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A variant of Shokurov’s criterion of toric surface

Noboru Nakayama

Abstract.

As a variant of Shokurov’s criterion of toric surface, we give a
criterion of two new classes of normal projective surfaces, called pseudo-
toric surfaces of defect one and half-toric surfaces. A typical example
of pseudo-toric surface of defect one is a projective toric surface blown
up at a non-singular point of the boundary divisor. A half-toric surface
is the quotient of a projective toric surface by an almost free involution
preserving the boundary divisor. The structure of pseudo-toric surface
of defect one and that of half-toric surface are also studied in detail.
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81. Introduction

We work over the complex number field C. As a surface, we mean
a two-dimensional separated integral scheme (or algebraic space) of fi-
nite type over SpecC. A normal Moishezon surface is defined as a
two-dimensional normal integral separated algebraic space proper over

Received May 18, 2015.

Revised December 22, 2015.

2010  Mathematics Subject Classification. Primary 14J26; Secondary
14M25, 14J10.

Key words and phrases. normal surface, rational surface, toric variety.



288 N. Nakayama

Spec C (cf. Notation and conventions, 1 below). The main purpose of
this article is to give a generalization of Shokurov’s criterion [51, Th. 6.4]
of toric surface in the case of integral divisor, by introducing new sur-
faces, called pseudo-toric surfaces and half-toric surfaces. We shall also
describe in detail the structures of pseudo-toric surfaces of defect one
and of half-toric surfaces, respectively. In the Shokurov criterion, the
projective toric surfaces X with boundary divisor D are characterized
by a condition on the singularity of (X, D), a numerical property of the
divisor Kx + D, and by an information on the number of irreducible
components of D. More precisely, the following is considered as the
Shokurov criterion in the case of integral divisor (for a proof, see also
[44, §8.5]).

Theorem 1.1 (cf. [51, Th. 6.4]). Let X be a normal projective
surface and D a reduced divisor. Then, the pair (X, D) is toric, i.e., X
1s a toric variety with boundary divisor D, if and only if

(i) (X, D) is log-canonical,

(i) —(Kx + D) is nef, and

(i) n(D) > p(X)+2,
where n(D) stands for the number of irreducible components of D and
p(X) denotes the Weil-Picard number of X, i.e., the dimension of the
vector space N(X) of R-divisors modulo the numerical equivalence rela-
tion (cf. Definitions 2.7 and 2.23 below).

Remark 1.2. (1) The Weil-Picard number p(X) coincides with
the number p defined in [51, Th. 6.4].

(2) For a projective toric surface X with boundary divisor D, it
is known that the pair (X, D) is log-canonical, Kx + D ~ 0,
n(D) = p(X) + 2, and the Picard number p(X) is equal to
p(X) (cf. Lemma 3.11 below).

(3) The original criterion [51, Th. 6.4] by Shokurov treats the case
where D is only a Q-divisor and n(D) in (iii) is replaced with
the sum > d; for the prime decomposition D = 5" d; D;. More-
over, the original criterion is stated in a relative situation.

(4) In [33], M°Kernan shows that Theorem 1.1 holds true even if
we replace the inequality of (iii) by

n(D) > r(D) + 2,

where r(D) is the dimension of the vector subspace N(X)p
of N(X) generated by the numerical equivalence classes of the
irreducible components of D (cf. Definition 2.23).

(5) Higher-dimensional generalizations of Shokurov’s criterion are
studied in [45], [33], [20], etc.
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We shall give a generalization of Theorem 1.1 essentially by weak-
ening the condition (iii). Especially, we have a classification of (X, D)
satisfying (i), (i), and n(D) = p(X) + 1. The following is our main
theorem.

Theorem 1.3. Let X be a normal Moishezon surface, i.e., a two-
dimensional normal integral separated algebraic space proper over C (cf.
Notation and conventions, 1 below) and let D be a reduced divisor on
X. Here, we define the defect 6(X, D) and the complexity ¢(X, D) by

8(X,D):=p(X)+2—-—n(D) and ¢(X,D):=r(D)+2—-n(D)

(¢f. Definition 2.23). Suppose that
(i) (X, D) is log-canonical along D (cf. Remark 3.18(4)), and
(i) —(Kx + D) is nef.
Then, §(X,D) > ¢(X,D) > 0. Here, ¢(X,D) =0 if and only if (X, D)
is a projective toric surface, and in this case, (X, D) = 0. Furthermore,
§(X,D) =1 if and only if one of the following holds:
(1) (X,B+ D) is a projective toric surface for a prime divisor
B ¢ D;
(2) (X, D) is a pseudo-toric surface of defect one (cf. Definition
6.1);
(3) (X, D) is a half-toric surface (c¢f. Definition 7.1).

The pseudo-toric surfaces and half-toric surfaces are defined and
studied in Sections 6 and 7 below, respectively. A pair (X, D) is called
a pseudo-toric surface if X is a projective rational surface with only
rational singularities, (X, D) is log-canonical, Kx + D ~ 0, and if D
is a big cyclic chain of rational curves (cf. Definitions 6.1 and 4.3, and
Lemma 6.3). A pair (X, D) is called a half-toric surface if Kx + D +# 0,
and if it is obtained as the quotient of a projective toric surface (V, Dy/)
by an involution which preserves the boundary divisor Dy and which
has at most finitely many fixed points (cf. Definition 7.1). Theorem 1.6
(resp. 1.7) below is our structure theorem of pseudo-toric surfaces of
defect one (resp. of half-toric surfaces).

Convention 1.4. By abuse of notation, we call (X, D) a toric sur-
face when X is a normal algebraic surface and D is a reduced divisor
such that X is a two-dimensional toric variety with X \ D as an open
torus. The divisor D is called the boundary divisor. Similarly, the pair
(X, D) of a surface X and a divisor D on X is called a surface for
simplicity.
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Remark. (1) Theorem 1.1 and MKernan’s generalization in
Remark 1.2(4), respectively, are derived from Theorem 1.3 in
the case where 6(X, D) =0 and ¢(X, D) = 0.

(2) The defect §(X, D) and the complexity ¢(X, D) are introduced
in [33], where the defect is called the absolute complezity.

The following is a result only on the complexity but where the con-
dition (ii) of Theorem 1.3 is replaced. This is also a generalization of
M¢Kernan’s version (cf. Remark 1.2(4)) of the Shokurov criterion in the
case of integral divisor.

Theorem 1.5. Let X be a normal Moishezon surface and D a re-
duced divisor on X. Suppose that

(i) (X, D) is log-canonical along D,

(i) D is connected, and

(ili) —(Kx + D) is nef on D (cf. Definition 2.14(ii)).
Then, ¢(X,D) > 0. If ¢(X, D) < 1, then X is a projective rational sur-
face with only rational singularities. Moreover, the equality ¢(X, D) =0
holds if and only if there is a birational morphism g: X — X such that

(1) (X, D) is a projective toric surface for D := g.(D), and

(2)  the g-exceptional locus is contained in X \ D.

We shall prove Theorems 1.3 and 1.5 in Section 8.

Pseudo-toric surfaces

We shall explain some facts and results on pseudo-toric surfaces. As
a consequence of Shokurov’s criterion (Theorem 1.1), we see that the de-
fect (X, D) of a pseudo-toric surface (X, D) is always non-negative, and
6(X,D) =0 if and only if (X, D) is a projective toric surface. A typical
construction of pseudo-toric surface from a projective toric surface is
given by the blowing up at a non-singular point of the boundary divisor:
Let (X, D) be a projective toric surface and P a non-singular point of
D. Then, X is also non-singular at P. Let f: Y — X be the blowing up
at P and let D’ be the proper transform of D in Y. Then, (Y,D’) is a
pseudo-toric surface. In fact, we have Ky + D' = f*(Kx + D) ~ 0. The
operation getting Y \ D’ from X \ D is called a half-point attachment
in the study of open surfaces (cf. [18, §2], [12, (6.21)]). In this case,
we have 6(Y,D’) = 1. We can observe that any pseudo-toric surface
is essentially obtained from a projective toric surface by successive op-
erations of half-point attachment and followed by contractions of some
divisors. But, we can not take the half-point attachment freely, since we
have required that the boundary divisor D is big (cf. Definition 6.1(iv)).
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Ezxample. Let X be a non-singular projective rational surface ad-
mitting an elliptic fibration 7: X — T such that 7 has a singular fiber
D of type I, for some a > 0 (in Kodaira’s notation). Then, D is not big
but (X, D) satisfies the other conditions in Definition 6.1 of pseudo-toric
surfaces.

Remark. In [32], Looijenga has studied the pairs (X, D) of a normal
projective rational surface X and an anti-canonical reduced divisor D
satisfying the following conditions:

e X is non-singular along D,

e D is a normal crossing divisor consisting of rational curves,

e D contains no (—1)-curves, and

e the intersection matrix of D is negative semi-definite.
In particular, (X, D) satisfies the conditions in Definition 6.1 except the
bigness condition of D. For such (X, D) above, assuming the number
n(D) of irreducible components of D to be at most 5, Looijenga has
found a natural infinite root system in the Picard group Pic(X) which
describes the classes of (—1)-curves on X. He uses the root systems in
order to construct fine moduli spaces of (X, D) above with n(D) < 5.

We introduce the notion of toroidal blowing up in Definition 4.19
below. This is étale locally a birational morphism of toric varieties. For
a pseudo-toric surface (X, D), if Y — X is a toroidal blowing up with
respect to (X, D), then (Y, Dy) is also pseudo-toric for Dy = f~1(D),
and Y \ Dy ~ X \ D. We introduce the notion of tangential blowing
up of order m as an m-times operation of half-point attachment at the
“same point” followed by the contraction morphism of all the exceptional
curves not meeting the proper transform of the boundary divisor (cf.
Definition 4.24, Lemma 4.25). In Theorem 6.5 below, we prove that
every pseudo-toric surface of defect one is obtained from some projective
toric surface by a tangential blowing up and by a toroidal blow-down.
By this result, we can prove the following fundamental result:

Theorem 1.6. For any pseudo-toric surface (X, D) of defect one,
the following hold:
(1) The group Aut(X; D) of automorphisms of X preserving each
irreducible component of D is isomorphic to the multiplicative
group C* := C\ {0}.
(2)  The open subset X \ D is affine and its coordinate ring is iso-
morphic to

C[X7y7tvt71}/(xy - (t o 1)k+1)
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for an integer k > 0. Here, the action of 6 € C* = Aut(X; D)
on X \ D is given by (x,y,t) — (0x,07ty,t). In particular,
X \ D is non-singular when k = 0, and has a rational double
point of type A as a unique singular point when k > 1. As a
consequence, X has only cyclic quotient singularities.

(3) Letv: N — X\ D be the minimal resolution of singularities.
Then, the logarithmic irregularity (cf. [17], [19]) of N is one.
Moreover, the quasi-Albanese map (cf. [16], [19]) of N is iso-
morphic to h o v for the morphism h: X \ D — Gy to the
one-dimensional algebraic torus Gy corresponding to the natu-
ral ring homomorphism

Clt,t™'] = Clx,y,t,t 7]/ (xy — (¢ = D))
with respect to the coordinate ring in (2).

The proof of Theorem 1.6 is given at the end of Section 6.2. In the
proof of Theorem 1.6, a special linear chain Li 4+ Lo of rational curves
in Definition 6.7 plays an important role.

Half-toric surfaces

Next, we shall explain some facts and results on half-toric surfaces.
By Definition 7.1, giving a half-toric surface (X, D) is equivalent to giv-
ing an involution ¢ of a projective toric surface (V, Dy ) such that ¢ has at
most finitely many fixed points, ¢(Dy ) = Dy, and ¢ does not preserve a
nowhere vanishing global logarithmic two-form n € H(V, Q% (log Dy)).
Here, (X, D) is the quotient of (V, Dy) by ¢, and moreover, the induced
involution on the two-dimensional algebraic torus V \ Dy ~ G2 is ex-
pressed uniquely up to the choice of coordinates (cf. Lemma 7.17). By
this result, we can prove the following fundamental result:

Theorem 1.7. For any half-toric surface (X, D), the following hold:

(1)  The normal projective surface X is rational with only rational
singularities, the pair (X, D) is log-canonical, D is a big linear
chain of rational curves, and §(X,D) = 1.

(2)  The open subset X \ D is non-singular and affine, and its co-
ordinate ring is isomorphic to

(C[X>X_17Y>Z]/(X(y2 - 1) - 22)'

In particular, the isomorphism class of X \ D is independent
of the choice of (X, D).

(3)  The fundamental group of the complex manifold (X \ D)* as-
sociated with X \ D is generated by two elements a and b with
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one relation: aba™' = b~'. In other words, the fundamental
group is isomorphic to the semi-direct product 7 x Z, where
the action of the quotient group Z on the normal subgroup Z is
given by m - x = (—1)™x.

(4) The group Aut(X; D) of automorphisms of X preserving each
irreducible component of D is isomorphic to C*x (Z/27). Here,
the action of (0,k) € C* x (Z/27) on X \ D is given by

(x,7,2) = (0%, (=1)*y, (~1)"6z)

with respect to the coordinate ring in (2).

(5)  For the open subset X\ D, the logarithmic irreqularity g(X \ D)
is one, and the quasi-Albanese map is isomorphic to the mor-
phism X \ D — Gy corresponding to a natural ring homomor-
phism

Clx,x '] = Clx,x 1 y,2]/(x(y* — 1) — 2?)

with respect to the coordinate ring in (2).

(6)  For the minimal resolution p: M — X of singularities, Dy; =
p~Y(D) is a simple normal crossing divisor consisting of ratio-
nal curves whose dual graph is the extended Dynkin diagram
D; with k+1=mn(Dy) = p(M)+ 1> 6, in other words, the
same dual graph as the singular fiber of type I;,_, of an elliptic
surface.

The proof of Theorem 1.7 is given at the end of Section 7.4. We
can also show that the open surface X \ D is just the surface having
an NC-minimal completion of type H[—1,0, —1] in Fujita’s classification
[12] of open surfaces (cf. Remark 7.21). Kojima [28] considers a similar
variant of Shokurov’s criterion for open surfaces and announces a certain
characterization of the surface of type H[—1,0,—1].

Remark. The referce informed the author of a recent article [46] of
Prokhorov in which he has proved a result similar to our Theorem 1.3 in
[46, Th. 5.1]. However, this is weaker than Theorem 1.3 combined with
Theorems 1.6 and 1.7. For example, when X is projective and (X, D) is
log-canonical with Kx + D ~ 0, and when §(X, D) = 1, he proves only
that X admits an effective action of C*.

Remark. The results in this article hold not only over C but also
over any algebraically closed field of characteristic zero by the Lefschetz
principle. Even for an algebraically closed field of characteristic p >
0, the same results seem to hold except the results related to double-
covers, where we need to assume: p # 2. Indeed, the vanishing theorem
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(Theorem 2.17), the cone and contraction theorems (Theorems 2.19 and
2.21), and the projectivity criterion (Lemma 2.31(1)) are all valid in any
characteristic. However, we do not care the positive characteristic case
so much.

The organization of this article

In Section 2, we recall basic facts on normal surfaces, especially on
Moishezon surfaces, including the intersection theory of divisors, nu-
merical properties of divisors, the cone and contraction theorems, and
projectivity criteria. These are studied and explained briefly in Sakai’s
articles [47], [48], [49], etc., but here, we shall give a unified explanation
for the readers’ convenience.

In Section 3, we recall some basics on toric varieties and log-canonical
pairs of dimension two. The singularities on toric surfaces and the de-
scription of projective toric surfaces are explained in Section 3.1. The
toroidal singularities are mentioned in Section 3.2, and some general
properties on log-canonical pairs are explained in the surface case in
Section 3.3. The classification of singularities of a log-canonical pair
(X, D) for a surface X and a reduced divisor D is explained briefly in
Section 3.4, and as an application, a classification result of singulari-
ties of (X, D) lying on a compact irreducible component C' of D with
(Kx + D)C <0 is obtained in Section 3.5.

Some key concepts are introduced and discussed in Section 4. These
are: the linear and cyclic chains of rational curves (cf. Section 4.1), the
double-covers étale in codimension one (cf. Section 4.2), the toroidal
blowing up (cf. Section 4.3), and the tangential blowing up (cf. Sec-
tion 4.4).

In Section 5, we determine the structure of the pair (X, D) of a
normal Moishezon surface X and a reduced connected divisor D such
that (X, D) is log-canonical along D, —(Kx + D) is nef on D, there is a
P!-fibration 7: X — T, and that D contains at least two fibers of 7. In
Section 5.1, we see that there are two possible cases (A) and (B), and
the structure is determined in Section 5.2 (resp. 5.3) for the case (A)
(resp. (B)).

The pseudo-toric surface and the half-toric surface are introduced
and studied in Sections 6 and 7, respectively. The definition and basic
properties of pseudo-toric surfaces are given in Section 6.1 as well as
the characterization of toric surface as a pseudo-toric surface of defect
zero. For pseudo-toric surfaces of defect one, more detailed information
is obtained in Section 6.2. The half-toric surface is defined in Section 7.1
with some basic properties, and there is explained a relation with an H-
surface in Section 7.2. The H-surface is considered as an NC-minimal
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completion of an open surface of type H[—1,0, —1] in the sense of Fujita

(cf. [12, (8.19)]). After giving a description of certain involutions of toric

surfaces in Section 7.3, we shall prove Theorem 1.7 in Section 7.4.
Finally in Section 8, we shall prove Theorems 1.3 and 1.5.

Motivation

A motivation for studying pseudo-toric surfaces of defect one comes
from the study on the classification of normal projective surfaces admit-
ting non-isomorphic surjective endomorphisms [41]. The classification in
[41] has completed for irrational surfaces, and the pseudo-toric surfaces
of defect one appear in the possible remaining cases of rational surfaces.
Some contents in Sections 2, 3, and 4 of this article are borrowed from
[41]. The study of half-toric surface is inspired by the article [28] of
Kojima mentioning H[—1,0,—1] in some classification results of open
surfaces.
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Notation and conventions

Unless otherwise mentioned, we shall use standard notation and
conventions of the classification theory and the minimal model theory of
projective varieties. Here, we shall explain some additional things in 1-6
below, but further special notation and conventions on normal surfaces
are prepared in Section 2.

1. A variety means an integral separated scheme (or algebraic space)
of finite type over SpecC: A curve (resp. surface) means a variety of
dimension one (resp. two). But, as a variety, we sometimes consider the
associated analytic space X" instead of the scheme X. For example, a
subscheme of X is said to be compact if it is proper over Spec C. By the
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functor X — X" the category of integral algebraic spaces proper over
C is equivalent to the category of Moishezon varieties (cf. [6, Th. (7.3)]).
So, for simplicity, by a normal Moishezon surface, we mean a normal
integral separated algebraic space of dimension two proper over C.

2. For a compact variety X, a curve on X means a compact (ir-
reducible) subvariety of dimension one, by abuse of notation, unless
otherwise stated. In particular, when dim X = 2, a curve means a prime
divisor. The curves are all projective. For a connected and reduced
projective scheme B of dimension one, the arithmetic genus p,(B) is
defined as dim H' (B, Op).

3. Let X be a normal variety. A divisor on X means simply a Weil
divisor on X, i.e., a finite linear combination D = > d;D; of prime
divisors D; on X with coefficients d; € Z. If we allow d; € Q (resp.
d; € R), the sum D = Y d;D; is called a Q-divisor (resp. R-divisor).
The set | 40 D; is called the support of D and is denoted by Supp D.
The expression D = > d;D; is called the irreducible decomposition (or
the prime decomposition) of D. If Supp D is compact, then D is said
to be compact. A Q-divisor D on X is said to be Q-Cartier if mD is
a Cartier divisor for some positive integer m. If every prime divisor on
X is Q-Cartier, then X is said to be Q-factorial. The canonical divisor
of X is denoted by Kx. Note that Kx is not unique as a divisor but
unique up to the linear equivalence relation.

4. A reflexive sheaf F on a normal variety X is by definition a co-
herent Ox-module such that F is isomorphic to the double-dual FVvV,
where FY stands for Homo, (F,Ox). It is known that a torsion-free
coherent O x-module F is reflexive if and only if F satisfies Serre’s con-
dition Sy (cf. [15, Prop. 1.6]). For a divisor D on X, we denote by
Ox (D) the associated reflexive sheaf of rank one: In case D is Cartier,
Ox (D) is the usual associated invertible sheaf, and in general, Ox (D)
is defined by the property that Ox (D) ~ j.Oy(D|y) for any open sub-
set U C X with codim(X \ U) > 2, where D|y is Cartier and j is the
open immersion U — X. Here, D is Cartier if and only if Ox (D) is
invertible. The reflexive sheaf Ox (K x) is written as wy, and is called
the canonical sheaf or the dualizing sheaf. In fact, wx ~ j.(£2) for
the open immersion j: U < X from the non-singular locus U, where
n = dim X. When X is Cohen-Macaulay (e.g., n = 2) and compact, we
have the Serre duality

H' (X, F)Y ~ Ext} ' (F,wx)

for any coherent Ox-module F.
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5. A fibration is a proper surjective morphism f: X — Y of nor-
mal varieties such that all the fibers are connected (equivalently, Oy ~
1+Ox). A fiber of f means a closed fiber with reduced structure, unless
otherwise stated. A P!-fibration is a fibration whose general fiber is iso-
morphic to P'. For a proper birational morphism f: X — Y of normal
varieties, the f-exceptional locus (or the exceptional locus for f) is the
set of points on X at which f is not an isomorphism. A prime divisor on
X is said to be f-exceptional (or exceptional for f) if it is contained in
the f-exceptional locus. Note that, when dim X = 2, the f-exceptional
locus is the union of f-exceptional curves.

6. For a ring R, the group of invertible elements of R is denoted by
R*. For example, C* = C\ {0}.

§2.  On normal Moishezon surfaces

In this section, we explain some basics on normal Moishezon sur-
faces, such as intersection theory of divisors (Section 2.1), numerical
properties of divisors (Section 2.2), the cone and contraction theorems
(Section 2.3), and projectivity criteria (Section 2.5). These topics have
been studied in Sakai’s article [47], [48], [49], etc. In Section 2.4, we de-
fine the defect 6(X, D) and the complexity ¢(X, D) for a normal Moishe-
zon surface X with a reduced divisor D and we study their properties
in connection with the class map.

2.1. Intersection number of two (Weil) divisors

We recall the notion of intersection numbers of two divisors on a
normal surface, and recall related properties (cf. [47, Sect. 1]).

Definition 2.1. Let X be a normal surface and let p: M — X
be a proper birational morphism from a non-singular surface M. For a
divisor D on X, the numerical pullback of D (due to Mumford [38]) is
defined as a Q-divisor

!
* — / . .
u* (D) :=D"+ E . a;F;

such that p*(D)E; = 0 for any 1 < ¢ < [, where D’ is the proper
transform of D in M, and Ey, ..., E; are the p-exceptional curves (cf.
Notation and conventions, 2 and 5). The rational numbers ay, ..., q
are uniquely determined, since the intersection matrix (E;F;)i<i j<i is
negative definite (cf. Theorem 2.6 below). For two divisors Dy and Do
on X, if Dy or Dy is compact (cf. Notation and conventions, 1), then
the intersection number Dq D5 is defined by

D1 Dy = p*(D1)p(D2) € Q.
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When D = D; = Dy, we write D? for D Ds. The intersections numbers
for Q-divisors and R-divisors are defined by linearity.

Remark. (1) For a Cartier divisor D, the numerical pullback

(2)

(3)

(4)

w* (D) coincides with the usual pullback as a Cartier divisor.
Let 7 be the determinant of the intersection matrix (E;E;)
above. Then, ru*(D) is Cartier. In particular, Dy D, € Z for
any such divisors D; and Dy as above.

The intersection number DDy does not depend on the choice
of w: M — X. If Dy is Cartier, and D, is compact, then
D1D2 = deg(OX(Dl)\DQ).

If Dy and D, are effective divisors without common irreducible
components and if Dy or Dy is compact, then D1 Dy > 0, where
DD, = 0 if and only if Supp Dy N Supp Dy = 0.

The following is well known (cf. [57, Lem. 7.1]).

Lemma 2.2. On a normal surface, let D =" a;D; be a finite linear
combination of compact R-divisors D; with real coefficients a;. Assume
that the matriz (D;D;) is negative-definite and that DD; < 0 for any i.
Then a; > 0 for any 1.

Definition 2.3. Let D = Zle d; D; be the irreducible decomposi-
tion of a compact R-divisor D on a normal surface. If the intersection
matrix (D;D;)1<i j<k is negative definite, we say that D is negative

definite.

Definition 2.4. Let f: Y — X be a morphism of normal surfaces.

(1)

(11-1)

For an R-divisor G on Y, when the restriction SuppG — X
of f is proper, the push-forward f.(G) is defined to be the
R-divisor Y d;b; f(G;), where the summation is taken over all
the irreducible components G; of G with dim f(G;) =1, b; =
multg, (G), and d; is the degree of the finite morphism G; —
F(Gy).

When f is a proper birational morphism, an R-divisor G is said
to be f-exceptional if Supp G is contained in the f-exceptional
locus, i.e., if f.(G) = 0.

Assume that f is a dominant morphism. For a divisor D on
X, the numerical pullback f*(D) is defined as follows. Let
pw: M — X and v: N — Y be proper birational morphisms
from non-singular surfaces M and N such that the induced
rational map g = u~'o fov: N — M is a morphism. Then,
we set

fH(D) = vilg" (1" (D)),
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where ¢g* denotes the pullback of Q-Cartier divisor. Here,
f*(D) is a Q-divisor, and it is independent of the choices of
w and v. The numerical pullback f*(A) of an R-divisor A is
defined by linearity.

In the situation of (3), when D is a reduced divisor, the support
of f*(D) is denoted by f~1(D), and is called the total transform
of D.

Remark. (1) The projection formula

(I1-2)

(2)
(11-3)

f1(D)G = Df.(G)

holds for any R-divisor D on X and for any R-divisor G on Y
such that Supp G — Y is proper.
If f is proper and surjective, then another projection formula

fef"(D) = (deg f)D

holds for any R-divisor D on X, where deg f denotes the degree
of the generically finite morphism f, i.e., the cardinality of a
general fiber.

Assume that f is a finite surjective morphism. Then, for a
divisor D on X, we can find an open subset U of X such
that D|y is Cartier and that codim(X \ U,X) > 2. Then,
codim(Y \ f~1(U),Y) > 2, since f is finite. Thus, the Cartier
divisor f*(D]y) is extended uniquely to a divisor on Y, which
is called the closure of f*(D|y). The numerical pullback f*(D)
is equal to the closure of f*(D|y).

Assume that f is a proper birational morphism. If D is an ef-
fective R-divisor on X, then f*D— D’ is effective for the proper
transform D’ of D in Y, and Supp f*(D) = f~(Supp D). In
particular, f~1(D) = f~1(Supp D) when D is reduced.

Remark 2.5. Let f: Y — X be a proper birational morphism of
normal surfaces. If an R-divisor G on Y is f-nef, i.e., GC' > 0 for any f-
exceptional curve C' (cf. Definition 2.14 below), then the difference A =
1 (f«(G)) — G is an effective R-divisor by Theorem 2.6 and Lemma 2.2.
In particular, if G is f-numerically trivial (cf. Definition 2.14 below),
i.e., GC =0 for any f-exceptional curve C, then G = f*(f.(Q)).

The following theorem on contraction criterion is well known:

Theorem 2.6 (Contraction Criterion). Let G be a compact reduced
divisor on a normal surface Y. Then, the following two conditions are
mutually equivalent:
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(i)  The dwisor G is negative definite (cf. Definition 2.3).

(ii)  There is a proper birational morphism f:Y — X to a normal
surface X such that dim f(G) = 0, f~Y(f(G)) = G, and f
induces an isomorphism Y \ G — X \ f(G).

We explain a history on the proof of Theorem 2.6 briefly. The impli-
cation (ii) = (i) is shown by Mumford in [38, p. 6]. The other implication
(i) = (ii) is proved by Grauert in [14, (e), pp. 366-367] (cf. [38]) in the
case where Y is a non-singular complex analytic surface. The same im-
plication is proved for a two-dimensional non-singular algebraic space Y
of finite type over C by Artin in [6, Cor. 6.12(b)]. The general case of
normal surface is reduced to the non-singular case by taking resolution
of singularities of Y (cf. [47, Th. (1.2)]).

Remark. The morphism f in Theorem 2.6 is called the contraction
morphism (or the blowdown) of G, which is uniquely defined up to iso-
morphism. Note that if Y is an algebraic space, then so is X, but even
if Y is a scheme, X is not necessarily a scheme (cf. [14, (e), p. 366]).

Definition. A prime divisor C' on a normal surface X is called a
negative curve if C' is compact and C? < 0. If C is a non-singular
rational curve lying on the non-singular locus of X with C? = —k < 0,
then C' is called a (—k)-curve.

Remark. The contraction morphism f in Theorem 2.6 is written as a
succession of contractions of negative curves. The (—1)-curve is just the
exceptional curve of the first kind. A negative curve C' on a non-singular
locus of X is a (—1)-curve (resp. (—2)-curve) if and only if KxC < 0
(resp. KxC =0).

Remark. A proper birational morphism p: M — X from a non-
singular surface M is called the minimal resolution of singularities of X
if there is no (—1)-curves in the p-exceptional locus. This is equivalent
to that Ky is p-nef (cf. Definition 2.14(i) below), i.e., KpC > 0 for
any p-exceptional curve C. The minimal resolution is unique up to
isomorphism over X.

2.2. Numerical properties of divisors

The intersection numbers defined in Section 2.1 give the numerical
equivalence relation & for R-divisors on a normal Moishezon surface
(cf. Notation and conventions, 1). We recall basic properties on the
real vector space N(X) of R-divisors modulo & for a normal Moishezon
surface X, and some results on numerical properties of R-divisors, such
as nef, big, and numerically ample, etc. (cf. Definition 2.11 below).



A wvariant of Shokurov’s criterion 301

Definition 2.7 (N(X), p(X)). Let X be a normal Moishezon sur-
face. We denote by Div(X) the divisor group of X, i.e., the free abelian
group generated by prime divisors on X. Note that a Q-divisor (resp.
an R-divisor) is an element of Div(X) ® Q (resp. Div(X) ® R). The
divisor class group CL(X) is the quotient abelian group Div(X)/~ by
the linear equivalence relation ~. Two R-divisors D; and D, are said
to be numerically equivalent to each other if D1C = DyC for any (com-
pact) curve C' on X. We write the numerical equivalence relation by
AJ. The numerical equivalence class of an R-divisor D is denoted by
cl(D) or clx(D); it is also called the numerical class for simplicity. We
define N(X) to be the group Div(X) ® R/& of the numerical classes of
R-divisors, which is a real vector space. The intersection numbers for
R-divisors induce a non-degenerate bilinear form N(X) x N(X) — R;
(z,y) — x -y, such that cl(D) - cl(F) = DE for two R-divisors D and
E. The Weil-Picard number p(X) of X is defined as dimg N(X).

Remark 2.8. For the Néron—Severi group NS(X'), which is the group
of Cartier divisors modulo the algebraic equivalence relation, we have
NS(X)®R C N(X). In particular, p(X) > p(X) for the Picard number
p(X) = rank NS(X). If X is non-singular, or more generally, if X is
Q-factorial (cf. Notation and conventions, 3), then p(X) = p(X).

Remark 2.9. Let f: Y — X be a surjective morphism of normal
Moishezon surfaces. Then, the push-forward f, and the numerical pull-
back f* of divisors induce the linear maps

Fei N(Y) = N(X) and  f*: N(X) = N(Y),

respectively, which satisfy fi(cly (G)) = clx(f«(G)) and f*(clx(D)) =
cly (f*(D)) for any R-divisors G on Y and D on X. By the projection
formulas (I1-2) and (II-3), we have

fr@)y=az-fly) and f.(f"(z)) = (deg f)z

for any z € N(X) and y € N(Y). In particular, the linear map f, is
surjective and the other map f* is injective.

Lemma 2.10. Let f: Y — X be a birational morphism of normal
Moishezon surfaces. Then, p(Y) = p(X) + k for the number k of f-
exceptional prime divisors. In particular, p(X) < p(M) holds for the
minimal resolution M — X of singularities.

Proof. Let C4, ..., Cy be the f-exceptional curves, and let v: N(Y")
— RP* be the homomorphism defined by v(D) = (DCy, ..., DCy) for
an R-divisor D on Y. Then, v is surjective, since det(C;C;) # 0 (cf.
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Theorem 2.6). The kernel of v is just the image of f*: N(X) — N(Y)
by Remark 2.5. Therefore, N(Y) ~ N(X) @ R®* and we have p(Y) =
p(X) + k. Q.E.D.

The following result is called the Hodge index theorem as in the
non-singular case.

Lemma. If C and D be R-divisors on a normal Moishezon surface
X such that cl(D) # 0 and D* > 0. If CD = 0, then C? <0, where the
equality C? = 0 holds if and only if c1(C) € Recl(D). In particular, if
D% >0 and CD = C? =0, then cl(C) = 0.

Proof. 1t is derived from the Hodge index theorem for non-singular
projective surfaces, as follows. Let p: M — X be a resolution of sin-
gularities. Then, M is projective by Fact 2.30 below. Since cl(D) # 0,
we can take an ample divisor H on M with p*(D)H # 0. We define a
real number 7 by (u*(C) — ru*(D)) H = 0. Since H? > 0, by the Hodge
index theorem for M, we have

0> (u*(C —rD))?=C%*—-2rCD + D? = D? + C? > C?,
where C? = 0 holds if and only if C —rD & 0. Q.E.D.

Definition 2.11. Let D be an R-divisor on a normal Moishezon
surface X.
(i) D is said to be numerically trivial if D & 0,
(ii) D is said to be nef if DC > 0 for any curve C' C X
(iii) D is said to be pseudo-effective if DB > 0 for any nef divisor
B on X;
(iv) D is said to be numerically ample if D* > 0 and DC > 0 for
any curve C' C X (cf. [48, p. 629]);
(v) D issaid to be big if D— A is pseudo-effective for a numerically
ample R-divisor A.

Remark 2.12. A numerically ample Cartier divisor is ample by the
Nakai-Moishezon criterion of ampleness ([39], [34]) when X is projective.
This holds true even if X is only a normal Moishezon surface (cf. [35, I,
Th. 6]).

Remark 2.13. By the projection formula (II-2), we infer that, for
a birational morphism f:Y — X of normal Moishezon surfaces, if an
R-divisor B on Y is nef, pseudo-effective, numerically ample, and big,
respectively, then so is f.(B). Similarly, if an R-divisor D on X is nef,
pseudo-effective, and big, respectively, then so is f*(D).
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Remark. Every normal Moishezon surface X admits a numerically
ample divisor. In fact, by Remark 2.13, p,(H) is numerically ample
for the minimal resolution p: M — X of singularities and for an ample
divisor H on M. In particular, the Hodge index theorem is equivalent to
that the signature of the intersection pairing on N(X) is (1, p(X) — 1).

On the properties “nef” and “numerically trivial,” we introduce
some variants:

Definition 2.14. Let X be a normal surface and D an R-divisor.

(i) D issaid to be f-nef (rvesp. f-numerically trivial) for a proper
morphism f: X — S, if DC' > 0 (resp. DC = 0) for any curve
C C X mapped to a point of S;

(ii) D is said to be nef on B (resp. numerically trivial on B) for a
compact reduced divisor B on X, if DB; > 0 (resp. DB; = 0)
for any irreducible component B; of B.

Remark 2.15. Let f: X — Y be a birational morphism of normal
Moishezon surfaces.
e If an R-divisor D on X is f-nef and f.D = 0, then —D is
effective by Lemma 2.2, since D is negative definite (cf. Theo-
rem 2.6).
e Let B be a reduced divisor on Y. If an R-divisor L on X is
nef on f~'B, then f.L is nef on B, by the projection formula
(I1-2).
The following result on the properties “big,” “pseudo-effective,” and
“numerically ample” is shown easily by the same argument in the usual
case of Cartier divisors. The proof of left to the reader.

W

Lemma 2.16. Let X be a normal Moishezon surface with an R-
divisor D.

(1)  When D is nef, D is big if and only if D* > 0.

(2) If D* > 0 (vesp. D? > 0), then D or —D is big (resp. pseudo-
effective).

(3) The numerical ampleness of D is equivalent to that DE > 0
for any pseudo-effective R-divisor E which is not numerically
trivial.

The following theorem is a relative version of Kawamata—Viehweg
vanishing theorem (cf. [24, Th. 1-2-3]) in the two-dimensional case.

Theorem 2.17 (cf. [47, Th. (6.3)]). Let f: X — Y be a proper
surjective morphism between normal surfaces and let D be an f-nef Q-
divisor on X. Then,

(11-4) R'f.Ox(Kx +"D") =0,
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where the round-up "D7 is defined as Y "a;'D; for the irreducible de-
composition D = a;D;, and the round-up "r7 of a rational number r
is defined as the smallest integer not less than r.

Remark. Theorem 2.17 is well known in the case where X is non-
singular and Supp D is a normal crossing divisor: This is shown in [24,
Th. 1-2-3] when Y is a scheme, but it is also valid for an algebraic
space Y, since it is étale locally a scheme. We can reduce to this case
by an argument in [47, Th. (5.1)]. In fact, we have a proper bira-
tional morphism pu: M — X from a non-singular surface M such that
= (Supp D) = Supp p* D is normal crossing, and an exact sequence

0= s On(Kpr +"p" D7) = Ox(Kx +"D7) =T =0
on X for a skyscraper sheaf 7. Then,
R fo(ueOne (K + 7" D7) € RY(f 0 ) Onr (K +"p* D7) = 0

by [24, Th. 1-2-3], and we have (II-4) by R'f,7 = 0. Theorem 2.17 is
valid even in the positive characteristic case. In fact, the local vanishing
theorem [47, Th. (2.2)] holds in the positive characteristic case by [47,
Rem. (2.4)], and we can reduce to the case where X and Y are non-
singular and X — Y is a succession of blowings up at points.

As a corollary of Theorem 2.17, we have the following useful lemma,
which is used in proving Propositions 2.29 and 4.8 below.

Lemma 2.18. For a normal surface X and a reduced divisor D on
X, let C be a negative curve on X such that C ¢ D and (Kx+D)C < 0.
Then, 1CND < 1.

Proof. Let f: X — X be the contraction morphism of C' and set
D := f.(D). Then, the structure sheaf Of of the divisor D is just the
image of O ~ f.Ox — f.Op. On the other hand, R'f,Ox(—D) =0
by Theorem 2.17, since —(D + Kx) is f-nef. Hence, Op ~ f.Op, and
consequently, every fiber of f|p: D — D is connected. In particular,
C N D is connected or empty, and thus, {CND < 1. Q.E.D.

2.3. Cone and contraction theorems

The cone and contraction theorems are important in the study of
minimal models and these are stated for log-canonical pairs, usually.
Here, we explain a version of the cone theorem valid for any normal
Moishezon surface and a version of the contraction theorem valid for
any normal projective surface.
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Definition. For a normal Moishezon surface X, let NE(X) denote
the closure in N(X) of the cone NE(X) consisting of the numerical classes
cl(D) of all the effective R-divisors D on X. Then, NE(X) is identical
to the set of the numerical classes of all the pseudo-effective R-divisors
on X. The dual cone of NE(X) with respect to the intersection pairing
N(X) x N(X) — R is just the nef cone Nef(X), which is the set of the
numerical classes of all the nef R-divisors on X. For an R-divisor B, we
set

NE(X); = {z € NE(X)|cl(B)-z >0} and
NE(X)3 := {z € NE(X) | cI(B) - 2 = 0}.

An extremal ray R of NE(X) is a one-dimensional face of the cone
NE(X), i.e., R = Rsov = NE(X)7 for a non-zero vector v of NE(X)
and a nef R-divisor L.

Remark. (1)  An R-divisor D of X is numerically ample (resp.
big) if and only if cl(D) lies in the interior of Nef(X) (resp.
NE(X)) (cf. Lemma 2.16).

(2) The cones Nef(X) and NE(X) are strictly convex closed cones
of N(X), and Nef(X) C NE(X).

(3) The one-dimensional cone Rxqcl(I') is an extremal ray of
NE(X) for any negative curve T.

The cone theorem by Mori [36] for non-singular projective surfaces
is generalized to the case of normal Moishezon surfaces by Sakai in [48,
Prop. 4.8] (cf. [49, Appendix]). As a consequence, we have:

Theorem 2.19. For a normal Moishezon surface X and for any
numerically ample R-divisor A of X, there exist finitely many rational
curves C; with —3 < KxC; < 0 such that R; = R>o cl(C;) is an extremal
ray and

NE(X) = NE(X) gy 4a+ D Ri.

Corollary 2.20. Let X be a normal Moishezon surface.

(1) If R is an estremal ray of NE(X) with KxR < 0, then R =
R cl(C) for a rational curve C with 0 > KxC > —3.

(2)  For a nef R-divisor L, if Kx + L is not nef, then there is an
extremal ray R such that (Kx + L)R < 0.

Proof. (1): There is a numerically ample R-divisor A such that
(Kx + A)R < 0. Since R is extremal, R is one of the extremal rays R;
in Theorem 2.19.
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(2): There is a numerically ample R-divisor A such that Kx + L+ A
is not nef. Then, Kx + A is not nef. Let R; be the extremal rays in
Theorem 2.19. If (Kx + L)R; > 0 for any ¢, then Kx + L + A is nef,
since cl(Kx + L+ A) -z > 0 for any z € NE(X) by Theorem 2.19: This
is a contradiction. Thus, (Kx + L)R; < 0 for some R;. Q.E.D.

The contraction theorem [36, Th. (2.1)] on the extremal rays has
been generalized to many situations by [55], [49], etc. The following ver-
sion is a special case of [48, Th. 4.9], which deals with normal Moishezon
surfaces. This seems to hold also in the positive characteristic case (cf.
[2, Th. 10.3)).

Theorem 2.21. Let X be a normal projective surface with an ex-
tremal ray R such that KxR < 0. Then, there exists a fibration w: X —
S to a normal projective variety S, called the contraction morphism of
R, such that, for any curve C C X, its numerical class cl(C) belongs to
R if and only if 7(C) is a point. Here, p(X) = p(S) + 1. Moreover, the
following hold: Let v be a non-zero vector in R.

(1)  Ifv? >0, then p(X) =1, NE(X) = R, X has a rational curve,

and m 1s the constant morphism X — SpecC.

(2) Ifv? =0, then p(X) =2 and 7: X — S is a fibration to a
non-singular projective curve S such that every fiber of w is a
non-singular rational curve and its numerical class belongs to
R.

(3) Ifv? <0, then R =Rsqcl(I') for a negative rational curve T,
and 7 is the contraction morphism of T'.

Remark 2.22. In the case (3) above, the projectivity of S is shown
as follows (cf. the proof of [4, Th. 2.3]). We can find a very ample
divisor H on X and a positive integer r such that (H 4 rI')T" = 0 and
H'(X,0x(H)) = 0. Then, L = H+7T is a nef and big Cartier on X and
NE(X)f: = Rsqcl(I') = R. It is enough to prove that the linear system
|L| is base point free. In fact, in this case, the morphism ®,: X — |L[¥
associated with |L| factors through a finite morphism S — |L|Y, where
|L|Y is the dual projective space of |L]|.

We have R'7,Ox = 0 by Theorem 2.17 applied to the m-nef divisor
—Kx; hence, I' ~ P! and Ox(L)|r ~ Or. Since the base locus of |L| is
contained in I', it is enough to prove that the restriction homomorphism

¢: H'(X,0x(L)) — H(T,0x(L)|r) ~ H*(T, Or)
is non-zero. The homomorphism ¢ factors as

HO(X, Ox (L)) £ HO(X, O,r(L)) % H(X, Op (L)),
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where ¢ is surjective by H'(X, Ox (H)) = 0. The homomorphism ¢ is
a composition of the restriction homomorphisms

Yr: HY(X, Ok (L)) — HY(X, O —1yr(L))

for 0 < k < r, and each vy, is surjective by H (T, Op(L — (k — 1)I")) =
0. Thus, ¢ is surjective, |L| is base point free, and consequently, S is
projective.

2.4. The defect and complexity
We shall study basic properties on the defect and the complexity

defined as follows:

Definition 2.23. Let X be a normal Moishezon surface and D a
reduced divisor on X. We define n(D) to be the number of irreducible
components of D. The vector subspace of N(X) generated by the nu-
merical classes of irreducible components of D is denote by N(X)p. The
dimension of N(X)p is denoted by r(X, D) or (D) for short. We set

0(X,D):=p(X)+2—-—n(D) and ¢(X,D):=r(D)+2—n(D).
We call §(X, D) the defect and ¢(X, D) the complezity.

Remark. By definition, r(D) < p(X) = dim N(X). If r(D) = p(X),
then D is big. We always have §(X, D) > ¢(X, D). The defect §(X, D)
is called the absolute complexity in [33].

Definition 2.24. For (X, D) in Definition 2.23, let F(D) denote the
free abelian group generated by the irreducible components of D. The
class map is a homomorphism

clp: F(D) @z R — N(X)

of vector spaces which associates with each irreducible component D; of
D the numerical class cl(D;). For the (Weil) divisor class group CL(X)
of X, we have another class map

cl%: F(D) — CL(X)
which associates with each irreducible component of D the linear equiv-
alence class.

Remark. The complexity ¢(X, D) is related to the class map. In
fact, N(X)p is the image of clp, and we have

n(D) —r(D) = dimKer(clp) >0 and
c(X,D) =2 —dimKer(clp) < 2.
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If the numerical equivalence relation & coincides with the Q-linear equiv-
alence relation ~g (e.g., the case of Lemma 2.31(4) below), then

rank CL(X) = p(X) and rankcl}, = r(D).

Lemma 2.25 (cf. [12, Prop. (1.17)]). The kernel of cl% is isomor-
phic to O(X \ D)*/C*.

Proof. By definition, Ker(cl%) consists of principal divisors div(f)
associated with non-zero rational functions f on X such that Supp div(f)
C D; The last condition means that f is invertible on X \ D. Therefore,
we have a surjection Ox (X \ D)* — Ker(cl}) by f — div(f), and the
kernel of this surjection is just O(X)* = C*. Q.E.D.

Fact. Let X be a non-singular projective variety of arbitrary di-
mension and let D be a simple normal crossing divisor on X. In this
case, we can also consider the class map clp: F(D) ® R — N(X) to
the real vector space N(X) of the numerical equivalence classes of R-
divisors on X. Then, the kernel Ker(clp) is isomorphic to the kernel of
H7).. (X", R) — H?(X?* R), and the equality

dim Ker(clp) = (X \ D) — ¢(X)

holds by [16, Prop. 1] (cf. [12, Prop. (1.15)]), where g stands for the log-
arithmic irregularity and ¢ for the irregularity. Moreover, the following
holds true, which seems to be well known.

Proposition 2.26. Let X be a non-singular projective variety such
that ¢(X) = 0 and D a simple normal crossing divisor on X. Then,
the quasi-Albanese variety (cf. [16, §3]) of X \ D is an algebraic torus
T of dimension ¢ :== @(X \ D) and the quasi-Albanese map (cf. [16,
§4]) is characterized as a morphism «: X \ D — T which induces an
isomorphism

(C* x Z%1 ~) O(T)* = O(X \ D)*.

Proof. By the definition of the quasi-Albanese variety in [16, §3],
the vanishing ¢(X) = 0 implies that the quasi-Albanese variety is an
algebraic torus T of dimension (X \ D). Let a: X\ D — T be the quasi-
Albanese map. Then, by the universality of the quasi-Albanese map (cf.
[16, Prop. 4]), for any morphism f: X \ D — T to another algebraic
torus 7', there is a unique morphism w: T — T such that f = vo «
and w is a group homomorphism of group schemes up to translation. In
particular, the group homomorphism O(T)* — O(X\ D)* induced by f*
always factors through the group homomorphism O(T)* — O(X \ D)*
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induced by a*. On the other hand, for the d-dimensional algebraic torus
G2, giving a morphism X \ D — GZ over Spec C is equivalent to giving
a group homomorphism Z®¢ — O(X \ D)*. Therefore, a* induces an
isomorphism O(T)* ~ O(X \ D)*, and this property characterizes the
quasi-Albanese map «. Q.E.D.

Lemma 2.27. Let f: X — X be a birational morphism_of normal
Moishezon surfaces. Let D be a reduced divisor on X and set D = f,(D).
Then,

Here, the equality n(D) — n(D) = p(X) — p(X) holds (equivalently,
8(X,D) = 8(X, D) holds) if and only if the f-exceptional locus is con-
tained in D.

Proof. The push-forward of divisors by f defines a homomorphism
f«: F(D) — F(D) for the free abelian groups F(D) and F(D) defined
in Definition 2.24, and it also defines the homomorphism f,: N(X) —
N(X) of Remark 2.9. Let E(f) (resp. E(f)p) be the free abelian group
generated by the f-exceptional prime divisors on X (resp. f-exceptional

irreducible components of D). Then, there is a commutative diagram

0 —— E(f)p®R —— F(D)oR ==& FD)oR —— 0

l ClDl ClDl
0 —— E()®R —— N&X) -5 NX) —— 0

of exact sequences, where the left vertical homomorphism is induced
from the inclusion E(f)p C E(f). Hence, for the kernel W of the sur-

jection N(X)p — N(X)5 induced by f., we have inclusions
E(f)p @ RC W C E(f) ®R.

Comparing the dimensions of these three vector spaces, we have the

required inequality, since rankE(f)p = n(D) — n(D), rankE(f) =

p(X) — p(X), and dimW = r(D) — r(D). Here, the equality holds
if and only if E(f)p = E(f), and this proves the last assertion. Q.E.D.

Lemma 2.28. In the situation of Lemma 2.27 above, the following
also hold:

(1) If the f-exceptional locus is contained in X \ D, then n(D) =
n(D), »(D) = r(D), and ¢(X, D) = ¢(X, D).
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(2) If f is the contraction morphism of a negative curve T' with
I' ¢ D, then n(D) =n(D), p(X) =p(X)+1, and §(X, D) =
§(X,D)+1.

(3) In the situation of (2), assume that T N (D — C) = 0 and
'NC # 0 for an irreducible component C' of D. Then, r(D) =

r(D)+1 (or equivalently, ¢(X, D) = ¢(X, D)+1) if and only if
01(6) S N(Y)§767

for the curve C' = f.(C).

Proof. The assertion (2) is a consequence of Lemma 2.10. For the
proof of (1), it is enough to show: (D) = 7(D). Let A be an R-
divisor supported on D such that A & G for an R-divisor G' contained
in the exceptional locus. Then, f,A & f.G =0 and 0 & f*f.A = A.
Hence, the kernel W in the proof of Lemma 2.27 is zero, and we have

r(D) = r(D). This proves (1). In the situation of (3), the equality
r(D) = r(D) + 1 is equivalent to that cl(T') € N(X)p. Let A be an
R-divisor on X supported on D. We write A = dC + A; for some
d € R and for an R-divisor A; supported on D — C. If A & rI" for
some real number 7 # 0, then d # 0 by dCT = AT = rI'? # 0, and
moreover, 0 & f.A = dC+ f.A;. Hence, in this case, cl(C) € N(X)p5_¢-
Conversely, if d # 0 and if 0 & f,A = dC + f.A1, then A & rI" with
r # 0 by AT = dCT # 0. This proves (3), and we are done. Q.E.D.

The result below is obtained by Lemma 2.18 and by the so-called
minimal model program: More precisely, by the cone and contraction
theorems (cf. Theorems 2.19 and 2.21) with Corollary 2.20.

Proposition 2.29. Let X be a normal projective surface and D a
reduced divisor on X. Suppose that

(i) —(Kx + D) is nef, and

(il) either §(X,D) <1 or e(X,D) <O0.
Then, D is connected and reducible.

Proof. If D =0, then ¢(X,D) = 2. Thus, D # 0 and r(D) > 0.
Then, D is reducible by

n(D)=7r(D)+2—-c(X,D)>r(D)+1>2.

It remains to prove the connectedness of D. Since (—D)— Kx is nef and
—D is not nef, there is an extremal ray R on X such that (—D)R < 0
and KxR < 0 by Corollary 2.20(2). Let us consider the contraction
morphism contg associated with R (cf. Theorem 2.21).
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We first consider the case where contg is a birational morphism
f: X — X'. Then, R is generated by cl(T') of a negative curve T,
and f is just the contraction morphism of I'. Note that X’ is also
a normal projective surface (cf. Remark 2.22). We set D' = f.(D).
Then, —(Kx' + D') = f.(=(Kx + D)) is nef (cf. Remark 2.15), and
the inequalities §(X’, D’) < §(X, D) and ¢(X’,D’) < ¢(X, D) hold by
Lemma 2.27. Hence, (X', D') satisfies the same conditions (i) and (ii).
IfT' C D, then D = f~1(D’), and even if I' ¢ D, we have L N D < 1 by
Lemma 2.18. As a consequence, if D’ is connected, then so is D. Thus,
we may replace (X, D) with (X', D’).

By the observation above and by Theorem 2.21, taking a succession
of birational contractions of extremal rays, we can reduce to the following
two cases:

e contg is the structure morphism to a point;

e contr is a fibration 7: X — T to a non-singular curve 7.
In the first case, p(X) = 1, and every non-zero effective divisor is ample
and connected. Therefore, D is also connected in this case. In the
second case, p(X) = 2, and we have DF' > 0 and (Kx + D)F < 0 for
a general fiber F of w. Thus, F ~ P! and 1 < DF < 2. In particular,
D contains at least one irreducible component Cy which dominates T'.
Now, we have

n(D)=-6(X,D)+p(X)+2>3, or
n(D)=—¢(X,D)+r(D)+2>r(D)+2>3.

In particular, D contains at least one fiber Fy of 7, since DF < 2. Then,
the numerical classes of Cy and F{y span the two-dimensional vector space
N(X). Thus, D is connected, and we are done. Q.E.D.

2.5. Rationality and projectivity

We shall give some criteria for a normal Moishezon surface to be
projective or to be rational. We first note the following well-known:

Fact 2.30. A non-singular Moishezon surface is projective (cf. [10],
27, Th. 3.1], [26, Ch. 4, Th. 3.1; Ch. 5, 4.10)).

Lemma 2.31. Let X be a normal Moishezon surface.

(1) IfH*(X,0x) =0, then X is projective.

(2) If X has only rational singularities, then X is Q-factorial and
projective.

(3) IfH*(X,0x)=H'(M,0) =0 for a non-singular projective
surface M birational to X, then X has only rational singular-
1ties.
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(4)  If X has only rational singularities and if H*(X,Ox) = 0, then
the numerical equivalence relation coincides with the Q-linear
equivalence relation for Q-divisors on X.

Sketch of the proof. The assertion (1) is well known as Brenton’s
criterion of projectivity (cf. [8, Prop. 7]). Note that this holds also in pos-
itive characteristic case by [7]. For the assertion (2), the Q-factoriality of
X has been proved in [52, §6, Satz 1], [9, Satz 1.5], and [31, Th. (17.4)],
etc. The projectivity of X in this case can be proved by the same
argument as in the proof of [4, Th. (2.3)] applied to the minimal resolu-
tion p: M — X of singularities. We have another proof of projectivity
of X which uses the Q-factoriality of X and a strong version of Nakai-
Moishezon criterion of ampleness asserting that every numerically ample
Cartier divisor is always ample (cf. Remark 2.12). The assertion (3) is
shown by considering the Leray spectral sequence

EY? =HP(X, Ru,Opr) = EPTT = HPY(M, Oyp)

for a resolution of p: M — X singularities, and the assertion (4) is
reduced to the non-singular case by this spectral sequence. Q.E.D.

Lemma 2.32. For a normal Moishezon surface X and a reduced
divisor D on X, assume that

(i)  every irreducible component of D is a rational curve,
(i) D is big, and
(iii) X has only rational singularities along D.
Then, Hl(M, Our) = 0 for the minimal resolution M of singularities of
X. IfHY(X,0x(2Kx)) = 0 in addition, then X is a projective rational
surface with only rational singularities.

Proof. Let u: M — X be the minimal resolution. Then, every
irreducible component of p*(D) is rational. In fact, the p-exceptional
components are rational by (iii) and the non-exceptional components
are rational by (i). Thus, every irreducible component of p*(D) is
mapped to a point by the Albanese map a: M — Alb(M). In particular,
p*(D)a*(H) = 0 for any ample divisor H of Alb(M). Then, o*(H) & 0
by the Hodge index theorem, since p*(D) is big (cf. Remark 2.13).
Therefore, (M) = Alb(M) is a point, and hence H' (M, Oy;) = 0.

Assume in addition that H°(X,Ox(2Kx)) = 0. Then, X is a
projective surface with only rational singularities by (1) and (3) of
Lemma 2.31, since we have H*(X,Ox) ~ H°(X,Ox(Kx))Y = 0 and
H' (M, Oy) = 0. Moreover, the canonical injection H* (M, Oy (2K /) C
H°(X,0x(2Kx)) = 0 and the vanishing H' (M, Oy) = 0 imply that M
is a rational surface, by Castelnuovo’s criterion. Q.E.D.
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Proposition 2.33. Let X be a normal Moishezon surface and let

7: X — T be a P'-fibration to a non-singular projective curve T (here,

a general fiber of w is isomorphic to P! (cf. Notation and conventions,

5)). Then, the following hold:

(1)  The surface X is projective and has only rational singularities.
In particular, p(X) = p(X).
(2)  The higher direct image sheaf R'm.Ox is zero for any i > 0.

) Any curve contained in a fiber of m is isomorphic to P'.

) If a scheme-theoretic fiber F' of 7 is irreducible and reduced,

then w is smooth along F.

(5)  If an invertible sheaf L on X is w-numerically trivial (cf. Def-
inition 2.14(1)), then L is isomorphic to the pullback of an
invertible sheaf on T .

(6) If any fiber of 7 is irreducible, then p(X) = 2.

(7) If Fi, Fs, ..., Fy are the reducible fibers of 7, then

pX) =243 (n(F)-1).

Proof. (1) and (2): For a general fiber F, we have KxF = —2,
since F ~ P!, Thus, H*(X,0x(Kx)) ~ H*(X,0x)" = 0, and X is
projective by Lemma 2.31(1). Let u: M — X be the minimal resolution
of singularities. Then, there is a proper birational morphism M — Y to a
Pl-bundle Y over T, where M — Y is a succession of blowdowns of (—1)-
curves. Hence, R (m o u1),Opr = 0 for any i > 0. By the Leray spectral
sequence for 7 and p, we have R'7,Ox = 0 and 7, (R'11.Op) = 0.
Note that R'7,Ox = 0 for i > 2, since any fiber of 7 is one-dimensional.
The vanishing of 7, (R!'u.Oy) implies the vanishing of the skyscraper
sheaf R'j1,Oy;. Thus, X has only rational singularities. The equality
p(X) = p(X) follows from Remark 2.8 and Lemma 2.31(2).

(3) and (4): For any effective divisor G contained in a fiber of 7, we
have H' (G, 0g) = 0 by (1), since 0 = R'71,Ox — R'7,0¢ is surjective.
In particular, p,(I') = 0 for any irreducible component I" of any fiber
of m; this proves (3). If a scheme-theoretic fiber F' is irreducible and
reduced, then F' ~ P!, and 7 is smooth along F by the flatness of 7;
this proves (4).

(5): We have deg(L|r) = 0 for any irreducible component I" of any
fiber of w. Thus, p*L ~ (7 o u)*M for an invertible sheaf M on T,
since 7 o p is expressed as the composition of the succession M — Y
of blowdowns of (—1)-curves and the P!-bundle Y — T'. Taking p.., we
have an isomorphism £ ~ 7* M.

(6): Assume that every fiber of 7 is irreducible. For a fixed fiber
F, let us consider a homomorphism v: Pic(X) — Z defined by v(£) =

(3
(4
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deg(L|F) for invertible sheaves £ on X. If F’ is another fiber of 7, then
F’ & aF for some positive rational number «. Thus, the kernel of v is
just 7* Pic(T') by (5). The image of v is not zero, since v(A) > 0 for an
ample invertible sheaf A. Therefore, p(X) = 2.

(7): Let us choose an irreducible component I'; of F; for each 1 < i <
k. Since F; — T'; is negative-definite, we have the contraction morphism
f: X — X of Zle(Fl- —T;) by Theorem 2.6. Then, X is also a normal
projective surface with only rational singularities by (1), since there is a

P!-fibration 7: X — T with 7 = 7 o f. Moreover, p(X) = p(X) = 2 by
(6). On the other hand, p(X)—p(X) = Ele(n(Fi)—l) by Lemma 2.10.

Thus, (7) follows, and we are done. Q.E.D.

Remark 2.34. In the situation of Proposition 2.33, if X is non-
singular, then every fiber is a simple normal crossing divisor. This well-
known property is shown by the vanishing R'm.Ox = 0 as follows. For
arbitrary three irreducible components I', IV, and T'” of a given fiber, we
have

HY(T, Ox (~I")[r) = H' (T, Ox (-I" = T")|r) = 0

by the vanishing H'(Og) = 0 for G = T + T’ and for G =T + T’ 4+ T”
(cf. the proof of (3) above). This implies TT <1 and TN NT" = 0.
Therefore, the fiber is a simple normal crossing divisor.

§3. Two-dimensional toric varieties and log-canonical pairs

In this section, we recall several properties on toric varieties and
log-canonical pairs in the 2-dimensional case. We recall in Section 3.1
some of well-known basics on toric varieties, especially on toric surfaces.
A toroidal singularity is a singularity arising at a toric variety. This is
defined in Section 3.2 with a few properties in the surface case. The
notion of log-canonical has appeared in the study of minimal models of
algebraic varieties. In Section 3.3, we discuss the definition and some
general properties of log-canonical pairs (X, B) for a normal surface X
and an effective Q-divisor B. When B is reduced, we have classification
results on the singularities of this log-canonical pair (X, B), which is
explained in Section 3.4. In Section 3.5, we classify the singularities of
(X, B) along a compact irreducible component C of B such that B is a
reduced divisor on a normal surface X and (X, B) is log-canonical along
C with (Kx + B)C <0.
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3.1. Projective toric surfaces

We recall here some basic properties on toric varieties, especially on
toric surfaces. For details on the theory of toric varieties, the reader
refers to the books [25], [43], [13], etc.

An n-dimensional normal algebraic variety X is called a toric variety
if there is an action of the n-dimensional algebraic torus T = G, on X
such that it has an open orbit U which is isomorphic to T by the action.
In other words, U C X is an equivariant embedding of T. In particular,
X is a rational variety. We call T the open torus of X. The complement
D = X \ U is a divisor on X, which is called the boundary divisor. By
abuse of notation (cf. Convention 1.4), the pair (X, D) is also called a
toric variety. A two-dimensional toric variety is called a toric surface.

The toric variety is determined by the group

N = Homgyoup (G, T)

of one-parameter subgroups of T and by a certain finite collection A,
called a fan in [43] and [13] (or an f.r.p.p. decomposition in [25]), of
strictly convex rational polyhedral cones in N®zR. We denote by Tn(A)
the toric variety defined by N and A (this is denoted by Ty emb(A) in
[43]). The group

M = Homgyoup (T, Gn)

is called the character group of T. There is a natural non-singular bi-
linear form ( , ): M x N — Z (cf. [25, Ch. 1, p. 2]). A one-dimensional
cone of A is expressed as R>ov for a primitive element v of N, i.e.,
N/Zv is torsion free. The cone R>ov corresponds to a prime divisor I'
on X = Tn(A) which is the closure of an orbit of T, and we have

ordr(m) = (m,v)

for any function m € M, where ordr(m) stands for the order of zeros or
the minus of the order of poles along I' of the rational function m on X.
Note that each m € M is regarded as a morphism U ~ T — Gy,.

For toric varieties X and Y, a morphism f: X — Y of schemes is
called a morphism of toric varieties (or a toric morphism) if f is equi-
variant with respect to some homomorphism ¢: Tx — Ty between the
open tori Ty and Ty of X and Y, respectively: This means symboli-
cally that f(t-z) = ¢(t) - f(x) for any z € X and t € Tx. The toric
morphism f is also described by a homomorphism between the groups of
one-parameter subgroups of Ty and Ty and by an information of fans.

Remark 3.1. For a given toric variety X with an open torus T, there
exists a T-equivariant open immersion X — X to a compact toric variety
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X with the same open torus T. This is a consequence of Sumihiro’s
theorem [54, Th. 3] on equivariant completion. If X = Tn(A), then
X = Tn(A) for a fan A such that the union |A| of cones in A is just
N ® R and that every cone on A belongs to A (cf. [25, Ch. 1, Th. g]).
The existence of A can be seen easily in the two-dimensional case (cf.
Example 3.4 below).

Ezxample 3.2. Let X be an affine toric surface with a zero-dimension-
al orbit. Then, X ~ Spec Clo¥NM] for a convex cone o = R>pe1+R>pe2
of N® R ~ R2, where e; and ey are primitive elements of N, (e1,e9) is
a basis of N ® R,

o' ={meM®R| (m,z) >0 for any x € o},

and Clo¥ NM] is the semi-group ring defined by the semi-group oV NM,
which is finitely generated. Let I'; be the prime divisor associated with
the ray R>ge; for ¢ = 1, 2. Then, I'; NT'5 is a point O, which is the zero-
dimensional orbit corresponding to o. By a suitable coordinate change,
we may assume that there exist integers n > ¢ > 0 with ged(n,q) = 1
such that N = Zey + Zu for u := (1/n)(e; + qez). If ¢ =0, then n = 1,
X ~ A? and I'; and I'; are coordinate lines. Assume that ¢ > 0. Then,
the singularity (X, O) is a cyclic quotient singularity. In fact, for the
submodule Ny = Zey + Zes, the induced toric morphism

Xo =Ty, (0) ~ A? - X = Ty(o)

is regarded as the quotient map for the action of the cyclic group Z/nZ
on A? given by (x,y) — ((x, (%) for an n-th primitive root ¢ of unity
and for a coordinate (x,y) of A%, This (X, 0) is called a cyclic quotient
singularity of order n, or more explicitly, a cyclic quotient singularity
of type (n,q) (or type (1/n)(1,q) in some literature). Note that this
is a rational singularity. It is well known that the minimal resolution
w: M — X of the cyclic quotient singularity of type (n,q) is given by
Hirzebruch—Jung’s method and this is described as a toric morphism (cf.
[25, Ch. I, §2, pp. 35-38]). For example, the inverse image p~1(I'; UT)
is a linear chain of rational curves in the sense of Definition 4.1 in which
the proper transforms Iy and T, of Ty and T'g, respectively, in M are
the end components of the chain. Furthermore, the self-intersection
number —b; of the ¢-th irreducible component C; of the linear chain
u HO) = Cy +Cy+ -+ + Cy is determined by the continued fraction

1 1
= - ——— =

n
D byby b =y — ——
g = b bl =hm o

[bs, ..., b
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Fig. 1. Dual graph of u=3(I'; UT5)

The dual graph of p=1(I'; UT'y) is written as in Figure 1, where O (resp.
@) stands for the exceptional (resp. non-exceptional) component.

Remark 3.3. In Example 3.2, the divisor I';y + I's is isomorphic to
the union of two coordinate axes of A? as a reduced scheme. In fact, the
affine coordinate ring R of Ty (o) is a C-subalgebra of C[x, y] generated
by monomials x‘y’ such that i + ¢j = 0 mod n. Let I be the ideal
I = (xy)C[x,y] N R and J the ideal of R generated by monomials x’y’
such that ¢, j > 0. Then, I D J, and Spec R/I is isomorphic to I'; +T's.
Let P = Clu, v|] be the polynomial ring of two variables and let P — R
be the C-algebra homomorphism defined by u +— x" and v +— y™. Then,
the induced homomorphism P — R/.J is surjective and the kernel of the
composition

P— R/J— R/I — Clz,y]/(xy)

is the ideal generated by uv. Since R/I — C[x,y]/(xy) is injective, we
have I = J and P/(uv)P ~ R/I. Therefore, I'y + I'y is isomorphic to
the subscheme {uv = 0} of Spec P ~ AZ.

Ezample 3.4. Let X = Tn(A) be a projective toric surface. Then,
the fan A is determined by a collection (v1, ..., vx) of non-zero elements
of N ~ Z9? satisfying the following conditions:

(i) Each v; is primitive in N, i.e., N/Zv; is torsion free.

(i) The pair (v;,v;41) is a basis of NQR for any 1 <47 < k—1 and

the same for (v, vy).
(i) We set o; := R>ov; + Ryoviqq for 1 <i <k —1, and o} =
R>ovi + R>ovg. Then:
o Ifj=i+1modk, then o;No; =R>pv;.
e Ifi—jmodk isnotin {0,1,—1}, then o; No; = {0}.
Here, the fan A consists of o;, R>gv;, and {0} for all ¢ and j above. Let
I'; be the prime divisor associated with the one-dimensional cone R>gv;.
Then, I'; ~ P!, and the union D = Zle T'; is the boundary divisor. The
two-dimensional cone o; corresponds to the intersection point I'; N I'; 44
for 1 < i < k—1, and o to the point I'y, N I'y. These points are
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the zero-dimensional orbits of T. As a consequence, we see that D is
a cyclic chain of rational curves in the sense of Definition 4.3 below.
Moreover, by Example 3.2, X has only cyclic quotient singularities, and
the singularities are lying on Sing D. In particular, X is Q-factorial.

Remark 3.5. Every compact toric surface is projective by Lemma
2.31(2), since it has only rational singularities (cf. Example 3.2).

We list some facts on toric varieties of arbitrary dimension.

Fact 3.6. (1) The toric variety X = Tn(A) is compact if and
only if the union of the cones in A coincides with N ®7 R (cf.
(43, Th. 1.11]).

(2) For any toric variety X, there is a proper birational toric mor-
phism M — X giving a resolution of singularities of X (cf. [25,
Ch. I, Th. 11]).

(3) For a toric variety X with the boundary divisor D, one has
Kx +D ~ 0. In fact, this is well known when X is non-
singular (cf. [43, Cor. 3.3]). In the general case, it is shown by
taking push-forward for the open immersion X \ Sing X «— X.

The following is shown in [13, §3.4, p. 63, Proposition]:

Lemma 3.7. For a toric variety X = Tn(A) with the boundary

divisor D, there is an exact sequence
lZ

(I11-1) M 2 F(D) £2 CL(X) — 0
for the class map CIZD in Definition 2.24 and for the character group
M = Hom(N,Z). Here, an element of M is regarded as a semi-invariant
rational function on X, and the map u associates with m € M the princi-
pal divisor div(m). The map u is injective when the cones in /\ generate
the vector space N ® R.

Now, we return to the two-dimensional case. The projective toric
surfaces are described geometrically from some simple examples.

Ezxample 3.8. (1) Let L =Ly + Ly + L3 be the union of three
lines on the projective plane P? such that L; N Ly N Lz =
(. Then, (P2 L) is a toric surface. One can show that any
non-singular projective toric surface with exactly three one-
dimensional orbits is isomorphic to (P2, L).

(2) For the Hirzebruch surface X, = P(O & O(e)) of degree e > 0
with the ruling 7: X, — P!, the pair (X,, D) is an example of
projective toric surfaces for the divisor

DI:0'0—|—O'OO+F1+F2
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consisting of sections o¢ and o, of © with 0 = —e, 02 =

e, and 0y # 0, and of two distinct fibers F; and F5 of 7.
One can show that any non-singular projective toric surface
with four one-dimensional orbits is isomorphic to some (X, D)
above.

(3) In (2) above, w: (X., D) — (P!, Py + P,) is a toric morphism
of toric varieties, where P; = w(F;) for i =1, 2.

(4) Let (X,D) be a non-singular projective toric surface and let
f:Y — X be the blowing up at a point P of Sing D. Then,
(Y, Dy) is a projective toric surface for Dy = f~1(D), and f
is a toric morphism. In fact, the action of the open torus of X
naturally lifts to Y.

Lemma 3.9. Let X be a toric surface with boundary divisor D. Let
g: X — Z be a proper birational morphism to another normal surface
Z such that the g-exceptional locus is contained in D (Here, Z is not
assumed to be a scheme). Then, Z is also a toric surface having g.(D)
as a boundary divisor, and g is a toric morphism. If X is compact, then
X and Z are both projective.

Proof. By Remark 3.1, we may assume that X is compact. Then,
X is projective by Remark 3.5. Every irreducible component of D is
the closure of an one-dimensional orbit of the open torus T = X \ D.
Hence, the action of T descends to Z. This implies that Z is a T-
equivariant compactification of T ~ Z \ ¢.(D), and ¢ is T-equivariant.
It remains to prove that Z is a projective scheme. Note that g.(D) # 0,
since there is an ample divisor supported on D. Hence, HZ(Z, Oy) =
HY(Z,04(Kz))Y = 0by Kz+g.(D) ~ g.(Kx+D) ~ 0 (cf. Fact 3.6(3)).
Thus, Z is a projective surface by Lemma 2.31(1). Q.E.D.

By Example 3.8 and Lemma 3.9, we have:

Proposition 3.10. (1)  Any non-singular projective toric sur-
face (X, D) is obtained from (P? L) or from (X., D) in Evam-
ple 3.8 by a succession of blowings up at nodes of the boundary
divisors (cf. [43, Th. 1.28], [13, p. 43, Prop.]).

(2)  For a normal Moishezon surface X and a reduced divisor D,
the pair (X, D) is a projective toric surface if and only if X \ D
is non-singular and (M, Dys) is a projective toric surface for a
minimal resolution p: M — X of singularities and for Dy =
p=Y(D). In this case, ji is a toric morphism.

By Lemma 3.7 or by Proposition 3.10, we have:
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Lemma 3.11. Let (X,D) be a projective toric surface. Then,
p(X) = p(X)=r(D)=n(D) —2. In particular, §(X,D) = ¢(X,D) =
0.

Proof. We have p(X) = p(X) by Lemma 2.31 and Example 3.2.
There are two proofs of p(X) = r(D) = n(D) — 2. The first proof uses
Lemma 3.7: By the exact sequence (III-1), we have n(D) = p(X) =
rank CL(X) and n(D) — (D) = rankM = 2. In the second proof, by
Proposition 3.10 and by Lemma 2.27, we are reduced to the case where
(X, D) is isomorphic to (P2, L) or (X., D) in Example 3.8, and in the
case, the equalities hold trivially. Q.E.D.

3.2. Toroidal singularities

Definition 3.12. Let X be a normal variety and B a reduced di-
visor.

(1) For a closed point P, the pair (X, B) is said to be toroidal at
P if X\ B C X is a toroidal embedding at P in the sense of
[25, Ch. II, §1]. By [5, Cor. (2.6)], this is equivalent to the
existence of an affine toric variety V and two étale morphisms
7:U - X and 0: U — V with a point Q € U lying over P
such that §=1(T) = 7=1(X \ B) for the open torus T of V.

(2) The pair (X, B) is said to be toroidal along a subset Z of X
if (X, B) is toroidal at each closed point of Z. If (X, B) is
toroidal along X, then (X, B) is said to be toroidal.

The pair (U, Q) above is a common étale neighborhood of (X, P) and
(V,0(Q)) in the following sense:

Definition 3.13 ([5, p. 27]). Let X be a scheme (or an algebraic
space) and P a point of X. An étale neighborhood of (X, P) is defined
as a pair (U, Q) of a scheme (or an algebraic space) U and a point Q) € U
together with an étale morphism 7: & — X such that P = 7(Q) and 7
induces an isomorphism k(P) ~ k(@) of residue fields.

Remark. For a closed point P of an algebraic scheme X over C,
an étale neighborhood of (X, P) is an étale morphism & — X with a
point @ lying over P, since k(P) is algebraically closed. So, in this
case, frequently, an étale neighborhood of (X, P) is regarded as an étale
morphism U4 — X whose image contains P.

By the study of singular affine toric surfaces in Example 3.2 and by
Fact 3.6(3), we have:

Lemma 3.14. Let (X,B) be a pair of normal surface X and a
reduced divisor B. For a closed point P € B, assume that (X, B) is



A wvariant of Shokurov’s criterion 321

toroidal at P. Then, Kx + B is Cartier at P, and one of the following
holds:
(i) X s non-singular at P, and B is also non-singular at P;
(ii) X is non-singular at P, and B is a normal crossing divisor at
P with P € Sing B;
(iil) (X, P) is a cyclic quotient singularity of type (n,q) for some
n > q >0 with ged(n,q) = 1.
Here, (iii) means that (X, P) has a common étale neighborhood with
(Tn(e),O) for the toric surface (Tn(o), Ty + T'2) and the point O =
I'y N Ty in Ezample 3.2.

Corollary 3.15. Let X be a normal surface and B a reduced divisor
such that (X, B) is toroidal. Let u: M — X be the minimal resolution
of singularities and set Byy = p~1(B). Then, By is a normal crossing
divisor and Ky + By = p*(Kx + B). In particular, (X, B) is log-
canonical (see Definition 3.17 below).

Proof. We may assume that (X, B) is a singular affine toric surface.
Then, the minimal resolution of X has been described in Example 3.2.
Hence, (M, Byy) is toric and B)y is a simple normal crossing divisor. By
Fact 3.6(3), we have Kj;+ By ~ 0and Kx+B ~ 0. Thus, Ky + By =
w*(Kx + B), and (X, B) is log-canonical by Corollary 3.20. Q.E.D.

Remark 3.16. Let X be a normal surface and B a non-zero effective
divisor such that Ky + B is Cartier along B. Then, B is Gorenstein and
its dualizing sheaf wp is isomorphic to Ox(Kx + B)|p. In particular,
if (X, B) is toroidal along B, then B is Gorenstein. In fact, we have an
exact sequence

0— wx = Homo, (Ox(—B),wx) = wp — 0

from 0 = Ox(—B) = Ox — Op — 0 by taking Hom(—,wx) using the
isomorphism
gxt%gx(OB,(JJX) ~ wp

for the Cohen-Macaulay closed subscheme B of codimension one (cf. [3,
Ch. I, Prop. (2.3)]), where the exact sequence is isomorphic to

0— Ox(Kx) — OX(KX +B) — OX(KX +B)|B — 0.

Note that every effective divisor B on a normal surface X is Cohen—
Macaulay, i.e., satisfies Serre’s condition S;. In fact, for the maximal
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open subset U of X on which B is Cartier, we know that B|y is Cohen—
Macaulay, and that B satisfies S; if the homomorphism r3 in the com-
mutative diagram of exact sequences below is injective:

0 —— Ox(-B) —— Ox ——3 O ——0

0 —— j(Ox(-B)lv) —— j«Ov —— j(OBlv),

where j: U — X stands for the open immersion. Since X is normal,
Ox(—DB) is reflexive, and codim(X \ U, X) > 2, the vertical homomor-
phisms 71 and 7y are isomorphisms, and it implies that r3 is injective.

3.3. Log-canonical pairs

Definition 3.17. Let X be a normal surface and B an effective
Q-divisor. For a proper birational morphism p: M — X from a non-
singular surface M, we have an equality

K ZM*(Kx+B)+ZaiEi7

where F; are the irreducible components of the union E of ;= (Supp B)
and the p-exceptional locus, a; € Q, and p* stands for the numerical
pullback (cf. Definition 2.1). The pair (X, B) is said to be log-canonical
(resp. log-terminal) if there is a proper birational morphism p above such
that E is a normal crossing divisor and that a; > —1 (resp. a; > —1) for
any 1.

Remark 3.18. (1) We can compare Ky and p*(Kx) by a ra-
tional two-form on X and its pullback to M. Thus, we can
write the equality as above, which is not only a linear equiva-
lence relation.

(2) The definition of log-canonical (resp. log-terminal) above does
not depend on the choice of 1: M — X with F being a normal
crossing divisor. This property is generalized to Lemma 3.19
below.

(3) The notion of log-canonical (resp. log-terminal) is étale local
on X: For an étale morphism & — X, if (X, B) is log-canonical
(resp. log-terminal), then so is (U, Bly) for the pullback B|y of
B. Conversely, if (U, B|y) is log-canonical (resp. log-terminal),
then so is (U, Bly) for the image U of U — X.

(4) For a subset Z of X, we say that (X, B) is log-canonical (resp.
log-terminal) along Z if (U, B|y) is log-canonical (resp. log-
terminal) for some open neighborhood U of Z: In case Z is a
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point P, we say that (X, B) is log-canonical (resp. log-terminal)
at P. By (3) above and by [5, Cor. (2.6)], the log-canonicity
(resp. log-terminality) of (X, B) at a point P depends only on
the completion 1) x,p of the local ring Ox p and on the pullback
of B by Spec(/’)\x’p — X.

(5) The notion of log-canonical (resp. log-terminal) for (X, B) is
defined for any dimension in case Kx + B is Q-Cartier. In
two-dimensional case, if (X, B) is log-canonical in the sense of
Definition 3.17, then K x + B also Q-Cartier (cf. [23, Cor. 9.5]).

(6) The notion of log-terminal (resp. log-canonical) is introduced
in [24]. The log-terminal is called Kawamata log terminal (klt)
in [29], [30] when the boundary divisor B is not zero; instead
another notion of log terminal is introduced in [29], which is not
useful in the study of singularities. Indeed, it is not necessarily
étale local and its definition does depend on the choice of good
non-singular models M of X.

The following useful lemma is not so mentioned in the literature on
birational geometry except in the case where f is a proper birational
morphism. This is proved implicitly in [22; Prop. 1.7] or [24, Lem. 0-2-
12]. We shall give a proof by tracing the argument there, which uses the
logarithmic ramification formula (cf. [17, the formula (R) in p. 180], [19,
Th. 11.5]). The same argument of our proof works for higher dimensional
case in which Kx + B is Q-Cartier.

Lemma 3.19. Let X be a normal surface and B an effective Q-
divisor. Let f:Y — X be a dominant morphism from a non-singular
surface Y. Let G be the Q-diwvisor on'Y such that the ramification for-
mula for f is equivalent to

Ky = f*(Kx + B) +G.

Let G = Y v;G; be the irreducible decomposition. If (X, B) is log-
terminal (resp. log-canonical), then ~v; > —1 (resp. v; > —1) for any
i. The converse holds when Supp G = Y G; is a normal crossing divisor
and f is proper surjective.

Proof. Let u: M — X be a proper birational morphism from a non-
singular surface M and let v: N — Y be a proper birational morphism
from a non-singular surface IV such that f ov = po g for a morphism
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g: N — M, ie., the diagram
N ——Y

Y
Mt X
is commutative, and that the following are satisfied:

e The union E of p~!(Sing X U Supp B) and the p-exceptional
locus is a simple normal crossing divisor.

e There is a normal crossing divisor F on N such that g=*(E) C
F and that N\ F — X is étale.

We have the logarithmic ramification formula (cf. [17, §4])
(III—Q) KN-FFZQ*(K]\/[—FE)—I—R

for g, in which R is an effective divisor supported on F. By considering
the ramification along E, we see that every irreducible component of R
does not dominate any irreducible component of E. Note that ¢*F +
R — F is the ramification divisor for g. In particular, ¢*E + R — F is
effective and F = Supp(9*E + R).

Let A be a Q-divisor on M supported on E determined by

Ky + E=p*(Kx + B) + A,

where p* denotes the numerical pullback. Note that (X, B) is log-
canonical if and only if A is effective and that (X, B) is log-terminal if
and only if A is effective and Supp A = E. Since Ky = f*(Kx+B)+G
is equivalent to the logarithmic ramification formula (ITI-2), we have

G=vi.(R—F+g*A).

Assume that (X, B) is log-canonical, i.e., A is effective. Then, G +
v, F is effective for the reduced divisor v, F', which implies that G+ G}eq
is effective, i.e., 7; > —1 for any i. Assume that (X, B) is log-terminal,
i.e., A is effective and Supp A = E. Then, Supp(¢g*A+R) = Supp(g*E+
R) = F, and it implies that G + Gyeq is effective with Supp(G + Greq) =
Gheq: This is equivalent to that v; > —1 for any i. Hence, the first
assertion has been proved.

For the second assertion, we assume that Gieq is normal crossing
and that f is proper surjective. In particular, g is surjective. Since
v (Greq) C F, we have the logarithmic ramification formula

KN + F = V*(KY + G(red) +§V7
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where R, is an effective divisor. Note also that R, + V*Grea — F' is
effective, since Y is non-singular, and that F C Supp(R, + v*Greq)-
Comparing the formulas above, we have

A+ R=v"(G+ Greq) + R,

If v; > —1 for any 14, i.e., G + Gyeq is effective, then g*A + R is effective,
and it implies that A is effective, since g is surjective and since all the
common irreducible components of R and ¢g*E are contracted to points
by g. Thus, (X, B) is log-canonical in this case. If v; > —1 for any 4,
i.e., G4 Gieq is effective with Supp(G + Gred) = Gred, then A is effective
and

F = Supp(¢*E + R) D Supp(¢*A + R) = Supp(v*Greqa + R,) D F.

Hence, in this case, Supp A = E, and (X, B) is log-terminal. Thus, we
are done. Q.E.D.

Corollary 3.20. Let 7: V. — X be a proper surjective morphism
of normal surfaces. Let D and A be effective Q-divisors on V' without
common irreducible components and let B be an effective Q-divisor on
X such that the ramification formula for T is equivalent to:

Ky +D=71"(Kx + B)+ A.

If (V, D) is log-canonical (resp. log-terminal), then so is (X, B). If A =0
and if (X, B) is log-canonical (resp. log-terminal), then so is (V, D).

Proof. This is derived from Lemma 3.19 applied to Y — X for a
proper birational morphism Y — V from a certain non-singular surface
Y. Q.E.D.

Remark. Corollary 3.20 is proved essentially in [30, Prop. 5.20(4)]
in the case where f is a finite morphism, which uses the logarithmic
ramification formula only for birational morphisms. The proof of [30,
Prop. 5.20(4)] is sketchy and there are hidden some arguments like taking
Galois closure and equivariant partial resolution, or flattening.

Corollary 3.21. Let X be a normal surface with an effective Q-
divisor B. Let g: X — X be a proper birational morphism to another
normal surface X and set B := g.(B).

(1) If (X, B) is log-canonical and —(Kx + B) is g-nef, then (X, B)

1s log-canonical.

(2)  For a subset Z of X, if (X,B) is log-canonical along Z, the

g-exceptional locus is contained in Z, and if —(Kx + B) is nef
on Z, then (X, B) is log-canonical along g(7Z).
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Proof. Tt is enough to prove (1), since (2) is a consequence of (1)
applied to the proper birational morphism ¢=*(U) — U for an open
neighborhood U of ¢(Z). Let E be a g-exceptional Q-divisor determined
by

Kx + B =g"(Kx+ B)+ E.

Then, —F is g-nef, and it implies that F is effective by Lemma 2.2. Let
A be the maximal effective Q-divisor such that B > A and F > A, and
set B':= B — A and F' := F — A. Then,

Kx + B =g (Kx+B)+E.

Since (X, B) is log-canonical, (X, B’) is also log-canonical, and hence,
(X, B) is log-canonical by Corollary 3.20. Q.E.D.

3.4. Singularities on boundary curves for log-canonical
surfaces

The analytic germs of log-canonical pairs (X, B) of a normal sur-
face X and a reduced divisor B have been classified by Kawamata in
[23, Theorem 9.6] by a geometric construction. Alexeev gives the same
classification in [1] by a numerical calculation. Note that the case where
B = 0 has been done by Sakai in [50, Appendix| by another numerical
calculation. The numerical classification is also treated implicitly in [21,
82], [56, §3], and [55, §2]. As the classification in case B # 0, we have:

Theorem 3.22. Let X be a normal surface, B a reduced divisor on
X, and P a closed point of B. Then, the pair (X, B) is log-canonical at
P if and only if there is an étale neighborhood (U, Q) of (X, P) satisfying
one of the following conditions:
(i)  Bly = By + Bs for prime divisors By, By with {Q} = B1N By,
and (U, Bly) is toroidal;
(il)  Bly is non-singular, and there is another prime divisor B' of
U such that Bly N B' = {Q} and (U, Bly + B') is toroidal;
(iil)  Bly is non-singular, and there exist a finite surjective mor-
phism 7: U — U of degree two and prime divisors By, Bl on
U’ such that
e T is étale outside @,
o T*(Bly)=B{+B, BinB,=7"YQ) ={Q'} for a point
Q', and
e (U',Bi+ B)) is toroidal.
As a consequence, when P € Sing X, the dual graph of the exceptional
divisor on the minimal resolution of X around P is embedded in the
graphs in Figure 2 for each case. In the graphs, O stands for the excep-
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O
O
[

Case (i): o

O
O

Case (ii): o

Case (iii): o O O O -2

Fig. 2. Dual graphs in Theorem 3.22

tional components, and @ stands for the proper transforms of irreducible
components of B; The number —2 indicates that the corresponding curve
is a (—2)-curve.

Definition 3.23. In the situation of Theorem 3.22, we say that the
point P is of type T (resp. P, resp. D) for (X, B) if the condition (i)
(resp. (ii), resp. (iii)) is satisfied.

As a consequence of Theorem 3.22; we have:

Corollary. Let X be a mormal surface, B a reduced divisor, and
P a point of B. Then, the following conditions are equivalent to each
other:
(i) (X, B) is toroidal at P, and P € Sing B;
(ii) (X, B) is log-canonical at P, and P is of type T for (X, B);
(iil) (X, B) is log-canonical at P, and P € Sing B.

Remark. For a point P € B, it is of type P for (X, B) if and only if
(X, B) is purely log terminal (plt) at P in the sense of [29], [30].

By using Theorem 3.22 and Example 3.2, it is an exercise to prove:

Corollary 3.24. Let X, B, and P be as in Theorem 3.22. Let r be
the smallest positive integer such that r(Kx + B) is Cartier at P.

(1) If P is of type P and P € Sing X, then (X,P) is a cyclic
quotient singularity of order r > 1.
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(2) If P is of type D, then r = 2, and (X, P) is either a cyclic
quotient singularity with the dual graph of type As or a quotient
singularity by a binary dihedral group.

(3) Assume that P € BN SingX. Then, r = 1 if and only if
P € Sing B, and it is also equivalent to that P is of type T.

As a consequence of (1)—(3) above, we have:

Corollary 3.25. Assume that (X, B) is log canonical along an irre-
ducible component C' of B. Then, the following conditions are mutually
equivalent:

e Kx + B is Cartier along C;

e ('NSing X C Sing B;

e (X, B) is toroidal along C;

e there is no singular points of X on C which are of type P or
D for (X, B).

Lemma 3.26. Let X be a normal surface with a unique singular
point P and B a reduced divisor containing P. Assume that (X, B) is
log-canonical at P. For the minimal resolution p: M — X of singulari-
ties, let A be the p-exceptional Q-divisor defined by

Ky + B'=p"(Kx + B) = A,

where B’ is the proper transform of B in M. Then, A is effective, and
moreover:
o If P is of type P for (X,B), then AB" = 1 — 1/r for the
smallest positive integer r such that r(Kx + B) is Cartier at
P (cf. Corollary 3.24(1)).
e If P is of type D for (X, B), then AB’ = 1.

Proof. The p-exceptional locus is a simple normal crossing divisor
Zil T'; consisting of non-singular rational curves I';, and the dual graph
is the Dynkin diagram Ay or D45 for some k > 1 orl > 1 (cf. Figure 2 of
Theorem 3.22). Moreover, B’ intersects a unique irreducible component,
say 'y, and B'Ty = 1. Let A = ). §I'; be the prime decomposition. It
is enough to prove that

5 1—1/r, if P is of type P;
b 1, if P is of type D.
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Note that §; > 0 for any i, since —A is p-nef. By adjunction and by the
definition of A, we have equalities

N
(-3) (K +B'+ Y T)Ti==2+ BTy +4{j [ TsNT; # 0}

N N
= /,L*(KX + B)FZ + Zj:l(l — (5])F]FZ = Z

PRSI
forany 1 <i¢ < N.

Assume that P is of type P. Then, N = k, and by renumbering I';’s,
we may assume that I';T; = 0if [i —j] > 1, and I';T; 41 = 1 for any 1 <
i <k—1. Weset b; = —I'?. Then, (X, P) is a cyclic quotient singularity
of type (r,q) for integers 0 < ¢ < r with ged(r,q) = 1 determined by
r/q = [bg,bg—1,...,b1] (cf. Example 3.2). Putting ¢; = 1—4;, by (III-3),
we have equalities

(I11-4) e1by = €2, eibi=¢c;1+¢€iv1, exbr=¢cr_1+1,

where 2 < ¢ < k—1. Let m; for 0 < i < k + 1 be integers defined
inductively by

mo =0, mi=1, mb;=m;_1+m;y
for 1 <¢ < k. Then, ged(m;,m;—1) =1 for any 1 <i <[]+ 1, and
mi 1

—bh - — = ...

Me4+1 b —
7k Mk—1
br—1—

mg mE—1

Mp_2
= [bg,bp—1,...,b1] =71/q.

In particular, my41 = r and my = gq. Moreover, m;e; = ¢; for any
1 < i <k, and mgy1e; = 1 by (III-4). Therefore, e = 1/r and
51:1—51:1—1/7'.

Assume next that P is of type D. Then, N = [ + 2. Renumbering
I';’s, we may assume that I'; 11 and I'; 5 are the end components of self-
intersection number —2, and I'; is the component intersecting I';41 and
I'12. Then, by (III-3), we have:

Lo 0, if 1 <1
(KM-l-B’—i-Zj:l L =41, ifi =1,
-1, ifi>1.
On the other hand, we have
0, if 1 <

(1/2)(T141 + Do) = 1 1, ifi=1;
-1, ifi>1.
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Thus, > (1 = §)T; = (1/2)(T141 + Ti42), and we have 1 = 1. Q.E.D.

Definition 3.27. Let (X, B) be a log-canonical pair of a normal
surface X and a reduced divisor B. We define D(X, B) to be the set of
points of B which are of type D for (X, B). We also define P(X, B) to
be the set of points of B which are singular points of X and are of type
P for (X, B). Moreover, for an integer r > 1, we set P,.(X, B) to be the
subset of P(X, B) consisting of points P such that r equals the order of
the cyclic quotient singularities (X, P) (cf. Corollary 3.24(1)).

Remark. For (X, B) above, one has

P(X.B) =[] _ Pn(X.B).
(BNSing X) \ Sing B = P(X, B) UD(X, B).

3.5. On compact boundary curves of log-canonical pairs

For a normal surface X and a reduced divisor D, we shall classify
the singularities on a compact irreducible component C' of D such that
(Kx +D)C <0 and (X, D) is log-canonical along C.

Lemma 3.28. Let X be a normal surface and D a reduced divisor
such that (X, D) is log-canonical and X\ D is non-singular. Let p: M —
X be the minimal resolution of singularities and set D', to be the union
of the proper transform D’ of D on M and the p-exceptional divisors
lying over Sing D. Then,

(I11-5) Ky 4 D%y = p*(Kx +D)— A

for a p-exceptional effective Q-divisor A lying over P(X, D)UD(X, D).
Moreover, the following equalities hold for any compact irreducible com-
ponent C of D and its proper transform C’ in M:

(I11-6) (D% — CC' =4C N (D - C) + 2nc,

(I11-7) AC’ = vo(D) + Zr )

Here, ng is the number of nodes of C'\ (D — C) contained in Sing X,

VcPT‘)

r

ve(D) :=4CND(X,D), and vc(P,r):=4CNP.(X,D).

Proof. We define A by the equality (III-5). First, we shall prove
that A is effective with p(SuppA) C P(X,D) U D(X, D) and prove
(ITI-7). Let P be a singular point of X. Then, P € D. If P € Sing D,
then (X, D) is toroidal at P by Theorem 3.22, and =~ (P)NSupp A =0
by Corollary 3.15. If P ¢ Sing D, then P is of type P or D for (X, D).
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In this case, by Lemma 3.26, A is effective on a neighborhood of =1 (P),
and AC' =1—1/r (resp. AC" = 1) if P is of type P (resp. D), where
r equals the order of the cyclic quotient singularity (X, P) in case P €
P(X, D). Therefore, A is effective, u(Supp A) € P(X,D) U D(X, D),
and the equality (IT1-7) holds.

Next, we shall prove (III-6). Let @ be an arbitrary point in C' N
Sing D. Then, (X, D) is toroidal at @, and it is well known (cf. Corol-
lary 3.15 above) that p=!(Q) for the minimal resolution p is a union
of non-singular rational curves whose dual graph is the Dynkin diagram
Ay for some k (or a linear chain of rational curves in the sense of Def-
inition 4.1 below) and that p~1(Q) intersects C’ transversely at end
components. Thus, C' N u~1(Q) consists of one point (resp. two points)
if Qe CnN(D—C) (resp. Q is anode of C'\ (D — (). This observation
on Q) implies the equality (II1-6). Q.E.D.

Proposition 3.29. Let X be a normal surface and let D be a re-
duced divisor on X. Let C' be a compact irreducible component of D
such that (X, D) is log-canonical along C and (Kx + D)C < 0. Then,
one of the following eight cases occurs:

(A) C is an elliptic curve and CN(D—C) = CNSing X = 0; In this

case, Kx + D is Cartier along C and Ox(Kx + D)|c ~ O¢.

(B) C s a nodal rational curve with one node, C N (D — C) = 0,
and CNSing X C Sing C; In this case, Kx + D is Cartier along
C and Ox(Kx + D)|¢c ~ Oc¢.

(C) C~PiCN(D-C) =2, and CNSing X C CN(D—C); In this
case, Kx + D is Cartier along C and Ox(Kx + D)|c ~ O¢.

(D) C~P! and CN(D—C) = 0; In this case, —2 < (Kx +D)C <
0.

(E) C~PLHCN(D—-C)=1,and CNSingX Cc CN(D~-C); In
this case, Kx + D is Cartier along C' and (Kx + D)C = —1.

(F) ¢ ~PL4Cn(D-C)=1,4CNPX,D) =1, and CnN
D(X, D) = 0; In this case, r(Kx + D) is Cartier along C for
the order r of the cyclic quotient singular point in CN'P(X, D),
and (Kx + D)C = —1/r.

(G) C~PLdCN(D-C)=1,4CNPX,D) =2, and CN
D(X, D) = 0; In this case, the points in C NP(X, D) are A;-
singularities, 2(Kx + D) is Cartier along C, Kx + D is not
Cartier at C NP(X, D), and (Kx + D)C = 0.

H C~PL4CNn(D-0C) =1, CNnPX,D) =0, and C N
D(X,D) = 1; In this case, 2(Kx + D) is Cartier along C,
Kx + D is not Cartier at C N D(X, D), and (Kx + D)C = 0.
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Proof. 'We may assume that X'\ D is non-singular. Let p: M — X,
Db, and A be as in Lemma 3.28. Then, we have

(I11-8) 0> (Kx + D)C = (K + Dy,)C" + AC’
=2p,(C") =2+ (D%, — CC" + AC" > 2p,(C") — 2,

from (I1I-5) in Lemma 3.28, since A is effective. In particular, p,(C") <
1. Assume that p,(C’) = 1. Then, CN(D —-C) = CNSingX =0
by (III-6) in Lemma 3.28. Consequently, C' ~ C" is an elliptic curve or
a nodal rational curve, and we have Ox(Kx + D)|c ~ we ~ O¢ by
adjunction. Thus, we have the case (A) or (B).

Therefore, we may assume that p,(C’) = 0, i.e., ¢/ ~ P!, Then,
by (I11-8), we have (D%, — C')C' + AC’ < 2. Assume that (D%, —
C")C" = 2. Then, (Kx + D)C = AC' = 0 by (I1I-8). In particular,
Kx + D is Cartier along C, and C' N Sing X C Sing D by (III-7) in
Lemma 3.28 and by Corollary 3.25. Here, if C' is non-singular, then
C ~P' and 4CN(D—C) = (D%, —C")C" = 2 by (I11-6): Thus, the case
(C) occurs. Note that in this case, we have Ox(Kx + D)|c ~ O¢ by
(Kx + D)C =0. If C is singular, then C' is a nodal rational curve with
one node and C'N (D —C) = () by (I11-6); moreover, CNSing X C Sing C
by (III-7), since AC’" = 0: Thus, the case (B) occurs, where we have
Ox(Kx + D)|¢c ~ we =~ Oc by Remark 3.16.

For the rest, we may assume that (D%, — C')C’ < 1 and C' ~ P'.
Then, {CN(D—C) <1and C ~ C" ~ P! by (I1I-6). If CN(D—-C) = 0,
then the case (D) occurs, and we have —2 < (Kx + D)C < 0 by (III-8).
Thus, we may assume that §C N (D — C) = 1. Then, (D}, — C")C" =1
by (ITI-6), and

(111-9) 0> (Kx+D)C=AC"—1>-1

by (III-8). If AC’ = 0, then CNSingX C C N (D — C) by (III-7)
and (Kx + D)C = —1: Thus, we have the case (E). The remaining
cases are divided into the cases (F)—(H) by (III-7) and (III-9). In fact,
it CND(X,D) # 0 (resp. 4C NP(X,D) = 1, resp. 1C NP(X, D) > 2),
we have the case (H) (resp. (F), resp. (G)), by (III-7). Therefore, one of
the cases (A)—(H) occurs, and we are done. Q.E.D.

4. Key concepts

In this section, we prepare some concepts playing important roles
for proving Theorems 1.3, 1.5, 1.6, 1.7, etc. The notions of linear and
cyclic chains of rational curves are introduced in Section 4.1, where, as
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applications, we can prove some results on log-canonical surfaces (X, D)
with reduced divisor D such that — (K x + D) is nef. There is also proved
a result on ¢(X, D) for a linear (or cyclic) chain D of rational curves.
The structure of double-covers étale in codimension one is explained in
Section 4.2, and as an application, we obtain a result on the structure of
a log-canonical surface (X, D) such that D is a linear chain of rational
curves and that 2(Kx + D) ~ 0. The notion of toroidal blowing up is
introduced in Section 4.3, and it is proved that a toroidal blowing up
is étale locally a toric birational morphism. We also prove a result on
the existence of a toroidal blowing up and a fibration to P! for a log-
canonical surface (X, D) with ¢(X, D) < 2 and H'(X,0x) = 0. The
notion of tangential blowing up is introduced in Section 4.4 and a few
properties are mentioned.

4.1. Linear and cyclic chains of rational curves

Definition 4.1. Let D be a compact non-zero connected reduced
divisor on a normal surface X. If D = Zle C; for irreducible compo-
nents C1, ..., C satisfying the following conditions, then D is called a
linear chain of rational curves:

(i) Each irreducible component C; is a non-singular rational curve.

(i) Ifk>2, then C;NC; =0 for |[i —j| > 1 and 4C; N Cipq =1

for1<i<k-1.
In other words, D is a union of non-singular rational curves whose dual
graph is the Dynkin diagram Aj for some k > 1. The components C}
and C}, above are called the end components of D. The union of non-end
component is denoted by DY, i.e., DI = > i<ick Ci-

Remark 4.2. The linear chain D of rational curves above has the
following properties when (X, D) is log-canonical along D:

e D is Gorenstein and p, (D) = 0;

e Pic(D) ~ @Y, Pic(C;) ~ 7k,

e If D is reducible, i.e., if &k > 1, then wp|c ~ Opi(—1) for any
end component C, and wp|pt ~ Ops, where wp stands for the
dualizing sheaf.

In fact, by Theorem 3.22(i), (X, D) is toroidal at any point of D, and
hence, D is locally isomorphic to a normal crossing divisor on a non-
singular surface (cf. Remark 3.3). Therefore, we have the properties
above by the configuration of the irreducible components C; of D, and
by [4, Th. (1.7)].

Definition 4.3. A compact non-zero connected reduced divisor D
on a normal surface X is called a cyclic chain of rational curves if it
satisfies the following conditions:
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(i) Every irreducible component of D is a rational curve.
(i) If D is irreducible, then D is a nodal rational curve with
pa(D) = 1.
(iii) If D is reducible, then any irreducible component C' of D is
non-singular and (D — C)NC = 2.

Remark 4.4. Let D be a cyclic chain of rational curves and let [ be
the number of irreducible components of D. By Theorem 3.22(i) and by
the configuration of the irreducible components, we have the following
properties when (X, D) is log-canonical along D:

e The divisor D is Gorenstein, p,(D) =1, and wp ~ Op.

e If[ =2, then D = Cy+ C, for two non-singular rational curves
C: and () intersecting with each other at two distinct points.

e If[ > 3, then the dual graph of D forms a cycle, i.e., we can

write
D= ZieZ/lZ Ci

for non-singular rational curves C; such that C; N C; = () for
jé{i—14,i+1} and §C;NC; =1for j e {i —1,i+ 1}.

e The number [ coincides with the topological Euler number
e(D).

Lemma 4.5. Let X be a normal surface and let D be a compact
non-zero connected reduced divisor on X such that
e (X, D) is log-canonical along D, and
e —(Kx + D) is nef on D (cf. Definition 2.14(ii)), i.e., (Kx +
D)C <0 for any irreducible component C' of D.
Then, D is an elliptic curve, a linear chain of rational curves, or a cyclic
chain of rational curves, and the following hold:
(1) If D is an elliptic curve, then DN Sing X = and Ox(Kx +
D)|D ~ OD-
(2) If D is a cyclic chain of rational curves, then Kx+D is Cartier
along D and Ox(Kx + D)|p ~ Op.
(3)  Assume that D is a reducible linear chain of rational curves.
Then, Kx + D is Cartier along D% U Sing D, and

Ox(Kx + D)|p: =~ Ope,

where DY stands for the union of non-end components of D.

Proof.  'We shall consider the eight cases (A)—(H) of Proposition 3.29
for each irreducible component of D. Assume that an irreducible com-
ponent C of D is not rational. Then, C' is in the case (A). Here, D = C,
since D is connected. Hence, D is an elliptic curve, DN Sing X = ), and
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Ox(Kx + D)|p ~ Op. Assume next that an irreducible component C
of D is singular. Then, C is in the case (B). Here, D = C, since D is
connected. Hence, D is a nodal rational curve with one node, i.e., an
irreducible cyclic chain of rational curve, Kx + D is Cartier along D,
and Ox (Kx + D)|p ~ Op.

Therefore, by Proposition 3.29, we may assume that every irre-
ducible component C' is isomorphic to P!, and C N (D — C) < 2 for
any C'. Then, D is a linear chain or a cyclic chain of rational curves.

Assume that D is a reducible cyclic chain of rational curves. Then,
every irreducible component C' of D belongs to the case (C). In particu-
lar, Kx + D is Cartier along D. Moreover, Ox (Kx + D)|p ~ wp ~ Op
by Remarks 3.16 and 4.4.

Assume finally that D is a reducible linear chain of rational curves.
We know that Kx + D is Cartier along Sing D (cf. Corollary 3.24(3)).
Hence, we may assume that D! # 0, i.e., n(D) > 3. Then, every
irreducible component C of D belongs to the case (C), and consequently,
Kx + D is Cartier along D%, and Kx + D is numerically trivial on D"
(cf. Definition 2.14(ii)). Since D is also a linear chain of rational curves,
Pic(D¥) is the direct sum of Pic(C) for all C' C D® by Remark 4.2, and
it implies that Ox (Kx + D)|ps ~ Ops. Thus, we are done. Q.E.D.

Corollary 4.6. Let D be a compact non-zero connected reduced
divisor on a normal surface X such that (X, D) is log-canonical along
D and Kx + D is Cartier along D. Then, the following three conditions
are mutually equivalent:

(l) Ox(KXJrD”DEOD;

(ii) (Kx 4+ D)C =0 for any irreducible component C' of D;

(iil) D is either an elliptic curve or a cyclic chain of rational curves.

Proof. 1f (ii) holds, then every irreducible component C' of D sat-
isfies one of the conditions (A), (B), (C) of Proposition 3.29, since
Kx + D is Cartier along D. Thus, we have (ii) = (iii) as in the proof
of Lemma 4.5. The implication (i) = (ii) is trivial, and the implication
(iii) = (i) follows from Remarks 3.16 and 4.4. Q.E.D.

Lemma 4.7. Let X be a normal Moishezon surface with a reduced
divisor D such that

e (X, D) is log-canonical along D,
e —(Kx+ D) isnefonD,

e D is connected and big, and

e D is not an elliptic curve.

Then, D is a linear chain or a cyclic chain of rational curves, and X is a
projective rational surface with only rational singularities. In particular,
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p(X) = p(X). If D is a cyclic chain of rational curves, then there is an
effective divisor G such that G ~ Kx + D, DN SuppG = 0, and that
the intersection matriz of G is negative definite if G # 0.

Proof. The divisor D is a linear chain or a cyclic chain of rational
curves by Lemma 4.5. We have H' (M, ©y;) = 0 for a non-singular pro-
jective surface M birational to X by Lemma 2.32, since the big divisor
D consists of rational curves and X has only rational singularities on
D by Theorem 3.22. In particular, H'(X,Ox) = H (X, 0x(Kx)) = 0.
On the other hand, K x is not pseudo-effective. In fact, for the Zariski-
decomposition D = P + N of D (cf. [57, Th. 7.7], [11, Th. (1.12)], [47,
Cor. (7.5)]), the positive part P is nef and big, and Kx P < (Kx+D)P <
0 by Supp P C D. Thus, X is a rational surface with only rational sin-
gularities by Lemma 2.32. Then, p(X) = p(X) by Remark 2.8 and
Lemma 2.31(2).

Assume that D is a cyclic chain of rational curves. Then, we have
an exact sequence

O%OX(K)() —)Ox(Kx+D)—>Ox(Kx+D)|D ~0Op—0

by Lemma 4.5 (cf. Remark 3.16). Since H'(X,Ox(Kx)) = 0, we can
find an effective divisor G such that G ~ Kx + D and D N Supp G = (.
Here, G is negative definite by the Hodge index theorem, since GP = 0.
Thus, we are done. Q.E.D.

Remark. In Lemma 4.7, if G = 0, then (X, D) is log-canonical, since
X \ D has only rational Gorenstein singularities by Kx + D ~ 0.

Proposition 4.8. Let X be a normal Moishezon surface and D a
reduced divisor on X.
(1) Ife(X,D) <1 and if D is connected, then D is big.
2) If D is a linear chain of rational curves, then ¢(X,D) > 1.
) If D is a cyclic chain of rational curves, then ¢(X, D) > 0.
) If D is a cyclic chain of rational curves with ¢(X,D) =0 and
if —(Kx + D) is nef, then (X, D) = 0.

Proof. We may assume that ¢(X, D) < 1 for the proof. By con-
tracting negative components of D, we have a birational morphism
g: X — X to another Moishezon surface X such that

e the g-exceptional locus is contained in D, and
e cvery irreducible component of D := g, (D) is nef.

Then, §(X, D) = §(X,D) and ¢(X, D) = ¢(X, D) by Lemma 2.27. In
particular, D is a reducible non-zero divisor, since we have n(D) > 2 by

n(D) =r(D)+2—-¢c(X,D) >r(D) + 1.
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If D is connected, then so is D, and now D~ > 0 since it is reducible.
Therefore, D = g~1(D) is also big. This proves (1). If D is a linear
(resp. cyclic) chain of rational curves, then so is D. If —(Kx + D) is
nef, then —(K+ + D) = g.(—(Kx + D)) is also nef. Hence, in order
to prove the remaining assertions, by replacing (X, D) with (X, D), we
may assume that every irreducible component of D is nef.

Assume that D is a linear chain of rational curves. Let E and E’ be
the end components of D. If n(D) > 4, then ENE’ = () and there is an
irreducible component C of D such that CNE # () and CNE’' = (). Then,
C + E is nef and big, and (C' + D)E’ = 0. Hence, E’? < 0 by the Hodge
index theorem, and this contradicts that £’ is nef. Therefore, n(D) < 3.
As a consequence, we have ¢(X,D) > r(D) — 1. If ¢(X, D) < 0, then
r(D) =1 and n(D) = 3. However, if n(D) = 3, then EC > 0, E'C' > 0,
and EE’ = 0 for the other irreducible component C: This contradicts:
r(D) = 1. Therefore, ¢(X, D) > 1, and we have proved (2).

Assume next that D is a cyclic chain of rational curves. If n(D) > 5,
then we can find three irreducible components Cy, Cy, C3 of D such that
CQﬂ(CQUOg) = () and Cs NCs 75 0. Then, Cs+C5 is nef and big, and we
have C2 < 0 by the Hodge index theorem applied to Cy(Cq + C3) = 0.
This contradicts that Cj is nef. Thus, n(D) < 4. As a consequence, we
have ¢(X, D) > r(D) — 2. In particular, ¢(X, D) > 0 when r(D) > 2.
If (D) = 1, then n(D) < 3, since any two irreducible components of D
intersect with each other. Thus, ¢(X, D) = 3 — n(D) > 0 in this case.
Therefore, ¢(X, D) > 0 holds in any case, and we have proved (3).

For the proof of (4), we assume that ¢(X, D) = 0 and that —(Kx +
D) is nef. Note that Kx is not pseudo-effective by KxD < (Kx +
D)D <0, since the nef divisor D is big by (1). Therefore, X is projective
by Lemma 2.31(1). Since 4 > n(D) = r(D)+2 > 3, one of the following
two cases occurs:

(I) »(D) =1 and n(D) = 3.

(IT) (D) =2 and n(D) = 4.

There is an extremal ray R on NE(X) such that DR > 0 and
K xR < 0by Corollary 2.20(2), since (—D)—Kx is nef and —D is not nef.
We consider the contraction morphism contg associated with R (cf. The-
orem 2.21). If contg is the trivial morphism to a point, then p(X) =1,
and it implies that p(X) =r(D) =1 and §(X, D) = ¢(X, D) = 0.

Assume that contr is a fibration 7: X — T to a non-singular pro-
jective curve T. Then, (Kx + D)F < 0 and DF > 0 for a general fiber
F of 7. This implies that p(X) =2, F ~ P!, and 1 < DF < 2. In the
case (I), since r(D) = 1, every irreducible component of D dominates
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T, and thus n(D) < DF = 2. This is a contradiction. In the case (IT),
r(D) = p(X) =2, and hence §(X, D) = ¢(X, D) = 0.

Finally, we shall derive a contradiction assuming that contg is a bi-
rational morphism f: X — X’. This f is just the contraction morphism
of a negative curve I" on X such that R = R>qcl(I"). Here, DI" > 0 and
(Kx 4+ D)I' <0. Since I" ¢ D, we have f{DNT = 1 by Lemma 2.18. Let
Cy be an irreducible component of D such that D NI' = Cy NT. Since
n(D) > 3, we have an irreducible component C such that C; N T = §;
this implies that (D) > 3, and hence, the case (I) does not occur. In
the case (II), since n(D) = 4, there is an irreducible component Cy of
D such that CyNCy = (). Then, Cy & rCy for some r > 0 by the Hodge
index theorem, since Cy and Cy are nef with CoCs = 0. Then, C5I" > 0,
but this contradicts DN T = Cy NT'. Thus, we are done. Q.E.D.

4.2. Double-covers étale in codimension one
We recall some basic properties on double-covers étale in codimen-

sion one, and apply them to certain log-canonical pairs (X, D) of dimen-
sion two such that 2(Kx + D) ~ 0.

Definition 4.9. Let X be a scheme with a quasi-coherent sheaf
L. For a homomorphism o: £%2 — Ox which factors through the
symmetric tensor product S%(L£), let R = R(L,0) be the Ox-algebra
with Ox @ L as an underlying Ox-module and with the multiplication
map R ®o, R — R given by

(a,2)(b,y) = (ab+ o(x @ y), ay + bx)

for local sections a and b of Ox and local sections = and y of L. We
define V- = V(L,0) to be the scheme Specy R(L, o) affine over X,
and set 7: V — X to be the structure morphism. We denote by ¢ the
automorphism of V' over X defined by (a,x) — (a, —x).

It is an exercise to prove the following:

Lemma 4.10. In the situation above, let n: 7L — Oy be the
homomorphism corresponding to the inclusion L C Ox @ L ~ 7.0y
by the adjoint property of 7* and 7.. Then, n®? = 7*(o). Moreover, for
a given morphism f:Y — X of schemes, there is a functorial bijection

Homx (Y, V) — {¢ € Homo, (f*L,0y) | f*(c) = ¢®?}

which associates the homomorphism g*(n): f*L ~ g*(7*L) — Oy with
a morphism g:' Y — V over X.

In the functorial bijection above, the automorphism ¢: V' — V cor-
responds to —n. Thus, we have:
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Corollary 4.11. Assume that 2 is a regular element of H°(X, Ox).
Then, ¢ s an involution, i.e., an automorphism of order two. Let L’
be another quasi-coherent sheaf and o’ L'%?2 — Ox a homomorphism
factoring through S?(L'). Then, giving a morphism V (L,0) — V (L', o")
over X which is equivariant under the involutions ¢, is equivalent to
giwing a homomorphismu: L' — L such that o' = cou®?. In particular,
V(L,0) =V (L, 00e%?) for any automorphism : L — L.

Corollary 4.12. In the situation of Lemma 4.10, for a given quasi-
coherent sheaf M and a given homomorphism 6: 7 M — Oy, there exist
homomorphisms ¢: M — Ox and ¥: M — L such that

0 =7"(p) +no7"(¢).

Proof. Let 0: M — 7Oy >~ Ox @ L be the homomorphism corre-
sponding to 0 by the adjoint property of 7* and 7.. Let ¢: M — Ox
(resp. 1h: M — L) be the composition of  with the first (resp. second)
projection. Then, ¢ and v satisfy the equality above. In fact, by the
adjoint property of 7* and 7, the homomorphism 7*(¢) (resp. no7*(v))
corresponds to the composition of ¢ (resp. 1) with the natural inclusion
Ox COxaL (resp. LCOx® E) Q.E.D.

Lemma 4.13. In the situation of Definition 4.9, assume that L is
an invertible sheaf and that any residual characteristic of X is not two.
Then, for a homomorphism o: LZ? — Ox, it is an isomorphism if and
only if V(L,0) is étale over X.

Proof. Since Ox @ L is locally free of rank two, 7: V' — X is a flat
finite morphism of degree two. By base change, we may assume that
X = Spec A for a local ring A. Then, £ ~ Ox, and ¢ is considered
as an element of A. Thus, V ~ Spec A[x]/(x* — o). The A-algebra
Alx]/(x? — o) is étale over A if and only if o is a unit element, since 2 is
invertible in A. Q.E.D.

In what follows in Section 4.2, we assume X to be a normal variety
over C, i.e., a normal integral separated scheme of finite type over C
(It is possible to treat the case of algebraic spaces, but it is enough to
consider only the case of schemes for our purpose).

Definition. By a double-cover of a normal variety X, we mean
a finite surjective morphism 7: V. — X of degree two from a normal
variety V.

Remark. By the purity of branch locus, the double-cover 7 is étale
in codimension one if and only if V' is étale over the non-singular locus
Xreg of X.
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For a normal variety X and for a coherent torsion-free sheaf £ of rank
one, any homomorphism o: £%? — Ox factors through §?(L), since the
image of ¢ is zero or torsion-free of rank one. Thus, we can consider
V(L, o) of Definition 4.9 for such £ and o. Lemma 4.14 below gives a
criterion for V(L, o) to be a double-cover of X étale in codimension one.

Lemma 4.14. Let X be a normal variety (which is a scheme) and
let (L,0) be a pair of a reflexive sheaf L of rank one and a homomor-
phism o: L& — Ox. We set V.= V(L,0) and consider the following
two conditions for (L,0):

(i)  There is no homomorphism u: L — Ox such that o = u®2.

(ii)  The homomorphism o induces an isomorphism L ~ Ox from

the double-dual LP) = (LO2)VV. In other words, o is regarded

as a nowhere vanishing section of L£1=2.
If (L, o) satisfies (ii), then V is normal and V' — X s a finite morphism
of degree two étale in codimension one. If (L, o) satisfies (i) in addition,
then V s irreducible, and hence V' is a double-cover étale in codimension
one. Conversely, for any double-cover W — X étale in codimension
one, there exists a pair (L,0) above satisfying (i) and (ii) such that
W ~V(L,o) over X.

The proof of Lemma 4.14 is well known at least when £ is invertible,
by Lemma 4.13 above, and the reduction to the case of invertible sheaf
is done by using a property that any reflexive sheaf satisfies Serre’s So-
condition (cf. [15, Prop. 1.6]). We omit the proof.

Remark 4.15. In the situation of Lemma 4.14, assume that (£, o)
satisfies (ii). Then, we have the following for V' = V(L£,0) and for the
structure morphism 7: V. — X.

(1) The homomorphism 7 of Lemma 4.10 induces an isomorphism
(T*L)VY ~ Oy. In fact,  is an isomorphism over an open
subset U of V on which 7*£ is invertible, by the equality n®? =
7*(0) in Lemma 4.10: Thus, we have an isomorphism

(L)Y 2 G (P O)lo) 2 5,00 ~ Oy,

for the open immersion j: U C V, since a reflexive sheaf satis-
fies Serre’s condition Sy and codim(V \ U, V) > 2.

(2) For any homomorphism o’: £L%? — Ox satisfying (ii), there
exists a finite étale surjective morphism X~ — X such that

V(ﬁ,U) X x X~ ~ V(ﬁ,01> X x X~
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over X~. In fact, 0’ = uo for a unit element u of H’(X, Ox),
and hence, X~ = Specy Ox|x]/(x? — u) satisfies the required
condition by Corollary 4.11. As a consequence, V (L, o) and
V(L,0’) have the same singularities.

(3)  We have an isomorphism V ~ V (£, ¢’) for any homomorphism
o' L%? — Ox satisfying (ii). In fact, o’ = co for a non-zero
constant ¢, and thus o’ = €20 for a square-root ¢ of c (cf.
Corollary 4.11).

(4) The variety V is étale over a point P of X if and only if £ is
invertible at P (cf. Lemma 4.13).

Lemma 4.16. Let X be a normal variety (which is a scheme) and
let 7:V = V(L,0) = X be a double-cover étale in codimension one
associated with a reflexive sheaf L of rank one and a homomorphism
o: L%? — Ox inducing an isomorphism (L2?)VY ~ Ox. Then, for any
reflexive sheaf M of rank one, the double-dual (T* M)V is an invertible
sheaf if and only if, for any point P, either M or Homo, (L, M) is
invertible at P.

Proof. It suffices to prove the ‘only if’ part. By replacing X with an
open subset, we may assume that there is a homomorphism 6: 7*M —
Oy which induces an isomorphism (7*M)YY ~ Oy. Let ¢: M — Ox
and 1¢: M — L be the homomorphisms in Corollary 4.12 for . Note
that the homomorphism (p,9): M — Ox @ L = 7.0y defined by ¢ and
1 corresponds to 6 by the adjoint property of 7* and 7. It is enough to
prove that, for any point P € X, either ¢ or ¢ is an isomorphism at P.

Since 0 is an isomorphism, the homomorphism

<p®27001/)®2:./\/l®2%(9x

induces an isomorphism (M®?)¥V ~ Oy. In fact, for the involution
¢ of V, the tensor product 0 ® ¢t*(0): 7*M®? — Oy is identical to the
pullback of p®2 —g01®? by 7. Then, we can construct a homomorphism
k: Ox®L — M such that ko (p,v) = ida. In particular, M is a direct
summand of Ox @ L. The splitting k is constructed as follows: For the
homomorphism 1, : id; @: LOM — L2, we define a homomorphism
KM@ (L®M)— Ox by

K(x,y) = () — o(Pe(y))

for local sections = and y of M and £ ® M, respectively. Then, the
composition

Mm@ VS a e M~ MB(LoM) S Ox
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is nothing but the homomorphism ¢®2? — ¢ 0 9y®2. Thus, we have the
splitting k& from s by taking tensor product with M~! and by taking
double-dual.

Let us consider the fibers

o(P): Mo C(P) 225, ¢(p) and
(P): Mo C(P) L2°P, £ o c(p)

of ¢ and 1, respectively, over a point P € X, where C(P) denotes the
residue field. If (P) # 0, then ¢ is an isomorphism at P. Hence, we
may assume that ¢(P) = 0. Then, M ® C(P) is a direct summand of
L ® C(P). In particular, k£ induces an isomorphism £ — M at P, and
hence, 1 is an isomorphism at P. Thus, we are done. Q.E.D.

We apply the results above on double-covers étale in codimension
one to the study of two-dimensional log-canonical pairs. The following
is related to the notion of type D defined in Definition 3.23:

Lemma 4.17. Let X be a normal surface (which is a scheme), D
a reduced divisor, and P a point of D such that (X, D) is log-canonical
at P and Kx + D is not Cartier at P. Let 7: V — X be a double-cover
étale in codimension one such that Ky + Dy is Cartier along 7~ 1(P)
for Dy = 7=Y(D). Then,
e P is a non-singular point of D, more precisely, P € P2(X, D)U
D(X, D) (cf. Definition 3.27),
o 77 Y(P) consists of one point Q, and
e (V,Dy) is log-canonical at Q.
Here, if P € Po(X, D), then V and Dy are non-singular at Q, and if
P € D(X, D), then Q is a node of Dy, i.e., Q is of type T for (V,Dy).
Moreover, for any isomorphism o: Ox(2(Kx + D)) ~ Ox, there is an
étale neighborhood U — X of (X, P) such that

VXXZ/{ZV(O)((KX +D),0’) Xx U.

Proof. By Corollary 3.24(3), P is of type P or D for (X,D). In
particular, D is non-singular at P. Since 7 is étale in codimension one,
we have Ky + Dy = 7*(Kx + D), and (V, Dy) is log-canonical along
771(P) by Corollary 3.20. Since Kx+D is not Cartier at P and Ky + Dy
is Cartier along 77!(P), the double-cover 7 is not étale along 7~ 1(P),
and hence, 771(P) consists of one point, say Q.

By Lemma 4.14, we have a reflexive sheaf £ of rank one on X and
an isomorphism og: L2 =5 Oy such that V ~ V (£, 0g). Moreover, by
Lemma 4.16, we can find an isomorphism L|y ~ Ox (Kx + D)|y for an
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open neighborhood U of P. In particular, 2(Kx + D) is Cartier at P.
Hence, the last assertion follows from Remark 4.15(2).

It remains to prove P € Pa(X, D)UD(X, P) and prove the assertion
on @ for each type of P. Since (V, Dy ) is log-canonical at Q and Ky +Dy
is Cartier at @, by Corollary 3.24, we have either

e IV and Dy are non-singular at @, or

e () is a node of Dy .
In the first case, P is an A;-singular point, and P € Py(X, D). In the
second case, P € D(X, D) by Theorem 3.22. Q.E.D.

Remark. By Lemma 4.17, we can take V(Oy(Ky + Bly),0) = U
as the double-cover U’ — U in Theorem 3.22(iii), for an isomorphism

o Ou(2(Ku + B|u)) i> Ou.

Proposition 4.18. Let X be a normal surface (which is a scheme)
and D a reduced divisor such that (X, D) is log-canonical along D and
that D is a reducible linear chain of rational curves; in particular, D is
compact and connected. Let 7:'V = V(Ox(Kx + D),0) — X be the
morphism associated with an isomorphism o: Ox(2(Kx + D)) = Ox.
Then,

(1) 7 is a double-cover étale in codimension one,

(2) (V,Dvy) is log-canonical along Dy with Ky + Dy ~ 0 for Dy =

YD), and

(3) Dy is a reducible cyclic chain of rational curves.

Let E1 and Es be the end components of D and set

¥, = E; N (Sing X \ Sing D)

fori=1,2. Then, T is étale along Dy \ 771 (X1 UX3), and one of the
following cases occurs for each i =1, 2:

(a) The set Z; consists of two Aj-singular points of X belonging to
Po(X, D). The divisor 771(E;) is irreducible and the induced
morphism 7 Y(E;) — E; is a double-cover branched at ¥;.

(b)  The set ¥; consists of one point of type D for (X,D). The
divisor T71(E;) consists of two irreducible components E! and
E!" which are isomorphic to E; by T, and E. N E! is a point
identical to T=1(%;).

Proof. By assumption, Kx + D is numerically trivial on D (cf.
Definition 2.14(ii)), and Kx + D is Cartier along D \ (21 U X3) by
Lemma 4.5(3). By Proposition 3.29, the sets 31 and Y5 are not empty,
and the singularity of X around ¥; for each 7 is described as in either the
case (G) or (H) of Proposition 3.29. In particular, K x + D is not Cartier
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on X1 U Xy (cf. Corollary 3.24(3)). Hence, 7 is a double-cover étale in
codimension one by Lemma 4.14. Then, Ky + Dy = 7*(Kx + D), and
(V, Dy) is log-canonical by Corollary 3.20. Moreover, Oy (Ky + Dy) ~
(1*Ox (Kx + D))VY ~ Oy by Remark 4.15(1). Thus, Ky + Dy ~ 0.
Each connected component of Dy is a cyclic chain of rational curves
or an elliptic curve by Corollary 4.6. Here, the connected components
dominate D, since D is connected. Hence, Dy has at most two connected
components and these are reducible divisors. If Dy is not connected,
then 7 is étale along Dy, and it implies that Kx + D is Cartier along D.
This is a contradiction. Therefore, Dy is connected and is a reducible
cyclic chain of rational curves.

We fix i = 1 or 2. Assume first that 7=!(E;) is reducible. Then,
7= Y(E;) = E! + E! for two irreducible components of Dy such that
E! ~ E; and E! ~ E; via 7 and that E/ N E! consists of one point Q;.
Since 7 is étale along 71 (E;)\{Q;}, we have 3; = {7(Q;)} and E!NE! =
771(%;). Thus, (X, E;, ;) belongs to the case (H) of Proposition 3.29,
and the case (b) occurs.

Assume next that 771(E;) is irreducible. Then, it is an irreducible
component of Dy, and 77(E;) — E; is a double-cover whose branch
locus is just X;. Thus, ¥; consists of two points and these are belonging
to P2(X, D) by Lemma 4.17. In particular, (X, E;, ;) belongs to the
case (G) of Proposition 3.29, and the case (a) occurs. Thus, we are
done. Q.E.D.

4.3. Toroidal blowing up

We introduce the notion of toroidal blowing up and give character-
izations for a birational morphism to be a toroidal blowing up. We also
give a sufficient condition for the existence of a fibration from a toroidal
embedding.

Definition 4.19. Let X be a normal surface and D a reduced di-
visor. A proper birational morphism f: Y — X from another normal
surface Y is called a toroidal blowing up with respect to (X, D) if the
following conditions are satisfied:

e The f-exceptional locus ¥ is contained in Dy = f~(D);
e (X, D) is toroidal along f(X), and (Y, Dy ) is toroidal along ¥
(cf. Definition 3.12);
e Ky + Dy= f*(KX +D).
Lemma 4.20. Let X be a normal surface and D a reduced divisor
such that (X, D) is toroidal along D.
(1) Iff:Y — X be a toroidal blowing up with respect to (X, D),
then $(Dy — E) N E = 2 for any f-exceptional prime divisor
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E, where Dy = f~Y(D). Moreover, if X is compact, then
n(Dy) - n(D) = r(Dy) — (D) = p(¥) — p(X).

(2) Let T be a compact irreducible component of D with T'? < 0,
(Kx +D)T <0, and (D -T)NT > 2. Let h: X — X be
the contraction morphism of I'. Then, (X, D) is toroidal along
D = h.(D), and h is a toroidal blowing up with respect to
(X, D).

Proof. (1): Since Kx + D is Cartier along D (cf. Lemma 3.14,
Corollary 3.25), Ky + Dy is also Cartier along Dy, and we have (Ky +
Dy)E = 0 for any f-exceptional prime divisor E. Then, (Y, Dy) and
E satisfy one of the four conditions corresponding to (A), (B), (C),
and (D) in Proposition 3.29 stated for (X, D) and C. Now, E is not
a connected component of Dy. For, otherwise, the point f(F) is a
connected component of D = f(Dy); this is a contradiction. Hence, only
the case (C) can occur, and thus, §(Dy —E)NE = 2. The latter equalities
of (1) follow from Lemmas 2.10 and 2.27, since the f-exceptional locus
is contained in Dy-.

(2): Applying Proposition 3.29 to (X, D) and T', we have (Kx +
D)T =0and §(D —-T)NT = 2, since Kx + D is Cartier along D with
(Kx+D)I' <0and §(D-T)NT" > 2. It implies that Kx+D = h*(K++
D). Note that (X, D) is log-canonical along D by Corollary 3.21. Now,
h(T) is a singular point of D by #(D —T)NT = 2. Thus, (X, D) is
toroidal at h(T') by Theorem 3.22. As a consequence, h is a toroidal
blowing up. Q.E.D.

A proper birational toric morphism of toric surfaces is of course a
toroidal blowing up. Conversely, a toroidal blowing up is regarded as
an étale localization of the toric morphism of toric surfaces. This is a
consequence of the following:

Proposition 4.21. Let X be a normal surface and D a reduced di-
visor such that (X, D) is toroidal along D. Let f: Y — X be a proper bi-
rational morphism from another normal surface Y such that the induced
morphism Y \ Dy — X \ D is an isomorphism, where Dy = f~1(D).
Then, the following conditions are equivalent to each other:

(i)  The morphism f is a toroidal blowing up with respect to (X, D).

(ii)  The pair (Y, Dy) is toroidal along Dy, and (Ky + Dy)E =0

and §(Dy — E)NE = 2 for any f-exceptional prime divisor E.
(iii)  For the minimal resolutions u: M — X and v: N — Y of
singularities, the induced birational morphism g = p~'o fo
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v: N = M is a succession of blowings up at nodes of the in-
verse images of Dy = p=1(D).
(iv)  For any point y € Dy, there exist
e an étale neighborhood X of f(y) in X,
e a proper birational toric morphism ¢: W — V of two-
dimensional toric varieties,
e an étale morphismi: X — V such that D|x = i~Y(B) for
the boundary divisor B of the toric variety V, and
e a Cartesian diagram

Fly=1(x
AN

f7HX) X
l 5
v,

w2

where f~H(X) =Y xx X.

Proof. The equivalence (i) < (ii) has been shown in Lemma 4.20,
and (iv) = (i) follows from that Ky + B ~ 0 for any toric pair (V, B)
(cf. Fact 3.6(3)). It is enough to prove (i) = (iii) and (iii) = (iv).

(i) = (iii): The minimal resolution yu (resp. v) of singularities of X
(resp. Y) is a toroidal blowing up by Corollary 3.15. Hence, g: N — M
is also a toroidal blowing up. On the other hand, g is a succession
blowings up at non-singular points. Then, the non-singular points are
nodes of the inverse image of Dj; by Lemma 4.20.

(iii) = (iv): For a point y of Dy, we set x = f(y). If & Sing D,
then x ¢ Sing X, and f is an isomorphism over x by (iii). Thus, we may
assume that = € Sing D. By replacing X with an étale neighborhood
of x, we may assume that there is an étale morphism i: X — V to an
affine toric surface V such that D =i~1(B) for the boundary divisor B
of V and that i~'(i(z)) = {x}. In particular, i(x) € Sing B. Moreover,
we may assume that f: Y — X is an isomorphism over X \ {z}.

Let V — V be the minimal resolution of singularities. Then, 1%
is also a toric surface, and M ~ V xy X for the minimal resolution
M of singularities of X. Let G (resp. F) be the exceptional locus for
V — V (resp. M — X) and let B’ (resp. D’) be the proper transform
of B (resp. D) in V (resp. M). Then, the induced morphism E — G is
an isomorphism, and in particular, D' N E — B’ N G is bijective. For
the minimal resolution N — Y of singularities, the birational morphism
g: N — M induced by f is a succession of blowings up at nodes of the
inverse images of Dj; by (iii). Thus, there exists a proper birational
morphism h: W — V of non-singular surfaces which is a succession of
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blowings up at nodes of the inverse images of B’ + G and which induces
g, i.e., .
N~MxyW.

Then, Wisa non-singular toric surface and h is a toric morphism. Since
the exceptional locus for N — Y is contained in g~!(E), it is the inverse
image of a divisor on W contained in h=1(G). Hence, we have a proper
birational morphism W — W to a normal surface W and a morphism
Y — W such that .

N~Y xy W.

Then, W is also a toric surface by Lemma 3.9, and the induced birational
morphism W — V is a toric morphism, since it is equivariant for the
action of the open torus. By the isomorphisms

N MxgWeX xy W (X xy W) xy W,

we have Y ~ X xy W, and hence, Y — W is étale. Thus, (iii) = (iv)
has been proved, and we are done. Q.E.D.

The argument of (iii) = (iv) in the proof of Proposition 4.21 proves:

Corollary 4.22. Let X be a toric surface with boundary divisor B.
Then, a proper birational morphism f:Y — X from a normal surface
Y is a toroidal blowing up with respect to (X, B) if and only if Y is a
toric surface with boundary divisor f=1(B) and f is a toric morphism.

The following gives a sufficient condition for the existence of a fibra-
tion from a toroidal blown up surface of a given pair (X, D).

Lemma 4.23. Let X be a normal projective surface with only ra-
tional singularities such that H*(X,Ox) = 0. Let D be a reduced divisor
on X such that

e (X, D) is toroidal along Sing D, and

e n(D)>r(D).
Then, there exist a toroidal blowing up f: Y — X with respect to (X, D)
and a fibration m: Y — T ~ P! such that Dy = f~1(D) contains two
distinct fibers of .

Proof. Let clp: F(D) ® R — N(X) be the class map defined in
Definition 2.24. Then, clp has non-trivial kernel by n(D) > r(D). Note
that clp is defined over Q. Hence, by Lemma 2.31(4), we can find two
non-zero effective Cartier divisors ©; and ©5 such that

e Supp©; USupp©O, C D,
e Supp ©; N Supp O3, is a finite set, and
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e O] ~ Os.
Let f: Y — X be the blowing up along the scheme-theoretic intersection
01 N O, followed by the normalization. Then, f is a toroidal blowing up
with respect to (X, D), since (X, D) is toroidal along ©1 N ©3 and since
f is étale locally a toric morphism (cf. Proposition 4.21). Then, there is
an f-exceptional effective Cartier divisor E such that

07 :=f"(©1)—E and O3 :=f"(0y)—F

are mutually disjoint effective divisors. Thus, we have a morphism Y —
P! associated with the base-point free pencil generated by ©7 and 65
Let 7: Y — T be the Stein factorization. Then, T ~ P! by H'(X, Ox) =
0, and Dy = f~(D) contains at least two distinct fibers of 7. Q.E.D.

4.4. Tangential blowing up

We introduce the notion of tangential blowing up and explain a
few properties. The tangential blowing up is different from the toroidal
blowing up but has similar properties.

Definition 4.24. Let X be a normal surface and D a reduced di-
visor on X. Let P be a point of D such that X and D are non-singular
at P. Let (x,y) be a local coordinate of X at P in which D is defined
by y = 0. For an integer m > 1, we set Z C Ox to be the ideal defined
by (z™,y), which is defined independently of the choice of the local co-
ordinate (z,y). We define the tangential blowing up of (X, D) at P of
order m to be the blowing up f: Y — X along 7.

Remark. The referee pointed out that the notion of tangential blow-
ing up of order m has been introduced by Morrison in [37, Def. 1.1] as
“the directed blowup of weight m.”

If m = 1, then 7 is the maximal ideal at P, so the tangential blowing
up of order one is just the blowing up at P. In order to explain the
description of the tangential blowing up of order m > 2, let us consider
a sequence

_>X7,_>X7,71 —>"'—>X1—>X0

of blowings up, and reduced divisors D; on X; with points P; € D, for
each i > 0 determined by the following properties:

X():X, DOZD, andPO:P;

X; = X;_1 is the blowing up at P;_; for any i > 1;

D; is the proper transform of D;_; in X; for any i > 1;

P; is the intersection of D; and the inverse image of P;_; for
any ¢ > 1.
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Then, the inverse image of P = Py in X; for i > 2 is a linear chain of
rational curves consisting of (—2)-curves and a unique (—1)-curve. Here,
the (—1)-curve is the inverse image of P;_; and the (—2)-curves do not
meet D;. It is an easy exercise to prove the following lemma giving a
geometric description of the tangential blowing up.

Lemma 4.25. Let f: Y — X be the tangential blowing up of
(X,D) at P of order m as above. Then, there is a birational mor-
phism @, Xy — Y over X such that ¢, contracts all the irreducible
components of the inverse image of P except the component intersecting
D,,.

Remark. The birational morphism X,,, — X is called in [40, Def. 2.5]
the elimination of the 0-dimensional subscheme defined by 7.

Remark. The tangential blowing up is a generalization of the so-
called “half point attachment” introduced in the theory of open surfaces
(cf. [18, §2], [12, (6.21)]): Let (X, D) be a pair of a non-singular surface
X and a normal crossing divisor D. Let P be a point of D \ Sing D and
let f: Y — X be the blowing up at P. Then, f is not a toroidal blowup
with respect to (X, D). In fact, Ky + Dy = f*(Kx + D) + E for the
exceptional divisor E = f~!(P), where the total transform Dy = f*(D)
is expressed as D'+ E for the proper transform D’ of D in Y. Note here
that we have the equality Ky + D’ = f*(Kx + D) instead. Moreover,
D' is also a normal crossing divisor and D’ ~ D via f. The open surface
Y \ D' is called the half-point attachment of X \ D.

We have the following immediately from Lemma 4.25.

Corollary 4.26. A tangential blowing up f:Y — X of order m
satisfies the following:

(1) There is a unique exceptional prime divisor E for f.

(2)  The proper transform D' of D in'Y is isomorphic to D by f.

(3)  One has f*(D) = D'+ mE, and the intersection of D' and E
is transversal.

(4) Ifm > 2, then Y has a unique singular point Q on E, and
here, Q & D' and Q is a rational double point of type Ay, _1.

(5)  The equality Ky + D' = f*(Kx + D) holds.

Remark. For the f above, we have D' C f~1(D) and X \ D =~
Y\ fYD)Z Y\ D" If X is compact, then

0=n(D') —n(D) < 7(D') —r(D) < p(¥) — p(X) = 1

by Lemma 2.27. Here, 7(D’) = (D) if and only if (D) > r(D — C) for
the irreducible component C' of D containing P, by Lemma 2.28(3).
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§5. Observation on P!-fibrations

In this section, we study in detail the structure of a pair (X, D) of
a normal Moishezon surface X and a reduced divisor D, and a fibration
m: X — T to a non-singular projective curve 7" which satisfy Condi-
tion 5.1 below. In Section 5.1, it is shown that X is a projective rational
surface with only rational singularities, the base curve T' and a general
fiber of 7 are all rational, and that D is either a cyclic chain or a linear
chain of rational curves. We study the structure of (X, D) in case of
cyclic chain (resp. linear chain) in Section 5.2 (resp. 5.3).

5.1. Two possible cases

Throughout Section 5, we consider the triplet (X, D, ) consisting
of a normal Moishezon surface X, a reduced divisor D, and a morphism
m: X — T which satisfy Condition 5.1 below. In Section 5.1, we shall
give a rough classification of (X, D, 7). Especially, it is shown that
(X, D,7) belongs to the case (A) or (B) of Lemma 5.2.

Condition 5.1.
(i) (X, D) is log-canonical along D;
(i) —(Kx + D) is nef on D (cf. Definition 2.14(ii)), i.e., —(Kx +
D)C > 0 for any irreducible component C' of D;
(iii) = is a fibration and T is a non-singular projective curve;
(iv) D is connected and contains at least two distinct fibers of .

Lemma 5.2. Let (X,D,7m: X — T) be a triplet satisfying Condi-
tion 5.1. Then, T and a general fiber of m are rational, and X is a
projective rational surface with only rational singularities. Moreover, D
1s big, and one of the following cases occurs:

(A)  The divisor D is a cyclic chain of rational curves expressed as

D =Cy + Cy + Fy + F for two distinct fibers Fy and Fy of ™
and for two sections Cy and Cy of m such that C, N Coy = ().

(B) The divisor D is a linear chain of rational curves expressed

as D = Cy + Fy + F5 for two distinct fibers Fy and F and
for a non-end component Cy such that Cy is a section or a
double-section of 7, i.e., CoF =1 or 2 for a general fiber F' of
.

Proof. The divisor D is a linear or cyclic chain of rational curves by
Lemma 4.5. Suppose that D is expressed as in the case (A) or (B) above
for two sections Cy and Csy or for the horizontal component Cy. Then,
the expression implies that D is big, and by Lemma 4.7, X is a projective
rational surface with only rational singularities. In particular, T ~ P*,
which follows also from the rationality of Cy or Cy. Moreover, a general



A wvariant of Shokurov’s criterion 351

fiber F of 7 is rational by KxF < —DF < 0, where (Kx + D)F < 0
follows from (Kx + D)C < 0 for any curve C' C Fy. Thus, it is enough
to prove that (A) or (B) occurs.

Assume first that D is a cyclic chain. Then, the fibers F; and F5
are linear chains of rational curves. Since D is connected, D — (Fy + F5)
has an irreducible component C; intersecting Fy. Then, 7(Cy) = T, and
hence, C; intersects also Fy. Hence, Fy; + Cy + F5 is a linear chain of
rational curves. Since D is assumed to be a cyclic chain, D — (Fy + F» +
(') has an irreducible component Cs intersecting Fy. Then, 7(Cy) =T,
and Cy intersects also Fy. Therefore, the cyclic chain D is expressed as
C1+ Cy + Fy + Fy, in which C1 N Cy = (). Now, Kx + D is numerically
trivial on D (cf. Definition 2.14(ii)) by Lemma 4.5. Thus, (Kx+D)F =
0 for a general fiber F, and it implies that F ~ P! and FC; = FC, = 1.
Hence, C and Cy are sections of 7. Thus, we have the case (A).

Assume next that D is a linear chain. Then, I and F5 are also linear
chains and we can find an irreducible component Cy of D — (Fy + F5)
intersecting Fy. Then, 7(Cy) = T, and Cj intersects also Fy. Thus,
Fy + Cy + Fy is a linear chain in which Cjy is not an end component.
We shall show that D = Fy + Cy + F5. If ' is an irreducible component
of D not contained in I} + Cy + F5 but intersecting I} + Cy + Fo,
then Co NT =, and T intersects F} or Fy. But if so, 7(I') =T, and T
intersects both F and F5, which implies that £} +Cy+ F>+1I contains a
cyclic chain: This is a contradiction. Therefore, D = F} +Cy+ F5. Note
that (Kx + D)F < 0 for a general fiber F' of 7w by the same argument as
above. Thus, F ~ P! and 0 < DF = CyF < —KxF = 2. Hence, either
CoF =1 or CoF = 2 holds, and we have the case (B). Q.E.D.

5.2. The case where D is a cyclic chain

We study (X, D,7) in the case (A) of Lemma 5.2. Here, D is a
cyclic chain of rational curves expressed as C + Cy + Fy + F5 for two
mutually disjoint sections C; and C5 and for two distinct fibers F} and
FQ. We set P1 = 7T(F1) and P2 = 7T(F2).

Proposition 5.3. In the case (A) of Lemma 5.2, the following hold:

(1) If —(Kx + D) is nef, then Kx + D ~ 0.

(2)  The inequality n(D) < p(X)+2 holds, where the equality holds
if and only if ™ is smooth outside Fy U Fy.

(3) Ifn(D)=p(X)+2, then (X, D) is a toric surface and  is a
toric morphism to the toric curve (T, Py + Py).

Proof. Since D is big, by Lemma 4.7, there is an effective divisor
G on X \ D such that G ~ Kx + D and that G is negative definite if
G # 0. If —=(Kx + D) is nef, then G =0 ~ Kx + D. This proves (1).
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By Proposition 2.33(7), we have an inequality
p(X) 22+ (n(F1)-1)+ (n(Fz) — 1) =n(D) - 2,

where the equality holds if and only if any fiber of m except F} and
F5 is irreducible. Let F3 be an irreducible fiber different from F; and
F5. Then, Fj is reduced as a scheme-theoretic fiber, since F3 N (Cy U
() is contained in the non-singular locus of X (cf. Proposition 3.29).
Therefore,  is smooth along F3 by Proposition 2.33(4). Thus, (2) has
been proved.

Assume that p(X) = n(D) — 2. Then, G = 0 by (2), since X \ D
contains no compact curves. Thus, Kx + D ~ 0. In order to show
that (X, D) and 7 are toric, we shall reduce to the non-singular case.
Let pu: M — X be the minimal resolution of singularities. Then, u is a
toroidal blowing up with respect to (X, D), since X \ D is non-singular by
(2). We see that Dy = p~1(D) is a cyclic chain of rational curves with
Ky + Dy = p*(Kx + D) ~ 0. Moreover, Dy = C| + Cy + FY + F5
for the proper transform C; of C; in M and for the total transform
Fr of F; in M, for ¢ = 1 and 2. Thus, the pair (M, D)) with the
fibration mopu: M — T belongs also to the case (A) of Lemma 5.2. Here,
(X, D) is a toric surface if and only if (M, Dys) is so, by Lemma 3.9 and
Corollary 4.22. Thus, by replacing M with X, we may assume that X
is non-singular. We have a birational morphism v: X — X over T to
a Pl-bundle p: X — T in which v contracts only curves contained in
Fy UFy. Here, D = v,(D) is a cyclic chain consisting of two sections
v(C1), v(Cs) and two fibers v, (Fy) and v, (F) of p. In particular, (X, D)
is a toric surface and p is a toric morphism (X, D) — (T, P, + P») (cf.
Example 3.8). Moreover, v: (X,D) — (X,D) is a toroidal blowing
up. Therefore, (X, D) is a toric surface by Corollary 4.22, and we have
proved (3). Q.E.D.

Lemma 5.4. In the case (A) of Lemma 5.2, assume that Kx +D ~
0. Let Fs be a fiber of m different from Fy and Fs, and assume that ™
18 mot smooth along F3. Then, F3 is a reducible linear chain of rational
curves with end components I'y and I'y such that

(1)  the section C; intersects transversally with T'; fori=1, 2, and
(2) (X, F3) is toroidal along F3.
As a consequence, X \ D has only rational double points of type A as
singularities.

Proof. By an argument in the proof of Proposition 5.3, the scheme-
theoretic fiber Fj is reduced at two points F5 N (Cy UCy). Moreover, F3
is reducible by Proposition 2.33(4), since 7 is not smooth along Fs. In
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particular, every irreducible component of F3 is a negative curve. Let
I'y and I's be the irreducible components of F3 which intersect C; and
Cy, respectively.

First, we shall prove the assertion in the case where X is non-
singular. By KxI'; = —DI'; < —C,I'; = —1 for i = 1, 2, we see that I'y
and T'y are (—=1)-curves and Ty NCy =Ty NCy = 0. If F3 =T + T,
we have nothing to prove. Assume that F3 # I'y 4+ I's. Then, the irre-
ducible components I of F3 different from I'y and Iy are all (—2)-curves
by KxI' = —DI' = 0. In this situation, we can prove that Fj is a linear
chain of rational curves with I'y and I's as end components. Indeed, this
is proved by induction on the number of irreducible components of Fj
and by considering the blowing down of the (—1)-curve I'y. Thus, the
assertion holds when X is non-singular.

For general X, let us consider the minimal resolution p: M — X
of singularities. Note that X \ D has only rational double points as
singularities, since X has only rational singularities and Kx + D ~ 0.
Hence, p is a toroidal blowing up with respect to (X, D) along D and
is the minimal resolution of rational double points on X \ D. As a
consequence, (M, Dyy) is toroidal and Ky + Dy = p*(Kx + D) ~ 0.
By the same argument as in the proof of Proposition 5.3, we see that
the pair (M, Djs) with the fibration 7 o u satisfies the assumption of
Lemma 5.4. Then, the assertion for the non-singular case implies that
the total transform F5” = p~!(F3) is a linear chain of rational curves
with T} and T, as end components, where I", is the proper transform of
T;in M fori =1, 2. Thus, I'y # e, and F5 = p,(F5’) is a linear chain of
rational curves such that (X, F3) is toroidal along F5 by Lemma 4.20(2).
Note that X has only cyclic quotient singularities on F3. Hence, the last
assertion holds, since X \ D is Gorenstein. Thus, we are done. Q.E.D.

Proposition 5.5. In the case (A) of Lemma 5.2, assume that
—(Kx + D) is nef and n(D) = p(X) + 1. Then, Kx + D ~ 0, and
there exist two rational curves I'y and I's on X satisfying the following
properties:

(1) Ty 4Ty is a linear chain of rational curves and is a fiber of ™

different from Fy and Fs;

(2) (X,I'y1 4+ 7T9) is toroidal along I'y 4+ T'y;

(3) I'NCi=T2Co=1andT1NCy=T9NCy :(Z);

(4) if T is a negative curve on X not contained in D, then T =T
or I's.

Let g: X — Z be the contraction morphism of I'1, and set Dy = g.(D)

and @Q := g(T'1). Then, the following also hold:
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(5) (Z,Dgz) is a toric surface and the induced fibration Z — T by
7 is a toric morphism to the toric curve (T, Py + Ps);

(6) g is a tangential blowing up (cf. Definition 4.24) of (Z,Dz) at
the point @ of order k > 1. Here, if k = 1, then I'y N T’y is
a non-singular point of X, and if k > 1, then I'y N Ty is an
Ay _1-singularity of X.

Proof. We have Kx + D ~ 0 by Proposition 5.3(1). There is a
unique reducible fiber F3 of m different from F; and F5 by Proposi-
tion 2.33(7), since

p(X) = n(D) +1=2+ (n(R) — 1) + (n(Fy) — 1) + 1,

where n(F3) = 2. Let F3 = I'; + I's be the irreducible decomposition.
Then, applying Lemma 5.4 and assuming C1I'y = 1 and CoT's = 1, we
have the properties (1)-(3) above.

Let I" be a negative curve on X not contained in D. Assume that
7(T) =T. Then, TNF; # 0 and TN Fy # (. Let u: M — X be the
minimal resolution of singularities. Then, Ky;+ Dy = p*(Kx + D) ~ 0
for Dy = p=1(D), and

Kyl' = —DyT’ < -2

for the proper transform IV of I' in M; This contradicts I'V2 4 K, T > —2
and I'"? < 0. Hence, m(I') # T. Thus, T is an irreducible component of
a reducible fiber. Therefore, I' =T’y or 'y, and we have proved (4).
The pair (Z,Dz) in (5) is log-canonical by Corollary 3.21, and the
pair with the induced fibration Z — T satisfies the conditions in the case
(A) of Lemma 5.2. Thus, (5) is a consequence of Proposition 5.3(3). By
Lemma 5.4, the inverse image of I'1 +1's by the minimal resolution of X
is a linear chain such that the proper transforms of I'y and 'y are (—1)-
curves as well as end components and that the non-end components are
all (—2)-curves. Therefore, ¢ is a tangential blowing up of (Z, Dz) at Q
of order k£ > 1 by Lemma 4.25 and Corollary 4.26. Thus, (6) has been
proved, and we are done. Q.E.D.

5.3. The case where D is a linear chain

We study (X, D,7) in the case (B) of Lemma 5.2. Here, D is a
linear chain of rational curves expressed as Cy + F} + F5 for a non-end
component Cy which is either a section or a double-section of 7. We
also set Py := 7(F}) and Py := 7(F3).

Lemma 5.6. In the case (B) of Lemma 5.2, one has an inequality
n(D) < p(X) + 1, where the equality holds if and only if © is smooth
outside F1 U Fy.
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Proof. By Proposition 2.33(7), we have p(X) > n(Fy) + n(F,) =
n(D) — 1, where the equality holds if and only if any fiber is irreducible
except for F; and F. Let F3 be an irreducible fiber different from
Fy and Fy. By Proposition 2.33(4), it is enough to prove that Fj is
reduced as a scheme-theoretic fiber. Now Cy N F3 is contained in the
non-singular loci of X and D (cf. Proposition 3.29). Hence, F3 is reduced
if Cy is a section. If Cj is a double-section, then the induced double-cover
7= 7|, : Co — T is étale outside CoN(FLUFy), since CoNF; = 77 1(P)
is a point for ¢ = 1, 2. Thus, in this case, Cy N F3 consists of two points
and is reduced. Therefore, F3 is reduced, and we are done. Q.E.D.

Proposition 5.7. In the case (B) of Lemma 5.2, assume that
o —(Kx + D) is nef,
e n(D)=p(X)+1, and
o (Y is a section of .
Then, there is a section B of m not contained in D such that (X, B+ D)
is a toric surface and that 7: (X,B + D) — (T, P, + P3) is a toric
morphism.

Proof. Since 7 is smooth outside F; U F5 by Lemma 5.6, we have
Sing X C D. For i =1, 2, let E; be the end component of D such that
E; C F;. Then, (Kx + D)E; <0 for any . In fact, if (Kx + D)E; =0
for example, then (Kx + D)I’ = 0 for any irreducible component I" of Fy
by Lemma 4.5(3), and it implies that (Kx + D)F = 0 for any general
fiber F' of m. However, this contradicts (Kx + D)F = (Kx + Cy)F =
—1. Therefore, by Proposition 3.29, Sing X C FE; U Es U Sing D, and
Y, := (E; \ Sing D) N Sing X is empty or consisting of one point of type
P for (X, D).

Let u: M — X be the minimal resolution of singularities. By the
information above of Sing X, we see that the u-exceptional divisor is a
union of linear chains of rational curves, and hence, Dy = i 1(D) is a
linear chain expressed as CO + F1 + F2 for the proper transform CO of
Cy in M and for the fiber F; = = 1(F;) = (rop)~(P;). We express the
linear chain ﬁ'l asy+Tg+--- —|— I'; for rational curves I'; such that the
end component I'; intersects 6’0. More precisely, we write

I =Tr; and 19 =1

indicating ¢ = 1, 2. Let m( 2

theoretic fiber along Ty, ie.,

U D) (i
(mop) (P)=>" mT{.

Jj=1

= m; be the multiplicity of the scheme-
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Then, m; = m; =1 (cf. Lemma 5.8 below). Note that 3; = ) if and only
if T'; is the proper transform E/ of E; in M. If ¥; # (), then E] = T, for
some k > 1, and p=1(3;) =Ty + -+ + I'y_1; Here, we have m; > j for
any 1 < j < k by Lemma 5.8 below, since p is the minimal resolution of
singularities. We can write

(Z) (1)
(V-1) Ky + Dy = p*(Kx + D) +ZZ 1ZJ P
with 0 < py) < 1, where py) # 0 if and only if ng) C pu (%) (cf. the
proof of Lemma 3.26). Thus, if a section C of o 1 intersects Fgo with
pgi) # 0, then j = 1. Therefore,

(V-2) (Kar + Dar)C < piV 4+ p? < 2

for any section C' of 7 o ju, since —(Kx + D) is nef.

Let h: M — Z be the contraction morphism of all the irreducible
components of Fi+Fy— (Fgl) —|—F§2)). Then, Ky; + Dy is h-numerically
trivial, since (Kps + Dp)T' = 0 for any non-end component I' of the
linear chain Dj; of rational curves. Thus,

(V—S) KM+DM=h*(Kz+Dz)

for Dy = h.(Dyps). We have a fibration @w: Z — T with woh = wo p.
For i = 1, 2, the image F; = h(F}) = h(I‘gl)) is just the scheme-theoretic
fiber w~1(P;), since mgl) = 1. Then, w: Z — T is a P-bundle by
Proposition 2.33(4), since every scheme-theoretic fiber of @ is irreducible
and reduced. Here, Dy = Cy + F1 + F5 for the section C := h(éo).

Assume that there is a section B of w such that E NCy = (Z) Let B
be the proper transform of B in M and set B := u(B ) Then, B+ Dy
is a normal crossing cyclic chain of rational curves, and K, + B+Dy, is
numerically trivial on B+ Dy (cf. Definition 2.14(ii)) by Corollary 4.6.
Since the p-exceptional locus is contained in Dy, the divisor B+ D is a
cyclic chain of rational curves, K x +B+D is numerically trivial on B+D,
and (X, B+ D) is log-canonical (cf. Corollary 3.21). Thus, (X, B + D)
and 7 satisfy the conditions of Lemma 5.2(A) with p(X) = n(B+D)—
Therefore, (X, B + D) is toric and (X, B+ D) — (T, P, + P) is a toric
morphism by Proposition 5.3(3).

Therefore, it remains to find a section B not intersecting Cy. As-
sume that there is no such a section. Then, Cy is not a minimal section
C'y of the Hirzebruch surface Z. We set e = —C% > 0 and let F' denote
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a general fiber of w. Then,
60 NCz-i-dF and Kz + Dy N—Cz—‘r(d—e)F

for an integer d > e. By (V-3) and by (V-2) applied to the proper
transform Cyz of Cz in M, we have

d=(Kz+ Dz)Cz = (Ky + Da)Cz < pV +p? < 2.

If d =0, then d = e = 0, and Oy is a minimal section; this contradicts
the assumption. Thus, d =1, and 0 < e < 1. If e = 1, then we can take
B as Oy, since Cz N Cy = 0. Hence, we have (d,e) = (1,0). Therefore,
pgi) > 0 for any 7 = 1, 2, and it implies that 3; # (. The section Cz must
intersect ng) for any 1 (:) 1, 2 by the observation above on irreducible

components F;i) with p;7 > 0. However, we can find another minimal

section C; such that Cz; N Cy = F1 N Cy. The proper transform
Cz1 of Cz1 in M does not intersect B%l). This is a contradiction. As

a consequence, we can find a section B not intersecting C, and we are
done. Q.E.D.

The following lemma is used in the proof of Proposition 5.7.

Lemma 5.8. Let M be a non-singular surface with a P'-fibration
v: M — T and let F be a reducible fiber of 1. Assume that F is a
linear chain T'y + Ty + --- 4+ I'; of rational curves I'; in this order, and
let 3~ <,c;mil'; be the scheme-theoretic fiber of 1.
(1) Ifm; =1, thenmy =1.
(2)  For an integer k > 1, assume that T? < —2 for any i < k.
Then, m; > 1 for any 1 <1i < k.

Proof. Note that F' is a simple normal crossing divisor (cf. Re-
mark 2.34). Hence, I'; ~ P! for any i, and I';T';;; = 1 for any 1 <i < [.
Then,

m;—1 + mll“f +miy1 =0
for any 1 < i <[, where we set mg = myy; = 0. In particular, m; is
divisible by m4 for any 1 < ¢ <[, and this proves (1). Moreover, under
the assumption of (2), we have

2
mit1 —m; = mi(=17 —2) +m; —mi_1 >m; —m;q

for any 1 < ¢ < k. This implies that m; > i for any 1 <i <k. Q.E.D.
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Proposition 5.9. In the case (B) of Lemma 5.2, assume that Cy
is a double-section and n(D) = p(X) + 1. Then, 7 is smooth outside
FLUF, and 2(Kx + D) ~ 0. Let 7: V = V(Ox(Kx + D),0) = X
be the double-cover étale in codimension one associated with an isomor-
phism o: Ox(2(Kx + D)) = Ox (cf. Definition 4.9). Then, (V, Dy)
is a toric surface for Dy = 7-1(D), and there is a toric morphism
v (V,77Y(D)) — (T', P{ + Pj) such that

e Ty is the Stein factorization of wo T,

o T — T is a double-cover branched at {P1, P} = m(Fy U Fy),
and

e P! is the point of T' lying over P; fori=1, 2.

7

Proof. The morphism 7 is smooth outside F; U F5 by Lemma 5.6.
We shall show that 2(Kx + D) ~ 0. For i = 1, 2, let E; be the end
component of D such that E; C F;. Then, Kx + D is Cartier along
D — E; — F5 and is numerically trivial on D — F; — E5 by Lemma 4.5(3).
Since (Kx + D)F = 0 for a general fiber F, we have (Kx + D)E; =0
for i = 1, 2. Hence, (X, D, E;) belongs to either the case (G) or (H)
of Proposition 3.29. As a consequence, 2(Kx + D) is Cartier and 7-
numerically trivial. Then, 2(Kx + D) ~ 7*L for a divisor L on T by
Proposition 2.33(5), and now L = 0 by 2degL = Cyn*L = 2(Kx +
D)Cy = 0. Therefore, 2(Kx + D) ~ 0.

By Proposition 4.18 and Remark 4.15(4), (V, Dy ) is log-canonical
with Ky + Dy ~ 0, Dy is a cyclic chain of rational curves, and V \
771(F1UFy) is non-singular and étale over X \ (Fy UFy). Here, 771(D —
E; — E5) is a disjoint union of two copies of D — Ey — Es, and for each
i =1, 2, either 7=1(E;) is irreducible or is a union of two copies of E;
intersecting at one point. In particular, 77!(F};) is connected and is a
fiber of the Stein factorization 7y : V — T" of mo7: V — T. Thus,
(V, Dy) and 7y satisfy the condition of Lemma 5.2(A). Here, 771(Cp)
is just the union of two sections of my contained in Dy,. Hence, T/ — T
is a double-cover isomorphic to Cy — T', which is branched at {P;, P»},
since CoFy = CoFy = 1. In particular, 7-1(F;) is the fiber over the
point P! € T’ lying over P; for i = 1, 2. Since V \ 771(F; U Fy) is
smooth over 7", we have n(Dy) = p(V) + 2 by Proposition 5.3(2).
Therefore, (V,Dy) is a toric surface and my is a toric morphism by
Proposition 5.3(3). Q.E.D.

§6. Pseudo-toric surfaces

We introduce the notion of pseudo-toric surface in Section 6.1 and
explain its basic properties. Especially in Proposition 6.4, it is shown
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that the defect 6(X, D) of a pseudo-toric surface (X, D) is always non-
negative and that among pseudo-toric surfaces, the toric surfaces are
characterized by 6(X,D) = 0. The structure of pseudo-toric surface
of defect one is studied in detail in Section 6.2, where we shall give a
structure theorem as Theorem 6.5 and give a proof of Theorem 1.6.

6.1. Pseudo-toric surfaces and their basic properties

Definition 6.1. A pair (X, D) of a normal projective surface X
and a reduced divisor D is called a pseudo-toric surface if the following
conditions are satisfied:

(i) X is a rational surface with only rational singularities;
(ii) (X, D) is log-canonical along D, and Kx + D ~ 0;
(iii) every irreducible component of D is a rational curve;
(iv) D is big.

Remark. Let X be a non-singular projective surface and D an anti-
canonical reduced divisor of X. Assume that D is a simple normal
crossing divisor consisting of rational curves. Then, (X, D) is pseudo-
toric if and only if D is big, by Definition 6.1. It is an exercise to prove
that D is big if and only if one of the following holds.

e There is an irreducible component C' of D with C? > 0.

e There is an irreducible component C of D with C? = 0 and
(D—-C)C>0.

e There is an irreducible component C' of D such that C is a
(—1)-curve and that the push-forward D = g,(D) is big for
the contraction morphism g: X — X of C.

Remark 6.2. Inspired by a comment of the referee, the author found
that the condition (i) is superfluous in Definition 6.1. In fact, the condi-
tions (ii) and (iii) imply that each connected component of D is a cyclic
chain of rational curves by Corollary 4.6. There is a big connected com-
ponent D of D by (iv). Then, by applying Lemma 4.7 to (X, D), we
have the condition (i).

Lemma 6.3. Let (X, D) be a pseudo-toric surface.

(1)  The Weil-Picard number p(X) equals the Picard number p(X).

(2) The open subset X \ D has only rational double points as sin-
gularities. In particular, (X, D) is log-canonical.

(3)  The divisor D is connected and is a cyclic chain of rational
curves.

(4) If f: Y — X is a toroidal blowing up with respect to (X, D),
then (Y, Dy) is also pseudo-toric for Dy = f~(D).
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(5) Let f: Y — X be a tangential blowing up of (X, D) and let D’
be the proper transform of D. Then (Y,D’) is pseudo-toric if
and only if D’ is big.

(6) Let p: M — X be the minimal resolution of singularities.
Then, (M, Dyy) is also pseudo-toric for Dy = pu~ (D).

(7)  Letg: X — X be a birational morphism to a normal Moishezon
surface X and set D = g,(D). Then, (X, D) is a pseudo-toric
surface. If the g-exceptional locus is contained in D, then g is
a toroidal blowing up with respect to (X, D).

(8)  There is a birational morphism g: X — X contracting only
curves in X \ D such that X \ D is affine for D = g.(D).

Proof.  (1): This is a consequence of Lemma 2.31.

(2): This follows from that Kx+D ~ 0 and that X has only rational
singularities. In fact, X\ D is Gorenstein with only rational singularities.

(3): By Remark 6.2, we know that each connected component of D
is a cyclic chain of rational curves. Suppose that D is not connected.
Then, by the Hodge index theorem, a connected component E of D is
negative definite, since D is big. Let g: X — X be the contraction
morphism of E. Then, K+ D ~ 0 for the divisor D = g,(D) # 0, and

H*(X,0%) = H*(X,0(K%))" = 0.

Hence, X has only rational singularities by Lemma 2.31(3). However,
the singular point 7(F) is irrational, since F is a cyclic chain of rational
curves. This is a contradiction. Therefore, D is connected and (3) holds.

(4) and (5): Let f: (Y, Dy) — (X, D) be either a toroidal blowing
up or a tangential blowing up. Here, Dy = f~1(D) in the case of
toroidal blowing up, and Dy is the proper transform of D in the case of
tangential blowing up. Then, (Y, Dy ) is also log-canonical, Dy consists
of rational curves, and Ky + Dy = f*(Kx + D) ~ 0 by Definition 4.19
and Corollary 4.26. Thus, (Y, Dy) is also pseudo-toric.

(6): The minimal resolution p is expressed as a toroidal blowing up
along D and is the minimal resolution of X \ D, which has only rational
double points by (2). Thus, Kyr+Dpy = p*(Kx+D) ~ 0, and (M, Dyy)
is also pseudo-toric by the argument above.

(7): The pair (X, D) is log-canonical by (2) and by Corollary 3.21.
We have K+ D = g.(Kx + D) ~ 0. Therefore, D is also a cyclic chain
of rational curves by Corollary 4.6. Moreover, D is big by Remark 2.13.
Hence, X is a projective rational surface with only rational singulari-
ties by Lemma 4.7. Thus, (7, E) is a pseudo-toric surface. The latter
assertion of (7) follows from Definition 4.19.



A wvariant of Shokurov’s criterion 361

(8): The union of compact curves in X \ D is negative definite by the
Hodge index theorem, since D is big. Hence, we have the contraction
morphism X — X of the union of these curves by Theorem 2.6. Then,
X \ D contains no compact curves for the image D of D. Here, (X, D)
is pseudo-toric by (7) above. Thus, for the proof of (8), we may assume
that X = X, i.e., X\ D contains no compact curves. There is a birational
morphism 7: X — X’ to a normal Moishezon surface X’ such that the
m-exceptional locus is contained in D and that D’ := 7,(D) contains no
negative curves. Then, X \ D ~ X'\ D', since D = 7~*(D’). Here,
(X', D) is also pseudo-toric by (7). Thus, by replacing X’ with X, we
may assume furthermore that every irreducible component of D is nef.
Then, it is enough to show that D is ample. Now, DC > 0 for any
irreducible component C of D. In fact, since D is connected by (3), we
have DC = (D — C)C + C? > 0 in case D is reducible, and even in case
D is irreducible, we have D? > 0, since D is big. Thus, if DI' = 0 for
an irreducible curve T" on X, then I' C X \ D; this is a contradiction.
Hence, D is ample by the Nakai-Moishezon criterion of ampleness (cf.
Remark 2.12). Thus, we are done. Q.E.D.

Remark. Let (X, D) be a pseudo-toric surface such that X is non-
singular. The structure of (X, D) is studied by considering birational
morphisms f: X — Z and g: Z — S satisfying the following conditions:

e The pairs (Z,Dz) and (S, Dg) are pseudo-toric surfaces for
Dy = f«(D) and Dg = (go f)«(D), and Z and S are non-
singular.
e Every exceptional divisor for f is not contained in D.
The exceptional locus of g is contained in Dy.
There is no (—1)-curve on Z not contained in Dy, and there is
no (—1)-curve on S.
Here, f is a maximal succession of contractions of (—1)-curves not con-
tained in the images of D, and g is a succession of contractions of (—1)-
curves contained in Dyz. Then, (Z, Dz) and (S, Dg) are pseudo-toric by
Lemma 6.3(7). Note that every negative curve I on X not contained in
D is either a (—1)-curve or a (—2)-curve, since 'D = —Kx D > 0. Since
the pseudo-toric surfaces (S, Dg) are classified easily, we have a detailed
structure of (X, D) by investigating the birational morphisms f and g.

Proposition 6.4. Let (X, D) be a pseudo-toric surface. Then, the
defect 8(X, D) and the complexity ¢(X, D) (c¢f. Definition 2.23) are
non-negative. Here, ¢(X, D) = 0 if and only if (X, D) is a toric surface.
In particular, a pseudo-toric surface of defect zero is a toric surface.
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Proof. 'We have ¢(X, D) > 0 by Proposition 4.8(3), and §(X, D) >
c(X, D) by Definition 2.23. If (X, D) is toric, then it is pseudo-toric
with §(X, D) = 0 by Lemma 3.11. For the rest, it is enough to prove
that (X, D) is toric when ¢(X, D) = 0. In this situation, we have also
0(X,D) = 0 by Proposition 4.8(4). Since n(D) > p(X) > r(D), by
Lemma 4.23, there exist a toroidal blowing up f: (Y, Dy) — (X, D) and
a fibration 7: Y — T to a non-singular curve T such that Dy = f~1(D)
contains at least two fibers of w. Here, (Y, Dy) is also pseudo-toric and
0(Y,Dy) = d(X,D) = 0 by Lemma 2.27. Since Dy is connected by
Lemma 6.3(3), (Y, Dy) and 7 satisfy the condition of Lemma 5.2(A).
Thus, (Y, Dy) is toric by Proposition 5.3(3), and (X, D) is toric by
Lemma 3.9. Q.E.D.

6.2. The structure of pseudo-toric surfaces of defect one

We first prove a structure theorem as Theorem 6.5 for the pseudo-
toric surface (X, D) of defect one. Using a special linear chain of rational
curves defined in Definition 6.7 below, we obtain results on the group
Aut(X; D) of automorphisms of X preserving each irreducible compo-
nent of D, on the coordinate ring of X \ D, and on the quasi-Albanese
map of X \ D. Finally, we prove Theorem 1.6 gathering these partial
results.

Theorem 6.5. Let X be a normal Moishezon surface with a reduced
divisor D. Then, (X, D) is a pseudo-toric surface of defect one if and
only if there exist a toroidal blowing up f:Y — X with respect to (X, D)
and a tangential blowing up g: Y — Z of a projective toric surface
(Z,Dz) such that f~*(D) is the proper transform of Dz inY .

Proof. Y is a tangential blowing up of toric surface (Z, Dz), then
(Y, Dy) is a pseudo-toric surface of defect one for the proper transform
Dy of Dz in'Y by Lemma 6.3(5) and by Proposition 4.8(1), since

e(Y, Dy) < 8(Y, Dy) = n(Dy) - (p(Y) +2) = n(Dz) - (p(2) +1) = L.

Thus, if there is also a toroidal blowing up f: Y — X with respect to
(X, D) such that Dy = f~1(D), then (X, D) is also pseudo-toric by
Lemma 6.3(7), and §(X, D) = §(Y, Dy ) = 1 by Lemma 2.27.
Conversely, if (X, D) is a pseudo-toric surface of defect one, then, by
Lemma 4.23, there exist a toroidal blowing up f: (Y, Dy ) — (X, D) and
a fibration 7: Y — T to a non-singular curve T such that Dy = f~1(D)
contains at least two fibers of m. Here, (Y, Dy) is also a pseudo-toric
surface of defect one by Lemmas 6.3(4) and 2.27. Thus, (Y, Dy) and
m satisfy the condition of Lemma 5.2(A), and by Proposition 5.5, there
exist a toric surface (Z, Dz) and a tangential blowing up ¢g: ¥ — Z of
(Z,Dyz) such that Dy is the proper transform of D. Q.E.D.
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Remark. Let (X, D) be a pair of a normal Moishezon surface X and
a reduced divisor D on X which satisfies the conditions of Definition 6.1
except (iv). If ¢(X,D) < 1, then D is big by Proposition 4.8(1), and
(X, D) is a pseudo-toric surface. Thus, if (X, D) = 1, then (X, D) is
a pseudo-toric surface of defect one by Proposition 4.8(4), and in this
case, we have §(X, D) = ¢(X, D), or equivalently, p(X) = (D).

Lemma 6.6. Let (X, D) be a pseudo-toric surface of defect one.
Let f: (Y,Dy) — (X, D) be a toroidal blowing up and 7: Y — T ~ P!
a PL-fibration such that Dy = f~Y(D) contains the fibers of ™ over two
distinct points Py and Py of T. The existence of f and m is shown in
Lemma 4.23. Then, the morphism

hi=(rof Yx\p: X\D~=Y\Dy T\ {P, P}
induces a group isomorphism
h*: O(T\ {P1, P,})* = O(X \ D)*.

In particular, h is uniquely determined up to isomorphism, the rational
map mo f': X =T is independent of the choice of f and m up to
birational equivalence, and O(X \ D)* ~ C* x Z.

Proof.  Since ¢(X, D) = 1, the kernel of the class map clp: F(D) ®
R — N(X) is one-dimensional, and hence, the kernel of cl%: F(D) —
CL(X) is of rank one. Therefore, the divisor @1 — O3 in the proof of
Lemma 4.23 is essentially unique, and indeed, 7*(P; — P,) is a generator
of Ker(cl%). Thus, we have a commutative diagram

1l —— 0Ty —— O(T\{P,}) —— Z — 0

. g -
1 —— OX)* ——  O(X\D)* —— Ker(cl}) —— 0

of exact sequences by Lemma 2.25, and the middle homomorphism h*
is an isomorphism. Q.E.D.

Definition 6.7. For a pseudo-toric surface (X, D) of defect one,
let f: (Y,Dy) — (X, D) be a toroidal blowing up with a P!-fibration
7: Y — T ~ P! such that Dy = f~!(D) contains two fibers of . Then,
by Proposition 5.5, we have two rational curves I'y and I's on Y such that
I'y + 'y is a unique reducible fiber of 7 outside the two fibers contained
in D. For i = 1 and 2, we define L; to be the image f(T';). The union
Ly + Ly is denoted by L.
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We have the following immediately from Proposition 5.5 and Lemma
6.6:

Lemma 6.8. (1) The union L = Ly + Lo is a linear chain of
rational curves, and is independent of the choice of f and .

(2) The pair (X, L) is toroidal along L\ D.

(3)  The intersection point Py, of Ly and Lo is not contained in D.

(4) If X\ D is singular, then P, is the unique singular point of
X \ D and it is a rational double point of type Ay for some
k> 1.

The rational curves L; and Lo have the following characterization:

Proposition 6.9. Let (X, D) be a pseudo-toric pair of defect one
and let v: X' — X be an arbitrary toroidal blowing up with respect to
(X, D). If C is a negative curve on X' not contained in v=1(D), then
v(C) =Ly or L.

Proof. The pair (X’,D’) for D' = v=!(D) is also a pseudo-toric
surface of defect one by Lemmas 6.3(4) and 2.27. Let f: Y — X be the
toroidal blowing up in Definition 6.7. Then, there is a toroidal blowing
up Y’ — X’ with respect to (X’,D’) such that the induced rational
map Y’ — Y is also a toroidal blowing up with respect to (Y, Dy). By
replacing X’ with Y’ and replacing C' with the proper transform in Y,
we may assume that v = f o7 for a toroidal blowing up 7: X’ — Y
with respect to (Y, Dy). By Proposition 5.5, 7=1(I'; + I's) is a unique
reducible fiber of m o 7 outside 77!(Fy U Fy). Then, C = 771(T'y) or
771(I'y) by Proposition 5.5(4) applied to m o 7: X’ — T. Therefore,
v(C) = Ly or Ls. Q.E.D.

We present an example of L1 + Lo for a simple pseudo-toric surface.

Ezample 6.10. For the projective plane X = P2, let D = D; + Dy
be a union of a line Dy and a conic Dy such that Dy N Dy consists of two
points P; and P,. Then, (X, D) is pseudo-toric of defect one, and the
linear chain Lq + Lo is just the union of tangent lines of Dy at the two
points P; and Ps. In fact, we can take a toroidal blowing up f: Y — X
as two-times blowings up at each point of {P;, P} so that f resolves
the indeterminacy of the pencil generated by 2D, and D,. For i = 1,
2, the proper transform I'; in Y of the tangent line L; of Dy at P; is a
(—1)-curve, and the union I'y + I'y is a fiber of the fibration Y — P!
associated with the pencil.

Proposition 6.11. For a pseudo-toric surface (X, D) of defect one,
the group Aut(X; D) of automorphisms of X preserving each irreducible
component of D is isomorphic to the multiplicative group C* = C\ {0}.
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Proof. Let f: (Y,Dy) — (X, D) be a toroidal blowing up. Then,
any automorphism in Aut(X; D) lifts to Aut(Y; Dy ), and conversely,
any automorphism in Aut(Y; Dy) descends to Aut(X; D). Therefore,
Aut(Y; Dy) ~ Aut(X; D). Hence, by replacing (X, D) by (Y, Dy) in
Definition 6.7, we may assume that there is a P!-fibration 7: X — T ~
P! such that D contains two fibers F; = 7= 1(P) and Fy = 7 }(P).
Then, Ly + Lo is just T'y + 'y in Definition 6.7. For any o € Aut(X; D),
we have o(T;) = T; for i = 1, 2 by the uniqueness of L; + Ly shown in
Proposition 6.9 and by the uniqueness of the irreducible component of
D meeting I'; for each i. Hence, Aut(X; D) = Aut(X; D +T'; +T'9).

Let g: X — Z be the contraction morphism of I'y. Then, by Propo-
sition 5.5, (Z, D) is a toric surface for Dz = ¢.(D) and the induced
fibration 7: Z — T is a toric morphism (Z, Dz) — (T, Py + P»). We set
[ := g(T3), which is a fiber of 7. Since g is also a toroidal blowing up
with respect to (Z, Dz + F), we have an isomorphism

Aut(X;D +T1 +T) ~ Aut(Z; Dy + F)

by the same argument as above. For the toric surface (Z, Dyz), it is well
known that Aut(Z; D) is isomorphic to the group of C-rational points
of the open torus Z \ Dz, which is isomorphic to (C*)?. Now, the toric
morphism 7 induces a projection

(C*)? ~ Aut(Z; Dz) — Aut(T; P, + P;) ~ C*

and Aut(Z; Dz + F) is considered as the preimage of Aut(7T; P, + P +
P3) = {idr} for the point P3 = 7(F). Hence, Aut(Z; Dz + F) ~ C*,
and consequently, Aut(X; D) ~ C*. Q.E.D.

Lemma 6.12. For a pseudo-toric surface (X, D) of defect one, the
complement X \ D is an affine surface with the coordinate ring isomor-
phic to

Clx,s,t,t 71 /(sx — (£t — 1)F*1)
for some k > 0. Moreover, the following hold:

(1) Let f: (Y,Dy)— (X, D) be the toroidal blowing up in Defini-
tion 6.7 and let g: Y — Z be the contraction morphism of T';y.
We set DﬁZ := g«(Dy —C4) for the irreducible component Cy of
Dy intersecting I'y. Then, the morphism X \ D ~Y \ Dy —
Z\ DﬁZ of affine surfaces induced by go f~' is associated with
the natural injective ring homomorphism

Cls,t,t71] = C[x,s,t,t 1] /(sx — (t — 1)¥).
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In particular, the morphism h in Lemma 6.6 is associated with
the natural injective ring homomorphism

Clt,t '] = C[x,s,t,t 71 /(sx — (t — 1)F).

(2) Theaction of@ € C* ~ Aut(X; D) on X \ D in Proposition 6.11
is given by (x,s,t) — (0x,071s,t).

Proof. We may assume that (Y, Dy) = (X, D) and f = idx. Thus,
there is a P'-fibration 7: X — T ~ P! such that D = C; +Csy + F} + F»
for two sections C; and Cy of m with C; N Cy = () and for two fibers
Fy =77 1(P)) and F, = 7~ }(P,). For the reducible fiber I'; + 'y outside
Fy U F5, we may assume that C; is the unique irreducible component
meeting I'; for i« = 1, 2. For the toric surface (Z, Dz), the coordinate
ring of Z \ Dy is written as C[s®!,t*!], where the principal divisors
div(s) and div(t) on Z are expressed as

div(s) = g(Cy) — g(Ce) and div(t) = ¢g«(F1) — g« (F>).

In particular, t is the pullback of a coordinate function of T\ {Py, Py} ~
Gu. The open subset Z \ DﬁZ is also affine and its coordinate ring A is
isomorphic to C[s,t*!]. We may assume that g(T'y) is the fiber over
the point: t = 1. Then, the contraction morphism ¢g: X — Z of I';
is expressed as the blowing up along an ideal (s, (t — 1)**!) for some
k > 0 (cf. Lemma 4.25). Thus, X \ D is affine and its coordinate ring
R is isomorphic to the degree zero part of the homogeneous coordinate
ring
AR Y/ (sX = (2 = DR,

where X, Y are of degree one, and s, t are of degree zero. By setting
x = X/Y, we have

R~ Clx,s,tT!]/(sx — (t — 1)F*1).

The assertions (1) and (2) follow from this description and from the
proof of Proposition 6.11. Q.E.D.

Proposition 6.13. Let (X, D) be a pseudo-toric surface of defect
one and let p: M — X be the minimal resolution of singularities with
Dy = Mfl(D).

(1)  The divisor Dy is normal crossing, and
Ky + Dy ~0 and M\ Dy) =1

for the logarithmic irreqularity g (cf. [17], [19]).
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(2)  For the morphism h in Lemma 6.6, the composition
ho(ulanpy): M\ Dy — X\ D = T\{P,P2} ~Gy

is isomorphic to the quasi-Albanese map of M \ Dys (cf. [16],
[19]).

Proof. By Lemma 6.3(6), (M, Dys) is also a pseudo-toric surface.
In particular, Dj; is a normal crossing anti-canonical divisor, since M
is non-singular. Moreover, p induces an isomorphism O(X \ D)* ~
O(M \ Dyps)*. Since q(M) = 0, the equality g(M \ Djs) = 1 and the
assertion (2) are derived from Proposition 2.26 and Lemma 6.6. Q.E.D.

Finally in Section 6.2, we shall prove Theorem 1.6.

Proof of Theorem 1.6. The assertions (1) and (2) have been proved
in Proposition 6.11 and Lemma 6.12, respectively. The assertion (3)
follows from Proposition 6.13. Q.E.D.

§7. Half-toric surfaces

We introduce the notion of half-toric surface in Section 7.1 and study
fundamental properties. In Section 7.2, we introduce the notion of H-
surface, which is regarded as an NC-minimal completion of an open
surface of type H[—1,0, —1] in the sense of Fujita [12] (cf. Remark 7.14).
The H-surface is unique up to isomorphism and it is useful to describe
the structure of half-toric surfaces. We have an explicit description of
the involution of the characteristic double-cover of a half-toric surface
in Section 7.3. Section 7.4 is devoted to prove Theorem 1.7.

7.1. Definition of half-toric surface
Definition 7.1. Let (X, D) be a pair of a normal projective surface
X and areduced divisor D. It is called a half-toric surface if the following
conditions are satisfied:
(i) 2(Kx+D)~0but Kx + D # 0;
(ii) There is a double-cover 7: V' — X étale in codimension one
such that V is a toric surface with Dy := 7=1(D) as the bound-
ary divisor.

Lemma 7.2. Let (X,D) and 7: V — X be as in Definition 7.1.
(1)  The pair (X, D) is log-canonical and Ky + Dy = 7*(Kx + D).
(2) The divisor D is big and is a linear chain of rational curves.
(3)  The open subset X \ D is non-singular and affine.
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(4) Let Ey and E3 be end components of D and set ¥; = E; N
(Sing X\Sing D) fori =1, 2. Then, T is étale over X \(X1U%5)
and one of the cases (a) and (b) of Proposition 4.18 occurs for
each ;.

(5)  For any isomorphism o: Ox(2(Kx + D)) = Ox, one has an
isomorphism

V~V(Ox(Kx + D),o)

over X (cf. Definition 4.9), and an isomorphism n: Oy (Ky +

Dy) = Oy such that n®? = 7*(0) via the canonical isomor-
phism 7*Ox (2(Kx + D)) ~ Oy (2(Ky + Dy)).

Proof. Since 7 is étale in codimension one, (1) is a consequence of
Corollary 3.20. The divisor D is big and connected, since so is Dy =
77Y(D). Hence, D is either a cyclic chain of rational curves or a linear
chain of rational curves by Lemma 4.5. If D is a cyclic chain, then
Kx + D ~ 0 by Lemma 4.7; this is a contradiction. Thus, D is a linear
chain of rational curves, and this proves (2). The affineness of X \ D
follows from that of V'\ Dy by Chevalley’s theorem (cf. EGA II, 6.7.1).
We shall prove the rest of (3) assuming (5). If P € Sing X \ D, then P
is an Aj-singular point of X, since 7 is étale in codimension one. Then,
Kx + D is Cartier at P, and it implies that V(Ox(Kx + D),0) =+ X
is étale over P by Remark 4.15(4). This is a contradiction. Thus, (3) is
proved by assuming (5). The assertion (4) is a consequence of (5) and
Proposition 4.18. Hence, it remains to prove (5).

By Lemma 4.14, V ~ V(L,0) for a reflexive sheaf £ of rank one
on X and a homomorphism o: L& — Ox satisfying the conditions (i)
and (ii) of Lemma 4.14. Thus, in order to prove (5), it suffices to show
that £ ~ Ox(Kx 4+ D) by Remark 4.15(3), where the existence of 7
follows from Remark 4.15(1). By (1) and by Ky + Dy ~ 0, we have an
isomorphism

7.0y ~ 1,0u(Ky + Dy) ~ (1.0y @0, Ox(Kx + D))"
Since 7, Oy ~ Ox @ L, it induces
Ox ®L~0x(Kx +D)® (LR Ox(Kx + D))"V,
On the other hand, H*(X, Ox (K x +D)) = 0 by Definition 7.1(i). Hence,
Homp, (Ox,Ox(Kx + D)) = Homo, (£, (L ® Ox(Kx + D))"V) = 0.

Therefore, £ ~ Ox(Kx + D), and we have proved (5). Q.E.D.
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Lemma 7.3. Let (X, D) be a log-canonical pair of a normal pro-
jective surface X and a reduced divisor D such that D is a big re-
ducible linear chain of rational curves and 2(Kx + D) ~ 0. Let V =
V(Ox(Kx + D),0) — X be the double-cover étale in codimension one
associated with an isomorphism o: Ox(2(Kx + D)) = Ox. Then,
(V, Dy) is a pseudo-toric surface for Dy = 7=Y(D). Here, (V,Dy) is a
toric surface if and only if (X, D) is a half-toric surface.

Proof. By Proposition 4.18, we see that (V, Dy ) is log-canonical,
Ky +Dy ~ 0, and Dy is areducible cyclic chain of rational curves. Here,
Dy = 77Y(D) is big. Thus, X is a rational surface with only rational
singularities by Lemma 4.7. Therefore, (V, Dy/) is a pseudo-toric surface
(cf. Definition 6.1). The last assertion follows from Definition 7.1 and
Lemma 7.2(5). Q.E.D.

Definition. For a half-toric surface (X, D), by Lemma 7.2(5), the
double-cover 7: V' — X in Definition 7.1 is unique up to isomorphism
over X. The double-cover 7 or the pair (V,771(D)) is called a charac-
teristic double-cover of (X, D).

Lemma 7.4. For a half-toric surface (X, D), the following hold:

(1) Let f: Y — X be a birational morphism from another nor-
mal projective surfaceY such that (Y, Dy) is log-canonical and
2(Ky + Dy) ~ 0 for Dy = f~1(D). Then, (Y, Dy) is also a
half-toric surface.

(2) Let f: Y — X be a toroidal blowing up with respect to (X, D).
Then, (Y, Dy) is also a half-toric surface for Dy = f=(D).

(3) Let g: X — X be a birational morphism of normal Moishe-

zon surface X. If g-exceptional locus is contained in D, then
(X, D) is also a half-toric surface for D = g.(D).

Proof. Let 7: V. — X be a characteristic double cover of (X, D).
We fix an isomorphism o: Ox (2(Kx+D)) ~ Ox. Then, V is isomorphic
to V(Ox(Kx + D),o) by Lemma 7.2(5).

(1) and (2): It suffices to prove (1), since (2) is a special case of
(1). Now 2(Ky + Dy) = f*(2(KX + D)) ~ 0, but Ky + Dy # 0,
since fu(Ky + Dy) ~ Kx + D # 0. For the induced isomorphism
f*(0): Oy (2(Ky + Dy)) =~ Oy, we have a double-cover

A W=V (Oy(Ky + Dy), f*(0)) = Y

étale in codimension one by Lemma 4.14. Here, (W, Dy ) is log-canonical
for Dy := A~!'(Dy) by Corollary 3.20, and Ky + Dw ~ 0 by Re-
mark 4.15(1). Since Ky + Dy is f-numerically trivial, f.Oy (Ky + Dy)
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Fig. 3. Dual graph of D), in Proposition 7.5

is a reflexive sheaf on X, and hence, is isomorphic to Ox(Kx + D).
Thus, we have an isomorphism

7.0y = Ox ® Ox(Kx + D) = f,\Ow = f.(Oy ® Oy (Ky + Dy))

of Ox-algebras, and it induces a morphism h: W — V such that fol =
7o h. Then, h is a toroidal blowing up with respect to (V, Dy ), since
Dw = h=Y(D) and Kyw + Dw = h*(Ky + Dy) ~ 0. Therefore, (W, D)
is a toric surface by Corollary 4.22; and consequently, (Y, Dy ) is a half-
toric surface.

(3): Now 2(K% + D) = g.(2(Kx + D)) ~ 0, and Kx + D =
g*(Kx + D). Hence, K5+ D # 0. Let V. — V — X be the Stein
factorization of 7o g. Then, (V, D) is a toric surface for the image
Dy of Dy by Lemma 3.9, since the exceptional locus of V' — V is con-
tained in Dy = 771(D). The surface X is projective, since the induced
morphism 7: V — X is finite and V is projective. Moreover, T is étale
in codimension one and 771(D) = Dy Therefore, (X, D) is also a
half-toric surface. Q.E.D.

Proposition 7.5. Let (X, D) be a half-toric surface and let pn: M —
X be the minimal resolution of singularities. Then, Dy = p~ (D) is a
simple normal crossing divisor consisting of rational curves and its dual
graph is expressed as in Figure 3. Here, the four end components ©q,
...0y4 are (—2)-curves satisfying

4
Z(KM—|—DM) ~ i1 @i~

Let g: M — M be the contraction morphism of these four end compo-
nents. Then, p = fog for a birational morphism jp: M — X, and
(M, Dyz) is a half-toric surface for Dyf = g«(Dar) = i~ (D).
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Proof. By Lemma 7.2, u is an isomorphism on X \ D and is a
toroidal blowing up with respect to (X, D) at least over an open neigh-
borhood of Sing X N Sing D. The set of singular points of X lying on
D\ Sing D is 31 U3, for the sets 31 and X5 in Lemma 7.2(4) and the sin-
gularities are described as in Proposition 4.18. Therefore, Dy = u~1(D)
is a simple normal crossing divisor consisting of rational curves with the
dual graph above. Here, the end components ©1, ..., ©4 are (—2)-curves
lying over X1 U Xs. Since p is a toroidal blowing up over X \ (37 U Xs),
we can write

4
2(Kn + Dar) = (2Ex + D) =D ai®;i+ > bl

for the irreducible components I'; in x~!(3; U ¥2) not contained in
O = Zle ©; and for some integers a; and b;. By the information of
the dual graph of Dj;, we have

1, ifT;NO #0,

Ky + Du)O; = —1 and (K + Dy)Ts =
(Kar + D) and (Ko + Dan)T {0, itT; e =0

for any 1 < <4 and j. This implies that a; = 1 for any ¢ and b; =0
for any j, and hence, we have the required linear equivalence relation on
Z?:l O;.

Since © is p-exceptional, p factors through the contraction mor-
phism ¢g: M — M of ©. Let fi be the induced birational morphism
M — X and set Dy := g.(Dy) = p~%(D). Then, Dy is a lin-
ear chain of rational curves, (M, Dy7) is log-canonical, and 2(K77 +
Dy;) = i*(2(Kx + D)) ~ 0. Thus, (M, Dy;) is a half-toric surface by
Lemma 7.4(1). Q.E.D.

Proposition 7.6. In the situation of Lemma 7.3, if (X, D) = 1,
then (X, D) is a half-toric surface.

Proof. By Lemma 4.23, there exist a toroidal blowing up f: Y —
X with respect to (X, D) and a P!-fibration 7: Y — T ~ P! such
that Dy = f~!(D) contains two distinct fibers of 7. Here, (Y, Dy)
satisfies the condition of Lemma 7.3, and 6(Y,Dy) = §(X,D) = 1 by
Lemma 2.27. By Lemma 7.4(3), we may replace X with Y. Then,
(X,D) and w: X — T are as in the situation of Section 5, and we have
the case (B) in Lemma 5.2. Since §(X, D) =1 and 2(Kx + D) ~ 0, the
pair (X, D) is a half-toric surface by Proposition 5.9. Q.E.D.

7.2. An H-surface and a half-toric surface

Definition 7.7. Let S be a non-singular projective rational surface
and let Dg be a reduced simple normal crossing divisor. If Dg has an
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Fig. 4. Dual graph of Dg in Definition 7.7

irreducible decomposition
Dg=C+ FEi+ Ey + @1’1 + @1’2 + @2,1 + @2,2

with the dual graph in Figure 4 and if the following four conditions are
satisfied, then (S, Dg) is called a pre H-surface:
(i) C is a non-singular rational curve;
(ii) Ey and Fs are (—1)-curves;
(i) O, are all (—2)-curves for any 1 <4,j < 2;
(iv) There is no (—1)-curve in S\ Dg.
If C? = 0 holds in addition, then (S, Dg) is called an H-surface.

Lemma 7.8. For the pre H-surface (S, Dg) above, there is a linear
equivalence relation

(VIL-1) 2Ks+Ds)~O:=3 . O
Fori=1, 2, we set
F;,:=2F; + @1'71 + 91’2.

Then, there exists a P'-fibration w: S — T ~ P! such that
F; is a scheme theoretic fiber of m for any i =1, 2,
C is a double-section of w, and
the double-cover C'— T is branched at two points Py = mw(F)
and P2 = W(FQ).
If m is smooth outside Fy U Fy, then (S, Dg) is an H-surface.

Proof. By the information of the dual graph of Dg, for each i = 1,
2, we have a P!-fibration S — T =~ P! such that F; is the scheme-
theoretic fiber. Here, we have the common fibration 7, since £y NEFy = ()
and CFy = CF, = 2. In particular, 7|c: C — T is a double-cover
branched at {Py, P2}, since C'N F; is a point as a set.



A wvariant of Shokurov’s criterion 373
Next, we shall show (VII-1). We set
1 1
LI:KS+C+E1+E2+§®=K5+C+ §(F1+F2).

Then, (VII-1) is equivalent to the numerical equivalence relation L & 0,
since S is rational. We have LG = 0 for any irreducible component G of
Dg by a direct calculation from the information of the dual graph of Dg.
Since Dg is big, if L is nef, then L & 0 by the Hodge index theorem.
Thus, for the proof of (VII-1), it is enough to derive a contradiction
assuming that L is not nef. In this situation, there is an extremal curve
I' with LT' < 0 by the cone theorem (cf. Theorem 2.19). Note that
p(X) > 2, since we can contract Ey + ©1 ;1 to a non-singular point.
Thus, T' is a (—1)-curve satisfying

(C+E1+E)NT'=0 and O <1.

Here, if ©I' > 0, then ©F; = ©F, > 0, and it implies that ©T' >
2. Therefore, ® N T' = () and this contradicts the condition (iv) of
Definition 7.7. Thus, (VII-1) has been proved.

The last assertion is shown as follows. Suppose that 7 is smooth
outside F;, U F,. It is enough to prove: C? = 0. Let g: S — Z be
the contraction morphism of £y + ©1 1 + F2 + O31. Then, the induced
Pl-fibration 7z : Z — T is smooth. Hence, Z is isomorphic to the Hirze-
bruch surface F,, = P(O & O(n)) for some n > 0. Here, the image
Cyz = ¢(C) is isomorphic to C over T satisfying CZ = C? + 4, and the
image F}; 7z := g(©;2) is the fiber over P; for ¢ = 1, 2. Hence,

Kz +Cz+F;~0

for a fiber Fz of mz by (VII-1). This implies that C% = 4, since K% = 8
and KzF; = —2. Therefore, C? = 0, and (S, Dg) is an H-surface.
Q.ED.

We can construct an H-surface from a plane conic with two tangent
lines as follows.

Ezxample 7.9. Let Cy be a non-singular plane conic, and let L, and
Ls be two tangent lines to Cy. Let Qo be the point L1 N Lo, and let Q;
be the point Cy N L; for i =1, 2. Let f: S; — P? be the blowing up at
the three points @Q; and set B; = f~1(Q;) for i = 1, 2. Let Cy, L}, and
LY, be the proper transforms of Cy, Ly, and Lo in Sy, respectively. Then,
L} and B; are (—1)-curves intersecting at a point @}, and C; intersects
L) + B; at Q}, for each i = 1, 2. Moreover, (L} + B1)N (LY + B') =10
and C? = 2. Let g: S — S; be the blowing up at {Q}, @5} and let Dg
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be the union of the proper transform C of (', the exceptional divisor
E; = g7 1(Q}), the proper transform ©; ; of L/, and the proper transform
©; 2 of B; for i =1, 2. Then, (S, Dg) is an H-surface, since Dg have the
same dual graph as in Definition 7.7, S\ Dg is affine, and C? = 0.

We can also construct an H-surface from a certain double-section of
a Hirzebruch surface, as follows.

Ezample 7.10. Let p: F,, — P! be the ruling of the Hirzebruch
surface F,, = P(O @ O(n)) and let Cy be a non-singular curve linearly
equivalent to —Kp, — F for a fiber F' of p. Such Cj exists only when
n < 1, and in this case, we have Cyp ~ P! and C§ = 4. Then, there
exist exactly two fibers Ly and Lo which intersect Cy tangentially. Let
f: 51 — F,, be the blowing up at the two points Cy N (L U Lg). Note
that S is isomorphic to the surface S; in Example 7.9 when n = 1. Let
B; be the exceptional curve f~1(CyN L;) for i = 1, 2. Then, the proper
transform L, of L; is a (—1)-curve intersecting B; transversely at a point
Q’, and the proper transform C; of Cy intersects L, + B; at Q}, for i = 1,
2. Here, C? = 2. Let g: S — S; be the blowing up at {Q},Q5}. Then,
(S, Dg) is an H-surface for the union Dg of the proper transform C' of
C1, the g-exceptional divisor E; = ¢g~1(Q!), the proper transform ©; ;
of L}, and the proper transform ©; 5 of B;, for i = 1, 2. In fact, Dg has
the same dual graph as in Definition 7.7, S\ Dg is affine, and C? = 0.

Lemma 7.11. Fvery H-surface (S, Dg) is isomorphic to the H-
surface obtained in Example 7.9. In particular, S\ Dg is affine, the
morphism m in Lemma 7.8 is smooth outside Fy U Fs, and moreover,

induces a Gy-fiber bundle S\ Dg — T\ { Py, P»}.

Proof. Since C? =0 and C ~ P!, there is a fibration w: S — E ~
P! such that C is a smooth fiber of w. Here, E; and E, are sections of
m and the four (—2)-curves ©; ; are all contained in fibers of w, since
E.C = FE,C=1and 0, ;C =0. We can take an irreducible component
A; of the fiber of w containing ©7 7 such that ©11 N Ay # 0. We set
dy = @1’1A1 > 0. Then, d; = FiA = FQAl, and

1
0 = (KS +C+ §(F1 +F2))A1 == KSAl +d1

by (VII-1). Since A? < 0, we see that A; is a (—1)-curve and d; = 1.
Moreover, F5A; = 1 implies that Ea N Ay = 0 and (O3 + O29)A; =
1. By exchanging ©3; and O3 if necessarily, we may assume that
@271A1 =1 and @272 N Al = @ Then, H1 = 2A1 + @171 + @271 is a
scheme-theoretic fiber of w.
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Fig. 5. Dual graph of Dg + A; + A,

Let h: S — Z be the contraction morphism of Ay + Ey + 012 +
Ey 4+ 0Og5. Weset L; := h,(0;1) for i =1, 2, and Cy := h,(C). Then,
Z is also a non-singular surface, and Cy, Lq, and Lo are non-singular
rational curves such that

L?=13=IL1Ly=1, C2=4, CoL;=CyLy=2,
Ly~ Ly and 2(Kz+00)+L1+L2NO.

Therefore, K% =9, and as a consequence, Z ~ P2, Cj is a conic, and
L; and Ly are tangent lines of Cy. Hence, (S, Dg) is obtained as in
Example 7.9. We know that S\ Dg is affine by Example 7.9. By the
construction of (S, Dg) in Example 7.10, we see that 7 is smooth outside
Fy U F5 and that the morphism S\ Dg — T'\ {Py, P»} induced by 7 is
a Gy-fiber bundle. Q.E.D.

Corollary 7.12. For an H-surface (S, Dg), there exist (—1)-curves
A1 and Ao on S such that

(1)  Aj and Ay are sections of 7,

(2) <A1+A2)H(E1+E2+C):@, and

(3) (S, Dg) is a toric surface for Dg :=Dg—C+ A + As.
In particular, Dg + A + Ay = Dg + C has the dual graph in Figure 5
after interchanging ©2 1 and O3 o if necessarily.

Proof. By the proof of Lemma 7.11, after replacing ©3; and O 5
if necessary, we have (—1)-curves A; and Ay on S such that A; is a
section of 7 and H; = 2A; 4+ ©; 1 4+ ©; 2 is a fiber of @ for i =1, 2. Let
k: S — Y be the contraction morphism of A; +©3 1 +As+ 03 5. Then,
p(Y) = p(S) —4 = 2, and as a consequence, the induced morphism
Y — E ~ P! is a Pl-bundle. Let Dg, be the image of Dﬁs. Then,
Dg — k~Y(D%) and (Y, DY) is a toric surface. Since k is a toroidal
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blowing up with respect to (Y, Dgf)7 by Corollary 4.22, (S, Dg) is a toric
surface. Q.E.D.

Corollary 7.13. Let (S, Dg) be an H-surface. Then,
CL(S\ Ds) ~7Z/27Z,

and the Gp-bundle S\ Dg — T\ {Py, P2} in Lemma 7.11 is isomorphic
to the quasi-Albanese map of S\ Dg. In particular,

O(S\ Dg)* ~C* x Z.
Proof. The class group CL(S\ Dg) is the cokernel of the class map
c:=clp, : F(Ds) — CL(S)

(cf. Definition 2.24). Since (S, Dg) is toric for the divisor Dg of Corol-
lary 7.12, CL(S) ~ Pic(S) ~ Z%° is generated by the linear equivalence
classes of the irreducible components of Dus. On the other hand, the im-
age of c is generated by the linear equivalence classes of the irreducible
components of Dg. There is no divisor B supported on Dg such that
BF =1 for afiber Fof m: S — T. But A1 F = 1 for the divisor A; of
Corollary 7.12. Thus, CL(S\Dg) # 0. Since C ~ H; = 2A;4+011+63
as in the proof of Lemma 7.11, we have CL(S \ Dg) ~ Z/2Z.

The kernel of ¢ consists of principal divisors B supported on Dg.
This B is a multiple of F; — F5. In fact, BF; = 0 implies that Supp B C
Ds — C = Fy UF;, and BC = 0 implies that Supp(B — m(F;, — F3)) C
© = )"0, ; for some m € Z. Here, B = m(F — F3), since © is negative
definite. By the proof of Lemma 2.25, we have a commutative diagram

z
CIP1Jer

o)y —— o(T\{P,P})* —— F(P +P) — CL

| | A

(T)
O(8)* ——  O(S\Ds)* —— FDs) —2%5 CL(S

™

)
of exact sequences related to class maps. Since 7*(FP;) = F; for i =1, 2,
the homomorphism

Ker(cllzg1+P2) — Ker(cl%s)

induced by 7* is an isomorphism by the observation above on B. Hence,
the second vertical homomorphism ¢ in the diagram is an isomorphism.
Note that ¢ is induced from the Gy-fiber bundle p: S\Dg — T\{ Py, P»}.
Therefore, p is isomorphic to the quasi-Albanese map of S\ Dg by
Proposition 2.26, since ¢(.5) = 0. Q.E.D.
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Remark 7.14. By Lemma 7.11, we see that, for an H-surface (S, Dg),
the open subset S\ Dg is an open surface of type H[—1,0,—1] in the
sense of Fujita in [12, (8.19)] and (S, Dg) is an NC-minimal completion
of S\ Dg in his sense (cf. [12, Th. (8.5), (8.9), (8.18), Table (8.64)]).

Proposition 7.15. For an H-surface (S,Dg), let S — S be the
contraction morphism of the four end components ©;; of Dg. Then,
(S, Dg) is a half-toric surface for the image Dg of Dg, and the char-
acteristic double-cover of (S, Dyg) is isomorphic to P! x P'. Moreover,
§(S, Dg) =1 holds.

Proof. Let7:V =V(Og(—(Ks+Ds)),0) = S (cf. Definition 4.9)
be the double-cover associated with a natural homomorphism

o: Og(—(Ks + Dg))** =~ O5(=0) = Os

induced by (VII-1). Here, V is non-singular and the branch locus of 7
is ©. Then, we have the following properties:

e O;;:=71(0;;)is a (—1)-curve for any 1, ;.

o I :=71(E;) is a (—2)-curve, and is a double-cover of E; for

1=1, 2.

e 771(C) is a disjoint union Cy U Cy of two copies of C.
Let V — V be the contraction morphism of the four (—1)-curves (:)”
Then, the induced morphism 7: V — S is a double-cover étale in codi-
mension one. We set G;1 = T*(Ez) and G2 = T*(éz) for 1 = 1, 2.
Then, G; ; ~ P! and

o
GijGij = {1, le o
0, ifi#7d,
for any 4, ¢/, j, and j'. Thus, Dy = Uléi,jSZ G;,; is a cyclic chain
of four rational curves with self-intersection number zero. Note that
Dy = 77 Y(Dg) and V' \ Dy is affine, since V' \ Dy ~ 771(S \ Dg) and
S\ Dg is affine. Therefore, V ~ P! x P!, and Dy is a union of two fibers
of the first projection V' — P! and of two fibers of the second projection
V — Pl In particular, (V, D) is a toric surface, and consequently,
(S, Dg) is a half-toric surface. The equality §(S,Dg) = 1 is derived
from p(S) = p(S) — 4 =2 and n(Dz) = 3. Q.E.D.
Lemma 7.16. Let (X, D) be a half-toric surface with a P*-fibration
7: X — T ~ P! such that §(X,D) =1 and that D contains two distinct
fibers of m. Let p: M — X be the minimal resolution of singularities
and set Dy == pu~*(D). Then, for the H-surface (S, Dg) above, there
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is a toroidal blowing up f: M — S with respect to (S, Dg) such that
Dy = f_l(DS).

Proof. By Lemma 5.2 and Propositions 5.7 and 5.9, D is a linear
chain of rational curves expressed as Cy+ F + F5 for a double-section Cj
and two fibers F; and Fy of 7 such that 7 is smooth outside F U F5. By
the proof of Proposition 7.5, Dy = u~*(D) is a simple normal crossing
divisor expressed as Chys + Fi v + Fb ar for the proper transform Cyy
of Cp in M and two fibers Fy ps and F5 s of pom: M — T. Here, for
1 =1, 2, the fiber Fj js is written as G; 4+ ©;1 + ©; 2 for a linear chain
G, of rational curves and two (—2)-curves O, ; and ©; 2 such that, for
an end component G, of G, ©;; N G; = O, NG for any j = 1,
2. We have 2(Kpy + Dy) ~ © := 37, .6, ; by Proposition 7.5. Let
f: M — N be the contraction morphism of Gy + G2 — (G109 + Ga2,0).
Then, f is a succession of contractions of (—1)-curves. For, if G, is
a (—1)-curve, then G; = G, 0, since Gio + ©;1 + ©;2 is not negative
definite. Hence, N is non-singular, and Dy = f.(D)s) has the same
dual graph as that of Dg in Definition 7.7. Thus, (N, Dy) is a pre H-
surface. We set F; n = fi(Fi ) for i = 1, 2. Then, the P!-fibration
mn: N — T induced from m: X — T is smooth outside F} y U Fy y by
construction. On the other hand, 7wy is isomorphic to the fibration m
in Lemma 7.8 defined for the pre H-surface (N, Dy ), where Fy vy U Fy n
corresponds to F}UF, in Lemma 7.8. Therefore, (N, Dy ) is an H-surface
by Lemma 7.8. Q.E.D.

7.3. On certain involutions of toric surfaces

We shall show that a half-toric surface is characterized as the quo-
tient surface of a projective toric surface by a special involution.

Lemma 7.17. Let ¢ be an involution of the two-dimensional alge-
braic torus T := Spec C[t1!,t5'] such that

(i) *n= —n for the two-form 1 = (t] dt1) A (t5 dts), and

(il)  the fized point set of v contains no prime divisor on T.
Then, v is given by

(t) = —t1 and f(tg) =t

after changing the coordinate (t1,t2) of T. In particular, ¢ has no fized
point.

Proof. The induced involution *: C[ti',t5'] — C[t!, 5] is
given by

VII-2 (1) = AtP 122 and 1 (ta) = Aot
1 %2 1 "2
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for suitable A1, Ay € C* = C\ {0} and suitable integers a;, as, b1, bo

such that the matrix
(a1 a2
a= (i3

has order at most two and
(VII-3) ATE =202 and Ayt = ADal

Then, det A = —1 by (i). In particular, A has eigenvalues 1 and —1. For
a C-scheme Z, let T(Z) denote the set Homgpecc(Z, T) of the morphisms
from Z to the two-dimensional algebraic torus T. Then, T(Z) is an
abelian group. We write T(C) for T(SpecC). For an element u € T(Z),
let 0, denote the (left) action of uw on Tx Z = T Xgpecc Z over Z. Then,

0y OO0y = Oyep

for any u, v € T(Z), where - denotes the multiplication in T(Z). For
u € T(C), the o, is an automorphism of T, and if (tq(u),ta(u)) =
(u1,u2) € (C*)?, the associated ring homomorphism o : C[tT! t5!] —
] is given by

or(t1) =wity, and o) (ta2) = uats.
Let t4 be an involution of T defined by
() =t91422 and o (tg) = thek2,
Then, ¢4 is equivariant with respect to the action of T, i.e.,
ta(u-v)=1a(u) - 1a(v)
for any u, v € T(Z) for any C-scheme Z. In particular,
1tA00, =0, 0ta and 1a00,,)=0,0104

for any v € T(C). The relations among ¢, A, and (A, \y) above (cf.
(VII-2) and (VII-3)) are translated as

t=tp00y and 1a(A\)= AL

where A is an element of T(C) defined by (A1, A2) = (t1(A),t2(A)). In
particular, the action of ¢ on T(C) is given by

vis 1(v) = ta\-v) = 1a(\) cealv) = XA (v).
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Therefore, the fixed point set Fix(¢) of ¢ is the set of element v € T(C)
satisfying

(VII-4) A=ua(v) v L

We shall show that Fix(¢) = (. Take an eigenvector (p,q) of A
with eigenvalue 1 such that p and ¢ are integers, we define a morphism
f: C :=SpecC[s*!] — T by

Fie) =5 and f(ts) = 8"

Then, f is a morphism of group schemes, and ¢4 o f = f by the choice
of (p,q). If v € Fix(1), then the image of o, o f: C' — T is contained in
Fix(¢) by (VII-4). Indeed, we have:

vo(oyof)=taooryof=ta00,mof=0,0wa0f=0,0f

This is a contradiction to (ii). Hence, Fix(¢) = 0.
Next, we shall show that

i, (1 0
par= (%)

for a matrix P € SL(2,Z) by applying Lemma 7.18 below. Assume
the contrary. Then, A Z I mod 2 by Lemma 7.18(2) for the identity
matrix /. By Lemma 7.18(1) applied to the multiplicative abelian group
L = C*, we see that the image of the homomorphism T(C) — T(C)
given by v — vl (v) is just the set of elements X' of T(C) such that
ta(N) = XN71 Therefore, we have an element v € T(C) satisfying
A = vt 4(v), which means that Fix(¢:) # 0 by (VII-4). This is a
contradiction.

Therefore, by changing the coordinates (t1,t2), we may assume that

A:((l) 01).

Then, A\? = 1 by (VII-3). If \; = 1, then the locus {ty = ¢} C T
for a constant ¢ with ¢ = )y is contained in Fix(:) by (VII-2). Thus,
A1 = —1. By changing to again, we may assume that the equalities
(VII-2) determining the action of ¢ is written as

(1) = —t; and () =ty "t
Thus, we are done. Q.E.D.

The lemma below is used in the proof of Lemma 7.17 above.



A wvariant of Shokurov’s criterion 381

Lemma 7.18. Let A be an integral 2 X 2 matrix having eigenvalues
1 and —1. For the 2 X 2 identity matriz I, the following hold:

(1)  For an abelian group L, let (A £ I);, be the endomorphism
L9? — L®? induced from A+ I: 792 — 792 by taking tensor
product with L over Z. If A # I mod 2, then, Ker(A —1I), =
Im(A+1), where Ker and Im denote the kernel and the image,
respectively.

(2) If A=1mod 2, then

iy, (10
P AP_(O _1)

for a matriz P € SL(2,7Z).

Proof. There is a positive integer e such that Im(A+1) = e Ker(A—
I), since A has eigenvalues 1 and —1. Since A + I = O0mod e and
trace(A) = 0, we have e = 1 or 2. Assume that A Z I mod 2. Then
e =1, and it implies that

0= Z~Ker(A+1) - 7z82 2 782 22 14— ez >0

is an exact sequence. Since this sequence is split, its tensor product with
L is also an exact sequence for any abelian group L. Thus, Ker(A—1);, =
Im(A+ 1), and we have proved (1). Let *(p1,p2) (resp. {(q1,q2)) be an
integral vector generating Ker(A — I) (resp. Ker(A + I)). Then,

PlAP = <1 0 > for P := <p1 Q1> .
0 -1 b2 G2
By replacing (p1,p2) with (—p1, —p2) if necessary, we may assume that
det P > 0. It suffices to prove det P = 1 in case A = [ mod 2. Note
that we have e = 2 in this case, since Im(A + I) C 2Z2. The image of
Y(p1,p2) by A+T is *(2py, 2p2), and it generates Im(A+1) = 2 Ker(A—1T).
Therefore, ¢(p1, p2) and *(q1, g2) generate Z2, and hence, det P = 1, and
we have proved (2). Q.E.D.

Proposition 7.19. Let (V, Dy ) be a projective toric surface and let
t:' V.= V be an involution such that «(Dy) = Dy. If v*n # n for a
nowhere vanishing section n of Oy (Ky + Dy ) and if the fixved point set
Fix(¢) of v contains no prime divisor on V' \ Dy, then Fix(1) is a finite
set contained in D. In particular, (X, D) is a half-toric surface for the
quotient surface X of V' by v and for the image D of Dy in X.

Proof. Let U be the open torus V\ Dy. Then, U =~ Spec C[tT!, 5],
where the coordinate function ¢; for i« = 1, 2, is regarded as a rational
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function on V' which is invertible on U. The restriction of 1 to U is
expressed as (t]'dt;) A (t; *dts) or its multiple by a non-zero constant.
Here, 1*nn = —n, since ¢ is an involution. Then, ¢ has no fixed point in
U by Lemma 7.17.

It is enough to prove that any irreducible component of Dy, is not
contained in the fixed point locus Fix(¢) of ¢. In fact, if this is true,
then the quotient morphism 7: V' — X is étale in codimension one, and
n®? descends to a nowhere vanishing section of Ox (2(Kx + D)) with
2(Ky +Dy) = 7*(2(Kx + D)), since n%? is preserved by ¢. Furthermore,
in this situation, Kx + D o 0. For, a nowhere vanishing section ¢ of
Ox (K x+D) induces a nowhere vanishing section 7*(¢) of Oy (Ky+Dy)
which satisfies ¢*(7*¢) = 7*(; this is a contradiction to: 77 = —n. This
implies that (X, D) is a half-toric surface. Therefore, we are reduced to
show the non-existence of irreducible components of Dy contained in
Fix(¢).

Let I" be an irreducible component of Dy . By the description of the
toric surface V' by a fan (cf. Example 3.4), I' corresponds to a ray R>qv
in N® R, where N is the group of one-parameter subgroups of the torus
U and v is a primitive element of N. Now, N is identified with Z®2? in
such a way that (m,n) € Z%? corresponds to a one-parameter subgroup
f: SpecC[st!] — U defined by

Frt) =5 and f(t) = 5"
Hence, if an element (m,n) of Z? corresponds to v, then
ged(m,n) =1, ordr(t;) =m, and ordr(ts) =n

(cf. [13, p. 61, Lemma], [25, I, Th. 1’], [43, Prop. 1.6, (v)]), where ordr(¢)
denotes the order of zeros (or the minus of the order of poles) of a rational
function ¢ along I'. By Lemma 7.17, we may assume that the restriction
of ¢+ to U corresponds to an automorphism ¢* of (C[tlil, tQil] given by

() = —t; and  (tp) =15t

Assume that «(T') = T'. Then, n = 0 and m = +1. Consequently,
I is an irreducible component of the principal divisor div(¢;), and the
restriction t» of t5 to I' is a non-constant rational function on I'. We
have 15 (f2) = 5 * for the induced automorphism ¢p = ¢|p: I' — T'. This
implies that ¢r is not the identity morphism, and hence T' ¢ Fix(¢).
Therefore, Fix(¢) contains no irreducible component of Dy, and we are
done. Q.E.D.
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7.4. The structure of a half-toric surface

By applying results in Sections 7.2 and 7.3, we investigate further
properties on the half-toric surfaces and prove Theorem 1.7. As a corol-
lary of Lemma 7.17, we have:

Proposition 7.20. For a half-toric surface (X, D), the open subset
X\D is a non-singular affine surface with the coordinate ring isomorphic
to

(C[X>X_17Y>Z]/(X(y2 - 1) - 22)'

In particular, the isomorphism class of X\ D is independent of the choice
of half-toric surfaces (X, D). The fundamental group m ((X \ D)**) of
the associated complex analytic manifold (X \ D)™ is generated by two
elements a, b with one relation: ab = ba~'. In other words, m ((X \
D)) ~ 7 % 7, where the normal subgroup Z is regarded as a Z-module
bym-xz=(—1)"x.

Proof. The open subset X \ D is non-singular and affine by Lemma
7.2(3). This is derived also from Lemma 7.17. It implies that V \
Dy — X \ D is a finite étale morphism from an affine surface for the
characteristic double-cover (V, Dy) of (X, D). The coordinate ring R
of X \ D is isomorphic to the (*-invariant ring of the coordinate ring
of V'\ Dy for the Galois involution ¢. By Lemma 7.17, for a suitable
coordinate (t1,t2) of V'\ Dy and for a monomial t7*t%, we have

() = (=DM ey
Hence, the invariant ring of C[tF!,tF!] is generated by

x:=t3, x '=t7% y:= %(tz +tyh), z:= %tl(tg —tyh).
By writing to and t;l in terms of t,, y, z, we have one relation: xy? —
z? = x. Since x(y? — 1) — 22 is irreducible in C[x,y,z], we have the
description above of R.

Let C? — (C*)? be the map defined by (21,2) — (e(z1),e(22)),
where e(z) = exp(27y/—1z). This map is a universal covering map of
(V'\ Dy)*. We may assume that e(z;) = t; and e(z2) = to for the
coordinate (21, 29) of C% and for the coordinate (t1,ts) above of V'\ Dy.
The fundamental group 71 ((V '\ Dy )*®) ~ Z%? acts on C2 by (21, 22) —
(21 +m, 29 +n) for (m,n) € Z®2. The involution +: V — V lifts to
an automorphism b: C2 — C? defined as (21,22) = (21 + 1/2,—22).
Thus, m ((X \ D)*") is isomorphic to the automorphism subgroup of
C? generated by b and Z%2. Since b%(21,22) = (21 + 1,22), the group
m((X \ D)) is generated by b and an automorphism a defined by
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a(z1,22) = (21,22 + 1). Here, we have a relation: aob =boa™ ', and
this determines 71 ((X \ D)*"). Q.E.D.

Remark 7.21. For an H-surface (S, Dg) (cf. Definition 7.7), we have
a half-toric surface (S, Dg) with S\ Dg ~ S\ Dz in Proposition 7.15.
By Proposition 7.20 above, we see that X \ D is isomorphic to the open
surface S\ Dg of type H[—1,0,—1] in the sense of Fujita [12, (8.19)]
(cf. [12, Th. (8.5), Table (8.64)]) for any half-toric surface (X, D). The
topological fundamental group of the open surface of type H[—1,0, —1]
is also calculated in [12, Table (8.64), Example (7.24)], but its method
is different from ours.

Proposition 7.22. For a half-toric surface (X, D), let Aut(X; D)
be the group of automorphisms of X preserving each irreducible compo-
nents of D. Then, Aut(X; D) ~ C*xZ/2Z, and the action of Aut(X; D)
on the open subset X \ D is given by

(va7 Z) = ()‘QX’ (_1)kYa (_1)k)‘z)

with respect to the expression of the coordinate ring of X \ D in Propo-
sition 7.20 for X € C* and k € {0,1}.

Proof. Let 7: V — X be the characteristic double-cover of (X, D).
An automorphism o of X lifts to an automorphism oy of V commuting
with the Galois involution ¢ of 7, since 7 is étale in codimension one. As-
sume that o € Aut(X; D). Then oy preserves 7*D; for any irreducible
component D; of D, and in particular, oy preserves Dy = 7 1(D).
Hence, oy acts on V' \ Dy. The action of oy on V' \ Dy is deter-
mined by an automorphism o7, of the coordinate ring C[t1, t32], where
we may assume that the coordinate (ti,ts) satisfies t*(t1) = —t; and
1*(tg) =t ! by Lemma 7.17. The automorphism o7, is given by

ou(t1) = APt and o) (tp) = vthel?

for some A\, v € C\ {0} and for some integers a1, as, b1, bs such that

ap az\
det <b1 bg)_ill

The lift oy satisfies ¢ o oy = oy o . Thus,
a9 :bl ZO, al ::|:1, bg ::tl7 l/=:|:1,
and oy, is given by

oy (t1) = At]t and  oj(t2) = e3t5?
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for some constants A\ € C\ {0} and ey, €2, e5 € {£1}. As in the proof
of Proposition 7.19, an irreducible component I' of Dy corresponds to a
pair (m,n) of integers with ged(m,n) = 1 defined by

ordr(t;) =m and ordr(ts) =n.

The irreducible component ¢(I") corresponds to (m, —n). Since I + ¢+(T")
is preserved by oy, we have

(ordr(oy,(t1)),ordr(oy (t2))) = (e1m,e2n) = (m,n) or (m — n).

Thus, €1 = 1, since m # 0 for some I'. Conversely, if an automorphism
o of C[t1,t5] is given by

O'ik/(tl) = At; and O"*/—(tg) = €3t§2

for some A € C* = C\ {0} and €2, €5 € {£1}, then o7, is induced from
an automorphism oy of V' such that oy commutes with ¢ and that oy
preserves 7%(D;) for any irreducible component D; of D. The subgroup
of Aut(V') consisting of such oy is isomorphic to C* x (Z/2Z & Z/27.),
and we have an exact sequence

0= 2/22 % C* x (2)22 & 7,)2Z) — Aut(X; D) — 1

in which ¢(1) = (—1,(1,0)) corresponds to ¢. Therefore, Aut(X; D) ~
C* X Z/2Z. For an element (A, k) € C* x Z/2Z (where k = 0 or 1), let
o be the associated automorphism in Aut(X; D). Then, the action of o
on X \ D lifts to an automorphism on C[t,t5] given by

(tl,tg) — (/\'tl7 (—1)kt2).

Hence, the induced automorphism ¢* of the coordinate ring of X \ D is
given by

o*(x) = Nx, o*(y) = (-1)*y and o*(z) = A\(—1)"z.
Thus, we are done. Q.E.D.

Lemma 7.23. The equality §(X,D) = 1 holds for any half-toric
surface (X, D).

Proof. We consider the class map clf,: F(D) — CL(X) (cf. Defini-
tion 2.24). The cokernel of cl% is isomorphic to the divisor class group
CL(X \ D), and the kernel of cl% is isomorphic to O(X \ D)*/C* by
Lemma 2.25. By Proposition 7.20 and Remark 7.21, we have an isomor-
phism X\ D ~ S\ Dg for an H-surface (S, Dg). Thus, CL(X\D) ~ Z/27
and O(X \ D)*/C* ~ Z by Corollary 7.13. Therefore, §(X,D) =
p(X)+2—-n(D)=1. Q.E.D.
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The isomorphism X \ D ~ S\ Dz in Remark 7.21 is extended to a
suitable birational map X ---— S as follows.

Proposition 7.24. Let (X, D) be a half-toric surface. Then, there
exist birational morphisms v:Y — X and h: Y — S satisfying the
following conditions:
(1) (Y, Dy) is a half-toric surface for Dy = v=1(D) and Y \ Dy ~
X\ D by v;

(2) (S,Ds) is the half-toric surface associated with an H-surface
(S, Dg) in Proposition 7.15, where Dy = h™'(Dg) and h is a
toroidal blowing up with respect to (S, Dz).

Proof. We have n(D) = p(X) +1 > (D) by Lemma 7.23, and
(X, D) is toroidal along Sing D by Lemma 7.2. Thus, we can apply
Lemma 4.23 to (X, D). As a consequence, by replacing X by a toroidal
blowing up, we may assume that X admits a P!'-fibration 7: X — T
such that D has two distinct fibers of 7. Let p: M — X be the minimal
resolution of singularities. Then, there is a toroidal blowing up f: M —
S with respect to (S, Dg) such that u=!(D) = f~1(Dg) by Lemma 7.16.
Let g: M — M be the contraction morphism of the four end components
of u=Y(D) in Proposition 7.5. Then, (Y, Dy) := (M, g.(u~1(D))) is a
half-toric surface and the morphism v: Y — X induced by p satisfies
(1) by the proof of Proposition 7.5. Moreover, the morphism h: Y — S
induced by f is just a toroidal blowing up with respect to (S, Dg) and
Dy = h~ (D) by Lemma 7.16. Q.E.D.

Lemma 7.25. For a half-toric surface (X, D), let p: M — X be the
minimal resolution of singularities of X and set Dy = p~Y(D). Then,
Gg(M \ Dpr) = 1 for the logarithmic irreqularity q. The quasi-Albanese
map of M \ Dy is a smooth morphism o: M \ Dy — Gy which is
described in the following two ways:

(1) The morphism « is the composition of the isomorphism M \
Dy ~ X\ D ~ S\ Dg in Remark 7.21 for an H-surface (S, Dg)
and the Gy-fiber bundle S\ Dg — T \ {P1, Pa} induced from
the Pt-fibration 7: S — T in Lemma 7.8 (cf. Lemma 7.11).

(2)  The morphism « of affine varieties is isomorphic to the mor-
phism associated with the natural ring homomorphism

(C[Xa Xﬁl} - (C[X7X71ﬂY7Z]/(X(y2 - ]-) - 22)

for the description of the coordinate ring of X \ D ~ M \ Dy,
in Proposition 7.20.
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Proof. By Lemma 7.12, Proposition 7.20, and Remark 7.21, we
have isomorphisms

C* x Z ~ O(T\{Py, P,})* ~ O(S\ Ds)* ~ O(X \ D)* ~ O(M\ Dy)*.

Then, the equality (M \ Dys) = 1 and the assertion (1) are derived from
Proposition 2.26, since ¢(M) = 0. The remaining assertion (2) follows
from the description of O(X \ D) in Proposition 7.20. Q.E.D.

Finally in Section 7.4, we shall prove Theorem 1.7.

Proof of Theorem 1.7. For a half-toric surface (X, D), from Defini-
tion 7.1, we see that X is a projective rational surface with only rational
singularities. The pair (X, D) is log-canonical and D is a big linear chain
of rational curves by Lemma 7.2. The equality §(X, D) = 1 is proved
in Lemma 7.23. This completes the proof of the first assertion (1) of
Theorem 1.7. The assertions (2) and (3) have been proved in Proposi-
tion 7.20. Similarly, the assertions (4), (5), and (6) have been proved in
Proposition 7.22, Lemma 7.25, and Proposition 7.5, respectively. Thus,
we are done. Q.E.D.

§8. Proofs of Theorems 1.3 and 1.5

Finally, we shall prove Theorems 1.3 and 1.5. Note that the proofs
below do not use the results on pseudo-toric surfaces and half-toric sur-
faces obtained in Sections 6 and 7 except Lemma 7.23 on the defect of
half-toric surface.

Proof of Theorem 1.3. We may assume that §(X, D) <1 or ¢(X,

D) < 0. For, otherwise, the assertions of Theorem 1.3 hold trivially.
Under the assumption, we have D # 0, since §(X,0) = p(X) +2 > 3
and ¢(X,0) = 2. Moreover, X is projective by Lemma 2.31(1), since
we have H*(X,0x) ~ H°(X,0x(Kx))” = 0 by the assumption that
—(Kx + D) is nef. Furthermore, we can prove the following:

(a) D is a big reducible linear (or cyclic) chain of rational curves;

(b) X is a projective rational surface with only rational singulari-

ties;

(¢) 0<8(X,D)=¢c(X,D)<1;

(d) 0(X,D)=¢(X,D) =1 when D is a linear chain.
In fact, D is connected and reducible by Proposition 2.29. Hence, D is a
linear chain or a cyclic chain of rational curves by Lemma 4.5, and D is
big by Proposition 4.8(1). Thus, we have (a). The assertion (b) follows
from Lemma 2.32, and the assertions (c) and (d) from Proposition 4.8.
In particular, we have proved the inequality (X, D) > ¢(X, D) > 0.
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For the rest of Theorem 1.3, “if” part follows from Lemma 3.11 on
toric surface, the definition of defect for pseudo-toric surface, and from
Lemma 7.23 on half-toric surface. Thus, it suffices to show the “only if”
part.

Let f: Y — X be a toroidal blowing up with respect to (X, D) and
set Dy = f=1(D). Then, (Y, Dy) is also log-canonical along Dy, and
—(Ky+Dy) = f*(=(Kx+D)) is nef. Moreover, §(X,D) = ¢(Y,Dy) =
0(X,D) = ¢(X, D) by Lemma 2.27. In particular, (Y, Dy ) also satisfies
the same conditions in Theorem 1.3. We shall show that if Theorem 1.3
holds on (Y, Dy ), then the same holds on (X, D). In fact, Lemma 3.9
implies that if (Y, Dy) is toric, then (X, D) is also toric, and that if
(Y, By + Dy) is toric for a prime divisor By ¢ Dy, then (X, B + D)
is toric for B = f.(By) ¢ D. Moreover, if (Y, Dy) is a pseudo-toric
surface of defect one (resp. a half-toric surface), then so is (X, D) by
Lemma 6.3(7) (resp. Lemma 7.4(3)). Thus, we can replace (X, D) with
(Y, Dy).

Since n(D) — r(D) = 2 — ¢(X, D) > 1, by applying Lemma 4.23
and by the replacement above, we may assume that there is a fibration
7: X — T ~ P! and that D contains at least two fibers. Then, (X, D, )
belongs to the case (A) or (B) of Lemma 5.2.

Suppose that (X, D, ) belongs to the case (B). Then, D is a linear
chain of rational curves containing a section or a double-section of 7, and
d(X,D) =1by (d) above or by Lemma 5.6. If D contains a section, then
(X, B+D) is a toric surface for a prime divisor B ¢ D by Proposition 5.7.
If D contains a double-section, then (X, D) is a half-toric surface by
Proposition 5.9 (cf. Definition 7.1).

Suppose next that (X, D, ) belongs to the case (A). Then, D is a
cyclic chain of rational curves, and Kx + D ~ 0 by Proposition 5.3(1).
If 6(X,D) = 0, then (X, D) is a projective toric surface by Proposi-
tion 5.3(3). If §(X,D) = 1, then (X, D) is a pseudo-toric surface of
defect one by Proposition 5.5 (cf. Definition 6.1).

These arguments complete the proof of Theorem 1.3. Q.E.D.

Proof of Theorem 1.5. We may assume that ¢(X, D) < 1 for the
proof. Then, D is reducible by

n(D)=r(D)+2—¢c(X,D)>r(D)+1>2.

Moreover, D is big by Proposition 4.8(1). Then, Lemma 4.7 implies that
X is a normal projective rational surface with only rational singularities
and that D is a linear chain or a cyclic chain of rational curves. Hence,
we have ¢(X, D) > 0 by (2) and (3) of Proposition 4.8.
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Here, assume that ¢(X, D) = 0. Then, D is a cyclic chain of rational
curves by Proposition 4.8(2). Thus, by Lemma 4.7, we have an effective
divisor G on X \ D such that Kx + D ~ G. Let g: X — X be the
contraction morphism of G: This exists because G is negative definite
when G # 0 (cf. Lemma 4.7). We set D = g.(D). Then, (X, D)
satisfies the same assumptions (i), (ii), and (iii) of Theorem 1.5, and
0 < ¢(X,D) < ¢(X,D) =0 by Lemma 2.27. Moreover, K+ + D ~ 0.
Therefore, (X, D) is a projective toric surface by Theorem 1.3.

Conversely, assume that there is a morphism ¢g: X — X satisfying
(1) and (2) of Theorem 1.5. Then, D ~ D and n(D) = n(D). For the
rest of the proof, it suffices to show: ¢(X,D) = 0. Let A be a divisor
on X supported on D such that g.A ~ 0. Then, A = ¢g*(g+A) ~ 0.
This argument implies that the kernel of the class map cl5,: F(D) —
CL(X) (cf. Definition 2.24) is isomorphic to the kernel of the class map
cl%: F(D) — CL(X). Hence, 7(D) = r(D), and ¢(X, D) = ¢(X, D) =
0. Thus, we are done. Q.E.D.
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