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Abstract.

The conical function and its relativistic generalization can be viewed
as eigenfunctions of the reduced 2-particle Hamiltonians of the hyper-
bolic Calogero-Moser system and its relativistic generalization. We
prove new product formulas for these functions. As a consequence, we
arrive at explicit diagonalizations of integral operators that commute
with the 2-particle Hamiltonians and reduced versions thereof. The ker-
nels of the integral operators are expressed as integrals over products
of the eigenfunctions and explicit weight functions. The nonrelativistic
limits are controlled by invoking novel uniform limit estimates for the
hyperbolic gamma function.

Contents

1. Introduction 196
2. Product formulas for J(b;x, y) 203
3. An application to the hyperbolic relativistic

Calogero-Moser 2-particle system 213
4. Nonrelativistic limit formulas 218
Appendix A. The hyperbolic gamma function 229
Appendix B. Uniform bounds on G-function ratios 231
Appendix C. Uniform bounds on the G → Γ limit 238
References 244

Received August 30, 2015.
2010 Mathematics Subject Classification. 33C05, 33E30, 39A70, 47G10,

81R12.
Key words and phrases. product formulas; conical function; quantum

Calogero-Moser systems.



196 M. Hallnäs and S. Ruijsenaars

§1. Introduction

In this paper we obtain product formulas for the conical function
specialization of the Gauss hypergeometric function 2F1 and its ‘rel-
ativistic’ generalization R(a+, a−, b;x, y) from [R11]. The latter can
be viewed as an eigenfunction of the Hamiltonian associated to the
Calogero-Moser system of relativistic hyperbolic A1 type. This gen-
eralizes the well-known fact that in suitable variables the conical func-
tion specialization of 2F1 is an eigenfunction of the Hamiltonian of the
Calogero-Moser system of nonrelativistic hyperbolic A1 type.

Somewhat surprisingly, our product formulas for the conical function
(obtained by taking limits of their relativistic generalizations in Theo-
rems 4 and 5 below) seem to be new. In the context of harmonic analysis,
a product formula for the more general Jacobi function is known since a
long time, cf. Koornwinder’s survey [Koo84]. This formula arises from
a group translate and encodes a convolution structure. By contrast,
our product formulas (in Theorems 11 and 12) cannot be interpreted in
terms of a generalized translate. Rather, they give rise to 1-parameter
families of commuting integral operators on L2((0,∞)).

The R-function was defined and studied in [R07] (see also [R11]),
as a 5-variable specialization of the more general 8-variable ‘relativistic’
generalization R of 2F1, introduced in [R94]. The definition of the R-
function in loc. cit. is in terms of a contour integral that generalizes the
Barnes representation for 2F1. New representations of the R-function
were later obtained by van de Bult [vdB06] and by van de Bult, Rains
and Stokman [BRS07]. By suitable specializations the above results lead
to three different representations for the R-function.

More recently, it has been shown that the R-function admits five
further integral representations that, in contrast to previous represen-
tations, involve only four hyperbolic gamma functions [R11]. We only
need one of these, which we proceed to detail.

First, throughout the paper we choose a+ and a− positive, and use
further parameters

(1) α ≡ 2π/a+a−, a ≡ (a+ + a−)/2,

(2) as ≡ min(a+, a−), al ≡ max(a+, a−).

The representation (3.51) in [R11] for the R-function amounts to

(3) R(b;x, y) = (a+a−)−1/2G(2ib− ia)J(b;x, y)
∏

δ=+,−
G(δy + ia− ib),
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with J(b;x, y) given by

(4) J(b;x, y) =

∫
R

dz
G(z + x/2− ib/2)G(z − x/2− ib/2)

G(z + x/2 + ib/2)G(z − x/2 + ib/2)
eiαzy.

Here we take at first (b, x, y) ∈ (0, 2a) × R2, and G(z) ≡ G(a+, a−; z)
denotes the hyperbolic gamma function, whose salient features are re-
viewed in Appendix A. (Just as we have done above, we shall suppress
the dependence on a+, a−, whenever this is not likely to cause am-
biguities.) In particular, it is clear from the reflection equation (189)
that J is even in x and y, while the conjugacy relation (192) entails
real-valuedness for real arguments.

In this paper we mostly deal with the J-function (4), as opposed
to the R-function and further avatars introduced shortly. It naturally
arises in the step from N = 1 to N = 2 in our recent recursive construc-
tion of the arbitrary-N joint eigenfunctions of the hyperbolic relativistic
Calogero-Moser system [HR14], and also equals the function B(b;x, y)
given by Eq. (3.24) in [R11].

With an eye on making this paper somewhat more self-contained,
we proceed to summarise some key properties of J(b;x, y) and several
related functions we have occasion to use. The analyticity properties
of the R-function are known in great detail from Theorem 2.2 in [R99].
Combining this theorem with (3) and the definition of R as a specializa-
tion of R, it is readily seen that G(ib− ia)J(b;x, y) extends to a function
that is meromorphic in b, x and y, with poles that can only be located
on the affine hyperplanes

(5) ±x = 2ia− ib+ i(ka+ + la−), k, l ∈ N ≡ {0, 1, 2, . . .},

(6) ±y = ib+ i(ka+ + la−), k, l ∈ N.

Moreover, the pole order is bounded by the corresponding zero order of
the product function

(7)
∏

δ=+,−
E(δx+ ib− ia)E(δy − ib+ ia),

where the E-function is an entire function related to the hyperbolic
gamma function by G(z) = E(z)/E(−z) (see Appendix A for further
details).

A pivotal role in obtaining the product formulas for the J-function
is played by the explicit evaluation

(8) J(b; ib, v) =
√
a+a−G(ia− 2ib)

∏
δ=+,−

G(δv − ia+ ib),
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which follows from (3) and Eqs. (2.13) and (2.20) in [R11].
Another crucial ingredient is the asymptotic behavior of the J-

function for Re x → ∞. This involves a specialization of Theorem 1.2 in
[R03II], which deals with the 4-coupling BC1 case, to the 1-coupling A1

case at hand. To state the relevant result, we introduce the c-function

(9) c(b; z) ≡ G(z + ia− ib)

G(z + ia)
,

the phase function

(10) φ(b) ≡ exp(iαb(b− 2a)/4),

and the scattering function

(11) u(b; z) ≡ −c(b; z)/c(b;−z).

For later purposes we mention the involution symmetry

(12) φ(2a− b) = φ(b), u(2a− b; z) = u(b; z).

By contrast, the c-function and weight function,

(13) w(b; z) ≡ 1/c(b; z)c(b;−z),

are not invariant under this involution, but there is a simple relation
between the two distinct weight functions:

(14) w(b; z)w(2a− b; z) = G(z + ia)2G(−z + ia)2.

Next, we rewrite the J-function in terms of an E-function defined
by

E(b;x, y) ≡ (a+a−)−1/2φ(b)G(ib− ia)
J(b;x, y)

c(b;x)c(2a− b; y)

= φ(b)G(ib− ia)G(ia− 2ib)
R(b;x, y)

c(b;x)c(b; y)
,

(15)

where we used (3). This E-function is the A1 specialization of the BC1

E-function dealt with in Theorem 1.2 of [R03II], cf. also (2.36)–(2.38)
in [R11]. Setting

(16) Eas(b;x, y) ≡ exp(iαxy/2)− u(b;−y) exp(−iαxy/2),

this theorem yields a bound

(17) |(E− Eas)(b;x, y)| < C(b, δ, y, Imx) exp(−ρRex),
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where ρ > 0,Rex > δ > 0, and C is a positive continuous function on
(0, 2a)×(0,∞)2×R. Moreover, specializing to Imx = 0, it is known that
the decay rate ρ can be chosen equal to any positive number r satisfying
(199).

Now from the asymptotics (197) of the hyperbolic gamma function
it is straightforward to infer a bound

(18) c(b; z)/φ(b) = exp(−αbz/2)(1 +O(exp(−rRe z)), Re z → ∞,

uniformly on Im z-compacts. Thus, assuming b ∈ (0, 2a) and y ∈ (0,∞),
the leading asymptotic behaviour of J(b;x, y) for Rex → ∞ is given by
the function

Jas(b;x, y) ≡ √
a+a−G(ia− ib) exp(−αbx/2)

×
∑

τ=+,−
c(2a− b; τy) exp(τiαxy/2).(19)

More specifically, we deduce from the above

(20) |(J − Jas)(b;x, y)| < C(b, δ, y, Imx) exp(−(αb/2 + ρ)Rex),

where ρ > 0,Rex > δ > 0, and C is a positive continuous function
on (0, 2a) × (0,∞)2 × R and where for Imx = 0 the decay rate ρ can
be chosen equal to any positive number r satisfying (199). Clearly, by
evenness of J(x, y) in x, the asymptotics for Re x → −∞ is given by
Jas(−x, y).

We need to invoke some more features of the E- and J-functions
that follow by specialization from results in [R03II] and [R03III], cf. also
Subsection 2.2 in [R11]. First, the E-function satisfies the self-duality
relation

(21) E(b;x, y) = E(b; y, x),

and has the symmetry property

(22) E(b;x, y) = E(2a− b;x, y).

In view of (15), this entails

(23) J(b;x, y) = G(ia− ib)2J(2a− b; y, x).

Secondly, the J-function is a joint eigenfunction of four independent
analytic difference operators (henceforth AΔOs), two acting on x and
two on y. The corresponding analytic difference equations (henceforth
AΔEs) read

(24) Aδ(b;x)J(b;x, y) = 2cδ(y)J(b;x, y), δ = +,−,
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(25) Aδ(2a− b; y)J(b;x, y) = 2cδ(x)J(b;x, y), δ = +,−,

with the AΔOs given by

(26) Aδ(b; z) ≡ sδ(z − ib)

sδ(z)
T z
ia−δ

+
sδ(z + ib)

sδ(z)
T z
−ia−δ

.

Here, the translation operators are defined on analytic functions by

(27) (T z
c f)(z) ≡ f(z − c), c ∈ C∗,

and we are using the notation

(28) sδ(z) ≡ sinh(πz/aδ), cδ(z) ≡ cosh(πz/aδ), eδ(z) ≡ eπz/aδ ,

with δ = +,−.
Thirdly, at the end of Section 2 we shall use that the generalized

Fourier transform

(29) F(b) : C ≡ C∞
0 ((0,∞)) ⊂ L2((0,∞)) → L2((0,∞)),

where b ∈ (0, 2a), defined by

(30) (F(b)ψ)(x) ≡
(

1

2a+a−

)1/2 ∫ ∞

0

F(b;x, y)ψ(y)dy, ψ ∈ C,

extends to a unitary operator. The F-function occurring here is the last
cousin of the R-function we need (besides J and E). It can be defined
by

(31) F(b;x, y) ≡ G(ia− 2ib)G(ib− ia)w(b;x)1/2R(b;x, y)w(b; y)1/2,

where b ∈ (0, 2a), x, y > 0, and positive square roots are understood.
Alternatively, it can be rewritten as

(32) F(b;x, y) = φ(b)−1c(b;x)w(b;x)1/2E(b;x, y)c(b; y)w(b; y)1/2,

cf. (15). Moreover, using the identity (14), we see that it is related to J
by

(33) F(b;x, y) =
G(ib− ia)√

a+a−
w(b;x)1/2J(b;x, y)w(2a− b; y)1/2.

Just as the E-function this function has the symmetry properties

(34) F(b;x, y) = F(b; y, x) = F(2a− b;x, y),
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but by contrast to the E-function it is real-valued. (Note that the quo-
tient of F and E is a phase factor involving a square root of the u-
function (11).) Thus the transform F(b) is not only unitary, but also
self-adjoint (hence involutory); clearly, it also satisfies

(35) F(b) = F(2a− b), b ∈ (0, 2a).

(The transforms F(a−) = F(a+) amount to the sine transform, while
the limits F(0) = F(2a) exist and amount to the cosine transform.)

The transform diagonalizes the Hamiltonians

(36) Hδ(b; z) ≡
(
sδ(z − ib)

sδ(z)

)1/2

T z
ia−δ

(
sδ(z + ib)

sδ(z)

)1/2

+
(
i → −i

)
,

where δ = +,−, in the sense that on the dense subspace C one has

(37) H±(b)F(b) = 2F(b)c±(·).
Note that C is a domain of essential self-adjointness for the multiplication
operators 2c±(·). Thus the unitary transform F(b) makes it possible
to associate commuting self-adjoint operators on L2((0,∞), dz) to the
AΔOs H±(b; z).

We are now in a position to sketch the results and organization of
this paper. In Section 2 we first clarify the special character of the kernel
function

(38) K(b;x, y, z) ≡
∏

δ1,δ2,δ3=+,−
G((δ1x+ δ2y + δ3z − ib)/2),

by proving the kernel identities it satisfies, cf. Proposition 1. Then we
focus on the function

(39) F (b, v;x, y) ≡
∫
R

dz w(b; z)J(b; z, v)K(b;x, y, z), x, y ∈ R,

and show it is an eigenfunction of the AΔOs A±(b;x) with eigenvalue
2c±(v), cf. Lemma 2. By invariance under x ↔ y, this is also true for
A±(b; y), and then we can appeal to previous uniqueness and continuity
results to obtain

(40) F (b, v;x, y) = λ(b, v)J(b;x, v)J(b; y, v),

where b ∈ (0, 2a) and x, y ∈ R.
It is now far from obvious, but true that the proportionality factor

λ(b, v) equals 4, hence yielding our key result

(41) J(b;x, v)J(b; y, v) =
1

2

∫ ∞

0

w(b; z)J(b; z, v)K(b;x, y, z)dz,
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where b ∈ (0, 2a) and x, y, v ∈ R, cf. Theorem 4. The proof of this
identity hinges on the explicit evaluation (8) and a rather arduous as-
ymptotic analysis carried out in Lemma 3.

Using the J-symmetry (23), we obtain a second product formula
in Theorem 5. We stress that we do not invoke the unitary involution
F(b) to arrive at these product formulas. However, we can derive some
remarkable consequences when we employ F(b). They emerge after using
(33) to switch from J to the kernel F(b;x, y)/

√
2a+a− of F(b), cf. (30).

More specifically, we can completely elucidate the Hilbert space fea-
tures of the family of integral operators Iz(b), z ≥ 0, given by (87). The-
orem 6 reveals that this is a commuting family of bounded self-adjoint
operators on L2((0,∞)) diagonalized by F(b) as the multiplication op-
erators 2J(b; z, ·). Moreover, the use of F(b) allows us to obtain the
striking identity (92).

The functions R, J , E and F occurring in Section 2 are related by
similarity transformations that give rise to different sets of four analytic
difference operators whose joint eigenfunctions they are. (Recall we
detailed these AΔOs for the J-function in (24) and (25), and for the
F-function in (36).) These objects are the center-of-mass reductions of
2-particle counterparts studied in Section 3. More precisely, we only
employ the 2-particle versions of J and F given by

(42) Ψ2(b;x, y) ≡ exp(iα(x1 + x2)(y1 + y2)/2)Ψ(b;x1 − x2, y1 − y2),

with Ψ = J,F (cf. (99) and (109)), and do not consider the 2-particle
AΔOs whose joint eigenfunctions they are. The 2-particle counterpart of
the kernel function K is the function S2(b;x, y) given by (94). The first
result of Section 3 is that the 2-particle eigenfunction J2(b; z, y) is also
an eigenfunction of the integral operator whose kernel is the product of
S2(b;x, z) and the weight function w(b; z1−z2); moreover, the eigenvalue
is an explicit product of G-functions, cf. Theorem 7.

The proof of this theorem only involves the product formula (41)
and the Fourier transform (202). That is, it does not involve the uni-
tary F(b). When we employ the 2-particle version F2(b) of F(b) (given
by (114)), we can reformulate Theorem 7 as an explicit diagonalization of
the integral operator I2(b) defined by (115), cf. Theorem 9. As a conse-
quence, the kernel of the 2-particle integral operator can be represented
by a formula (namely (118)) that enables us to recover the formula (92)
for the kernel of the reduced (‘center-of-mass’) integral operator Iz(b).
The crucial step here is to invoke the definition (4) of the J-function, so
that we come full circle.
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In Section 4 we derive nonrelativistic counterparts of the results in
Sections 2 and 3. The self-duality of the joint eigenfunctions is not pre-
served by the nonrelativistic limit. Indeed, the conical function and its
2-particle generalization are joint eigenfunctions of a hyperbolic (non-
relativistic) differential operator and a rational (relativistic) difference
operator, cf. [R11]. Accordingly, they admit distinct representations in-
volving either hyperbolic functions or the rational (Euler) gamma func-
tion.

The same is true for the kernel functions, product formulas and
associated integral operators. The first, hyperbolic type of limit can be
handled for the integrands by using the previously known limit formula
(203). The second type, which leads to the Γ-function, involves the
G → Γ limit encoded in the equations (248)–(253).

To control the limits of the pertinent integrals, however, we need
uniform bounds for the two types of limits that are strong enough to
invoke the dominated convergence theorem. We obtain such bounds in
Appendix B and Appendix C. These estimates are new and of indepen-
dent interest.

§2. Product formulas for J(b;x, y)

The main purpose of this section is to obtain the product formula
(41) for the J-function, given by (4). We begin by focusing on the
kernel function. It is clear from its definition (38) that K(b;x, y, z) is a
meromorphic function of b, x, y, z, with poles located only on the affine
hyperplanes (cf. (196))

(43) δ1x+ δ2y + δ3z = ib− 2ia− 2i(ka+ + la−),
δ1, δ2, δ3 = +,−, k, l ∈ N.

As demonstrated by the following proposition, it satisfies three indepen-
dent kernel identities.

Proposition 1. Letting b ∈ C, we have

(44) Aδ(b;x)K(b;x, y, z) = Aδ(b; y)K(b;x, y, z) = Aδ(b; z)K(b;x, y, z),

where δ = +,−.

Proof. Since K(x, y, z) is manifestly invariant under any permuta-
tion of the variables (x, y, z), it suffices to establish the first equality in
(44). After dividing both the left-hand side and the right-hand side by
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K(b;x− ia−δ, y, z), we use the AΔEs (185) to rewrite the result as

(45)
sδ(x− ib)

sδ(x)
+

sδ(x+ ib)

sδ(x)

∏
δ2,δ3=+,−

cδ((x+ δ2y + δ3z − ib)/2)

cδ((x+ δ2y + δ3z + ib)/2)

=
sδ(y − ib)

sδ(y)

∏
δ3=+,−

cδ((x− y + δ3z − ib)/2)

cδ((x− y + δ3z + ib)/2)

+
sδ(y + ib)

sδ(y)

∏
δ3=+,−

cδ((x+ y + δ3z − ib)/2)

cδ((x+ y + δ3z + ib)/2)
.

It is readily seen that both sides are 2iaδ-periodic functions of x with
equal limits

(46) eδ(∓ib) + eδ(∓3ib), Rex → ±∞,

and that the residues at the (generically simple) poles x = 0 and x = iaδ
in the period strip cancel. By Liouville’s theorem, it remains to verify
that the residues at the poles x = δ2y+ δ3z− ib+ iaδ cancel as well, and
this amounts to a routine calculation. (In fact, one need only check the
case δ2 = δ3 = +, since the left-hand side and right-hand side of (45)
are even functions of both y and z.) Q.E.D.

Assuming (b, v) ∈ (0, 2a) × (0,∞), we show next that the prod-
uct J(b;x, v)J(b; y, v) can be expressed as an integral over the auxiliary
variable z in the integrand

(47) I(b, v;x, y, z) ≡ w(b; z)J(b; z, v)K(b;x, y, z),

occurring on the right-hand side of (39). (Below, we will often sup-
press the dependence on b and v, whenever this is not likely to cause
ambiguities.)

Combining (13) with (185) and (193), we deduce

(48) w(z) =
∏

δ=+,−
2sδ(z)

E(δz + ib− ia)

E(δz + ia− ib)
.

Since the product function J(z, v)
∏

δ=+,− E(δz+ib−ia) is holomorphic

for all z ∈ C, it follows that poles of I(x, y, z) are due either to zeros of
the E-functions E(δz+ia−ib), δ = +,−, which are located at (cf. (194))

(49) δz = ib+ i(ka+ + la−), δ = +,−, k, l ∈ N,

or poles of the kernel function K(x, y, z). Letting first x, y ∈ R, it is clear
that the integration contour R stays away from these pole sequences.
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Making use of the asymptotics (197) of the hyperbolic gamma function,
we readily infer from (13) and (38) that

(50) w(b; z) = exp(αb|Re z|)(1 +O(exp(−r|Re z|))),

(51) K(b;x, y, z) = exp(−αb|Re z|)(1 +O(exp(−r|Re z|))),
for |Re z| → ∞, where the decay rate is any positive number r sat-
isfying (199) and the implied constants are uniform for (b, Im z) and
(b, x, y, Im z) varying over compact subsets of (0, 2a) × R and (0, 2a) ×
C2×R, respectively. Hence (19)–(20) entail that the integrand I decays
exponentially as |z| → ∞, so that the function (39) is well defined.

To motivate the next step we consider the special b-values

(52) bmn ≡ ma+ + na−, m, n ∈ Z,

inasmuch as they satisfy bmn ∈ (0, 2a), and recall from Section 2.3 in
[R11] that the vector space of meromorphic joint solutions f(x) to the
AΔEs

(53) A±(bmn; z)f(z) = 2c±(v)f(z), v > 0, a+/a− /∈ Q,

is two-dimensional. More specifically, the subspace consisting of even
meromorphic solutions is one-dimensional and is thus spanned by the
function J(bmn; z, v). With this result in mind, we aim to prove that
F (x, y) (as initially defined by (39)) has a meromorphic continuation to
all of C as a function of x which satisfies the AΔEs (53). For this, we
need not restrict attention to the special b-values (52).

Clearly, the fixed contour representation (39) and the pole locations
(43) for K(x, y, z) entail that F (x, y) is holomorphic in the domain

(54) D ≡ {(x, y) ∈ C2||Imx|+ |Im y| < 2a− b}.
For sufficiently small values of b, this already suffices to show that F is
a joint eigenfunction of the AΔOs Aδ(x), δ = +,−, with the expected
eigenvalues. More precisely, we fix attention on the subset

(55) Ds ≡ {(x, y) ∈ D|(x+ iη, y) ∈ D,∀η ∈ [−al, al]}, b ∈ (0, as),

for which the shifted arguments remain within the holomorphy domain
D. Note that the restriction on b is necessary in order for Ds to be
non-empty.

Lemma 2. Fixing b ∈ (0, as) and v ∈ (0,∞), and letting (x, y) ∈
Ds, we have the eigenvalue equations

(56) Aδ(x)F (v;x, y) = 2cδ(v)F (v;x, y), δ = +,−.
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Proof. Thanks to the analyticity of F in D and the restriction to
Ds, the shifts of x by ±ia−δ are well defined. Hence we are allowed to
act with the AΔOs under the integral sign. Using the kernel identities
(44) to trade the action of Aδ(x) on K(x, y, z) for that of Aδ(z), we can
thus rewrite the left-hand side of (56) as

(57)

∫
R

dz w(z)J(z, v)

(
sδ(z − ib)

sδ(z)
T z
ia−δ

+ (i → −i)

)
K(x, y, z).

Note that the pole at z = 0 due to the denominator sδ(z) is matched by
a double zero of w(z), cf. (13) and the locations (194) of the G-zeros.

Changing integration variable, we obtain

(58)

∫
R−ia−δ

dz
sδ(z + ia−δ − ib)

sδ(z + ia−δ)
w(z + ia−δ)J(z + ia−δ, v)K(x, y, z)

+

∫
R+ia−δ

dz
sδ(z − ia−δ + ib)

sδ(z − ia−δ)
w(z − ia−δ)J(z − ia−δ, v)K(x, y, z).

From the difference equations (185) satisfied by G(z) it follows that we
have

(59)
w(z ± ia−δ)

w(z)
=

sδ(z ± ia−δ)

sδ(z ± ia−δ ∓ ib)

sδ(z ± ib)

sδ(z)
,

so that the above sum of integrals equals

(60)

∫
R−ia−δ

dz w(z)
sδ(z + ib)

sδ(z)
J(z + ia−δ, v)K(x, y, z)

+

∫
R+ia−δ

dz w(z)
sδ(z − ib)

sδ(z)
J(z − ia−δ, v)K(x, y, z).

We claim that when we shift the contour R − ia−δ in the former
integral up by a−δ and the contour R+ ia−δ in the latter integral down
by a−δ, then no poles are met. (The asymptotic behaviour of J , as given
by (19)–(20), and the bounds (50)–(51) ensure that the shift causes no
problems at the tail ends.) Taking this claim for granted, the contours
of the two integrals are now both equal to R, so that we are entitled to
invoke the eigenvalue equation (24), which implies (56).

To complete the proof, it remains to verify the claim. Clearly, we
remain within the holomorphy domain of both J and K while performing
the relevant contour shifts. Letting first a−δ = as, we meet only the
simple poles of the factors 1/G(±z + ia − ib) at ±z = ib, but they are
matched by zeros of sδ(z ∓ ib). Likewise, zeros of G(±z + ia) match
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the simple poles of 1/sδ(z) at z = 0 and at z = ±ias, with the latter
being met when as = al. Thus, the first/second integrand is regular for
z ∈ R− iη / z ∈ R+ iη and η ∈ [0, as].

Finally, consider the case a−δ = al. Then we encounter simple poles
of 1/G(±z+ ia− ib) located at points ±z = ib+ ikas with kas ≤ al − b,
but they are again matched by zeros of sδ(z∓ ib). Moreover, the simple
poles of 1/sδ(z) at ±z = kas with kas ≤ al are matched by zeros of
G(±z + ia), so that the first/second integrand is regular for z ∈ R− iη
/ z ∈ R+ iη and η ∈ [0, al]. Hence, our claim is proved. Q.E.D.

Keeping the assumptions in Lemma 2, we now fix y ∈ R. Then it
follows that F (x, y) is holomorphic in x for |Imx| < 2a− b, and that the
AΔEs (56), which take the explicit form

(61)
sδ(x− ib)

sδ(x)
F (x− ia−δ, y) + (i → −i) = 2cδ(v)F (x, y),

hold true for |Imx| < as − b. Moreover, by the assumption b ∈ (0, as),
we have 2a−b > al and as−b > 0. A moment’s thought reveals that this
state of affairs implies that F (x, y) has a meromorphic continuation to all
of C as a function of x. Indeed, multiplying (61) by sδ(x)/sδ(x− ib), we
can continue F (x, y) in steps of size a−δ to the lower half plane. Likewise,
upon multiplication by sδ(x)/sδ(x+ ib), we can continue F (x, y) to the
upper half plane.

Appealing to the above uniqueness result, we deduce

(62) F (bmn, v;x, y) = κ(bmn, v, y)J(bmn;x, v), x, y ∈ R,

under the assumption that the parameters satisfy the conditions

(63) v > 0, bmn ∈ (0, as), a+/a− /∈ Q.

Now due to the manifest invariance of F (x, y) under the interchange
x ↔ y, it follows that F (x, y) is also meromorphic in y and satisfies the
y-version of the AΔEs (61). Therefore we also have

(64) F (bmn, v;x, y) = κ(bmn, v, x)J(bmn; y, v), x, y ∈ R,

with (63) in force. Inspecting the quotient of (62) and (64), we conclude
that we have

(65) F (bmn, v;x, y) = λ(bmn, v)J(bmn;x, v)J(bmn; y, v), x, y ∈ R,

with the function λ(bmn, v) to be determined. Since the b-values bmn

are dense in (0, as) when a+/a− is irrational, (real) analyticity in b now
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entails (40). Moreover, by continuity in a± we can allow any positive
a±-values in (40).

Until further notice, we now assume b ∈ (0, a). Then we are allowed
to set y = ib in (39) with x real, since this F -representation can be
analytically continued to |Im y| < 2a − b. Hence, using the reflection
equation (189) and evenness of the integrand in z, we arrive at

(66) F (x, ib) = 2

∫ ∞

0

dzI(x, z), x ∈ R, b ∈ (0, a),

with the integrand given by

(67) I(b, v;x, z) = w(b; z)J(b; z, v)
∏

δ1,δ2=+,−
G((δ1x+ δ2z)/2− ib).

On the other hand, combining (8) and (40) we obtain the special
value

F (b, v;x, ib) =
√
a+a−G(ia− 2ib)λ(b, v)

× J(b;x, v)
∏

δ=+,−
G(δv − ia+ ib),(68)

and by (19)–(20) we know the leading asymptotic behaviour of the right-
hand side of (68) as x → ∞. Therefore, we can determine λ(b, v) by
computing the x → ∞ asymptotics of the right-hand side of (66) and
comparing it with that of (68).

Substituting the right-hand side of (197) for G(z), we find that

(69)
∏

δ=+,−
G(δt/2− ib) = exp(−αbt/2)(1 +O(exp(−rt))), t → ∞,

where r is any positive number satisfying (199). We now use the bounds
(50), (20) and (69) with t = x+ z in a telescoping argument to deduce
that we have

(70) w(z)J(z, v)
∏

δ=+,−
G(δ(x+ z)/2− ib)

= exp(−αbx/2)
(
exp(αbz/2)Jas(z, v) +O(exp(−rz))

)
,

for z → ∞. (Recall that in (20) we can choose the decay rate ρ equal
to r in case Imx = 0.) It follows, in particular, that the left-hand side
of this equality is bounded for z ∈ (0,∞).

Choosing instead t = x − z in (69), we find that the product of
the remaining G-factors in the integrand I decays exponentially as x →
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∞ and z varies over a compact subset of (0,∞). This state of affairs
suggests that when we substitute (70) in I, then the first term should
yield the leading asympotic behaviour of the integral in (66). We proceed
to make this suggestion precise.

Lemma 3. Assuming (b, v) ∈ (0, a)× (0,∞), we have

(71) F (b, v;x, ib) = 2 exp(−αbx/2)

×
[ ∫

R

dz exp(αbz/2)Jas(b; z, v)

×
∏

δ=+,−
G(δ(x− z)/2− ib) +O(exp(−rmx/2))

]
,

for x → ∞, with decay rate

(72) rm = min(αb/2, r).

Proof. Taking x ∈ (0,∞) from now on, we multiply (70) by the
product

∏
δ=+,− G(δ(x− z)/2− ib) and integrate z over (x/2,∞). Since

this multiplier function is bounded, we deduce that we have

(73)

∫ ∞

x/2

dzI(x, z) = exp(−αbx/2)
[ ∫ ∞

x/2

dz exp(αbz/2)

× Jas(z, v)
∏

δ=+,−
G(δ(x− z)/2− ib) +O(exp(−rx/2))

]
,

for x → ∞.
The point is now that we want to arrive at the integral over all of R

in (71), since it can be evaluated explicitly (as we shall presently show,
cf. (78)–(79)). In view of (66), we first need to add the integral of I(x, z)
over (0, x/2) to the left-hand side of (73), so as to obtain F (x, ib)/2. To
estimate this addition, we use (70) as before. But now we conclude from
boundedness of the function exp(αbz/2)Jas(z, v) for z > 0 (cf. (19)) that
there exists a positive constant C such that

(74)

∣∣∣∣∣
∫ x/2

0

dzI(x, z)
∣∣∣∣∣ < Ce−αbx/2

∫ x/2

0

dz
∏

δ=+,−
G(δ(x− z)/2− ib),

where x ∈ (0,∞). (Note that the G-product in (69) is positive for t ∈ R,
cf. the conjugacy relation (192) and the locations (194) of the G-zeros.)

Next, we invoke (69) with t = x− z to deduce

(75)

∫ x/2

ξ

dz
∏

δ=+,−
G(δ(x− z)/2− ib) = O(exp(−αbx/4)), x → ∞,
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where the implied constant is uniform for ξ varying over any fixed in-
terval of the form (−∞, c), c ∈ R. In particular, for ξ = 0 we arrive
at

(76) exp(αbx/2)

∫ x/2

0

dzI(x, z) = O(exp(−αbx/4)), x → ∞,

but the bound (75) also entails

(77)

∫ x/2

−∞
dz exp(αbz/2)Jas(z, u)

∏
δ=+,−

G(δ(x− z)/2− ib)

= O(exp(−αbx/4)), x → ∞.

From this the lemma readily follows. Q.E.D.

Taking z → x + 2z and keeping (19) in mind, a straightforward
computation reveals that the integral in (71) equals

(78) 2 exp(αbx/2)Jas(x, v)

∫
R

dz exp(iαzv)
∏

δ=+,−
G(δz − ib).

An explicit evaluation of the latter integral is readily obtained from
a special case of a Fourier transform formula in [R11], as reviewed in
Appendix A. More specifically, setting ν = −μ = ib in (202), we obtain

(79)

∫
R

dz eiαzv
∏

δ=+,−
G(δz − ib) =

√
a+a−

G(2ib− ia)

∏
δ=+,−

G(δv − ia+ ib).

Substituting these results into (71), we deduce

(80) F (b, v;x, ib) ∼ 4
√
a+a−

G(2ib− ia)
Jas(b;x, v)

∏
δ=+,−

G(δv − ia+ ib),

for x → ∞. Comparing this expression for the leading asymptotic be-
haviour of F (b, v;x, ib) as x → ∞ with that given by (68) upon substi-
tuting Jas for J , we find that

(81) λ(b, v) = 4, b ∈ (0, a), v > 0.

By (real) analyticity this equality immediately extends to all b ∈ (0, 2a).
Since the integrand (47) in (39) is an even function of z, we have thus
established the following result.
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Theorem 4. Letting b ∈ (0, 2a) and x, y, v ∈ R, we have

(82) J(b;x, v)J(b; y, v) =
1

2

∫ ∞

0

dz w(b; z)J(b; z, v)

×
∏

δ1,δ2,δ3=+,−
G((δ1x+ δ2y + δ3z − ib)/2).

We proceed to obtain a second product formula that looks quite
different at face value.

Theorem 5. Letting b ∈ (0, 2a) and x, t, u ∈ R, we have

(83) J(b;x, t)J(b;x, u) =
1

2
G(ia− ib)2

∫ ∞

0

dv w(2a− b; v)

× J(b;x, v)
∏

δ1,δ2,δ3=+,−
G((δ1t+ δ2u+ δ3v + ib)/2− ia).

Proof. We take b → 2a − b in (82) and then use the symmetry
relation (23). Relabeling variables, we see that (83) results. Q.E.D.

It is of interest to specialize these formulas to the free cases b = a±.
From Eq. (3.4) in [HR14] we readily obtain

(84) J(aδ;x, x̂) =
a−δ sin(αxx̂/2)

2s−δ(x)sδ(x̂)
, δ = +,−.

Also, using (185) we get from (13) and (9) the free weight functions

(85) w(aδ; z) = 4s−δ(z)
2, δ = +,−.

Taking b = a+ in (82), we deduce

(86)

∫ ∞

0

dz
s−(z) sin(αzv/2)∏

δ,δ′=+,− c−((z + δx+ δ′y)/2)

=
4a−
s+(v)

· sin(αxv/2)
s−(x)

· sin(αyv/2)
s−(y)

.

Furthermore, when we take b = a+ in (83) and use G(i(a− − a+)/2)
2 =

a−/a+, then we obtain (86) with a+ and a− swapped.
It seems that even this elementary hyperbolic product formula is a

new result. With hindsight, however, it can be obtained from a limit of
the elliptic product formula in Theorem 2.2 of [R13]. (To verify this, the
limit formulas Eqs. (2.92), (3.129) and (3.131) in [R97] can be used.)
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We proceed to detail another perspective on the above product for-
mulas. This arises when we rewrite them in terms of the unitary trans-
form kernel F(b;x, y)/(2a+a−)1/2, cf. (29)–(34). Let us define a family
of integral operators Iz(b) on L2((0,∞)) by

(87) (Iz(b)f)(x) ≡
∫ ∞

0

dy w(b;x)1/2K(b;x, y, z)w(b; y)1/2f(y),

where x > 0, z ≥ 0, b ∈ (0, 2a), and positive square roots are taken. It
follows from the G-asymptotics (197) that for fixed (b, x, z) ∈ (0, 2a) ×
[0,∞)2 the function K(b;x, y, z)w(b; y)1/2 has exponential decay for y →
∞, so the integral is absolutely convergent for any f ∈ L2((0,∞)). At
face value, however, it is not clear that the right-hand side of (87) yields
a function in L2((0,∞), dx). Furthermore, when we fix b, there appears
to be no reason for all of the operators Iz(b), z ≥ 0, to commute.

Even so, more is true: They are bounded self-adjoint operators sat-
isfying

(88) [Iu(b), Iv(b)] = 0, [Iu(b), Iv(2a− b)] = 0, u, v ≥ 0.

This is immediate from the following result, which shows that the two
families are simultaneously diagonalized by the unitary involution F(b),
yielding bounded real-valued multiplication operators.

Theorem 6. Let b ∈ (0, 2a) and z ≥ 0. Then the operator Iz(b) is
bounded, and the operator F(b)Iz(b)F(b) on L2((0,∞), dv) acts as mul-
tiplication by the function 2J(b; z, v). Moreover, the operator F(b)Iz(2a−
b)F(b) on L2((0,∞), dv) acts as multiplication by 2J(2a− b; z, v).

Proof. When we swap z and y in (82) and use (33), we obtain

(89) 2J(b; z, v)
F(b;x, v)√
2a+a−

=

∫ ∞

0

dy w(b;x)1/2K(b;x, y, z)w(b; y)1/2
F(b; y, v)√
2a+a−

.

Integrating this with f(v) ∈ C∞
0 ((0,∞)) we obtain

(90) 2F(b)J(b; z, ·)f = Iz(b)F(b)f.

From this we read off the first assertion. Using (35), we obtain the
second one. Q.E.D.

Yet another illuminating version of the product formula (82) is
obtained upon multiplying (89) by F(b; t, v)/

√
2a+a− and integrating
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over v. This results in

(91)
1

a+a−

∫ ∞

0

dvJ(b; z, v)F(b;x, v)F(b; t, v)

= w(b;x)1/2K(b;x, t, z)w(b; t)1/2.

Using (33), this can be rewritten as the identity

(92) w(b;x)1/2w(b; y)1/2w(b; z)1/2K(b;x, y, z)

=
G(ia− ib)√

a+a−

∫ ∞

0

dv

w(2a− b; v)1/2
F(b;x, v)F(b; y, v)F(b; z, v).

(Alternatively, this identity follows when we replace f in (90) by F(b)f .)
From the b → 2a− b invariance (34) of the F-function, we also obtain

(93) w(2a− b;x)1/2w(2a− b; y)1/2w(2a− b; z)1/2K(2a− b;x, y, z)

=
G(ib− ia)√

a+a−

∫ ∞

0

dv

w(b; v)1/2
F(b;x, v)F(b; y, v)F(b; z, v).

§3. An application to the hyperbolic relativistic
Calogero-Moser 2-particle system

In the recent paper [HR14] we developed a recursive scheme to con-
struct joint eigenfunctions for the commuting AΔOs associated with the
integrable N -particle systems of hyperbolic relativistic Calogero-Moser
type. In this section we establish a remarkable application of the prod-
uct formula (82) from Theorem 4 to the N = 2 case of this recursive
scheme. More specifically, we show that the joint eigenfunction of the
AΔOs is also an eigenfunction of an explicit integral operator, with the
eigenvalues being explicit as well.

The kernel of the pertinent integral operator is the product of the
weight function w(b; y1 − y2) and the special function

(94) S2(b;x, y) ≡
2∏

j,k=1

G(xj − yk − ib/2)

G(xj − yk + ib/2)
,

which connects the 2-particle AΔOs A
(2)
k,δ(x) to themselves via kernel

identities, see (2.2) in [HR14]. For the first step N = 1 → N = 2 of
the recursive scheme, however, the main protagonist is a kernel func-
tion connecting these N = 2 AΔOs to the elementary N = 1 AΔOs
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A
(1)
1,δ(−y1) ≡ exp(ia−δ∂y1). The latter arises from S2 by first multiply-

ing by a suitable plane wave and then letting y2 go to infinity, yielding

(95) S�
2(b;x, y1) ≡

2∏
j=1

G(xj − y1 − ib/2)

G(xj − y1 + ib/2)
.

Starting the recursion with the plane wave

(96) J1(x1, y1) ≡ exp(iαx1y1),

the first step N = 1 → N = 2 of the recursive scheme yields the function

(97) J2(b;x, y) = exp(iαy2(x1 + x2))

∫
R

dzI2(b;x, y, z),

where (b, x, y) ∈ (0, 2a)× R2 × R2, with integrand

(98) I2(b;x, y, z) ≡ S�
2(b;x, z)J1(z, y1 − y2).

We now recall from Section 4 in [HR14] the relation of J2 and J . It arises
by taking z → z+(x1 +x2)/2 in the integral in (97) and comparing the
result with the formula (4) for J :

J2(b; (x1, x2), (y1, y2)) = exp(iα(x1 + x2)(y1 + y2)/2)

× J(b;x1 − x2, y1 − y2).
(99)

We are now ready to formulate and prove the integral equation
for J2.

Theorem 7. Letting (b, x, y) ∈ (0, 2a)×R2×R2, we have the integral
equation

(100)

∫
R2

dz w(b; z1 − z2)S2(b;x, z)J2(b; z, y) = 2μ(b; y)J2(b;x, y),

where

(101) μ(b; y) ≡ a+a−G(ia− ib)2
2∏

j=1

∏
δ=+,−

G(δyj + ib/2− ia).

Proof. First, we aim to rewrite the left-hand side of (100) in such
a way that the product formula (82) from Theorem 4 may be invoked.
Substituting the right-hand side of (99) for J2 and changing integration
variables to

(102) z ≡ z1 − z2, s ≡ z1 + z2,
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we use the reflection equation (189) to rewrite the left-hand side of (100)
as

(103)
1

2

∫
R

ds exp(iαs(y1 + y2)/2)

∫
R

dzw(z)J(z, y1 − y2)

×
∏

δ1,δ2,δ3=+,−
G
(
(δ1(x1 − x2) + δ2(s− (x1 + x2)) + δ3z − ib)/2

)
.

Taking s → s+ x1 + x2 and using evenness of the latter integrand in z,
we deduce that this equals

(104) exp(iα(x1 + x2)(y1 + y2)/2)

∫
R

ds exp(iαs(y1 + y2)/2)

×
∫ ∞

0

dzw(z)J(z, y1 − y2)K(x1 − x2, s, z),

where, just as in Section 2, the kernel function K is given by (38). In-
voking the product formula (82) as well as (99), we obtain

(105) 2J2(x, y)

∫
R

ds exp(iαs(y1 + y2)/2)J(s, y1 − y2).

Next, we show that the representation (4) and the Fourier trans-
form formula (202) allow us to compute the remaining integral explic-
itly. Changing integration variable according to z → z/2 in (4), and
once more making use of the reflection equation (189), we find that the
integral is given by

(106)
1

2

∫
R

ds

∫
R

dz exp
(
iα(s(y1 + y2) + z(y1 − y2))/2

)
×

∏
δ1,δ2=+,−

G((δ1z + δ2s− ib)/2).

Reversing the change of variables (102), we arrive at the product of
one-variable integrals

(107)
2∏

j=1

∫
R

dzj exp(iαzjyj)
∏

δ=+,−
G(δzj − ib/2).

Finally, setting ν = −μ = ib/2 in (202), we obtain an evaluation formula
for these integrals, which yields the right-hand side of (100). Q.E.D.

Our next theorem is a simple corollary of Theorem 7.
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Theorem 8. Letting (b, x, y) ∈ (0, 2a)× R2 × R2, we have

(108)

∫
R2

dz w(2a− b; z1 − z2)S2(2a− b;x, z)J2(b; y, z)

= 2μ(2a− b; y)J2(b; y, x).

Proof. This follows from (100) by taking b → 2a−b and using (23).
Q.E.D.

Next, we define

(109) F2(b;x, y) ≡ exp(iα(x1 + x2)(y1 + y2)/2)F(b;x1 − x2, y1 − y2),

where x, y ∈ G2 and we have introduced

(110) G2 ≡ {x ∈ R2 | x2 < x1}.
The integrands on the left-hand sides of (100) and (108) are invariant
under swapping z1 and z2, so we can use (33) to rewrite these formulas
in terms of F2. This yields

(111)

∫
G2

dz w(b;x1 − x2)
1/2S2(b;x, z)w(b; z1 − z2)

1/2F2(b; z, y)

= μ(b; y)F2(b;x, y), x, y ∈ G2,

and

(112)

∫
G2

dz w(2a− b;x1 − x2)
1/2S2(2a− b;x, z)w(2a− b; z1 − z2)

1/2

× F2(b; z, y) = μ(2a− b; y)F2(b;x, y), x, y ∈ G2.

Now the generalized Fourier transform

(113) F2(b) : C2 ≡ C∞
0 (G2) ⊂ L2(G2) → L2(G2), b ∈ (0, 2a),

defined by

(114) (F2(b)ψ)(x) ≡ 1

a+a−

∫
G2

F2(b;x, y)ψ(y)dy, ψ ∈ C2, x ∈ G2,

extends to a unitary operator. (This readily follows from the tensor
product structure exhibited by the kernel F2.) Just as in Section 2, we
proceed to consider the integral operator given by

(115) (I2(b)f)(x) ≡
∫
G2

dy w(b;x1 − x2)
1/2S2(b;x, y)

× w(b; y1 − y2)
1/2f(y), f ∈ L2(G2), b ∈ (0, 2a).
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In view of (189) and (192), its kernel is positive and invariant under
swapping x and y. As in Section 2, however, it is not obvious that I2(b)
is bounded, let alone that it satisfies

(116) [I2(b), I2(2a− b)] = 0.

These properties are a direct consequence of our next result.

Theorem 9. Letting b ∈ (0, 2a), the operator I2(b) is bounded,
and the operator F2(b)

∗I2(b)F2(b) on L2(G2, dv) acts as multiplication
by the positive function μ(b; v) given by (101). Moreover, the operator
F2(b)

∗I2(2a−b)F2(b) on L2(G2, dv) acts as multiplication by μ(2a−b; v).

Proof. This follows in the same way as before from (111) and (112).
Q.E.D.

Taking y → v in (111) and then integrating with F2(b; y, v), we
obtain the identity

(117) w(b;x1 − x2)
1/2S2(b;x, y)w(b; y1 − y2)

1/2

=
1

(a+a−)2

∫
G2

dv μ(b; v)F2(b;x, v)F2(b; y, v).

Since F2 is invariant under b → 2a − b, this implies a second identity
that we shall not spell out.

We conclude this section by clarifying the relation of these identi-
ties to (92) and (93). When we transform (117) to sum and difference
variables, we obtain

(118) w(b;x)1/2K(b;x, y, s− t)w(b; y)1/2

=
1

2(a+a−)2

∫
R

dr

∫ ∞

0

dvμ(b; (r + v)/2, (r − v)/2)

× exp(iα(r(s− t)/2)F(b;x, v)F(b; y, v).

Setting z := s− t, we can now combine the definitions (101) and (4) of μ
and J to get

(119)

∫
R

drμ(b; (r + v)/2, (r − v)/2) exp(iαrz/2)

= 2a+a−G(ia− ib)2J(2a− b; v, z).

Using next the J-symmetry (23), the right-hand side of this equality
becomes 2a+a−J(b; z, v). Finally, trading J for F by using (33), we
arrive at (92).
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§4. Nonrelativistic limit formulas

We recall that Subsection 4.2 of [R11] deals with the nonrelativistic
limit of the R-function. In terms of J(b;x, y) (4), the starting point is
the reparametrized J-function

(120) J(π, β, βg; r, βk) =
1

2

∫
R

dt
∏

δ=+,−

G(π, β; (t+ δr − iβg)/2)

G(π, β; (t+ δr + iβg)/2)
eitk,

and the limit amounts to taking β to 0. When we formally interchange
it with the integration, we can use (203). This yields

(121) lim
β→0

J(π, β, βg; r, βk) =
1

2

∫
R

dt
exp(itk)∏

δ=+,−[2 cosh((t+ δr)/2)]g
.

Taking r and k real, the latter integral obviously converges for Re g > 0.
It equals the function F (g; r, 2k) defined by Eq. (65) of our joint pa-

per [HR15]. Its relation to the conical (or Mehler) function P
1/2−g
ik−1/2(cosh r)

is given by

(122) F (g; r, 2k) =
(π
4

)1/2 Γ(g + ik)Γ(g − ik)

Γ(g)(2 sinh r)g−1/2
P

1/2−g
ik−1/2(cosh r),

cf. Eq. 14.12.4 in [Dig10]. In addition, one can produce a number of
expressions for F in terms of the hypergeometric function 2F1. For
example, the conical function specialization of Eq. 14.3.15 in [Dig10]
and the duplication formula for the gamma function entail

F (g; r, 2k) =
Γ(g + ik)Γ(g − ik)

2Γ(2g)

× 2F1(g + ik, g − ik; g + 1/2;− sinh2(r/2)).

(123)

Now in [R11] the above interchange of limits was left uncontrolled.
With Proposition 18 at our disposal, we can not only remedy this, but
also obtain bounds on the exponential decay in r and k of J(π, β, βg; r, βk)
that are uniform for β small enough. This is detailed in the following
proposition.

Proposition 10. Let (g, r, k) ∈ C3 be restricted by

(124) (g, r, k) ∈ {Re g > 0} × {|Im r| < π/2} × {|Im k| < Re g} =: P.

Then we have

(125) lim
β→0

J(π, β, βg; r, βk) = F (g; r, 2k),
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where the limit is uniform on compacts of the parameter space P. Next,
suppose (g, r, k) ∈ (0,∞)× R2. Then we have upper bounds

(126) |J(π, β, βg; r, βk)| ≤ Cr/ sinh(gr),

(127) |J(π, β, βg; r, βk)| ≤ Cε exp(−(π − ε)|k|), ε > 0,

where the constants C and Cε are independent of β ∈ (0, β0], with

(128) β0 ≡ min(π/4, π/2g).

Finally, the limit function satisfies

(129) |F (g; r, 2k)| ≤ Cr/ sinh(gr),

(130) |F (g; r, 2k)| ≤ Cε exp(−(π − ε)|k|), ε > 0.

Proof. For |Re g/2| ≤ R ∈ [1,∞), |Im r/2| ≤ ρ ∈ [0, π/2) and t
real, we obtain from Proposition 18 the majorization

(131)

∣∣∣∣G(π, β; (t+ δr − iβg)/2)

G(π, β; (t+ δr + iβg)/2)

∣∣∣∣
≤ C(g, ρ) |exp (−g ln 2 cosh((t+ δr)/2))| ,

with C continuous on SR×[0, π/2) and β ∈ (0, (π−2ρ)/4R]. Letting next
Re g ∈ [ε, 2R] with ε ∈ (0, 1], and restricting k ∈ C to a strip |Im k| ≤ ε′

with ε′ < ε, the integrand in (120) is O(exp(ε′ − ε)t) as t → ∞, with the
implied constant independent of β. Thus we can invoke the dominated
convergence theorem to justify the interchange of limits, so that the first
assertion readily follows.

To prove (126) we use (131), yielding

(132) |J(π, β, βg; r, βk)| ≤ C(g, 0)

∫
R

dt
1∏

δ=+,−[2 cosh((t+ δr)/2)]g
.

From the proof of Proposition 4.3 in [HR15] we then deduce (126). Fi-
nally, to show (127), we first write

(133) eηkJ(π, β, βg; r, βk)

=
1

2

∫ ∞

−∞
dt

∏
δ=+,−

G(π, β; (t+ δr − iβg)/2)

G(π, β; (t+ δr + iβg)/2)
exp(i(t− iη)k).
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Now for |η| ≤ π − ε we deduce from the bound (131) with t and r
swapped that we can shift the t-contour by η, after which we easily get
the estimate

(134) |eηkJ(π, β, βg; r, βk)|

≤ C(g, 0)

∫ ∞

−∞
dt|4 cosh((t+ iη + r)/2) cosh((t+ iη − r)/2)|−g.

Clearly, this entails the bound (127). Finally, since the bounds (126)
and (127) do not depend on β, they extend to the limit function F , so
the proof is complete. Q.E.D.

It transpires from the proof that the uniform bounds (126) and (127)
can be extended to suitably restricted complex g, r and k. However, for
our next aim in this section, namely to obtain two product formulas for
the limit function F (g; r, 2k), the bounds suffice to invoke the dominated
convergence theorem, as will become clear shortly.

The first product formula follows directly from Theorem 4 when we
use (126) and Appendix B.

Theorem 11. Letting g ∈ (0,∞) and r, s, k ∈ R, we have

(135) F (g; r, 2k)F (g; s, 2k) =

1

2

∫ ∞

0

dtF (g; t, 2k)
[2 sinh t]2g∏

δ1,δ2=+,−[2 cosh((t+ δ1r + δ2s)/2)]g
.

Proof. When we substitute

(136) a+ = π, a− = β, b = βg, (x, y, z, v) = β(r, s, t, k),

in (82), then the limits (125), (203) and (206) give rise to (135), pro-
vided we interchange the β → 0 limit and the integration. To control
this interchange, we need to restrict the coupling g to [1,∞). Then we
can first use Proposition 18 and Proposition 19 to conclude that the
product of the w-function and kernel function is bounded for t ∈ (0,∞),
uniformly for β small enough. Now it suffices to appeal to the uniform
bound (126) to obtain the desired dominating function in L1((0,∞)).
Therefore (135) follows for g ≥ 1.

In order to lift the g-restriction, we note that (121) implies that for
fixed t, k ∈ R the function F (g; t, 2k) on the right-hand side of (135)
is real-analytic in g for g > 0. From (121) it is also clear that it is
bounded for t, k varying over R and g in a complex neighborhood of
the positive real axis. For g in such a neighborhood, the remaining
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hyperbolic quotient in the integrand decays exponentially as t → ∞, so
for g ∈ (0, 1) the product formula (135) follows by analytic continuation.

Q.E.D.

The second product formula results from Theorem 5 by using (127)
and Appendix C.

Theorem 12. Letting g ∈ (0,∞) and r, p, q ∈ R, we have

(137) F (g; r, 2p)F (g; r, 2q)

=

∫ ∞

0

dkF (g; r, 2k)

∏
δ1,δ2,δ3=+,− Γ((g + iδ1p+ iδ2q + iδ3k)/2)

8πΓ(g)2
∏

δ=+,− Γ(iδk)Γ(g + iδk)
.

Proof. We first rewrite the integrand in (83) by using (cf. (13) and
(9)):

(138) w(2a− b; v) =
∏

δ=+,−
G(ia+ δv)G(ia− ib+ δv).

Then we substitute a+ = π, a− = β, b = βg, so that the right-hand side
of (83) equals the v-integral of

(139)
1

2
J(βg;x, v)G(iπ/2 + iβ/2− iβg)2

×
∏

δ=+,− G(iπ/2 + iβ/2 + δv)G(iπ/2 + iβ/2− iβg + δv)∏
δ1,δ2,δ3=+,− G(iπ/2 + iβ/2 + (δ1t+ δ2u+ δ3v − iβg)/2)

,

with G(z) = G(π, β; z).
Substituting

(140) x = r, (t, u, v) = β(p, q, k),

we can rewrite (83) as

(141) J(π, β, βg; r, βp)J(π, β, βg; r, βq)

=

∫ ∞

0

dkJ(π, β, βg; r, βk)
G(−ig)2

∏
δ=+,− G(δk)G(−ig + δk)

8π
∏

δ1,δ2,δ3=+,− G((δ1p+ δ2q + δ3k − ig)/2)
,

where G(z) = G(β; z), cf. (287). When we now formally use the lim-
its (125) and (288), then we obtain (137). The pertinent interchange of
limits can be readily justified by using the uniform bounds (289)–(292)
and (127) to obtain an L1((0,∞))-function dominating the pointwise
convergence. Q.E.D.
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In the special cases g = 1/2 and g = 1 the product formula (137) was
first obtained by Mizony in a somewhat different form. More precisely,
in Section 3 of [Miz76] he considers the function

(142) φ(r, x) ≡ 2F1(1/4 + ir/2, 1/4− ir/2; 1;− sinh2 x).

Specializing (123) to g = 1/2, and using the quadratic transformation in
Eq. 15.8.18 in [Dig10] for 2F1 and the reflection equation for the gamma
function to rewrite the resulting expression, we obtain

(143) φ(r, x) =
2

π
cosh(πr)F (1/2;x, 2r).

Then Mizony’s product formula

(144) φ(r, x)φ(s, x) =
1

2π

∫ ∞

0

a(r, s, t)φ(t, x)|c(t)|−2dt,

with |c(t)|−2 = πt tanh(πt) and a(r, s, t) given by the proposition on
page 5 of [Miz76], is readily seen to amount to (137) for g = 1/2 (up to
a factor 16). In Section 4, he also presents the corresponding product
formula for the function

(145) φ(r, x) ≡ sin(rx)

r sinhx
=

2

π

sinh(πr)

r
F (1;x, 2r),

and a direct computation reveals that it is equivalent to (137) with
g = 1. (The expression for |c(r)|−2 on page 11 of [Miz76] should read
|c(r)|−2 = r2, as can be inferred from the c-function definition on page
3.)

We mention that we can use the bounds in Appendix C in a similar
way as in the above proof to arrive at a representation of F (g; r, 2k) in
terms of the Γ-function. Specifically, combining (23) and (120), we first
obtain the alternative J-representation

(146) J(π, β, βg; r, βk)

=
G(−ig)2

8π

∫
R

ds
exp(isr)∏

δ1,δ2=+,− G((δ1s+ δ2k − ig)/2)
.

Taking β → 0, we now get

(147) F (g; r, 2k)

=
1

8πΓ(g)2

∫
R

ds exp(isr)
∏

δ1,δ2=+,−
Γ((g + iδ1s+ iδ2k)/2).
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(This second representation corresponds to (4.47) in [R11], whereas the
first one given by (121) corresponds to (4.48).)

We proceed to obtain two distinct limits of Theorem 7 involving the
joint two-particle eigenfunction

(148) F2(g; r, k) = exp(i(r1 + r2)(k1 + k2)/2)F (g; r1 − r2, k1 − k2).

(This function coincides with the function F2(λ; t, u) that we employed
in [HR15], cf. Eq. (64) in loc. cit.) The first one is obtained by choosing
parameters

(149) a+ = π, a− = β, b = βg,

and changing variables

(150) x = r, y = βk/2,

in (100) and then taking β to zero.

Theorem 13. Letting (g, r, k) ∈ (0,∞)× R2 × R2, we have

(151)

∫
R2

dz

(
4 sinh2(z1 − z2)∏

j,l=1,2[2 cosh(rj − zl)]

)g

F2(g; z, k)

= 2μ0(g; k)F2(g; r, k),

where

(152) μ0(g; k) ≡
∏2

j=1

∏
δ=+,− Γ((iδkj + g)/2)

4Γ(g)2
.

Proof. With the above substitutions, the β → 0 limit of the left-
hand side of (100) yields the left-hand side of (151), cf. the proof of
Theorem 11. For the eigenvalue (101) we combine the substitutions
with the reparametrization (287) to get

(153) G(−ig)2/4
2∏

j=1

∏
δ=+,−

G((δkj − ig)/2).

Invoking (288), (99), (148) and (125), we see that (151) results. Q.E.D.

For the second limit we start from (108). We choose once more
parameters given by (149), but now change variables

(154) y = r, z = βp/2, x = βk/2.
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Then it is clear from (125) that the function J2(b; y, x) converges to
F2(g; r, k) for β → 0. But we need a multiplicative renormalization for
the right-hand side to have a finite limit. Specifically, from (101) we see
that the substitutions entail

(155) a−1
− G(ia− ib)2μ(2a− b; y) → π

2∏
j=1

∏
δ=+,−

G(π, β; δrj − iβg/2),

so that we can invoke (203). Thus we arrive at the right-hand side of
the identity in the following theorem.

Theorem 14. Letting (g, r, k) ∈ (0,∞)× R2 × R2, we have

(156)
1

16πΓ(g)2

∫
R2

dp

∏
j,l=1,2

∏
δ=+,− Γ((iδ(kj − pl) + g)/2)∏

δ=+,− Γ(iδ(p1 − p2)/2)Γ(iδ(p1 − p2)/2 + g)

× F2(g; r, p) =
2π

[4 cosh(r1) cosh(r2)]g
F2(g; r, k).

Proof. It remains to handle the left-hand side of (108), multiplied
by the factor a−1

− G(ia− ib)2, cf. the renormalization (155). This can be
done just as in the proof of Theorem 12, and the result is (156). Q.E.D.

We proceed to obtain the nonrelativistic counterparts of the results
from Sections 2 and 3 that involve Hilbert space analysis. To start with,
we define an auxiliary unitary transform

(157) Fβ(g) : C ⊂ L2((0,∞), dk) → L2((0,∞), dr), βg ∈ (0, π + β),

(158) (Fβ(g)ψ)(r) ≡
(

1

2π

)1/2 ∫ ∞

0

F(π, β, βg; r, βk)ψ(k)dk, ψ ∈ C,

cf. (29)–(30). Using (33) and (287), we readily obtain

(159) F(π, β, βg; r, βk) =
2

G(β;−ig)
w(π, β, βg; r)1/2

× J(π, β, βg; r, βk)

⎛
⎝ ∏

δ=+,−
G(β; δk)G(β; δk − ig)

⎞
⎠

1/2

.
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From this we deduce that for all (g, r, k) ∈ (0,∞)3 we have

(160) F0(g; r, k) ≡ lim
β→0

F(π, β, βg; r, βk)

= 2Γ(g)(2 sinh r)gF (g; r, 2k)

⎛
⎝ ∏

δ=+,−
Γ(iδk)Γ(iδk + g)

⎞
⎠

−1/2

.

The operator on C defined by

(161) (F0(g)ψ)(r) ≡
(

1

2π

)1/2 ∫ ∞

0

F0(g; r, k)ψ(k)dk, ψ ∈ C,

gives rise to a unitary transform

(162) F0(g) : L2((0,∞), dk) → L2((0,∞), dr), g > 0.

(It equals the sine transform for g = 1 and its g → 0 limit is the cosine
transform.) Although this assertion will cause no surprise, a complete
proof is not immediate from our results. However, the unitarity of F0(g)
follows by specialization from known unitarity properties of the Jacobi
function transform [Koo84].

Next, we define a family of integral operators on L2((0,∞)) by set-
ting

(163) (Jt(g)ψ)(r) ≡
∫ ∞

0

ds
w0(g; r)

1/2w0(g; s)
1/2ψ(s)∏

δ1,δ2=+,−[2 cosh((t+ δ1s+ δ2r)/2)]g
,

(164) w0(g; r) ≡ (2 sinh r)2g, r > 0,

where g > 0, t ≥ 0 and the implied logarithm is chosen real. Hence the
kernel of the integral operator is positive for all (g, r, s, t) ∈ (0,∞)3 ×
[0,∞). Since it has exponential decay for s → ∞, the integral is abso-
lutely convergent, but it is not clear that the image function is square-
integrable. In fact, however, the family consists of bounded self-adjoint
operators satisfying

(165) [Jt1(g),Jt2(g)] = 0, t1, t2 ≥ 0.

This is an obvious consequence of the following theorem.

Theorem 15. Let g > 0 and t ≥ 0. Then the operator Jt(g) is
bounded, and the operator F0(g)

∗Jt(g)F0(g) on L2((0,∞), dk) acts as
multiplication by 2F (g; t, 2k).
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Proof. When we swap t and s in (135) and use (160), the resulting
identity can be written

(166) 2F (g; t, 2k)F0(g; r, k)

=

∫ ∞

0

ds
w0(g; r)

1/2w0(g; s)
1/2∏

δ1,δ2=+,−[2 cosh((t+ δ1s+ δ2r)/2)]g
F0(g; s, k).

Integrating this with ψ(k), ψ ∈ L2((0,∞)), we deduce

(167) 2F0(g)F (g; t, 2 ·)ψ = Jt(g)F0(g)ψ.

From this the assertion is plain. Q.E.D.

In order to continue, we define a dual family of integral operators
on L2((0,∞)) by

(168) (Ĵq(g)φ)(k) ≡
∫ ∞

0

dp ŵ0(g; k)
1/2ŵ0(g; p)

1/2φ(p)

×
∏

δ1,δ2,δ3=+,−
Γ((g + iδ1p+ iδ2q + iδ3k)/2),

(169) ŵ0(g; k) ≡ 1/4πΓ(g)2
∏

δ=+,−
Γ(iδk)Γ(iδk + g),

where g > 0, q ≥ 0 and the positive square root is taken. When we
combine (271) and (293), we deduce exponential decay of the kernel of
the integral operator for p → ∞, so the integral is absolutely convergent.
As in previous cases, it is not obvious that the image function is square-
integrable. Once more, however, the family actually consists of bounded
self-adjoint operators satisfying

(170) [Ĵq1(g), Ĵq2(g)] = 0, q1, q2 ≥ 0,

as is immediate from our next theorem.

Theorem 16. Let g > 0 and q ≥ 0. Then the operator Ĵq(g) is

bounded, and the operator F0(g)Ĵq(g)F0(g)
∗ on L2((0,∞), dr) acts as

multiplication by 2F (g; r, 2q).

Proof. Swapping k and p in (137) and using (160), we deduce

(171) 2F (g; r, 2q)F0(g; r, k) =

∫ ∞

0

dp ŵ0(g; k)
1/2ŵ0(g; p)

1/2

× F0(g; r, p)
∏

δ1,δ2,δ3=+,−
Γ((g + iδ1p+ iδ2q + iδ3k)/2).
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Integrating this with φ(r), φ ∈ L2((0,∞)), we obtain

(172) 2F0(g)
∗F (g; ·, 2q)φ = Ĵq(g)F0(g)

∗φ,

and so the theorem follows. Q.E.D.

Passing to the 2-particle case, we define a unitary operator by (con-
tinuous extension of)

(173) F0,2(g) : C2 = C∞
0 (G2) ⊂ L2(G2) → L2(G2), g > 0,

where

(174) (F0,2(g)ψ)(r) ≡ 1

2π

∫
G2

F0,2(g; r, k)ψ(k)dk, ψ ∈ C2, r ∈ G2,

with

(175) F0,2(g; r, k) ≡ exp(i(r1+r2)(k1+k2)/2)F0(g; r1−r2, (k1−k2)/2).

Now we define two integral operators on L2(G2):

(176) (J2(g)φ)(r) ≡
∫
G2

dz
w0(g; r1 − r2)

1/2w0(g; z1 − z2)
1/2∏

j,l=1,2[2 cosh(rj − zl)]g
φ(z),

(177) (Ĵ2(g)ψ)(k) ≡
∫
G2

dp ŵ0(g; k1 − k2)
1/2ŵ0(g; p1 − p2)

1/2ψ(p)

×
∏

j,l=1,2

∏
δ=+,−

Γ((iδ(kj − pl) + g)/2),

where φ, ψ ∈ L2(G2) and g > 0. We are now prepared for the last
theorem of this section.

Theorem 17. Let g > 0. The operator F0,2(g)
∗J2(g)F0,2(g) on

L2(G2, dk) acts as multiplication by the positive function μ0(g; k) given

by (152). Also, the operator F0,2(g)Ĵ2(g)F0,2(g)
∗ on L2(G2, dr) acts as

multiplication by 4π/[4 cosh(r1) cosh(r2)]
g.

Proof. Recalling (148) and (160), this can be read off from (151)
and (156). Q.E.D.

We conclude this section by deriving nonrelativistic counterparts
of the identities (92) and (117). First, we obtain alternative versions
of the product formulas in Theorems 11 and 12, using the unitarity of
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the transform F0(g). To this end we multiply (166) by F0(g; v, k) and
integrate over k. Now we use (160), rewritten as

(178) F (g; r, 2k) = F0(g; r, k)/4
√
πΓ(g)2w0(g; r)

1/2ŵ0(g; k)
1/2.

As a result, we obtain the identity

(179)
w0(g; r)

1/2w0(g; s)
1/2w0(g; t)

1/2∏
δ1,δ2=+,−[2 cosh((r + δ1s+ δ2t)/2)]g

=
1

4π3/2Γ(g)2

∫ ∞

0

dk ŵ0(g; k)
−1/2F0(g; r, k)F0(g; s, k)F0(g; t, k).

Likewise, we multiply (171) by F0(g; r, v) and integrate over r. Using
again (178), we arrive at

(180) ŵ0(g; k)
1/2ŵ0(g; p)

1/2ŵ0(g; q)
1/2

×
∏

δ1,δ2,δ3=+,−
Γ((g + iδ1k + iδ2p+ iδ3q)/2)

=
1

4π3/2Γ(g)2

∫ ∞

0

dr w0(g; r)
−1/2F0(g; r, k)F0(g; r, p)F0(g; r, q).

Turning to the 2-particle case, we first use (178) to rewrite (151) as

(181)

∫
G2

dz
w0(g; r1 − r2)

1/2w0(g; z1 − z2)
1/2∏

j,l=1,2[2 cosh(rj − zl)]g
F0,2(g; z, k)

= μ0(g; k)F0,2(g; r, k).

Now we multiply this by F0,2(g; s, k)/4π
2 and integrate k over G2. This

yields the identity

(182)
w0(g; r1 − r2)

1/2w0(g; s1 − s2)
1/2∏

j,l=1,2[2 cosh(rj − sl)]g

=
1

4π2

∫
G2

dk μ0(g; k)F0,2(g; r, k)F0,2(g; s, k).

Similarly, using (178) to rewrite (156) as

(183)

∫
G2

dp ŵ0(g; k1 − k2)
1/2ŵ0(g; p1 − p2)

1/2F0,2(g; r, p)

×
∏

j,l=1,2

∏
δ=+,−

Γ((iδ(kj − pl) + g)/2)

=
4π

[4 cosh(r1) cosh(r2)]g
F0,2(g; r, k),
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multiplying this by F0,2(g; r, q)/4π
2 and then integrating r over G2, we

get

(184) ŵ0(k1 − k2)
1/2ŵ0(q1 − q2)

1/2
∏

j,l=1,2

∏
δ=+,−

Γ((iδ(kj − ql) + g)/2)

=
1

π

∫
G2

dr
F0,2(g; r, k)F0,2(g; r, q)

[4 cosh(r1) cosh(r2)]g
.

Finally, just as the 2-particle identity (117) leads to the reduced
identity (92) upon using sum and difference variables, we can rederive
the identities (179)/(180) from the identities (182)/(184) by invoking
the F -representations (147)/(121) and then using (178), respectively.
We note that this yields a nontrivial check on the various constants
involved.

§Appendix A. The hyperbolic gamma function

In this appendix we review previously known properties of the hyper-
bolic gamma function G(a+, a−; z) we have occasion to use in Sections
2 and 3. (More details can be found in [R97] and Appendix A of [R99].)
Throughout the paper we choose the parameters a+ and a− positive.
As a rule, the dependence on these parameters shall be suppressed when
they are supposed to be fixed.

The hyperbolic gamma function was introduced in Section III A of
[R97] as the unique minimal solution of one of the two AΔEs

(185)
G(z + iaδ/2)

G(z − iaδ/2)
= 2c−δ(z), δ = +,−,

that has modulus 1 for real z and satisfies G(0) = 1. It is not obvious,
but true, that the other one is satisfied as well. Furthermore, G(z) is
meromorphic in z, and it has neither poles nor zeros for z in the strip

(186) S ≡ {z ∈ C | |Im (z)| < a}, a = (a+ + a−)/2.

Hence we have

(187) G(z) = exp(ig(z)), z ∈ S,

with g(z) holomorphic in S. Explicitly, g(z) has the integral represen-
tation

(188) g(a+, a−; z) =
∫ ∞

0

dy

y

(
sin 2yz

2 sinh(a+y) sinh(a−y)
− z

a+a−y

)
,
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with z ∈ S. This clearly implies that the hyperbolic gamma function
has the following properties:

(189) G(−z) = 1/G(z), (reflection equation),

(190) G(a−, a+; z) = G(a+, a−; z), (modular invariance),

(191) G(λa+, λa−;λz) = G(a+, a−; z), λ > 0, (scale invariance),

(192) G(a+, a−; z) = G(a+, a−;−z).

From Appendix A in [R99] we recall that G(z) can be written as

(193) G(z) = E(z)/E(−z),

with E(z) an entire function with zeros located only at the points

(194) z = ia+ ipkl, a = (a+ + a−)/2, k, l ∈ N ≡ {0, 1, 2, . . .},
where

(195) pkl ≡ ka+ + la−.

Moreover, the order of these zeros (denoted byO(kl)), equals the number
of distinct pairs (m,n) ∈ N2 such that pmn = pkl. In particular, for
a+/a− /∈ Q all zeros are simple. Clearly, (193) entails that G has the
same zero set as E and poles of order O(kl) located solely at

(196) z = −ia− ipkl, k, l ∈ N.

We also recall that the asymptotic behaviour of G(z) for Re z → ±∞
is given by

(197) G(z) = exp(∓i(χ+ αz2/4))(1 +O(exp(−r|Re z|))),
where

(198) χ ≡ π

24

(
a+
a−

+
a−
a+

)
,

the decay rate can be any positive number satisfying

(199) r < αmin(a+, a−),

and the implied constant is uniform for Im z varying over compact sub-
sets of R.
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Finally, in Section 2 we have occasion to make use of the Fourier
transform formula from Proposition C.1 in [R11]. More specifically, let
μ, ν ∈ C be such that

(200) −a < Imμ < Im ν < a,

and assume that y ∈ C satisfies

(201) |Im y| < Im (ν − μ)/2.

Then the pertinent formula is given by

(202)

∫
R

dz exp(iαzy)
G(z − ν)

G(z − μ)
=

√
a+a− exp(iαy(μ+ ν)/2)

×G(ia+ μ− ν)
∏

δ=+,−
G(δy − ia+ (ν − μ)/2).

§Appendix B. Uniform bounds on G-function ratios

In this appendix and the next one, we reconsider and improve limits
involving the hyperbolic gamma function. We shall use the results to
control the nonrelativistic limit in Section 4.

We begin by recalling from Subsection III A in [R97] the limit

(203) lim
β↓0

G(π, β; z + iβu)

G(π, β; z + iβd)
= exp((u− d) ln(2 cosh z)).

Here, we have u, d ∈ R, the logarithm is real-valued for z real, and (203)
holds true uniformly for z varying over compact subsets of the cut plane

(204) C(π) ≡ C \ {±i[π/2,∞)},
cf. loc. cit. (3.91). Now the definition (13) of the w-function entails

w(π, β, βg; z) =
G(π, β; z − iπ/2 + iβ(g − 1/2))

G(π, β; z − iπ/2 + iβ(−1/2))

× G(π, β; z + iπ/2 + iβ(1/2))

G(π, β; z + iπ/2 + iβ(1/2− g))
,

(205)

so from (203) we deduce

(206) lim
β↓0

w(π, β, βg; z) = exp(2g ln(2 sinh z)),

where g is real, the limit is uniform on compacts of the open right half
plane and the logarithm is real-valued for z > 0.
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In this appendix we obtain bounds on the G-ratios occurring in (203)
and (206) that are uniform for β sufficiently small and for Re z ∈ R/z ∈
(0,∞), so that we can appeal to the dominated convergence theorem
for (Re z)-integrals that involve ratios of the above type. More specifi-
cally, we aim for uniform bounds that involve the limit function. To see
what this entails for (203), it is helpful to inspect a simple special case.
Specifically, let us take u = v − 1/2 and d = v + 1/2 in the pertinent
G-ratio. Then by (185) it equals 1/2 cosh(z + iβv). Thus for a bound

(207)
1

| cosh(z + iβv)| <
C

| cosh z| ,

to hold with C > 0 independent of Re z ∈ R and β in a sufficiently
small interval (0, β0], we need to require Im z ∈ (−π/2, π/2) and then
choose β0 > 0 with |Im z|+ β0|Im v| < π/2.

This example goes to show that the following proposition cannot be
much improved.

Proposition 18. Let u, d ∈ SR, where

(208) SR ≡ {v ∈ C | |Re v| ≤ R}, R ≥ 1,

and let z ∈ C satisfy |Im z| ≤ ρ, ρ ∈ [0, π/2). Choosing β0 > 0 such that

(209) β0R ≤ (π − 2ρ)/4,

we have for all β ∈ (0, β0] a bound

(210)

∣∣∣∣G(π, β; z + iβu)

G(π, β; z + iβd)

∣∣∣∣ ≤ C(u, d, ρ)| exp((u− d) ln(2 cosh z))|,

where C is a positive continuous function on S2
R × [0, π/2) and the log-

arithm is real for z real.

Proof. We begin by pointing out that we have

(211) Im (z + iβu), Im (z + iβd) ∈ (−π/2, π/2),

by virtue of the β-restriction. Next, we show that we can use (185) to
reduce the case where |Re d| and/or |Reu| is larger than 1/2 to the case
u, d ∈ S1/2.

Indeed, consider first the assumption Re d ∈ (N − 1/2, N + 1/2] for
an integer N ≥ 1. Then we can write

(212) G(π, β; z + iβd)

= G(π, β; z + iβ(d−N))2N
N−1∏
k=0

cosh(z + iβ(d− k − 1/2)),
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so that d−N ∈ S1/2. Now in view of the restrictions (211) and |Im z| ≤ ρ,
we can use the bound

(213) 1/

∣∣∣∣∣
N−1∏
k=0

cosh(z + iβ(d− k − 1/2))

∣∣∣∣∣ ≤ C+| cosh(z)|−N ,

with C+ > 0 depending on N , Im d and ρ, but not on β and Re z, so as
to reduce consideration to S1/2.

Likewise, assuming Re d ∈ [−N − 1/2,−N + 1/2), we can use

(214)

∣∣∣∣∣
N−1∏
k=0

cosh(z + iβ(d+ k + 1/2))

∣∣∣∣∣ ≤ C−| cosh(z)|N ,

with C− independent of β and Re z to replace the denominatorG(π, β; z+
iβd) by G(π, β; z+ iβ(d+N)), with d+N ∈ S1/2. Of course, the numer-
ator G(π, β; z + iβu) can be treated analogously in case |Reu| > 1/2.

Accordingly, we assume from now on

(215) u, v ∈ S1/2.

We first use the integral representation resulting from (187) and (188)
to write

(216)
G(π, β; z + iβu)

G(π, β; z + iβd)

= exp
(∫ ∞

0

dy

y

( sinh(β(d− u)y) cos(2yz + iβ(d+ u)y)

sinh(πy) sinh(βy)
+

u− d

πy

))
.

Using the identity (cf. (3.21) in [R97])

(217) ln(2 cosh z) =

∫ ∞

0

dy

y

(
1

πy
− cos 2yz

sinh πy

)
, |Im z| < π/2,

we now deduce

(218)
G(π, β; z + iβu)

G(π, β; z + iβd)
exp((d− u) ln(2 cosh z))

= exp

∫ ∞

0

dy

y sinh πy
I(y),

where we have set

(219) I(y) ≡ sinh β(d− u)y

sinhβy
cos(2yz + iβ(d+ u)y) + (u− d) cos 2yz.
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As a consequence, the proposition follows when we can prove a bound

(220)

∣∣∣∣
∫ ∞

0

dy

y sinhπy
I(y)

∣∣∣∣ ≤ c(u, d, ρ),

with c continuous on S2
1/2 × [0, π/2).

To this end, we write the integral as a sum of integrals

(221) I1 ≡
∫ ∞

1

dy

y sinh πy
I(y), I2 ≡

∫ 1

0

dy

y sinhπy
I(y).

In the first integral we write

(222) I(y) =

(
sinh β(d− u)y

sinhβy
− (d− u)

)
× cos(2yz + iβ(d+ u)y) + (d− u)(cos(2yz + iβ(d+ u)y)− cos 2yz).

Now from our assumption (215) we deduce a bound

(223)

∣∣∣∣ sinh(d− u)x

sinhx
− (d− u)

∣∣∣∣ < c(d− u), ∀x > 0,

with c(v) continuous on S1; also, using (209) we obtain

(224) | cos(2yz + iβ(d+ u)y)| ≤ exp(y(2|Im z|+ β|Re (d+ u)|))
≤ exp(y(π/2 + ρ)).

Hence we get

(225) |I1| ≤
∫ ∞

1

dy

y sinhπy

(
[c(d− u) + |d− u|] exp(y(π/2 + ρ))

+ |d− u| exp(2y|Im z|)) ≤ c1(u, d, ρ),

where c1 is continuous on S2
1/2 × [0, π/2).

In the second integral I2 we use

(226)
sinhβ(d− u)y

sinh βy
= (d− u)

(
1 +O(β2y2)

)
,

and

(227) cos(2yz + iβ(d+ u)y)

=
(
cos 2yz − iβ(d+ u)y sin 2yz

)(
1 +O(β2y2)

)
,
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so that we wind up with

(228) I(y) = −iβ(d2 − u2)y sin 2yz +O(β2y2), βy → 0.

Here, the implied constant can be chosen uniformly for u and d varying
over C-compacts and Im z varying over bounded intervals. From this we
readily deduce

(229) |I2| ≤ c2(u, d, Im z),

with c2 continuous on C2 × R.
Combining the estimates (225) and (229) yields (220), so the propo-

sition follows. Q.E.D.

Consider next the weight function. Again, it is illuminating to con-
sider a special case: Letting N ∈ N with N > 1, it follows from (185)
that we have an explicit evaluation

(230) w(π, β,Nβ; z) = 22N sinh(z)2
N−1∏
k=1

sinh(z + ikβ) sinh(z − ikβ).

Hence we should not aim for a bound C sinh(z)2N with C uniform for
z > 0 and β sufficiently small, since such a bound is not valid near
z = 0. On the other hand, this snag is not present for a bound of
the form C sinh(Nz)2, and the β → 0 limit is majorized by the latter
function for C = 22N . Indeed, a more general inequality holds true:

(231) sinh(z)a ≤ sinh(az), z > 0, a ≥ 1.

(Its proof is straightforward, cf. (101)–(102) in [HR15].)
For a < 1 it is manifestly false that the function sinh(z)a is majorized

by C sinh(az) for all z > 0. Therefore the g-restriction in the following
proposition cannot be relaxed.

Proposition 19. Letting β ∈ (0, 1], we have an inequality

(232) w(π, β, gβ; z) < C(g) sinh(gz)2,

where g ≥ 1, z > 0 and C is a positive continuous function on [1,∞).

Proof. On account of (230) and (231), the bound (232) holds true
for g = N . Our proof for the general case involves a lot more effort. We
begin by using a couple of formulas from Section V A in [R97], where
the above weight function was studied in considerable detail.

The first formula is loc. cit. (5.15), which implies

(233) w(π, β, (g + 1)β; z) = 4 sinh(z + igβ) sinh(z − igβ)w(π, β, gβ; z).
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(To be sure, (233) can be derived directly from (185).) From this it is
easy to see that we need only show (232) for g ∈ [1, 2].

Next, we introduce a new weight function w+ by setting

(234) w(π, β, gβ; z) = 4 sinh(z)2w+(π, β, gβ; z),

cf. loc. cit. (5.14). Then it suffices to prove that for all (β, g, z) ∈
(0, 1]× [1, 2]× (0,∞) we have a bound

(235) w+(π, β, gβ; z) < C exp(2(g − 1)z).

To this end we invoke the integral representation

(236) w+(π, β, gβ; z)

= exp

(
−2

∫ ∞

0

dy

y

(
Q(β, g; y) cos 2yz +

1− g

πy

))
,

where

(237) Q(β, g; y) ≡ sinh(g − 1)βy

sinh βy
· cosh(π − gβ)y

sinhπy
,

cf. loc. cit. (5.35) and (5.36). (This representation can be derived by
using (187) and (188).) In order to exploit this explicit formula, we need
the auxiliary integral

(238) f(z) ≡ 1

π

∫ ∞

0

dy

y2
(1− cos 2yz) =

2z

π

∫ ∞

0

du

u2
(1− cosu).

Integrating by parts in the integral over (ε, R) and then taking ε → 0
and R → ∞, we arrive at

∫∞
0

du sinu/u = π/2, so that f(z) = z. We
can therefore rewrite (236) as

(239) w+(π, β, gβ; z)

= exp(2(g − 1)z) exp
(
− 2

∫ ∞

0

dy

y

(
Q(β, g; y) +

1− g

πy

)
cos 2yz

)
.

Comparing (239) to (235), we conclude that it remains to prove

(240)

∫ ∞

0

dy

y

(
Q(β, g; y) +

1− g

πy

)
cos 2yz > c,

with c ∈ R independent of (β, g, z) ∈ (0, 1] × [1, 2] × (0,∞). We begin
by showing this holds for the integral over (0, 1). Then we can use

(241)

(
Q+

1− g

πy

)
= (g − 1)

(
coth(πy)− 1

πy

)
+O(βy), βy → 0,
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where the implied constant can be chosen uniformly for (β, g) ∈ (0, 1]×
[1, 2]. Clearly, this entails

(242)

∣∣∣∣
∫ 1

0

dy

y

(
Q+

1− g

πy

)
cos 2yz

∣∣∣∣ ≤ c1,

with c1 independent of (β, g, z) ∈ (0, 1]× [1, 2]× (0,∞).
Obviously uniform boundedness is also true for the integral

(243)

∫ ∞

1

dy

y2
cos 2yz,

contributing to the integration over (1,∞) in (240). Hence we are done
when we can show

(244)

∫ ∞

1

dy

y
Q(β, g; y) cos 2yz > c2,

with c2 independent of (β, g, z) ∈ (0, 1] × [1, 2] × (0,∞). This last step
of our proof is the most arduous one. The difficulty is that the integral
does not converge absolutely for β = 0, since Q then reduces to coth(πy),
cf. (237).

Our method to get around this last obstacle hinges on Q being a
monotonically decreasing function of y. This feature is not obvious at
face value, but can be gleaned from the logarithmic derivative

(245) Q′/Q = (g − 1)β coth(g − 1)βy − β cothβy

+ (π − gβ) tanh(π − gβ)y − π cothπy.

Indeed, for all (β, g, y) ∈ (0, 1] × [1, 2] × (0,∞), the difference on the
second line is clearly negative, whereas a moment’s thought shows the
first difference is nonpositive. (This follows in particular from x cothx
being increasing on (0,∞).)

For a fixed z > 0, consider now the smallest zero y0(z) ∈ (1,∞)
of cos 2yz for which sin(2y0(z)z) = −1. We assert that the integral
of y−1Q(β, g; y) cos 2yz over (y0(z),∞) is positive. To see this, note
that by monotonicity of Q/y the integral over an interval between two
successive zeros of the function cos 2yz on which it is positive is larger
than that over the next such interval, on which it is negative. From this
our assertion follows.

It remains to show that the integral over the interval (1, y0(z)) is
uniformly bounded below for (β, g, z) ∈ (0, 1]× [1, 2]× (0,∞). First we
put

(246) Λ ≡ Q(β, g; 1),
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and note that Λ is uniformly bounded above. Next we fix attention on
the z-values

(247) z ∈ (0, 3π/4) ⇒ y0(z) = 3π/4z.

Then the interval length is bounded above by 3π/4z and on this inter-
val the integrand is bounded below by −Λ. The integral is therefore
bounded below by −3πΛ/4z, but with this crude bound we cannot ex-
clude a negative divergence as z goes to 0.

However, as soon as z < π/4, the function cos 2yz is positive for
y ∈ [1, π/4z) and negative for y ∈ (π/4z, 3π/4z). Now the latter interval
has length π/2z, but on it the integrand is actually bounded below by
−Λ · 4z/π. Hence the integral over this interval is bounded below by
−2Λ.

The upshot is that the pertinent integral is uniformly bounded below
for z ∈ (0, 3π/4). Choosing next z ≥ 3π/4, we need only use once
more that the interval length on which cos 2yz is negative equals π/2z,
together with Q(β, g; y)/y < Λ for y > 1, to deduce that the contribution
from the leftmost negative interval is bounded below by −Λ · π/2z ≥
−2Λ/3. This completes the proof that the integral is uniformly bounded
below, so the proposition follows. Q.E.D.

§Appendix C. Uniform bounds on the G → Γ limit

In Subsection III A of [R97] it is shown that the function

(248) H(s; z) ≡ G(1, s; sz + i/2) exp[iz ln(2πs)− 2−1 ln(2π)], s > 0,

converges to 1/Γ(iz + 1/2) as s → 0, uniformly for z in C-compacts,
cf. (3.72) in loc. cit. This involves the product function

(249) P (s; z) ≡ H(s; z)Γ(iz + 1/2),

and its integral representation

(250) P (s; z) = exp I(s; z), |Im z| < 1/2 + 1/s,

where

(251) I(s; z) ≡ i

∫ ∞

0

fs(t)[sin(2zt)− 2z sinh(t)]dt,

(252) fs(t) ≡ exp(−t/s)

2t sinh(t) sinh(t/s)
,
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cf. the proof of Proposition III.6 in loc. cit. Indeed, from this represen-
tation it is easy to check

(253) lim
s→0

P (s; z) = 1,

uniformly on C-compacts.
Just as in Appendix B, we now supplement this limit with bounds

that are uniform for Re z ∈ R and s small enough, with a view to
invoke dominated convergence forG-integrals occurring in the main text,
cf. Section 4. We begin by estimating |P (s; z)|.

Proposition 20. For all z ∈ C with |y| = |Im z| ≤ R ∈ [1,∞) and
s ∈ (0, 1/R], we have

(254) |P (s; z)| = exp(πsy|x|) exp(mP (s; z)), z = x+ iy,

where

(255) |mP (s; z)| < c(R) ln(1 + |x|) + d(R),

with c and d positive continuous functions on [1,∞).

Proof. Letting |y| ≤ R and s ∈ (0, 1/R], we have

(256) |P (s; z)| = expK(s; z),

where

(257) K(s; z) ≡
∫ ∞

0

fs(t)D(z, t)dt,

D(z, t) ≡ 2y sinh(t)− sinh(2yt) cos(2xt),

as is easily verified from (250)–(252). Now we write

(258) mP (s; z) ≡ K(s; z)− πsy|x|

= K(s; z) + sy

∫ ∞

0

dt

t2
(cos 2xt− 1),

and telescope the right-hand side as

(259)
2∑

j=1

∫ 1

0

Ij(s; z, t)dt+

∫ ∞

1

fs(t)D(z, t)dt

+ sy

∫ ∞

1

dt

t2
(cos 2xt− 1),
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with

(260) I1 ≡ fs(t)L1(y, t), L1 ≡ 2y sinh t− sinh 2yt,

(261) I2 ≡ L2(s; y, t)(cos 2xt− 1)/t, L2 ≡ sy/t− tfs(t) sinh 2yt.

We proceed to bound the four summands of mP (s; z). First, we
have

(262) L1(y, t) =
t3

3
(y − 4y3) +O(t5), t → 0,

whence we deduce

(263)

∣∣∣∣
∫ 1

0

I1dt

∣∣∣∣ < c1(R), s ∈ (0, 1/R], |y| ≤ R,

with c1 continuous on [1,∞). To estimate the second summand, we use
the mean value theorem to rewrite L2 as

(264) L2 =
sy

t

(
1− e−t/s q(t)q(t/s)

q(2yt)

)

= −sy∂t

(
e−t/s q(t)q(t/s)

q(2yt)

)
t=t′

, q(v) ≡ v

sinh v
,

with t′ ∈ (0, t). From this we deduce

(265) |L2(s; y, t)| < c2(R), s ∈ (0, 1/R], |y| ≤ R, t ∈ (0, 1),

with c2 continuous on [1,∞). Hence we obtain

(266)

∣∣∣∣
∫ 1

0

I2dt

∣∣∣∣ < 2c2(R)

∫ |x|

0

du

u
sin2 u

< 2c2(R)(c+ ln(1 + |x|)), s ∈ (0, 1/R], |y| ≤ R,

with c =
∫ π/2

0
du sin2 u/u, say.

For the third summand we use

(267) |D(z, t)| < 2R sinh t+ sinh 2Rt, |y| ≤ R, t > 1,

to infer

(268)

∣∣∣∣
∫ ∞

1

fs(t)D(z, t)dt

∣∣∣∣ < c3(R), s ∈ (0, 1/R], |y| ≤ R,



Product formulas for conical functions 241

with c3 continuous on [1,∞). Finally, we clearly have

(269)

∣∣∣∣sy
∫ ∞

1

dt

t2
(cos 2xt− 1)

∣∣∣∣ < 2, s ∈ (0, 1/R], |y| ≤ R.

Combining this with the bounds (263), (266) and (268), the proposition
readily follows. Q.E.D.

Next, we bound |Γ(iz + 1/2)|, z = x+ iy, for y < 1/2, by using the
representation

(270) Γ(iz + 1/2) = (2π)1/2 exp

(∫ ∞

0

dt

t

(
e−2izt

2 sinh t
− 1

2t
+ ize−2t

))
,

cf. (A37) in [R97].

Proposition 21. For all z ∈ C with y = Im z < 1/2, we have

(271) |Γ(iz+1/2)| = exp(−π|x|/2−y ln(1+ |x|)+mΓ(z)), z = x+ iy,

where

(272) |mΓ(z)| < d(y),

with d(y) a continuous function on (−∞, 1/2).

Proof. We follow the proof of the previous proposition, both in
spirit and in notation. Letting y < 1/2, we have

(273) |Γ(iz + 1/2)| = (2π)1/2 expK(z),

where

(274) K(z) ≡
∫ ∞

0

dt

t
D(z, t), D(z, t) ≡ e2yt

2 sinh t
cos 2xt− 1

2t
− ye−2t,

as is clear from (270). Now we write

(275) K(z) + π|x|/2 + y ln(1 + |x|)

= K(z)− 1

2

∫ ∞

0

dt

t2
(cos 2xt− 1) + y ln(1 + |x|)

=
2∑

j=1

∫ 1

0

Ij(z, t)dt+

∫ ∞

1

dt

t
D(z, t)− 1

2

∫ ∞

1

dt

t2
(cos 2xt− 1),

where

(276) I1 ≡ t−1L1(y, t), L1 ≡ e2yt

2 sinh t
− 1

2t
− ye−2t,
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(277) I2 ≡ y ln(1 + |x|) + L2(y, t)(cos 2xt− 1)/t, L2 ≡ e2yt

2 sinh t
− 1

2t
.

We proceed to bound the four terms. First we observe

(278) L1(y, t) = t(y2 + 2y − 1/12) +O(t2), t → 0.

From this we obtain

(279)

∣∣∣∣
∫ 1

0

I1dt

∣∣∣∣ < d1(y),

with d1 continuous on R. To handle the second term, we write L2 as

(280) L2(y, t) = y + tr(y, t),

and note that we then have

(281) |r(y, t)| < c2(y), t ∈ (0, 1),

with c2 continuous on R. Using the bound

(282)

∣∣∣∣ln(1 + a) +

∫ a

0

du

u
(cos 2u− 1)

∣∣∣∣ < c, a ≥ 0,

whose proof is straightforward, we now obtain

(283)

∣∣∣∣
∫ 1

0

I2dt

∣∣∣∣ < d2(y),

with d2 continuous on R.
In order to bound the third term, we use

(284) |D(z, t)| < e2yt

2 sinh t
+

1

2t
+ |y|e−2t, y < 1/2, t > 1,

to get

(285)

∣∣∣∣
∫ ∞

1

dt

t
D(z, t)

∣∣∣∣ < d3(y),

with d3 continuous on (−∞, 1/2). Finally, we clearly have

(286)
1

2

∣∣∣∣
∫ ∞

1

dt

t2
(cos 2xt− 1)

∣∣∣∣ < 1,

so together with (279), (283) and (285), this yields the proposition.
Q.E.D.
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For the applications we have in mind, it is expedient to switch from
H(s; z) (248) to

(287) G(β; z) ≡ H(β/π; z + i/2)

= G(π, β; iπ/2 + iβ/2 + βz) exp(iz ln(2β)− 2−1 ln(4πβ)).

(Here we used the scaling relation (191).) The last result of this paper
is now readily obtained by combining the two previous propositions.

Proposition 22. We have

(288) lim
β→0

G(β; z) = 1/Γ(iz),

uniformly for z varying over C-compacts. For all z ∈ C with Im z ∈
[−R, 0), R ∈ [1,∞), and β ∈ (0, π/R], we have

(289) |G(β; z)| = exp[(β(Im z + 1/2) + π/2)|Re z|] exp(mG(β; z)),

where

(290) |mG(β; z)| < γ(Im z) ln(1 + |Re z|) + δ(Im z),

with γ and δ positive continuous functions on (−∞, 0). Finally, for
all k ∈ R and β ∈ (0, 1/2πR], R ∈ [1,∞), we have

(291) |G(β; k)| = exp[(β/2 + π/2)|k|] exp(mG(β; k)),

where

(292) |mG(β; k)| < C1 ln(1 + |k|) + C2.

Proof. Clearly, (288) follows from (253). Likewise, (289)–(290) are
clear from combining the previous two propositions. To obtain (291)–
(292), however, we cannot use the last one, since now we have y = 1/2.

On the other hand, from the reflection equation we infer

(293) |1/Γ(ik)| = (k sinh(πk)/π)1/2, k ∈ R,

and when we combine this with (254)–(255) we deduce (291)–(292).
Q.E.D.
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