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pp. 121–128

A necessary condition for an edge ring to satisfy
Serre’s condition (S2)

Akihiro Higashitani and Kyouko Kimura

Abstract.

Let G be a finite simple connected graph. We give a necessary
condition for the edge ring of G to satisfy Serre’s condition (S2) in
terms of a graph.

§1. Introduction

Let G be a finite simple connected graph. We denote by V = V (G)
the vertex set of G and E(G) the edge set of G. We set V = [d] :=
{1, 2, . . . , d} and E(G) = {e1, . . . , er}, where e� = {j�1, j�2}. Let K be
a field. Consider the polynomial ring K[t] with d variables t1, t2, . . . , td.
The edge ring of G, denoted by K[G] is the subring of K[t] generated
by te1 , . . . , ter , where te� := tj�1tj�2 . Let ρ(e�) be the (0, 1)-vector of Rd

which has 1 only j�1-, j�2-entries, and let SG be the affine semigroup
generated by ρ(e1), . . . , ρ(er). Then K[G] is the affine semigroup ring of
SG.

In [6], Ohsugi and Hibi characterized when K[G] is normal in terms
of the graph; see Section 3 for detail. Since K[G] is an affine semigroup
ring, by Hochster [5, Theorem 1], it is known that if K[G] is normal
then K[G] is Cohen–Macaulay. Hence it is natural to ask when K[G]
is Cohen–Macaulay. For a general affine semigroup ring, the character-
ization of its Cohen–Macaulayness has been investigated by Goto and
Watanabe [3] and Trung and Hoa [8, Theorem 4.1]. The purpose of
our study is to illustrate the characterization in terms of the graph.
Note that K[G] is normal if and only if K[G] satisfies Serre’s conditions
(R1) and (S2); see [2, Theorem 2.2.22]. Hibi and Katthän [4] give the
characterization for K[G] satisfying (R1). On the other hand we try
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to characterize K[G] which satisfies (S2). Note that Serre’s condition
(S2) is a necessary condition for K[G] to be Cohen–Macaulay. The main
result of the present report is a necessary condition for K[G] to satisfy
(S2) in terms of a graph; see Theorem 4.1.

The organization of the present report is as follow. In Section 2,
we recall the characterization of a Cohen–Macaulay affine semigroup
ring. In Section 3, we recall the properties of an edge ring. Finally,
in Section 4, we give a necessary condition for an edge ring to satisfy
Serre’s condition (S2) in terms of a graph.

§2. Cohen–Macaulayness of affine semigroup rings

Recall that K[G] is an affine semigroup ring, as stating at Introduc-
tion. In this section, we recall the characterization of a Cohen–Macaulay
affine semigroup ring investigated by Goto and Watanabe [3] and Trung
and Hoa [8].

Let S ⊂ Nd be an affine semigroup. Then the affine semigroup
ring of S, denoted by K[S], is the subring of the polynomial ring
K[t] with d variables t1, t2, . . . , td generated by {tx : x ∈ S}, where
tx = tx1

1 tx2
2 · · · txd

d for x = (x1, x2, . . . , xd). Let CS be the convex ratio-

nal polyhedral cone spanned by S in Qd. We may assume that CS is
d-dimensional. Let F1, . . . , Fm be all the facets of CS . Also let G be the
group generated by S. We set

Si : = S − S ∩ Fi

= {x ∈ G : there exists y ∈ S ∩ Fi such that x+ y ∈ S}

and S′ =
⋂m

i=1 Si. Let J be a subset of [m] := {1, 2, . . . ,m}. Set

GJ :=
⋂
i/∈J

Si \ (
⋃
j∈J

Sj).

Also set

πJ :=

{
I ⊂ J : I �= ∅,

⋂
i∈I

S ∩ Fi �= (0)

}
∪ {∅}.

Then πJ is a simplicial complex.

Theorem 2.1 (Trung and Hoa [8, Theorem 4.1]). Let S be an affine
semigroup ring. Assume that CS has m facets. Then K[S] is Cohen–
Macaulay if and only if the following two conditions are satisfied :

(i) S′ = S;
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(ii) GJ = ∅ or πJ is acyclic for all proper subsets J of [m].

Remark 2.2. The first condition of Theorem 2.1 corresponds to
Serre’s condition (S2); see [1, Exercise 4.17].

§3. Edge rings

As noted in Remark 2.2, the condition (i) of Theorem 2.1 corre-
sponds to Serre’s condition (S2). Thus we investigate which graph G
satisfies the condition. In order to do this, we need the facets of CSG .
Fortunately, these have been studied by Ohsugi and Hibi [6]. In this
section, we recall their result.

Let G be a finite simple connected graph. We denote V (G) its vertex
set and E(G) its edge set. Let W ⊂ V (G). The induced subgraph of G
on W , denoted by GW , is the graph whose vertex set is W and whose
edge set is given by {e ∈ E(G) : e ⊂ W}. Also we set

N(G;W ) := {v ∈ V (G) : {v, w} ∈ E(G) for some w ∈ W}.
A subset T of V (G) is said to be independent if {v1, v2} is not an edge
of G for any distinct vertices v1, v2 ∈ T . Let T be an independent set
of G. Then we can consider the bipartite graph on T ∪N(G;T ) whose
edge set is given by

{{v, w} ∈ E(G) : v ∈ T, w ∈ N(T ;G)}.
We call such a graph the bipartite graph induced by T .

A pair (C1, C2) of odd cycles of G with no common vertex is said to
be exceptional if it has no bridge, that is, for any vertices v1 ∈ V (C1)
and v2 ∈ V (C2), {v1, v2} is not an edge of G. The graph G is said to
satisfy the odd cycle condition if it has no exceptional pair. We have
already known a graph G whose edge ring is normal:

Theorem 3.1 (Ohsugi and Hibi [6]). Let G be a finite simple con-
nected graph. Then K[G] is normal if and only if G satisfies the odd
cycle condition.

Since we have already known a normal graph, we focus on a non-
normal graph, namely, the graph whose edge ring is not normal, and in
what follows, we always assume that the graph G is non-normal. Note
that G is not bipartite.

In order to illustrate the facets of CSG , we need some notion.

Definition 3.2. The vertex i ∈ V is said to be regular in G if each
connected component of GV \{i} has at least one odd cycle.
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Definition 3.3. A non-empty subset T of V is said to be funda-
mental in G if the following three conditions are satisfied :

(i) T is an independent set ;
(ii) the bipartite graph induced by T is connected ;
(iii) if T ∪ N(G;T ) �= V (G), then each connected component of

GV (G)\(T∪N(G;T )) has at least one odd cycle.

The facets of CSG are given by the intersection of supporting hy-
perplanes of CSG , which are defined by the regular vertices in G and
fundamental sets in G.

Theorem 3.4 (Ohsugi and Hibi [6, Theorem 1.7]). Let G be a
non-normal finite connected simple graph. Then all the supporting hy-
perplanes of CSG are the following ones:

(i) Hi = {(x1, x2, . . . , xd) ∈ Rd : xi = 0}, where i is a regular
vertex in G.

(ii) HT = {(x1, x2, . . . , xd) ∈ Rd :
∑

i∈T xi =
∑

j∈N(G;T ) xj},
where T is a fundamental set in G.

We close the present section by recalling the characterization of the
graph G whose edge ring satisfies Serre’s condition (R1) given by Hibi
and Katthän [4].

Theorem 3.5 (Hibi and Katthän [4, Theorem 2.1]). Let G be a fi-
nite simple connected graph. Assume that G is not bipartite. Then K[G]
satisfies Serre’s condition (R1) if and only if G satisfies the following two
conditions:

(i) G \ {i} is connected for all regular vertex i in G;
(ii) for each fundamental set T in G with T ∪ N(G;T ) �= V (G),

the induced subgraph GV (G)\(T∪N(G;T )) is connected.

We note that if a non-normal graph G satisfies Serre’s condition
(R1), then G does not satisfy Serre’s condition (S2).

§4. Main result

Our purpose of the study is to characterize a Cohen–Macaulay edge
ring K[G] in terms of the graph G. As the first step of our study, we try
to characterize the Serre’s condition (S2); see Theorem 2.1 and Remark
2.2. In this section, we give a necessary condition for G satisfying the
Serre’s condition (S2), namely, satisfying SG = S′

G.
Before stating our result, we define one notation. Let C be an odd

cycle. Set

eC :=
∑

i∈V (C)

ei ∈ Nd,
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where ei is the i-th elementary vector of Rd.
The following theorem is the main result of the present report.

Theorem 4.1. Let G be a finite simple connected graph. Suppose
that there exists an exceptional pair (C1, C2) satisfying following two
conditions:

(i) for each regular vertex i ∈ V (G) \ (V (C1) ∪ V (C2)) in G, both
C1 and C2 belong to the same connected components of G\{i};

(ii) for each fundamental set T in G with (V (C1) ∪ V (C2)) ∩ (T ∪
N(G;T )) = ∅, both C1 and C2 belong to the same connected
components of GV (G)\(T∪N(G;T )).

Then eC1 + eC2 ∈ S′
G. In particular, SG �= S′

G.

Theorem 4.1 is restated as follows:

Theorem 4.2. Let G be a finite simple connected graph. If
SG = S′

G, then for each exceptional pair (C1, C2), one of the follow-
ing is satisfied :

(i) there exists a regular vertex i in G such that both C1 and C2

belong to different connected components of G \ {i}.
(ii) there exists a fundamental set T in G such that both C1 and C2

belong to different connected components of GV (G)\(T∪N(G;T )).

Before proving Theorem 4.1, we consider which elements can be the
elements of SG or S′

G. Note that SG ⊂ S′
G holds in general. Hence we

would like to know which element belongs to S′
G \ SG.

We need some more notation. Let Γ = (ej1 , . . . , ejq ) be a walk. We
set

eΓ,o =
∑
�

ej2�+1
, eΓ,e =

∑
�

ej2� .

Note that e� is the �-th elementary vector of Rr and eΓ,o, eΓ,e ∈ Nr.
Also for f = (f1, . . . , fr) ∈ Nr, we set

ρ(f) :=
r∑

j=1

fjρ(ej).

Let i be a regular vertex in G. Then we denote by Γi, the subsequence
of Γ whose edges contain i. Let T be a fundamental set in G. Then we
denote by ΓT , the subsequence of Γ whose edges contain an element of
N(G;T ) and do not contain any element of T .

For f = (f1, . . . , fr), g = (g1, . . . , gr) ∈ Nr, we denote g ≤ f if
gi ≤ fi for all i. Katthän proved the following proposition.
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Proposition 4.3 (Katthän). Let G be a finite simple connected
non-normal graph. Let (C1, C2) be an exceptional pair of odd cycles of
G and f ∈ Nr. Then eC1 + eC2 + ρ(f) ∈ SG if and only if there exists a
walk Γ which combine C1 and C2 with either eΓ,o ≤ f or eΓ,e ≤ f .

We give a proof of this proposition for the convenience of the reader.

Proof. “If” part is obvious. We consider “Only if” part.
Take v1 ∈ V (C1) and v2 ∈ V (C2). Set e′ := er+1 := {v1, v2}.

(Recall that E(G) = {e1, . . . , er}.) Then e′ /∈ E(G) since (C1, C2) is
exceptional. Let G′ be the graph obtained by adding an edge e′ to the
graph G. Then there exists a (0, 1)-vector g = (g1, . . . , gr+1) ∈ Nr+1

with gr+1 = 1 such that eC1 + eC2 = ρ(g) for the graph G′.
On the other hand, since eC1 +eC2 +ρ(f) ∈ SG, there exists h ∈ Nr

with eC1 + eC2 + ρ(f) = ρ(h) for the graph G.
Identifying an element Nr with the element Nr+1 whose (r + 1)-th

entry is 0, we have ρ(g+ f) = ρ(h) for the graph G′. Then the binomial
tρ(g+f)− tρ(h) belongs to the toric ideal of G′. By [7, Lemma 1.1], there
exists an even closed walk Γ′ = (e′, ej2 , . . . , ejq ) with eΓ′,o ≤ g + f . Let
ejα be the last edge of Γ′ which contains the vertex of C2 and let ejβ
be the first edge of Γ′ which contains the vertex of C1 after ejα . Then
the subwalk Γ of Γ′ starting at ejα and ending at ejβ has the desired
property. Q.E.D.

On the other hand, we have the following proposition.

Proposition 4.4. Let G be a graph with the same conditions as in
Proposition 4.3. Let (C1, C2) be an exceptional pair and f ∈ Nr. Then
eC1 + eC2 + ρ(f) ∈ S′

G if and only if the following two conditions are
satisfied :

(i) for any regular vertex i in G such that C1 and C2 belong to dif-
ferent connected components of G\{i}, there exists a walk Γ(i)

which combine C1 and C2 with either e
Γ
(i)
i ,o

≤ f or e
Γ
(i)
i ,e

≤ f ;

(ii) for any fundamental set T in G such that C1 and C2 belong to
different connected components of GV (G)\(T∪N(G;T )), there ex-

ists a walk Γ(T ) which combine C1 and C2 with either e
Γ
(T )
T ,o

≤
f or e

Γ
(T )
T ,e

≤ f .

Proof. “If” part is obvious. We consider “Only if” part.
Let i be a regular vertex such that C1 and C2 belong to different

connected components of G \ {i}. Since eC1 + eC2 + ρ(f) ∈ S′
G ⊂
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SG − SG ∩Hi, we can write

eC1 + eC2 + ρ(f) =
∑

e∈E(G)

aeρ(e)−
∑

e′∈E(G), i/∈e′
be′ρ(e

′).

Then eC1 + eC2 + ρ(f) +
∑

e′ be′ρ(e
′) =

∑
e∈E(G) aeρ(e) ∈ SG. Let

f ′ = (f ′
1, . . . , f

′
r) be the element of Nr such that ρ(f ′) =

∑
e′ be′ρ(e

′).
By Proposition 4.3, there exists a walk Γ(i) combining C1 and C2 with
either eΓ(i),o ≤ f+f ′ or eΓ(i),e ≤ f+f ′. Note that f ′

� = 0 if i ∈ e�. Then
focusing on the entry � with i ∈ e�, we see that eΓ(i)

i ,o
≤ f or e

Γ
(i)
i ,e

≤ f .

Let T be a fundamental set such that C1 and C2 belong to different
connected components of GV (G)\(T∪N(G;T )). Since eC1 + eC2 + ρ(f) ∈
S′
G ⊂ SG − SG ∩HT , we can write

eC1 + eC2 + ρ(f)

=
∑

e∈E(G)

aeρ(e)−
∑

e′∈E(G), e′ ∩ (T ∪ N(G;T )) = ∅ or e′ ∩ T �= ∅
be′ρ(e

′).

Then eC1 + eC2 + ρ(f) +
∑

e′ be′ρ(e
′) =

∑
e∈E(G) aeρ(e) ∈ SG. Let

f ′ = (f ′
1, . . . , f

′
r) be the element of Nr such that ρ(f ′) =

∑
e′ be′ρ(e

′).
By Proposition 4.3, there exists a walk Γ(T ) combining C1 and C2 with
either eΓ(T ),o ≤ f + f ′ or eΓ(T ),e ≤ f + f ′. Focus on entries � with
e� ∩ T = ∅ and e′ ∩N(G;T ) �= ∅. Since f ′

� = 0, we have e
Γ
(T )
T ,o

≤ f or

e
Γ
(T )
T ,e

≤ f . Q.E.D.

Propositions 4.3 and 4.4 show the gap between the sets SG and
S′
G. In these propositions, we consider the elements which are of the

form eC1 + eC2 + ρ(f). Although these look special, in the proof of
the characterization of a normal edge ring given by Ohsugi and Hibi
[6] (Theorem 3.1), they reduced the discussion to the case of only one
exceptional pair. Hence we believe that we can also reduce the discussion
to such a case and the above proposition would be the first step for
the characterization of a non-normal edge ring which satisfies Serre’s
condition (S2).

Theorem 4.1 is an easy consequence of these propositions.

Proof of Theorem 4.1. By Proposition 4.3, we have eC1 + eC2 =
eC1 + eC2 + ρ(0) /∈ SG. On the other hand, we have eC1 + eC2 ∈ S′

G by
Proposition 4.4. Q.E.D.
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