G)} a_e \rho(e) - \sum_{e' \in E(G), e' \cap (T \cup N(G;T)) = \emptyset \text{ or } e' \cap T \neq \emptyset} b_{e'} \rho(e').$

Then $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(f) + \sum_{e'} b_{e'}\rho(e') = \sum_{e \in E(G)} a_e\rho(e) \in S_G$. Let $f' = (f'_1, \ldots, f'_r)$ be the element of \mathbb{N}^r such that $\rho(f') = \sum_{e'} b_{e'}\rho(e')$. By Proposition 4.3, there exists a walk $\Gamma^{(T)}$ combining C_1 and C_2 with either $\mathbf{e}_{\Gamma^{(T)},o} \leq f + f'$ or $\mathbf{e}_{\Gamma^{(T)},e} \leq f + f'$. Focus on entries ℓ with $e_\ell \cap T = \emptyset$ and $e' \cap N(G;T) \neq \emptyset$. Since $f'_\ell = 0$, we have $\mathbf{e}_{\Gamma^{(T)}_T,o} \leq f$ or $\mathbf{e}_{\Gamma^{(T)}_T,e} \leq f$. Q.E.D.

Propositions 4.3 and 4.4 show the gap between the sets S_G and S'_G . In these propositions, we consider the elements which are of the form $e_{C_1} + e_{C_2} + \rho(f)$. Although these look special, in the proof of the characterization of a normal edge ring given by Ohsugi and Hibi [6] (Theorem 3.1), they reduced the discussion to the case of only one exceptional pair. Hence we believe that we can also reduce the discussion to such a case and the above proposition would be the first step for the characterization of a non-normal edge ring which satisfies Serre's condition (S_2).

Theorem 4.1 is an easy consequence of these propositions.

Proof of Theorem 4.1. By Proposition 4.3, we have $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} = \mathbf{e}_{C_1} + \mathbf{e}_{C_2} + \rho(\mathbf{0}) \notin S_G$. On the other hand, we have $\mathbf{e}_{C_1} + \mathbf{e}_{C_2} \in S'_G$ by Proposition 4.4. Q.E.D.

Acknowledgment. The first author is partially supported by JSPS Grant-in-Aid for Young Scientists (B) 26800015. The Second author is partially supported by JSPS Grant-in-Aid for Young Scientists (B) 15K17507.

References

- W. Bruns and J. Gubeladze, *Polytopes, rings, and K-theory*, Monographs in Mathematics, Springer, 2009.
- [2] W. Bruns and J. Herzog, Cohen-Macaulay rings, revised ed., Cambridge University press, 1998.
- [3] S. Goto and K. Watanabe, On graded rings II (Zⁿ-graded rings), Tokyo J. Math. 1 (1978), 237–261.
- [4] T. Hibi and L. Katthän, Edge rings satisfying Serre's condition (R₁), Proc. Amer. Math. Soc. 142 (2014), 2537–2541.
- [5] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337.
- [6] H. Ohsugi and T. Hibi, Normal polytopes arising from finite graphs, J. Algebra 207 (1998), 409–426.
- [7] H. Ohsugi and T. Hibi, Toric ideals generated by quadratic binomials, J. Algebra 218 (1999), 509–527.
- [8] N. V. Trung and L. T. Hoa, Affine semigroups and Cohen–Macaulay rings generated by monomials, *Trans. Amer. Math. Soc.* 298 (1986), 145–167.

(Akihiro Higashitani) Department of Mathematics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan E-mail address: ahigashi@cc.kyoto-su.ac.jp

(Kyouko Kimura) Department of Mathematics, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan E-mail address: kimura.kyoko.a@shizuoka.ac.jp