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A variant of Shokurov’s criterion of toric surface

Noboru Nakayama

Abstract.

As a variant of Shokurov’s criterion of toric surface, we give a
criterion of two new classes of normal projective surfaces, called pseudo-
toric surfaces of defect one and half-toric surfaces. A typical example
of pseudo-toric surface of defect one is a projective toric surface blown
up at a non-singular point of the boundary divisor. A half-toric surface
is the quotient of a projective toric surface by an almost free involution
preserving the boundary divisor. The structure of pseudo-toric surface
of defect one and that of half-toric surface are also studied in detail.
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§1. Introduction

We work over the complex number field C. As a surface, we mean
a two-dimensional separated integral scheme (or algebraic space) of fi-
nite type over SpecC. A normal Moishezon surface is defined as a
two-dimensional normal integral separated algebraic space proper over
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SpecC (cf. Notation and conventions, 1 below). The main purpose of
this article is to give a generalization of Shokurov’s criterion [51, Th. 6.4]
of toric surface in the case of integral divisor, by introducing new sur-
faces, called pseudo-toric surfaces and half-toric surfaces. We shall also
describe in detail the structures of pseudo-toric surfaces of defect one
and of half-toric surfaces, respectively. In the Shokurov criterion, the
projective toric surfaces X with boundary divisor D are characterized
by a condition on the singularity of (X,D), a numerical property of the
divisor KX + D, and by an information on the number of irreducible
components of D. More precisely, the following is considered as the
Shokurov criterion in the case of integral divisor (for a proof, see also
[44, §8.5]).

Theorem 1.1 (cf. [51, Th. 6.4]). Let X be a normal projective
surface and D a reduced divisor. Then, the pair (X,D) is toric, i.e., X
is a toric variety with boundary divisor D, if and only if

(i) (X,D) is log-canonical,
(ii) −(KX +D) is nef, and
(iii) n(D) ≥ ρ̂(X) + 2,

where n(D) stands for the number of irreducible components of D and
ρ̂(X) denotes the Weil–Picard number of X, i.e., the dimension of the
vector space N(X) of R-divisors modulo the numerical equivalence rela-
tion (cf. Definitions 2.7 and 2.23 below).

Remark 1.2. (1) TheWeil–Picard number ρ̂(X) coincides with
the number ρ defined in [51, Th. 6.4].

(2) For a projective toric surface X with boundary divisor D, it
is known that the pair (X,D) is log-canonical, KX + D ∼ 0,
n(D) = ρ(X) + 2, and the Picard number ρ(X) is equal to
ρ̂(X) (cf. Lemma 3.11 below).

(3) The original criterion [51, Th. 6.4] by Shokurov treats the case
where D is only a Q-divisor and n(D) in (iii) is replaced with
the sum

∑
di for the prime decomposition D =

∑
diDi. More-

over, the original criterion is stated in a relative situation.
(4) In [33], McKernan shows that Theorem 1.1 holds true even if

we replace the inequality of (iii) by

n(D) ≥ r(D) + 2,

where r(D) is the dimension of the vector subspace N(X)D
of N(X) generated by the numerical equivalence classes of the
irreducible components of D (cf. Definition 2.23).

(5) Higher-dimensional generalizations of Shokurov’s criterion are
studied in [45], [33], [20], etc.
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We shall give a generalization of Theorem 1.1 essentially by weak-
ening the condition (iii). Especially, we have a classification of (X,D)
satisfying (i), (ii), and n(D) = ρ̂(X) + 1. The following is our main
theorem.

Theorem 1.3. Let X be a normal Moishezon surface, i.e., a two-
dimensional normal integral separated algebraic space proper over C (cf.
Notation and conventions, 1 below) and let D be a reduced divisor on
X. Here, we define the defect δ(X,D) and the complexity c(X,D) by

δ(X,D) := ρ̂(X) + 2− n(D) and c(X,D) := r(D) + 2− n(D)

(cf. Definition 2.23). Suppose that

(i) (X,D) is log-canonical along D (cf. Remark 3.18(4)), and
(ii) −(KX +D) is nef.

Then, δ(X,D) ≥ c(X,D) ≥ 0. Here, c(X,D) = 0 if and only if (X,D)
is a projective toric surface, and in this case, δ(X,D) = 0. Furthermore,
δ(X,D) = 1 if and only if one of the following holds :

(1) (X,B + D) is a projective toric surface for a prime divisor
B �⊂ D;

(2) (X,D) is a pseudo-toric surface of defect one (cf. Definition
6.1);

(3) (X,D) is a half-toric surface (cf. Definition 7.1).

The pseudo-toric surfaces and half-toric surfaces are defined and
studied in Sections 6 and 7 below, respectively. A pair (X,D) is called
a pseudo-toric surface if X is a projective rational surface with only
rational singularities, (X,D) is log-canonical, KX + D ∼ 0, and if D
is a big cyclic chain of rational curves (cf. Definitions 6.1 and 4.3, and
Lemma 6.3). A pair (X,D) is called a half-toric surface if KX +D �∼ 0,
and if it is obtained as the quotient of a projective toric surface (V,DV )
by an involution which preserves the boundary divisor DV and which
has at most finitely many fixed points (cf. Definition 7.1). Theorem 1.6
(resp. 1.7) below is our structure theorem of pseudo-toric surfaces of
defect one (resp. of half-toric surfaces).

Convention 1.4. By abuse of notation, we call (X,D) a toric sur-
face when X is a normal algebraic surface and D is a reduced divisor
such that X is a two-dimensional toric variety with X \ D as an open
torus. The divisor D is called the boundary divisor. Similarly, the pair
(X,D) of a surface X and a divisor D on X is called a surface for
simplicity.
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Remark. (1) Theorem 1.1 and McKernan’s generalization in
Remark 1.2(4), respectively, are derived from Theorem 1.3 in
the case where δ(X,D) = 0 and c(X,D) = 0.

(2) The defect δ(X,D) and the complexity c(X,D) are introduced
in [33], where the defect is called the absolute complexity.

The following is a result only on the complexity but where the con-
dition (ii) of Theorem 1.3 is replaced. This is also a generalization of
McKernan’s version (cf. Remark 1.2(4)) of the Shokurov criterion in the
case of integral divisor.

Theorem 1.5. Let X be a normal Moishezon surface and D a re-
duced divisor on X. Suppose that

(i) (X,D) is log-canonical along D,
(ii) D is connected, and
(iii) −(KX +D) is nef on D (cf. Definition 2.14(ii)).

Then, c(X,D) ≥ 0. If c(X,D) ≤ 1, then X is a projective rational sur-
face with only rational singularities. Moreover, the equality c(X,D) = 0
holds if and only if there is a birational morphism g : X → X such that

(1) (X,D) is a projective toric surface for D := g∗(D), and
(2) the g-exceptional locus is contained in X \D.

We shall prove Theorems 1.3 and 1.5 in Section 8.

Pseudo-toric surfaces

We shall explain some facts and results on pseudo-toric surfaces. As
a consequence of Shokurov’s criterion (Theorem 1.1), we see that the de-
fect δ(X,D) of a pseudo-toric surface (X,D) is always non-negative, and
δ(X,D) = 0 if and only if (X,D) is a projective toric surface. A typical
construction of pseudo-toric surface from a projective toric surface is
given by the blowing up at a non-singular point of the boundary divisor:
Let (X,D) be a projective toric surface and P a non-singular point of
D. Then, X is also non-singular at P . Let f : Y → X be the blowing up
at P and let D′ be the proper transform of D in Y . Then, (Y,D′) is a
pseudo-toric surface. In fact, we have KY +D′ = f∗(KX +D) ∼ 0. The
operation getting Y \ D′ from X \ D is called a half-point attachment
in the study of open surfaces (cf. [18, §2], [12, (6.21)]). In this case,
we have δ(Y,D′) = 1. We can observe that any pseudo-toric surface
is essentially obtained from a projective toric surface by successive op-
erations of half-point attachment and followed by contractions of some
divisors. But, we can not take the half-point attachment freely, since we
have required that the boundary divisor D is big (cf. Definition 6.1(iv)).
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Example. Let X be a non-singular projective rational surface ad-
mitting an elliptic fibration π : X → T such that π has a singular fiber
D of type Ia for some a > 0 (in Kodaira’s notation). Then, D is not big
but (X,D) satisfies the other conditions in Definition 6.1 of pseudo-toric
surfaces.

Remark. In [32], Looijenga has studied the pairs (X,D) of a normal
projective rational surface X and an anti-canonical reduced divisor D
satisfying the following conditions:

• X is non-singular along D,
• D is a normal crossing divisor consisting of rational curves,
• D contains no (−1)-curves, and
• the intersection matrix of D is negative semi-definite.

In particular, (X,D) satisfies the conditions in Definition 6.1 except the
bigness condition of D. For such (X,D) above, assuming the number
n(D) of irreducible components of D to be at most 5, Looijenga has
found a natural infinite root system in the Picard group Pic(X) which
describes the classes of (−1)-curves on X. He uses the root systems in
order to construct fine moduli spaces of (X,D) above with n(D) ≤ 5.

We introduce the notion of toroidal blowing up in Definition 4.19
below. This is étale locally a birational morphism of toric varieties. For
a pseudo-toric surface (X,D), if Y → X is a toroidal blowing up with
respect to (X,D), then (Y,DY ) is also pseudo-toric for DY = f−1(D),
and Y \ DY � X \ D. We introduce the notion of tangential blowing
up of order m as an m-times operation of half-point attachment at the
“same point” followed by the contraction morphism of all the exceptional
curves not meeting the proper transform of the boundary divisor (cf.
Definition 4.24, Lemma 4.25). In Theorem 6.5 below, we prove that
every pseudo-toric surface of defect one is obtained from some projective
toric surface by a tangential blowing up and by a toroidal blow-down.
By this result, we can prove the following fundamental result:

Theorem 1.6. For any pseudo-toric surface (X,D) of defect one,
the following hold :

(1) The group Aut(X;D) of automorphisms of X preserving each
irreducible component of D is isomorphic to the multiplicative
group C� := C \ {0}.

(2) The open subset X \D is affine and its coordinate ring is iso-
morphic to

C[x, y, t, t−1]/(xy− (t− 1)k+1)
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for an integer k ≥ 0. Here, the action of θ ∈ C� = Aut(X;D)
on X \ D is given by (x, y, t) 
→ (θx, θ−1y, t). In particular,
X \ D is non-singular when k = 0, and has a rational double
point of type Ak as a unique singular point when k ≥ 1. As a
consequence, X has only cyclic quotient singularities.

(3) Let ν : N → X \D be the minimal resolution of singularities.
Then, the logarithmic irregularity (cf. [17], [19]) of N is one.
Moreover, the quasi-Albanese map (cf. [16], [19]) of N is iso-
morphic to h ◦ ν for the morphism h : X \ D → Gm to the
one-dimensional algebraic torus Gm corresponding to the natu-
ral ring homomorphism

C[t, t−1] → C[x, y, t, t−1]/(xy− (t− 1)k+1)

with respect to the coordinate ring in (2).

The proof of Theorem 1.6 is given at the end of Section 6.2. In the
proof of Theorem 1.6, a special linear chain L1 + L2 of rational curves
in Definition 6.7 plays an important role.

Half-toric surfaces

Next, we shall explain some facts and results on half-toric surfaces.
By Definition 7.1, giving a half-toric surface (X,D) is equivalent to giv-
ing an involution ι of a projective toric surface (V,DV ) such that ι has at
most finitely many fixed points, ι(DV ) = DV , and ι does not preserve a
nowhere vanishing global logarithmic two-form η ∈ H0(V,Ω2

V (logDV )).
Here, (X,D) is the quotient of (V,DV ) by ι, and moreover, the induced
involution on the two-dimensional algebraic torus V \ DV � G2

m is ex-
pressed uniquely up to the choice of coordinates (cf. Lemma 7.17). By
this result, we can prove the following fundamental result:

Theorem 1.7. For any half-toric surface (X,D), the following hold :

(1) The normal projective surface X is rational with only rational
singularities, the pair (X,D) is log-canonical, D is a big linear
chain of rational curves, and δ(X,D) = 1.

(2) The open subset X \D is non-singular and affine, and its co-
ordinate ring is isomorphic to

C[x, x−1, y, z]/(x(y2 − 1)− z2).

In particular, the isomorphism class of X \ D is independent
of the choice of (X,D).

(3) The fundamental group of the complex manifold (X \D)an as-
sociated with X \D is generated by two elements a and b with
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one relation: aba−1 = b−1. In other words, the fundamental
group is isomorphic to the semi-direct product Z � Z, where
the action of the quotient group Z on the normal subgroup Z is
given by m · x = (−1)mx.

(4) The group Aut(X;D) of automorphisms of X preserving each
irreducible component of D is isomorphic to C�×(Z/2Z). Here,
the action of (θ, k) ∈ C� × (Z/2Z) on X \D is given by

(x, y, z) 
→ (θ2x, (−1)ky, (−1)kθz)

with respect to the coordinate ring in (2).
(5) For the open subset X \D, the logarithmic irregularity q̄(X \D)

is one, and the quasi-Albanese map is isomorphic to the mor-
phism X \D → Gm corresponding to a natural ring homomor-
phism

C[x, x−1] → C[x, x−1, y, z]/(x(y2 − 1)− z2)

with respect to the coordinate ring in (2).
(6) For the minimal resolution μ : M → X of singularities, DM =

μ−1(D) is a simple normal crossing divisor consisting of ratio-
nal curves whose dual graph is the extended Dynkin diagram
D∗

k with k + 1 = n(DM ) = ρ(M) + 1 ≥ 6, in other words, the
same dual graph as the singular fiber of type I∗k−4 of an elliptic
surface.

The proof of Theorem 1.7 is given at the end of Section 7.4. We
can also show that the open surface X \ D is just the surface having
an NC-minimal completion of type H[−1, 0,−1] in Fujita’s classification
[12] of open surfaces (cf. Remark 7.21). Kojima [28] considers a similar
variant of Shokurov’s criterion for open surfaces and announces a certain
characterization of the surface of type H[−1, 0,−1].

Remark. The referee informed the author of a recent article [46] of
Prokhorov in which he has proved a result similar to our Theorem 1.3 in
[46, Th. 5.1]. However, this is weaker than Theorem 1.3 combined with
Theorems 1.6 and 1.7. For example, when X is projective and (X,D) is
log-canonical with KX +D ∼ 0, and when δ(X,D) = 1, he proves only
that X admits an effective action of C�.

Remark. The results in this article hold not only over C but also
over any algebraically closed field of characteristic zero by the Lefschetz
principle. Even for an algebraically closed field of characteristic p >
0, the same results seem to hold except the results related to double-
covers, where we need to assume: p �= 2. Indeed, the vanishing theorem
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(Theorem 2.17), the cone and contraction theorems (Theorems 2.19 and
2.21), and the projectivity criterion (Lemma 2.31(1)) are all valid in any
characteristic. However, we do not care the positive characteristic case
so much.

The organization of this article

In Section 2, we recall basic facts on normal surfaces, especially on
Moishezon surfaces, including the intersection theory of divisors, nu-
merical properties of divisors, the cone and contraction theorems, and
projectivity criteria. These are studied and explained briefly in Sakai’s
articles [47], [48], [49], etc., but here, we shall give a unified explanation
for the readers’ convenience.

In Section 3, we recall some basics on toric varieties and log-canonical
pairs of dimension two. The singularities on toric surfaces and the de-
scription of projective toric surfaces are explained in Section 3.1. The
toroidal singularities are mentioned in Section 3.2, and some general
properties on log-canonical pairs are explained in the surface case in
Section 3.3. The classification of singularities of a log-canonical pair
(X,D) for a surface X and a reduced divisor D is explained briefly in
Section 3.4, and as an application, a classification result of singulari-
ties of (X,D) lying on a compact irreducible component C of D with
(KX +D)C ≤ 0 is obtained in Section 3.5.

Some key concepts are introduced and discussed in Section 4. These
are: the linear and cyclic chains of rational curves (cf. Section 4.1), the
double-covers étale in codimension one (cf. Section 4.2), the toroidal
blowing up (cf. Section 4.3), and the tangential blowing up (cf. Sec-
tion 4.4).

In Section 5, we determine the structure of the pair (X,D) of a
normal Moishezon surface X and a reduced connected divisor D such
that (X,D) is log-canonical along D, −(KX +D) is nef on D, there is a
P1-fibration π : X → T , and that D contains at least two fibers of π. In
Section 5.1, we see that there are two possible cases (A) and (B), and
the structure is determined in Section 5.2 (resp. 5.3) for the case (A)
(resp. (B)).

The pseudo-toric surface and the half-toric surface are introduced
and studied in Sections 6 and 7, respectively. The definition and basic
properties of pseudo-toric surfaces are given in Section 6.1 as well as
the characterization of toric surface as a pseudo-toric surface of defect
zero. For pseudo-toric surfaces of defect one, more detailed information
is obtained in Section 6.2. The half-toric surface is defined in Section 7.1
with some basic properties, and there is explained a relation with an H-
surface in Section 7.2. The H-surface is considered as an NC-minimal
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completion of an open surface of type H[−1, 0,−1] in the sense of Fujita
(cf. [12, (8.19)]). After giving a description of certain involutions of toric
surfaces in Section 7.3, we shall prove Theorem 1.7 in Section 7.4.

Finally in Section 8, we shall prove Theorems 1.3 and 1.5.

Motivation

A motivation for studying pseudo-toric surfaces of defect one comes
from the study on the classification of normal projective surfaces admit-
ting non-isomorphic surjective endomorphisms [41]. The classification in
[41] has completed for irrational surfaces, and the pseudo-toric surfaces
of defect one appear in the possible remaining cases of rational surfaces.
Some contents in Sections 2, 3, and 4 of this article are borrowed from
[41]. The study of half-toric surface is inspired by the article [28] of
Kojima mentioning H[−1, 0,−1] in some classification results of open
surfaces.
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Notation and conventions

Unless otherwise mentioned, we shall use standard notation and
conventions of the classification theory and the minimal model theory of
projective varieties. Here, we shall explain some additional things in 1–6
below, but further special notation and conventions on normal surfaces
are prepared in Section 2.

1. A variety means an integral separated scheme (or algebraic space)
of finite type over SpecC: A curve (resp. surface) means a variety of
dimension one (resp. two). But, as a variety, we sometimes consider the
associated analytic space Xan instead of the scheme X. For example, a
subscheme of X is said to be compact if it is proper over SpecC. By the
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functor X 
→ Xan, the category of integral algebraic spaces proper over
C is equivalent to the category of Moishezon varieties (cf. [6, Th. (7.3)]).
So, for simplicity, by a normal Moishezon surface, we mean a normal
integral separated algebraic space of dimension two proper over C.

2. For a compact variety X, a curve on X means a compact (ir-
reducible) subvariety of dimension one, by abuse of notation, unless
otherwise stated. In particular, when dimX = 2, a curve means a prime
divisor. The curves are all projective. For a connected and reduced
projective scheme B of dimension one, the arithmetic genus pa(B) is
defined as dimH1(B,OB).

3. Let X be a normal variety. A divisor on X means simply a Weil
divisor on X, i.e., a finite linear combination D =

∑
diDi of prime

divisors Di on X with coefficients di ∈ Z. If we allow di ∈ Q (resp.
di ∈ R), the sum D =

∑
diDi is called a Q-divisor (resp. R-divisor).

The set
⋃

di �=0 Di is called the support of D and is denoted by SuppD.

The expression D =
∑

diDi is called the irreducible decomposition (or
the prime decomposition) of D. If SuppD is compact, then D is said
to be compact. A Q-divisor D on X is said to be Q-Cartier if mD is
a Cartier divisor for some positive integer m. If every prime divisor on
X is Q-Cartier, then X is said to be Q-factorial. The canonical divisor
of X is denoted by KX . Note that KX is not unique as a divisor but
unique up to the linear equivalence relation.

4. A reflexive sheaf F on a normal variety X is by definition a co-
herent OX -module such that F is isomorphic to the double-dual F∨∨,
where F∨ stands for HomOX (F ,OX). It is known that a torsion-free
coherent OX -module F is reflexive if and only if F satisfies Serre’s con-
dition S2 (cf. [15, Prop. 1.6]). For a divisor D on X, we denote by
OX(D) the associated reflexive sheaf of rank one: In case D is Cartier,
OX(D) is the usual associated invertible sheaf, and in general, OX(D)
is defined by the property that OX(D) � j∗OU (D|U ) for any open sub-
set U ⊂ X with codim(X \ U) ≥ 2, where D|U is Cartier and j is the
open immersion U ↪→ X. Here, D is Cartier if and only if OX(D) is
invertible. The reflexive sheaf OX(KX) is written as ωX , and is called
the canonical sheaf or the dualizing sheaf. In fact, ωX � j∗(Ωn

U ) for
the open immersion j : U ↪→ X from the non-singular locus U , where
n = dimX. When X is Cohen–Macaulay (e.g., n = 2) and compact, we
have the Serre duality

Hi(X,F)∨ � Extn−i
OX

(F , ωX)

for any coherent OX -module F .
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5. A fibration is a proper surjective morphism f : X → Y of nor-
mal varieties such that all the fibers are connected (equivalently, OY �
f∗OX). A fiber of f means a closed fiber with reduced structure, unless
otherwise stated. A P1-fibration is a fibration whose general fiber is iso-
morphic to P1. For a proper birational morphism f : X → Y of normal
varieties, the f -exceptional locus (or the exceptional locus for f) is the
set of points on X at which f is not an isomorphism. A prime divisor on
X is said to be f -exceptional (or exceptional for f) if it is contained in
the f -exceptional locus. Note that, when dimX = 2, the f -exceptional
locus is the union of f -exceptional curves.

6. For a ring R, the group of invertible elements of R is denoted by
R�. For example, C� = C \ {0}.

§2. On normal Moishezon surfaces

In this section, we explain some basics on normal Moishezon sur-
faces, such as intersection theory of divisors (Section 2.1), numerical
properties of divisors (Section 2.2), the cone and contraction theorems
(Section 2.3), and projectivity criteria (Section 2.5). These topics have
been studied in Sakai’s article [47], [48], [49], etc. In Section 2.4, we de-
fine the defect δ(X,D) and the complexity c(X,D) for a normal Moishe-
zon surface X with a reduced divisor D and we study their properties
in connection with the class map.

2.1. Intersection number of two (Weil) divisors

We recall the notion of intersection numbers of two divisors on a
normal surface, and recall related properties (cf. [47, Sect. 1]).

Definition 2.1. Let X be a normal surface and let μ : M → X
be a proper birational morphism from a non-singular surface M . For a
divisor D on X, the numerical pullback of D (due to Mumford [38]) is
defined as a Q-divisor

μ∗(D) := D′ +
∑l

i=1
aiEi

such that μ∗(D)Ei = 0 for any 1 ≤ i ≤ l, where D′ is the proper
transform of D in M , and E1, . . . , El are the μ-exceptional curves (cf.
Notation and conventions, 2 and 5). The rational numbers a1, . . . , al
are uniquely determined, since the intersection matrix (EiEj)1≤i,j≤l is
negative definite (cf. Theorem 2.6 below). For two divisors D1 and D2

on X, if D1 or D2 is compact (cf. Notation and conventions, 1), then
the intersection number D1D2 is defined by

D1D2 := μ∗(D1)μ
∗(D2) ∈ Q.
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When D = D1 = D2, we write D
2 for D1D2. The intersections numbers

for Q-divisors and R-divisors are defined by linearity.

Remark. (1) For a Cartier divisor D, the numerical pullback
μ∗(D) coincides with the usual pullback as a Cartier divisor.

(2) Let r be the determinant of the intersection matrix (EiEj)
above. Then, rμ∗(D) is Cartier. In particular, rD1D2 ∈ Z for
any such divisors D1 and D2 as above.

(3) The intersection number D1D2 does not depend on the choice
of μ : M → X. If D1 is Cartier, and D2 is compact, then
D1D2 = deg(OX(D1)|D2).

(4) If D1 and D2 are effective divisors without common irreducible
components and if D1 or D2 is compact, then D1D2 ≥ 0, where
D1D2 = 0 if and only if SuppD1 ∩ SuppD2 = ∅.

The following is well known (cf. [57, Lem. 7.1]).

Lemma 2.2. On a normal surface, let D =
∑

aiDi be a finite linear
combination of compact R-divisors Di with real coefficients ai. Assume
that the matrix (DiDj) is negative-definite and that DDi ≤ 0 for any i.
Then ai ≥ 0 for any i.

Definition 2.3. Let D =
∑k

i=1 diDi be the irreducible decomposi-
tion of a compact R-divisor D on a normal surface. If the intersection
matrix (DiDj)1≤i,j≤k is negative definite, we say that D is negative
definite.

Definition 2.4. Let f : Y → X be a morphism of normal surfaces.

(1) For an R-divisor G on Y , when the restriction SuppG → X
of f is proper, the push-forward f∗(G) is defined to be the
R-divisor

∑
dibif(Gi), where the summation is taken over all

the irreducible components Gi of G with dim f(Gi) = 1, bi =
multGi(G), and di is the degree of the finite morphism Gi →
f(Gi).

(2) When f is a proper birational morphism, an R-divisor G is said
to be f -exceptional if SuppG is contained in the f -exceptional
locus, i.e., if f∗(G) = 0.

(3) Assume that f is a dominant morphism. For a divisor D on
X, the numerical pullback f∗(D) is defined as follows. Let
μ : M → X and ν : N → Y be proper birational morphisms
from non-singular surfaces M and N such that the induced
rational map g = μ−1 ◦ f ◦ ν : N → M is a morphism. Then,
we set

(II-1) f∗(D) := ν∗(g∗(μ∗(D))),
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where g∗ denotes the pullback of Q-Cartier divisor. Here,
f∗(D) is a Q-divisor, and it is independent of the choices of
μ and ν. The numerical pullback f∗(Δ) of an R-divisor Δ is
defined by linearity.

(4) In the situation of (3), whenD is a reduced divisor, the support
of f∗(D) is denoted by f−1(D), and is called the total transform
of D.

Remark. (1) The projection formula

(II-2) f∗(D)G = Df∗(G)

holds for any R-divisor D on X and for any R-divisor G on Y
such that SuppG → Y is proper.

(2) If f is proper and surjective, then another projection formula

(II-3) f∗f∗(D) = (deg f)D

holds for any R-divisor D onX, where deg f denotes the degree
of the generically finite morphism f , i.e., the cardinality of a
general fiber.

(3) Assume that f is a finite surjective morphism. Then, for a
divisor D on X, we can find an open subset U of X such
that D|U is Cartier and that codim(X \ U,X) ≥ 2. Then,
codim(Y \ f−1(U), Y ) ≥ 2, since f is finite. Thus, the Cartier
divisor f∗(D|U ) is extended uniquely to a divisor on Y , which
is called the closure of f∗(D|U ). The numerical pullback f∗(D)
is equal to the closure of f∗(D|U ).

(4) Assume that f is a proper birational morphism. If D is an ef-
fective R-divisor on X, then f∗D−D′ is effective for the proper
transform D′ of D in Y , and Supp f∗(D) = f−1(SuppD). In
particular, f−1(D) = f−1(SuppD) when D is reduced.

Remark 2.5. Let f : Y → X be a proper birational morphism of
normal surfaces. If an R-divisor G on Y is f -nef, i.e., GC ≥ 0 for any f -
exceptional curve C (cf. Definition 2.14 below), then the difference Δ =
f∗(f∗(G))−G is an effective R-divisor by Theorem 2.6 and Lemma 2.2.
In particular, if G is f -numerically trivial (cf. Definition 2.14 below),
i.e., GC = 0 for any f -exceptional curve C, then G = f∗(f∗(G)).

The following theorem on contraction criterion is well known:

Theorem 2.6 (Contraction Criterion). Let G be a compact reduced
divisor on a normal surface Y . Then, the following two conditions are
mutually equivalent :
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(i) The divisor G is negative definite (cf. Definition 2.3).
(ii) There is a proper birational morphism f : Y → X to a normal

surface X such that dim f(G) = 0, f−1(f(G)) = G, and f
induces an isomorphism Y \G → X \ f(G).

We explain a history on the proof of Theorem 2.6 briefly. The impli-
cation (ii)⇒ (i) is shown by Mumford in [38, p. 6]. The other implication
(i) ⇒ (ii) is proved by Grauert in [14, (e), pp. 366–367] (cf. [38]) in the
case where Y is a non-singular complex analytic surface. The same im-
plication is proved for a two-dimensional non-singular algebraic space Y
of finite type over C by Artin in [6, Cor. 6.12(b)]. The general case of
normal surface is reduced to the non-singular case by taking resolution
of singularities of Y (cf. [47, Th. (1.2)]).

Remark. The morphism f in Theorem 2.6 is called the contraction
morphism (or the blowdown) of G, which is uniquely defined up to iso-
morphism. Note that if Y is an algebraic space, then so is X, but even
if Y is a scheme, X is not necessarily a scheme (cf. [14, (e), p. 366]).

Definition. A prime divisor C on a normal surface X is called a
negative curve if C is compact and C2 < 0. If C is a non-singular
rational curve lying on the non-singular locus of X with C2 = −k < 0,
then C is called a (−k)-curve.

Remark. The contraction morphism f in Theorem 2.6 is written as a
succession of contractions of negative curves. The (−1)-curve is just the
exceptional curve of the first kind. A negative curve C on a non-singular
locus of X is a (−1)-curve (resp. (−2)-curve) if and only if KXC < 0
(resp. KXC = 0).

Remark. A proper birational morphism μ : M → X from a non-
singular surface M is called the minimal resolution of singularities of X
if there is no (−1)-curves in the μ-exceptional locus. This is equivalent
to that KM is μ-nef (cf. Definition 2.14(i) below), i.e., KMC ≥ 0 for
any μ-exceptional curve C. The minimal resolution is unique up to
isomorphism over X.

2.2. Numerical properties of divisors

The intersection numbers defined in Section 2.1 give the numerical
equivalence relation ∼∼∼ for R-divisors on a normal Moishezon surface
(cf. Notation and conventions, 1). We recall basic properties on the
real vector space N(X) of R-divisors modulo ∼∼∼ for a normal Moishezon
surface X, and some results on numerical properties of R-divisors, such
as nef, big, and numerically ample, etc. (cf. Definition 2.11 below).
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Definition 2.7 (N(X), ρ̂(X)). Let X be a normal Moishezon sur-
face. We denote by Div(X) the divisor group of X, i.e., the free abelian
group generated by prime divisors on X. Note that a Q-divisor (resp.
an R-divisor) is an element of Div(X) ⊗ Q (resp. Div(X) ⊗ R). The
divisor class group CL(X) is the quotient abelian group Div(X)/∼ by
the linear equivalence relation ∼. Two R-divisors D1 and D2 are said
to be numerically equivalent to each other if D1C = D2C for any (com-
pact) curve C on X. We write the numerical equivalence relation by
∼∼∼. The numerical equivalence class of an R-divisor D is denoted by
cl(D) or clX(D); it is also called the numerical class for simplicity. We
define N(X) to be the group Div(X) ⊗ R/∼∼∼ of the numerical classes of
R-divisors, which is a real vector space. The intersection numbers for
R-divisors induce a non-degenerate bilinear form N(X) × N(X) → R;
(x, y) 
→ x · y, such that cl(D) · cl(E) = DE for two R-divisors D and
E. The Weil–Picard number ρ̂(X) of X is defined as dimR N(X).

Remark 2.8. For the Néron–Severi group NS(X), which is the group
of Cartier divisors modulo the algebraic equivalence relation, we have
NS(X)⊗R ⊂ N(X). In particular, ρ̂(X) ≥ ρ(X) for the Picard number
ρ(X) = rankNS(X). If X is non-singular, or more generally, if X is
Q-factorial (cf. Notation and conventions, 3), then ρ̂(X) = ρ(X).

Remark 2.9. Let f : Y → X be a surjective morphism of normal
Moishezon surfaces. Then, the push-forward f∗ and the numerical pull-
back f∗ of divisors induce the linear maps

f� : N(Y ) → N(X) and f� : N(X) → N(Y ),

respectively, which satisfy f�(clY (G)) = clX(f∗(G)) and f�(clX(D)) =
clY (f

∗(D)) for any R-divisors G on Y and D on X. By the projection
formulas (II-2) and (II-3), we have

f�(x) · y = x · f�(y) and f�(f
�(x)) = (deg f)x

for any x ∈ N(X) and y ∈ N(Y ). In particular, the linear map f� is
surjective and the other map f� is injective.

Lemma 2.10. Let f : Y → X be a birational morphism of normal
Moishezon surfaces. Then, ρ̂(Y ) = ρ̂(X) + k for the number k of f -
exceptional prime divisors. In particular, ρ̂(X) ≤ ρ(M) holds for the
minimal resolution M → X of singularities.

Proof. Let C1, . . . , Ck be the f -exceptional curves, and let v : N(Y )
→ R⊕k be the homomorphism defined by v(D) = (DC1, . . . , DCk) for
an R-divisor D on Y . Then, v is surjective, since det(CiCj) �= 0 (cf.
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Theorem 2.6). The kernel of v is just the image of f� : N(X) → N(Y )
by Remark 2.5. Therefore, N(Y ) � N(X) ⊕ R⊕k, and we have ρ̂(Y ) =
ρ̂(X) + k. Q.E.D.

The following result is called the Hodge index theorem as in the
non-singular case.

Lemma. If C and D be R-divisors on a normal Moishezon surface
X such that cl(D) �= 0 and D2 ≥ 0. If CD = 0, then C2 ≤ 0, where the
equality C2 = 0 holds if and only if cl(C) ∈ R cl(D). In particular, if
D2 > 0 and CD = C2 = 0, then cl(C) = 0.

Proof. It is derived from the Hodge index theorem for non-singular
projective surfaces, as follows. Let μ : M → X be a resolution of sin-
gularities. Then, M is projective by Fact 2.30 below. Since cl(D) �= 0,
we can take an ample divisor H on M with μ∗(D)H �= 0. We define a
real number r by (μ∗(C)− rμ∗(D))H = 0. Since H2 > 0, by the Hodge
index theorem for M , we have

0 ≥ (μ∗(C − rD))2 = C2 − 2rCD +D2 = D2 + C2 ≥ C2,

where C2 = 0 holds if and only if C − rD ∼∼∼ 0. Q.E.D.

Definition 2.11. Let D be an R-divisor on a normal Moishezon
surface X.

(i) D is said to be numerically trivial if D ∼∼∼ 0;
(ii) D is said to be nef if DC ≥ 0 for any curve C ⊂ X;
(iii) D is said to be pseudo-effective if DB ≥ 0 for any nef divisor

B on X;
(iv) D is said to be numerically ample if D2 > 0 and DC > 0 for

any curve C ⊂ X (cf. [48, p. 629]);
(v) D is said to be big if D−A is pseudo-effective for a numerically

ample R-divisor A.

Remark 2.12. A numerically ample Cartier divisor is ample by the
Nakai–Moishezon criterion of ampleness ([39], [34]) whenX is projective.
This holds true even if X is only a normal Moishezon surface (cf. [35, I,
Th. 6]).

Remark 2.13. By the projection formula (II-2), we infer that, for
a birational morphism f : Y → X of normal Moishezon surfaces, if an
R-divisor B on Y is nef, pseudo-effective, numerically ample, and big,
respectively, then so is f∗(B). Similarly, if an R-divisor D on X is nef,
pseudo-effective, and big, respectively, then so is f∗(D).
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Remark. Every normal Moishezon surface X admits a numerically
ample divisor. In fact, by Remark 2.13, μ∗(H) is numerically ample
for the minimal resolution μ : M → X of singularities and for an ample
divisor H on M . In particular, the Hodge index theorem is equivalent to
that the signature of the intersection pairing on N(X) is (1, ρ̂(X)− 1).

On the properties “nef” and “numerically trivial,” we introduce
some variants:

Definition 2.14. Let X be a normal surface and D an R-divisor.

(i) D is said to be f -nef (resp. f -numerically trivial) for a proper
morphism f : X → S, if DC ≥ 0 (resp. DC = 0) for any curve
C ⊂ X mapped to a point of S;

(ii) D is said to be nef on B (resp. numerically trivial on B) for a
compact reduced divisor B on X, if DBi ≥ 0 (resp. DBi = 0)
for any irreducible component Bi of B.

Remark 2.15. Let f : X → Y be a birational morphism of normal
Moishezon surfaces.

• If an R-divisor D on X is f -nef and f∗D = 0, then −D is
effective by Lemma 2.2, since D is negative definite (cf. Theo-
rem 2.6).

• Let B be a reduced divisor on Y . If an R-divisor L on X is
nef on f−1B, then f∗L is nef on B, by the projection formula
(II-2).

The following result on the properties “big,” “pseudo-effective,” and
“numerically ample” is shown easily by the same argument in the usual
case of Cartier divisors. The proof of left to the reader.

Lemma 2.16. Let X be a normal Moishezon surface with an R-
divisor D.

(1) When D is nef, D is big if and only if D2 > 0.
(2) If D2 > 0 (resp. D2 ≥ 0), then D or −D is big (resp. pseudo-

effective).
(3) The numerical ampleness of D is equivalent to that DE > 0

for any pseudo-effective R-divisor E which is not numerically
trivial.

The following theorem is a relative version of Kawamata–Viehweg
vanishing theorem (cf. [24, Th. 1-2-3]) in the two-dimensional case.

Theorem 2.17 (cf. [47, Th. (6.3)]). Let f : X → Y be a proper
surjective morphism between normal surfaces and let D be an f -nef Q-
divisor on X. Then,

(II-4) R1f∗OX(KX + �D�) = 0,



304 N. Nakayama

where the round-up �D� is defined as
∑

�ai�Di for the irreducible de-
composition D =

∑
aiDi, and the round-up �r� of a rational number r

is defined as the smallest integer not less than r.

Remark. Theorem 2.17 is well known in the case where X is non-
singular and SuppD is a normal crossing divisor: This is shown in [24,
Th. 1-2-3] when Y is a scheme, but it is also valid for an algebraic
space Y , since it is étale locally a scheme. We can reduce to this case
by an argument in [47, Th. (5.1)]. In fact, we have a proper bira-
tional morphism μ : M → X from a non-singular surface M such that
μ−1(SuppD) = Suppμ∗D is normal crossing, and an exact sequence

0 → μ∗OM (KM + �μ∗D�) → OX(KX + �D�) → T → 0

on X for a skyscraper sheaf T . Then,

R1f∗(μ∗OM (KM + �μ∗D�)) ⊂ R1(f ◦ μ)∗OM (KM + �μ∗D�) = 0

by [24, Th. 1-2-3], and we have (II-4) by R1f∗T = 0. Theorem 2.17 is
valid even in the positive characteristic case. In fact, the local vanishing
theorem [47, Th. (2.2)] holds in the positive characteristic case by [47,
Rem. (2.4)], and we can reduce to the case where X and Y are non-
singular and X → Y is a succession of blowings up at points.

As a corollary of Theorem 2.17, we have the following useful lemma,
which is used in proving Propositions 2.29 and 4.8 below.

Lemma 2.18. For a normal surface X and a reduced divisor D on
X, let C be a negative curve on X such that C �⊂ D and (KX+D)C ≤ 0.
Then, �C ∩D ≤ 1.

Proof. Let f : X → X be the contraction morphism of C and set
D := f∗(D). Then, the structure sheaf OD of the divisor D is just the
image of OX � f∗OX → f∗OD. On the other hand, R1f∗OX(−D) = 0
by Theorem 2.17, since −(D +KX) is f -nef. Hence, OD � f∗OD, and

consequently, every fiber of f |D : D → D is connected. In particular,
C ∩D is connected or empty, and thus, �C ∩D ≤ 1. Q.E.D.

2.3. Cone and contraction theorems

The cone and contraction theorems are important in the study of
minimal models and these are stated for log-canonical pairs, usually.
Here, we explain a version of the cone theorem valid for any normal
Moishezon surface and a version of the contraction theorem valid for
any normal projective surface.
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Definition. For a normal Moishezon surface X, let NE(X) denote
the closure in N(X) of the cone NE(X) consisting of the numerical classes
cl(D) of all the effective R-divisors D on X. Then, NE(X) is identical
to the set of the numerical classes of all the pseudo-effective R-divisors
on X. The dual cone of NE(X) with respect to the intersection pairing
N(X) × N(X) → R is just the nef cone Nef(X), which is the set of the
numerical classes of all the nef R-divisors on X. For an R-divisor B, we
set

NE(X)
≥0

B := {z ∈ NE(X) | cl(B) · z ≥ 0} and

NE(X)⊥B := {z ∈ NE(X) | cl(B) · z = 0}.

An extremal ray R of NE(X) is a one-dimensional face of the cone
NE(X), i.e., R = R≥0v = NE(X)⊥L for a non-zero vector v of NE(X)
and a nef R-divisor L.

Remark. (1) An R-divisor D of X is numerically ample (resp.
big) if and only if cl(D) lies in the interior of Nef(X) (resp.
NE(X)) (cf. Lemma 2.16).

(2) The cones Nef(X) and NE(X) are strictly convex closed cones
of N(X), and Nef(X) ⊂ NE(X).

(3) The one-dimensional cone R≥0 cl(Γ) is an extremal ray of

NE(X) for any negative curve Γ.

The cone theorem by Mori [36] for non-singular projective surfaces
is generalized to the case of normal Moishezon surfaces by Sakai in [48,
Prop. 4.8] (cf. [49, Appendix]). As a consequence, we have:

Theorem 2.19. For a normal Moishezon surface X and for any
numerically ample R-divisor A of X, there exist finitely many rational
curves Ci with −3 ≤ KXCi < 0 such that Ri = R≥0 cl(Ci) is an extremal
ray and

NE(X) = NE(X)
≥0

KX+A +
∑

Ri.

Corollary 2.20. Let X be a normal Moishezon surface.

(1) If R is an extremal ray of NE(X) with KXR < 0, then R =
R≥0 cl(C) for a rational curve C with 0 > KXC ≥ −3.

(2) For a nef R-divisor L, if KX + L is not nef, then there is an
extremal ray R such that (KX + L)R < 0.

Proof. (1): There is a numerically ample R-divisor A such that
(KX + A)R < 0. Since R is extremal, R is one of the extremal rays Ri

in Theorem 2.19.
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(2): There is a numerically ample R-divisor A such that KX +L+A
is not nef. Then, KX + A is not nef. Let Ri be the extremal rays in
Theorem 2.19. If (KX + L)Ri ≥ 0 for any i, then KX + L + A is nef,
since cl(KX +L+A) · z ≥ 0 for any z ∈ NE(X) by Theorem 2.19: This
is a contradiction. Thus, (KX + L)Ri < 0 for some Ri. Q.E.D.

The contraction theorem [36, Th. (2.1)] on the extremal rays has
been generalized to many situations by [55], [49], etc. The following ver-
sion is a special case of [48, Th. 4.9], which deals with normal Moishezon
surfaces. This seems to hold also in the positive characteristic case (cf.
[2, Th. 10.3]).

Theorem 2.21. Let X be a normal projective surface with an ex-
tremal ray R such that KXR < 0. Then, there exists a fibration π : X →
S to a normal projective variety S, called the contraction morphism of
R, such that, for any curve C ⊂ X, its numerical class cl(C) belongs to
R if and only if π(C) is a point. Here, ρ̂(X) = ρ̂(S) + 1. Moreover, the
following hold : Let v be a non-zero vector in R.

(1) If v2 > 0, then ρ̂(X) = 1, NE(X) = R, X has a rational curve,
and π is the constant morphism X → SpecC.

(2) If v2 = 0, then ρ̂(X) = 2 and π : X → S is a fibration to a
non-singular projective curve S such that every fiber of π is a
non-singular rational curve and its numerical class belongs to
R.

(3) If v2 < 0, then R = R≥0 cl(Γ) for a negative rational curve Γ,
and π is the contraction morphism of Γ.

Remark 2.22. In the case (3) above, the projectivity of S is shown
as follows (cf. the proof of [4, Th. 2.3]). We can find a very ample
divisor H on X and a positive integer r such that (H + rΓ)Γ = 0 and
H1(X,OX(H)) = 0. Then, L = H+rΓ is a nef and big Cartier on X and
NE(X)⊥L = R≥0 cl(Γ) = R. It is enough to prove that the linear system
|L| is base point free. In fact, in this case, the morphism Φ|L| : X → |L|∨
associated with |L| factors through a finite morphism S → |L|∨, where
|L|∨ is the dual projective space of |L|.

We have R1π∗OX = 0 by Theorem 2.17 applied to the π-nef divisor
−KX ; hence, Γ � P1 and OX(L)|Γ � OΓ. Since the base locus of |L| is
contained in Γ, it is enough to prove that the restriction homomorphism

φ : H0(X,OX(L)) → H0(Γ,OX(L)|Γ) � H0(Γ,OΓ)

is non-zero. The homomorphism φ factors as

H0(X,OX(L))
ϕ−→ H0(X,OrΓ(L))

ψ−→ H0(X,OΓ(L)),
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where ϕ is surjective by H1(X,OX(H)) = 0. The homomorphism ψ is
a composition of the restriction homomorphisms

ψk : H0(X,OkΓ(L)) → H0(X,O(k−1)Γ(L))

for 0 < k ≤ r, and each ψk is surjective by H1(Γ,OΓ(L − (k − 1)Γ)) =
0. Thus, φ is surjective, |L| is base point free, and consequently, S is
projective.

2.4. The defect and complexity

We shall study basic properties on the defect and the complexity
defined as follows:

Definition 2.23. Let X be a normal Moishezon surface and D a
reduced divisor on X. We define n(D) to be the number of irreducible
components of D. The vector subspace of N(X) generated by the nu-
merical classes of irreducible components of D is denote by N(X)D. The
dimension of N(X)D is denoted by r(X,D) or r(D) for short. We set

δ(X,D) := ρ̂(X) + 2− n(D) and c(X,D) := r(D) + 2− n(D).

We call δ(X,D) the defect and c(X,D) the complexity.

Remark. By definition, r(D) ≤ ρ̂(X) = dimN(X). If r(D) = ρ̂(X),
then D is big. We always have δ(X,D) ≥ c(X,D). The defect δ(X,D)
is called the absolute complexity in [33].

Definition 2.24. For (X,D) in Definition 2.23, let F(D) denote the
free abelian group generated by the irreducible components of D. The
class map is a homomorphism

clD : F(D)⊗Z R → N(X)

of vector spaces which associates with each irreducible component Di of
D the numerical class cl(Di). For the (Weil) divisor class group CL(X)
of X, we have another class map

clZD : F(D) → CL(X)

which associates with each irreducible component of D the linear equiv-
alence class.

Remark. The complexity c(X,D) is related to the class map. In
fact, N(X)D is the image of clD, and we have

n(D)− r(D) = dimKer(clD) ≥ 0 and

c(X,D) = 2− dimKer(clD) ≤ 2.
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If the numerical equivalence relation ∼∼∼ coincides with the Q-linear equiv-
alence relation ∼Q (e.g., the case of Lemma 2.31(4) below), then

rankCL(X) = ρ̂(X) and rank clZD = r(D).

Lemma 2.25 (cf. [12, Prop. (1.17)]). The kernel of clZD is isomor-
phic to O(X \D)�/C�.

Proof. By definition, Ker(clZD) consists of principal divisors div(f)
associated with non-zero rational functions f onX such that Supp div(f)
⊂ D; The last condition means that f is invertible on X \D. Therefore,

we have a surjection OX(X \D)� → Ker(clZD) by f 
→ div(f), and the
kernel of this surjection is just O(X)� = C�. Q.E.D.

Fact. Let X be a non-singular projective variety of arbitrary di-
mension and let D be a simple normal crossing divisor on X. In this
case, we can also consider the class map clD : F(D) ⊗ R → N(X) to
the real vector space N(X) of the numerical equivalence classes of R-
divisors on X. Then, the kernel Ker(clD) is isomorphic to the kernel of
H2

Dan(Xan,R) → H2(Xan,R), and the equality

dimKer(clD) = q̄(X \D)− q(X)

holds by [16, Prop. 1] (cf. [12, Prop. (1.15)]), where q̄ stands for the log-
arithmic irregularity and q for the irregularity. Moreover, the following
holds true, which seems to be well known.

Proposition 2.26. Let X be a non-singular projective variety such
that q(X) = 0 and D a simple normal crossing divisor on X. Then,
the quasi-Albanese variety (cf. [16, §3]) of X \ D is an algebraic torus
T of dimension q̄ := q̄(X \ D) and the quasi-Albanese map (cf. [16,
§4]) is characterized as a morphism α : X \ D → T which induces an
isomorphism (

C� × Z⊕q̄ �
)
O(T)�


−→ O(X \D)�.

Proof. By the definition of the quasi-Albanese variety in [16, §3],
the vanishing q(X) = 0 implies that the quasi-Albanese variety is an
algebraic torus T of dimension q̄(X \D). Let α : X \D → T be the quasi-
Albanese map. Then, by the universality of the quasi-Albanese map (cf.
[16, Prop. 4]), for any morphism f : X \ D → T to another algebraic
torus T , there is a unique morphism u : T → T such that f = u ◦ α
and u is a group homomorphism of group schemes up to translation. In
particular, the group homomorphism O(T )� → O(X\D)� induced by f∗

always factors through the group homomorphism O(T)� → O(X \D)�
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induced by α∗. On the other hand, for the d-dimensional algebraic torus
Gd

m , giving a morphism X \D → Gd
m over SpecC is equivalent to giving

a group homomorphism Z⊕d → O(X \ D)�. Therefore, α∗ induces an
isomorphism O(T)� � O(X \ D)�, and this property characterizes the
quasi-Albanese map α. Q.E.D.

Lemma 2.27. Let f : X → X be a birational morphism of normal
Moishezon surfaces. Let D be a reduced divisor on X and set D = f∗(D).
Then,

n(D)− n(D) ≤ r(D)− r(D) ≤ ρ̂(X)− ρ̂(X),

or equivalently, 0 ≤ c(X,D)− c(X,D) ≤ δ(X,D)− δ(X,D).

Here, the equality n(D) − n(D) = ρ̂(X) − ρ̂(X) holds (equivalently,
δ(X,D) = δ(X,D) holds) if and only if the f -exceptional locus is con-
tained in D.

Proof. The push-forward of divisors by f defines a homomorphism
f∗ : F(D) → F(D) for the free abelian groups F(D) and F(D) defined
in Definition 2.24, and it also defines the homomorphism f� : N(X) →
N(X) of Remark 2.9. Let E(f) (resp. E(f)D) be the free abelian group
generated by the f -exceptional prime divisors on X (resp. f -exceptional
irreducible components of D). Then, there is a commutative diagram

0 −−−−→ E(f)D ⊗ R −−−−→ F(D)⊗ R
f∗⊗R−−−−→ F(D)⊗ R −−−−→ 0⏐⏐� clD

⏐⏐� clD

⏐⏐�
0 −−−−→ E(f)⊗ R −−−−→ N(X)

f�−−−−→ N(X) −−−−→ 0

of exact sequences, where the left vertical homomorphism is induced
from the inclusion E(f)D ⊂ E(f). Hence, for the kernel W of the sur-
jection N(X)D → N(X)D induced by f�, we have inclusions

E(f)D ⊗ R ⊂ W ⊂ E(f)⊗ R.

Comparing the dimensions of these three vector spaces, we have the
required inequality, since rankE(f)D = n(D) − n(D), rankE(f) =
ρ̂(X) − ρ̂(X), and dimW = r(D) − r(D). Here, the equality holds
if and only if E(f)D = E(f), and this proves the last assertion. Q.E.D.

Lemma 2.28. In the situation of Lemma 2.27 above, the following
also hold :

(1) If the f -exceptional locus is contained in X \D, then n(D) =
n(D), r(D) = r(D), and c(X,D) = c(X,D).
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(2) If f is the contraction morphism of a negative curve Γ with
Γ �⊂ D, then n(D) = n(D), ρ̂(X) = ρ̂(X) + 1, and δ(X,D) =
δ(X,D) + 1.

(3) In the situation of (2), assume that Γ ∩ (D − C) = ∅ and
Γ∩C �= ∅ for an irreducible component C of D. Then, r(D) =
r(D)+1 (or equivalently, c(X,D) = c(X,D)+1) if and only if

cl(C) ∈ N(X)D−C ,

for the curve C = f∗(C).

Proof. The assertion (2) is a consequence of Lemma 2.10. For the
proof of (1), it is enough to show: r(D) = r(D). Let Δ be an R-
divisor supported on D such that Δ ∼∼∼ G for an R-divisor G contained
in the exceptional locus. Then, f∗Δ ∼∼∼ f∗G = 0 and 0 ∼∼∼ f∗f∗Δ = Δ.
Hence, the kernel W in the proof of Lemma 2.27 is zero, and we have
r(D) = r(D). This proves (1). In the situation of (3), the equality
r(D) = r(D) + 1 is equivalent to that cl(Γ) ∈ N(X)D. Let Δ be an
R-divisor on X supported on D. We write Δ = dC + Δ1 for some
d ∈ R and for an R-divisor Δ1 supported on D − C. If Δ ∼∼∼ rΓ for
some real number r �= 0, then d �= 0 by dCΓ = ΔΓ = rΓ2 �= 0, and
moreover, 0 ∼∼∼ f∗Δ = dC+f∗Δ1. Hence, in this case, cl(C) ∈ N(X)D−C .

Conversely, if d �= 0 and if 0 ∼∼∼ f∗Δ = dC + f∗Δ1, then Δ ∼∼∼ rΓ with
r �= 0 by ΔΓ = dCΓ �= 0. This proves (3), and we are done. Q.E.D.

The result below is obtained by Lemma 2.18 and by the so-called
minimal model program: More precisely, by the cone and contraction
theorems (cf. Theorems 2.19 and 2.21) with Corollary 2.20.

Proposition 2.29. Let X be a normal projective surface and D a
reduced divisor on X. Suppose that

(i) −(KX +D) is nef, and
(ii) either δ(X,D) ≤ 1 or c(X,D) ≤ 0.

Then, D is connected and reducible.

Proof. If D = 0, then c(X,D) = 2. Thus, D �= 0 and r(D) > 0.
Then, D is reducible by

n(D) = r(D) + 2− c(X,D) ≥ r(D) + 1 ≥ 2.

It remains to prove the connectedness of D. Since (−D)−KX is nef and
−D is not nef, there is an extremal ray R on X such that (−D)R < 0
and KXR < 0 by Corollary 2.20(2). Let us consider the contraction
morphism contR associated with R (cf. Theorem 2.21).
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We first consider the case where contR is a birational morphism
f : X → X ′. Then, R is generated by cl(Γ) of a negative curve Γ,
and f is just the contraction morphism of Γ. Note that X ′ is also
a normal projective surface (cf. Remark 2.22). We set D′ = f∗(D).
Then, −(KX′ + D′) = f∗(−(KX + D)) is nef (cf. Remark 2.15), and
the inequalities δ(X ′, D′) ≤ δ(X,D) and c(X ′, D′) ≤ c(X,D) hold by
Lemma 2.27. Hence, (X ′, D′) satisfies the same conditions (i) and (ii).
If Γ ⊂ D, then D = f−1(D′), and even if Γ �⊂ D, we have �Γ∩D ≤ 1 by
Lemma 2.18. As a consequence, if D′ is connected, then so is D. Thus,
we may replace (X,D) with (X ′, D′).

By the observation above and by Theorem 2.21, taking a succession
of birational contractions of extremal rays, we can reduce to the following
two cases:

• contR is the structure morphism to a point;
• contR is a fibration π : X → T to a non-singular curve T .

In the first case, ρ̂(X) = 1, and every non-zero effective divisor is ample
and connected. Therefore, D is also connected in this case. In the
second case, ρ̂(X) = 2, and we have DF > 0 and (KX +D)F ≤ 0 for
a general fiber F of π. Thus, F � P1 and 1 ≤ DF ≤ 2. In particular,
D contains at least one irreducible component C0 which dominates T .
Now, we have

n(D) = −δ(X,D) + ρ̂(X) + 2 ≥ 3, or

n(D) = −c(X,D) + r(D) + 2 ≥ r(D) + 2 ≥ 3.

In particular, D contains at least one fiber F0 of π, since DF ≤ 2. Then,
the numerical classes of C0 and F0 span the two-dimensional vector space
N(X). Thus, D is connected, and we are done. Q.E.D.

2.5. Rationality and projectivity

We shall give some criteria for a normal Moishezon surface to be
projective or to be rational. We first note the following well-known:

Fact 2.30. A non-singular Moishezon surface is projective (cf. [10],
[27, Th. 3.1], [26, Ch. 4, Th. 3.1; Ch. 5, 4.10]).

Lemma 2.31. Let X be a normal Moishezon surface.

(1) If H2(X,OX) = 0, then X is projective.
(2) If X has only rational singularities, then X is Q-factorial and

projective.
(3) If H2(X,OX) = H1(M,OM ) = 0 for a non-singular projective

surface M birational to X, then X has only rational singular-
ities.
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(4) If X has only rational singularities and if H1(X,OX) = 0, then
the numerical equivalence relation coincides with the Q-linear
equivalence relation for Q-divisors on X.

Sketch of the proof. The assertion (1) is well known as Brenton’s
criterion of projectivity (cf. [8, Prop. 7]). Note that this holds also in pos-
itive characteristic case by [7]. For the assertion (2), the Q-factoriality of
X has been proved in [52, §6, Satz 1], [9, Satz 1.5], and [31, Th. (17.4)],
etc. The projectivity of X in this case can be proved by the same
argument as in the proof of [4, Th. (2.3)] applied to the minimal resolu-
tion μ : M → X of singularities. We have another proof of projectivity
of X which uses the Q-factoriality of X and a strong version of Nakai–
Moishezon criterion of ampleness asserting that every numerically ample
Cartier divisor is always ample (cf. Remark 2.12). The assertion (3) is
shown by considering the Leray spectral sequence

Ep,q
2 = Hp(X,Rqμ∗OM ) ⇒ Ep+q = Hp+q(M,OM )

for a resolution of μ : M → X singularities, and the assertion (4) is
reduced to the non-singular case by this spectral sequence. Q.E.D.

Lemma 2.32. For a normal Moishezon surface X and a reduced
divisor D on X, assume that

(i) every irreducible component of D is a rational curve,
(ii) D is big, and
(iii) X has only rational singularities along D.

Then, H1(M,OM ) = 0 for the minimal resolution M of singularities of
X. If H0(X,OX(2KX)) = 0 in addition, then X is a projective rational
surface with only rational singularities.

Proof. Let μ : M → X be the minimal resolution. Then, every
irreducible component of μ∗(D) is rational. In fact, the μ-exceptional
components are rational by (iii) and the non-exceptional components
are rational by (i). Thus, every irreducible component of μ∗(D) is
mapped to a point by the Albanese map α : M → Alb(M). In particular,
μ∗(D)α∗(H) = 0 for any ample divisor H of Alb(M). Then, α∗(H) ∼∼∼ 0
by the Hodge index theorem, since μ∗(D) is big (cf. Remark 2.13).
Therefore, α(M) = Alb(M) is a point, and hence H1(M,OM ) = 0.

Assume in addition that H0(X,OX(2KX)) = 0. Then, X is a
projective surface with only rational singularities by (1) and (3) of
Lemma 2.31, since we have H2(X,OX) � H0(X,OX(KX))∨ = 0 and
H1(M,OM ) = 0. Moreover, the canonical injection H0(M,OM (2KM )) ⊂
H0(X,OX(2KX)) = 0 and the vanishing H1(M,OM ) = 0 imply that M
is a rational surface, by Castelnuovo’s criterion. Q.E.D.



A variant of Shokurov’s criterion 313

Proposition 2.33. Let X be a normal Moishezon surface and let
π : X → T be a P1-fibration to a non-singular projective curve T (here,
a general fiber of π is isomorphic to P1 (cf. Notation and conventions,
5)). Then, the following hold :

(1) The surface X is projective and has only rational singularities.
In particular, ρ̂(X) = ρ(X).

(2) The higher direct image sheaf Riπ∗OX is zero for any i > 0.
(3) Any curve contained in a fiber of π is isomorphic to P1.
(4) If a scheme-theoretic fiber F of π is irreducible and reduced,

then π is smooth along F .
(5) If an invertible sheaf L on X is π-numerically trivial (cf. Def-

inition 2.14(i)), then L is isomorphic to the pullback of an
invertible sheaf on T .

(6) If any fiber of π is irreducible, then ρ(X) = 2.
(7) If F1, F2, . . . , Fk are the reducible fibers of π, then

ρ(X) = 2 +
∑k

i=1
(n(Fi)− 1).

Proof. (1) and (2): For a general fiber F , we have KXF = −2,
since F � P1. Thus, H0(X,OX(KX)) � H2(X,OX)∨ = 0, and X is
projective by Lemma 2.31(1). Let μ : M → X be the minimal resolution
of singularities. Then, there is a proper birational morphismM → Y to a
P1-bundle Y over T , whereM → Y is a succession of blowdowns of (−1)-
curves. Hence, Ri(π ◦ μ)∗OM = 0 for any i > 0. By the Leray spectral
sequence for π and μ, we have R1π∗OX = 0 and π∗(R1μ∗OM ) = 0.
Note that Riπ∗OX = 0 for i ≥ 2, since any fiber of π is one-dimensional.
The vanishing of π∗(R1μ∗OM ) implies the vanishing of the skyscraper
sheaf R1μ∗OM . Thus, X has only rational singularities. The equality
ρ̂(X) = ρ(X) follows from Remark 2.8 and Lemma 2.31(2).

(3) and (4): For any effective divisor G contained in a fiber of π, we
have H1(G,OG) = 0 by (1), since 0 = R1π∗OX → R1π∗OG is surjective.
In particular, pa(Γ) = 0 for any irreducible component Γ of any fiber
of π; this proves (3). If a scheme-theoretic fiber F is irreducible and
reduced, then F � P1, and π is smooth along F by the flatness of π;
this proves (4).

(5): We have deg(L|Γ) = 0 for any irreducible component Γ of any
fiber of π. Thus, μ∗L � (π ◦ μ)∗M for an invertible sheaf M on T ,
since π ◦ μ is expressed as the composition of the succession M → Y
of blowdowns of (−1)-curves and the P1-bundle Y → T . Taking μ∗, we
have an isomorphism L � π∗M.

(6): Assume that every fiber of π is irreducible. For a fixed fiber
F , let us consider a homomorphism v : Pic(X) → Z defined by v(L) =
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deg(L|F ) for invertible sheaves L on X. If F ′ is another fiber of π, then
F ′ ∼∼∼ αF for some positive rational number α. Thus, the kernel of v is
just π∗ Pic(T ) by (5). The image of v is not zero, since v(A) > 0 for an
ample invertible sheaf A. Therefore, ρ(X) = 2.

(7): Let us choose an irreducible component Γi of Fi for each 1 ≤ i ≤
k. Since Fi − Γi is negative-definite, we have the contraction morphism

f : X → X of
∑k

i=1(Fi −Γi) by Theorem 2.6. Then, X is also a normal
projective surface with only rational singularities by (1), since there is a
P1-fibration π̄ : X → T with π = π̄ ◦ f . Moreover, ρ̂(X) = ρ(X) = 2 by

(6). On the other hand, ρ(X)−ρ(X) =
∑k

i=1(n(Fi)−1) by Lemma 2.10.
Thus, (7) follows, and we are done. Q.E.D.

Remark 2.34. In the situation of Proposition 2.33, if X is non-
singular, then every fiber is a simple normal crossing divisor. This well-
known property is shown by the vanishing R1π∗OX = 0 as follows. For
arbitrary three irreducible components Γ, Γ′, and Γ′′ of a given fiber, we
have

H1(Γ,OX(−Γ′)|Γ) = H1(Γ,OX(−Γ′ − Γ′′)|Γ) = 0

by the vanishing H1(OG) = 0 for G = Γ + Γ′ and for G = Γ + Γ′ + Γ′′

(cf. the proof of (3) above). This implies ΓΓ′ ≤ 1 and Γ ∩ Γ′ ∩ Γ′′ = ∅.
Therefore, the fiber is a simple normal crossing divisor.

§3. Two-dimensional toric varieties and log-canonical pairs

In this section, we recall several properties on toric varieties and
log-canonical pairs in the 2-dimensional case. We recall in Section 3.1
some of well-known basics on toric varieties, especially on toric surfaces.
A toroidal singularity is a singularity arising at a toric variety. This is
defined in Section 3.2 with a few properties in the surface case. The
notion of log-canonical has appeared in the study of minimal models of
algebraic varieties. In Section 3.3, we discuss the definition and some
general properties of log-canonical pairs (X,B) for a normal surface X
and an effective Q-divisor B. When B is reduced, we have classification
results on the singularities of this log-canonical pair (X,B), which is
explained in Section 3.4. In Section 3.5, we classify the singularities of
(X,B) along a compact irreducible component C of B such that B is a
reduced divisor on a normal surface X and (X,B) is log-canonical along
C with (KX +B)C ≤ 0.
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3.1. Projective toric surfaces

We recall here some basic properties on toric varieties, especially on
toric surfaces. For details on the theory of toric varieties, the reader
refers to the books [25], [43], [13], etc.

An n-dimensional normal algebraic variety X is called a toric variety
if there is an action of the n-dimensional algebraic torus T = Gn

m on X
such that it has an open orbit U which is isomorphic to T by the action.
In other words, U ⊂ X is an equivariant embedding of T. In particular,
X is a rational variety. We call T the open torus of X. The complement
D = X \ U is a divisor on X, which is called the boundary divisor. By
abuse of notation (cf. Convention 1.4), the pair (X,D) is also called a
toric variety. A two-dimensional toric variety is called a toric surface.

The toric variety is determined by the group

N = Homgroup(Gm,T)

of one-parameter subgroups of T and by a certain finite collection �,
called a fan in [43] and [13] (or an f.r.p.p. decomposition in [25]), of
strictly convex rational polyhedral cones in N⊗ZR. We denote by TN(�)
the toric variety defined by N and � (this is denoted by TN emb(�) in
[43]). The group

M = Homgroup(T,Gm)

is called the character group of T. There is a natural non-singular bi-
linear form 〈 , 〉 : M×N → Z (cf. [25, Ch. 1, p. 2]). A one-dimensional
cone of � is expressed as R≥0v for a primitive element v of N, i.e.,
N/Zv is torsion free. The cone R≥0v corresponds to a prime divisor Γ
on X = TN(�) which is the closure of an orbit of T, and we have

ordΓ(m) = 〈m, v〉

for any function m ∈ M, where ordΓ(m) stands for the order of zeros or
the minus of the order of poles along Γ of the rational function m on X.
Note that each m ∈ M is regarded as a morphism U � T → Gm.

For toric varieties X and Y , a morphism f : X → Y of schemes is
called a morphism of toric varieties (or a toric morphism) if f is equi-
variant with respect to some homomorphism φ : TX → TY between the
open tori TX and TY of X and Y , respectively: This means symboli-
cally that f(t · x) = φ(t) · f(x) for any x ∈ X and t ∈ TX . The toric
morphism f is also described by a homomorphism between the groups of
one-parameter subgroups of TX and TY and by an information of fans.

Remark 3.1. For a given toric variety X with an open torus T, there

exists a T-equivariant open immersionX ↪→ X̂ to a compact toric variety
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X̂ with the same open torus T. This is a consequence of Sumihiro’s
theorem [54, Th. 3] on equivariant completion. If X = TN(�), then

X̂ = TN(�̂) for a fan �̂ such that the union |�̂| of cones in �̂ is just

N ⊗ R and that every cone on � belongs to �̂ (cf. [25, Ch. 1, Th. 8]).

The existence of �̂ can be seen easily in the two-dimensional case (cf.
Example 3.4 below).

Example 3.2. LetX be an affine toric surface with a zero-dimension-
al orbit. Then, X � SpecC[σ∨∩M] for a convex cone σ = R≥0e1+R≥0e2
of N ⊗ R � R2, where e1 and e2 are primitive elements of N, (e1, e2) is
a basis of N⊗ R,

σ∨ = {m ∈ M⊗ R | 〈m,x〉 ≥ 0 for any x ∈ σ},

and C[σ∨∩M] is the semi-group ring defined by the semi-group σ∨∩M,
which is finitely generated. Let Γi be the prime divisor associated with
the ray R≥0ei for i = 1, 2. Then, Γ1∩Γ2 is a point O, which is the zero-
dimensional orbit corresponding to σ. By a suitable coordinate change,
we may assume that there exist integers n > q ≥ 0 with gcd(n, q) = 1
such that N = Ze2 + Zu for u := (1/n)(e1 + qe2). If q = 0, then n = 1,
X � A2, and Γ1 and Γ2 are coordinate lines. Assume that q > 0. Then,
the singularity (X,O) is a cyclic quotient singularity. In fact, for the
submodule N0 = Ze1 + Ze2, the induced toric morphism

X0 = TN0(σ) � A2 → X = TN(σ)

is regarded as the quotient map for the action of the cyclic group Z/nZ
on A2 given by (x, y) 
→ (ζx, ζqy) for an n-th primitive root ζ of unity
and for a coordinate (x, y) of A2. This (X,O) is called a cyclic quotient
singularity of order n, or more explicitly, a cyclic quotient singularity
of type (n, q) (or type (1/n)(1, q) in some literature). Note that this
is a rational singularity. It is well known that the minimal resolution
μ : M → X of the cyclic quotient singularity of type (n, q) is given by
Hirzebruch–Jung’s method and this is described as a toric morphism (cf.
[25, Ch. I, §2, pp. 35–38]). For example, the inverse image μ−1(Γ1 ∪Γ2)
is a linear chain of rational curves in the sense of Definition 4.1 in which
the proper transforms Γ′

1 and Γ′
2 of Γ1 and Γ2, respectively, in M are

the end components of the chain. Furthermore, the self-intersection
number −bi of the i-th irreducible component Ci of the linear chain
μ−1(O) = C1 + C2 + · · ·+ Cl is determined by the continued fraction

n

q
= [b1, b2, . . . , bl] = b1 −

1

[b2, . . . , bl]
= b1 −

1

b2 −
1

[b3, . . . , bl]

= · · · .
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Fig. 1. Dual graph of μ−1(Γ1 ∪ Γ2)

The dual graph of μ−1(Γ1∪Γ2) is written as in Figure 1, where �(resp.
�) stands for the exceptional (resp. non-exceptional) component.

Remark 3.3. In Example 3.2, the divisor Γ1 + Γ2 is isomorphic to
the union of two coordinate axes of A2 as a reduced scheme. In fact, the
affine coordinate ring R of TN(σ) is a C-subalgebra of C[x, y] generated
by monomials xiyj such that i + qj ≡ 0 mod n. Let I be the ideal
I = (xy)C[x, y] ∩ R and J the ideal of R generated by monomials xiyj

such that i, j > 0. Then, I ⊃ J , and SpecR/I is isomorphic to Γ1 +Γ2.
Let P = C[u, v] be the polynomial ring of two variables and let P → R
be the C-algebra homomorphism defined by u 
→ xn and v 
→ yn. Then,
the induced homomorphism P → R/J is surjective and the kernel of the
composition

P → R/J → R/I → C[x, y]/(xy)

is the ideal generated by uv. Since R/I → C[x, y]/(xy) is injective, we
have I = J and P/(uv)P � R/I. Therefore, Γ1 + Γ2 is isomorphic to
the subscheme {uv = 0} of SpecP � A2.

Example 3.4. Let X = TN(�) be a projective toric surface. Then,
the fan � is determined by a collection (v1, . . . , vk) of non-zero elements
of N � Z⊕2 satisfying the following conditions:

(i) Each vi is primitive in N, i.e., N/Zvi is torsion free.
(ii) The pair (vi, vi+1) is a basis of N⊗R for any 1 ≤ i ≤ k−1 and

the same for (vk, v1).
(iii) We set σi := R≥0vi + R≥0vi+1 for 1 ≤ i ≤ k − 1, and σk =

R≥0vk + R≥0v0. Then:
• If j ≡ i+ 1 mod k, then σi ∩ σj = R≥0vj .
• If i− j mod k is not in {0, 1,−1}, then σi ∩ σj = {0}.

Here, the fan � consists of σi, R≥0vj , and {0} for all i and j above. Let
Γi be the prime divisor associated with the one-dimensional cone R≥0vi.

Then, Γi � P1, and the union D =
∑k

i=1 Γi is the boundary divisor. The
two-dimensional cone σi corresponds to the intersection point Γi ∩Γi+1

for 1 ≤ i ≤ k − 1, and σk to the point Γk ∩ Γ1. These points are
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the zero-dimensional orbits of T. As a consequence, we see that D is
a cyclic chain of rational curves in the sense of Definition 4.3 below.
Moreover, by Example 3.2, X has only cyclic quotient singularities, and
the singularities are lying on SingD. In particular, X is Q-factorial.

Remark 3.5. Every compact toric surface is projective by Lemma
2.31(2), since it has only rational singularities (cf. Example 3.2).

We list some facts on toric varieties of arbitrary dimension.

Fact 3.6. (1) The toric variety X = TN(�) is compact if and
only if the union of the cones in � coincides with N⊗Z R (cf.
[43, Th. 1.11]).

(2) For any toric variety X, there is a proper birational toric mor-
phism M → X giving a resolution of singularities of X (cf. [25,
Ch. I, Th. 11]).

(3) For a toric variety X with the boundary divisor D, one has
KX + D ∼ 0. In fact, this is well known when X is non-
singular (cf. [43, Cor. 3.3]). In the general case, it is shown by
taking push-forward for the open immersion X \ SingX ↪→ X.

The following is shown in [13, §3.4, p. 63, Proposition]:
Lemma 3.7. For a toric variety X = TN(�) with the boundary

divisor D, there is an exact sequence

(III-1) M
u−→ F(D)

clZD−−→ CL(X) → 0

for the class map clZD in Definition 2.24 and for the character group
M = Hom(N,Z). Here, an element of M is regarded as a semi-invariant
rational function on X, and the map u associates with m ∈ M the princi-
pal divisor div(m). The map u is injective when the cones in � generate
the vector space N⊗ R.

Now, we return to the two-dimensional case. The projective toric
surfaces are described geometrically from some simple examples.

Example 3.8. (1) Let L = L1 + L2 + L3 be the union of three
lines on the projective plane P2 such that L1 ∩ L2 ∩ L3 =
∅. Then, (P2, L) is a toric surface. One can show that any
non-singular projective toric surface with exactly three one-
dimensional orbits is isomorphic to (P2, L).

(2) For the Hirzebruch surface Xe = P(O ⊕O(e)) of degree e ≥ 0
with the ruling π : Xe → P1, the pair (Xe, D) is an example of
projective toric surfaces for the divisor

D := σ0 + σ∞ + F1 + F2
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consisting of sections σ0 and σ∞ of π with σ2
0 = −e, σ2

∞ =
e, and σ0 �= σ∞, and of two distinct fibers F1 and F2 of π.
One can show that any non-singular projective toric surface
with four one-dimensional orbits is isomorphic to some (Xe, D)
above.

(3) In (2) above, π : (Xe, D) → (P1, P1 + P2) is a toric morphism
of toric varieties, where Pi = π(Fi) for i = 1, 2.

(4) Let (X,D) be a non-singular projective toric surface and let
f : Y → X be the blowing up at a point P of SingD. Then,
(Y,DY ) is a projective toric surface for DY = f−1(D), and f
is a toric morphism. In fact, the action of the open torus of X
naturally lifts to Y .

Lemma 3.9. Let X be a toric surface with boundary divisor D. Let
g : X → Z be a proper birational morphism to another normal surface
Z such that the g-exceptional locus is contained in D (Here, Z is not
assumed to be a scheme). Then, Z is also a toric surface having g∗(D)
as a boundary divisor, and g is a toric morphism. If X is compact, then
X and Z are both projective.

Proof. By Remark 3.1, we may assume that X is compact. Then,
X is projective by Remark 3.5. Every irreducible component of D is
the closure of an one-dimensional orbit of the open torus T = X \ D.
Hence, the action of T descends to Z. This implies that Z is a T-
equivariant compactification of T � Z \ g∗(D), and g is T-equivariant.
It remains to prove that Z is a projective scheme. Note that g∗(D) �= 0,
since there is an ample divisor supported on D. Hence, H2(Z,OZ) =
H0(Z,OZ(KZ))

∨ = 0 byKZ+g∗(D) ∼ g∗(KX+D) ∼ 0 (cf. Fact 3.6(3)).
Thus, Z is a projective surface by Lemma 2.31(1). Q.E.D.

By Example 3.8 and Lemma 3.9, we have:

Proposition 3.10. (1) Any non-singular projective toric sur-
face (X,D) is obtained from (P2, L) or from (Xe, D) in Exam-
ple 3.8 by a succession of blowings up at nodes of the boundary
divisors (cf. [43, Th. 1.28], [13, p. 43, Prop.]).

(2) For a normal Moishezon surface X and a reduced divisor D,
the pair (X,D) is a projective toric surface if and only if X \D
is non-singular and (M,DM ) is a projective toric surface for a
minimal resolution μ : M → X of singularities and for DM =
μ−1(D). In this case, μ is a toric morphism.

By Lemma 3.7 or by Proposition 3.10, we have:
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Lemma 3.11. Let (X,D) be a projective toric surface. Then,
ρ(X) = ρ̂(X) = r(D) = n(D)− 2. In particular, δ(X,D) = c(X,D) =
0.

Proof. We have ρ(X) = ρ̂(X) by Lemma 2.31 and Example 3.2.
There are two proofs of ρ̂(X) = r(D) = n(D)− 2. The first proof uses
Lemma 3.7: By the exact sequence (III-1), we have n(D) = ρ̂(X) =
rankCL(X) and n(D) − r(D) = rankM = 2. In the second proof, by
Proposition 3.10 and by Lemma 2.27, we are reduced to the case where
(X,D) is isomorphic to (P2, L) or (Xe, D) in Example 3.8, and in the
case, the equalities hold trivially. Q.E.D.

3.2. Toroidal singularities

Definition 3.12. Let X be a normal variety and B a reduced di-
visor.

(1) For a closed point P , the pair (X,B) is said to be toroidal at
P if X \ B ⊂ X is a toroidal embedding at P in the sense of
[25, Ch. II, §1]. By [5, Cor. (2.6)], this is equivalent to the
existence of an affine toric variety V and two étale morphisms
τ : U → X and θ : U → V with a point Q ∈ U lying over P
such that θ−1(T) = τ−1(X \B) for the open torus T of V .

(2) The pair (X,B) is said to be toroidal along a subset Z of X
if (X,B) is toroidal at each closed point of Z. If (X,B) is
toroidal along X, then (X,B) is said to be toroidal.

The pair (U , Q) above is a common étale neighborhood of (X,P ) and
(V, θ(Q)) in the following sense:

Definition 3.13 ([5, p. 27]). Let X be a scheme (or an algebraic
space) and P a point of X. An étale neighborhood of (X,P ) is defined
as a pair (U , Q) of a scheme (or an algebraic space) U and a point Q ∈ U
together with an étale morphism τ : U → X such that P = τ(Q) and τ
induces an isomorphism k(P ) � k(Q) of residue fields.

Remark. For a closed point P of an algebraic scheme X over C,
an étale neighborhood of (X,P ) is an étale morphism U → X with a
point Q lying over P , since k(P ) is algebraically closed. So, in this
case, frequently, an étale neighborhood of (X,P ) is regarded as an étale
morphism U → X whose image contains P .

By the study of singular affine toric surfaces in Example 3.2 and by
Fact 3.6(3), we have:

Lemma 3.14. Let (X,B) be a pair of normal surface X and a
reduced divisor B. For a closed point P ∈ B, assume that (X,B) is
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toroidal at P . Then, KX +B is Cartier at P , and one of the following
holds:

(i) X is non-singular at P , and B is also non-singular at P ;
(ii) X is non-singular at P , and B is a normal crossing divisor at

P with P ∈ SingB;
(iii) (X,P ) is a cyclic quotient singularity of type (n, q) for some

n > q > 0 with gcd(n, q) = 1.

Here, (iii) means that (X,P ) has a common étale neighborhood with
(TN(σ), O) for the toric surface (TN(σ),Γ1 + Γ2) and the point O =
Γ1 ∩ Γ2 in Example 3.2.

Corollary 3.15. Let X be a normal surface and B a reduced divisor
such that (X,B) is toroidal. Let μ : M → X be the minimal resolution
of singularities and set BM = μ−1(B). Then, BM is a normal crossing
divisor and KM + BM = μ∗(KX + B). In particular, (X,B) is log-
canonical (see Definition 3.17 below).

Proof. We may assume that (X,B) is a singular affine toric surface.
Then, the minimal resolution of X has been described in Example 3.2.
Hence, (M,BM ) is toric and BM is a simple normal crossing divisor. By
Fact 3.6(3), we have KM+BM ∼ 0 and KX+B ∼ 0. Thus, KM+BM =
μ∗(KX +B), and (X,B) is log-canonical by Corollary 3.20. Q.E.D.

Remark 3.16. Let X be a normal surface and B a non-zero effective
divisor such that KX +B is Cartier along B. Then, B is Gorenstein and
its dualizing sheaf ωB is isomorphic to OX(KX + B)|B. In particular,
if (X,B) is toroidal along B, then B is Gorenstein. In fact, we have an
exact sequence

0 → ωX → HomOX (OX(−B), ωX) → ωB → 0

from 0 → OX(−B) → OX → OB → 0 by taking Hom(−, ωX) using the
isomorphism

Ext1OX
(OB , ωX) � ωB

for the Cohen–Macaulay closed subscheme B of codimension one (cf. [3,
Ch. I, Prop. (2.3)]), where the exact sequence is isomorphic to

0 → OX(KX) → OX(KX +B) → OX(KX +B)|B → 0.

Note that every effective divisor B on a normal surface X is Cohen–
Macaulay, i.e., satisfies Serre’s condition S1. In fact, for the maximal
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open subset U of X on which B is Cartier, we know that B|U is Cohen–
Macaulay, and that B satisfies S1 if the homomorphism r3 in the com-
mutative diagram of exact sequences below is injective:

0 −−−−→ OX(−B) −−−−→ OX −−−−→ OB −−−−→ 0

r1

⏐⏐� r2

⏐⏐� ⏐⏐�r3

0 −−−−→ j∗(OX(−B)|U ) −−−−→ j∗OU −−−−→ j∗(OB |U ),

where j : U ↪→ X stands for the open immersion. Since X is normal,
OX(−B) is reflexive, and codim(X \ U,X) ≥ 2, the vertical homomor-
phisms r1 and r2 are isomorphisms, and it implies that r3 is injective.

3.3. Log-canonical pairs

Definition 3.17. Let X be a normal surface and B an effective
Q-divisor. For a proper birational morphism μ : M → X from a non-
singular surface M , we have an equality

KM = μ∗(KX +B) +
∑

aiEi,

where Ei are the irreducible components of the union E of μ−1(SuppB)
and the μ-exceptional locus, ai ∈ Q, and μ∗ stands for the numerical
pullback (cf. Definition 2.1). The pair (X,B) is said to be log-canonical
(resp. log-terminal) if there is a proper birational morphism μ above such
that E is a normal crossing divisor and that ai ≥ −1 (resp. ai > −1) for
any i.

Remark 3.18. (1) We can compare KM and μ∗(KX) by a ra-
tional two-form on X and its pullback to M . Thus, we can
write the equality as above, which is not only a linear equiva-
lence relation.

(2) The definition of log-canonical (resp. log-terminal) above does
not depend on the choice of μ : M → X with E being a normal
crossing divisor. This property is generalized to Lemma 3.19
below.

(3) The notion of log-canonical (resp. log-terminal) is étale local
on X: For an étale morphism U → X, if (X,B) is log-canonical
(resp. log-terminal), then so is (U , B|U ) for the pullback B|U of
B. Conversely, if (U , B|U ) is log-canonical (resp. log-terminal),
then so is (U,B|U ) for the image U of U → X.

(4) For a subset Z of X, we say that (X,B) is log-canonical (resp.
log-terminal) along Z if (U,B|U ) is log-canonical (resp. log-
terminal) for some open neighborhood U of Z: In case Z is a



A variant of Shokurov’s criterion 323

point P , we say that (X,B) is log-canonical (resp. log-terminal)
at P . By (3) above and by [5, Cor. (2.6)], the log-canonicity
(resp. log-terminality) of (X,B) at a point P depends only on

the completion ÔX,P of the local ringOX,P and on the pullback

of B by Spec ÔX,P → X.
(5) The notion of log-canonical (resp. log-terminal) for (X,B) is

defined for any dimension in case KX + B is Q-Cartier. In
two-dimensional case, if (X,B) is log-canonical in the sense of
Definition 3.17, then KX+B also Q-Cartier (cf. [23, Cor. 9.5]).

(6) The notion of log-terminal (resp. log-canonical) is introduced
in [24]. The log-terminal is called Kawamata log terminal (klt)
in [29], [30] when the boundary divisor B is not zero; instead
another notion of log terminal is introduced in [29], which is not
useful in the study of singularities. Indeed, it is not necessarily
étale local and its definition does depend on the choice of good
non-singular models M of X.

The following useful lemma is not so mentioned in the literature on
birational geometry except in the case where f is a proper birational
morphism. This is proved implicitly in [22, Prop. 1.7] or [24, Lem. 0-2-
12]. We shall give a proof by tracing the argument there, which uses the
logarithmic ramification formula (cf. [17, the formula (R) in p. 180], [19,
Th. 11.5]). The same argument of our proof works for higher dimensional
case in which KX +B is Q-Cartier.

Lemma 3.19. Let X be a normal surface and B an effective Q-
divisor. Let f : Y → X be a dominant morphism from a non-singular
surface Y . Let G be the Q-divisor on Y such that the ramification for-
mula for f is equivalent to

KY = f∗(KX +B) +G.

Let G =
∑

γiGi be the irreducible decomposition. If (X,B) is log-
terminal (resp. log-canonical), then γi > −1 (resp. γi ≥ −1) for any
i. The converse holds when SuppG =

∑
Gi is a normal crossing divisor

and f is proper surjective.

Proof. Let μ : M → X be a proper birational morphism from a non-
singular surface M and let ν : N → Y be a proper birational morphism
from a non-singular surface N such that f ◦ ν = μ ◦ g for a morphism
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g : N → M , i.e., the diagram

N
ν−−−−→ Y

g

⏐⏐� ⏐⏐�f

M
μ−−−−→ X

is commutative, and that the following are satisfied:

• The union E of μ−1(SingX ∪ SuppB) and the μ-exceptional
locus is a simple normal crossing divisor.

• There is a normal crossing divisor F on N such that g−1(E) ⊂
F and that N \ F → X is étale.

We have the logarithmic ramification formula (cf. [17, §4])

(III-2) KN + F = g∗(KM + E) +R

for g, in which R is an effective divisor supported on F . By considering
the ramification along E, we see that every irreducible component of R
does not dominate any irreducible component of E. Note that g∗E +
R − F is the ramification divisor for g. In particular, g∗E + R − F is
effective and F = Supp(g∗E +R).

Let Δ be a Q-divisor on M supported on E determined by

KM + E = μ∗(KX +B) + Δ,

where μ∗ denotes the numerical pullback. Note that (X,B) is log-
canonical if and only if Δ is effective and that (X,B) is log-terminal if
and only if Δ is effective and SuppΔ = E. Since KY = f∗(KX +B)+G
is equivalent to the logarithmic ramification formula (III-2), we have

G = ν∗(R− F + g∗Δ).

Assume that (X,B) is log-canonical, i.e., Δ is effective. Then, G+
ν∗F is effective for the reduced divisor ν∗F , which implies that G+Gred

is effective, i.e., γi ≥ −1 for any i. Assume that (X,B) is log-terminal,
i.e., Δ is effective and SuppΔ = E. Then, Supp(g∗Δ+R) = Supp(g∗E+
R) = F , and it implies that G+Gred is effective with Supp(G+Gred) =
Gred: This is equivalent to that γi > −1 for any i. Hence, the first
assertion has been proved.

For the second assertion, we assume that Gred is normal crossing
and that f is proper surjective. In particular, g is surjective. Since
ν−1(Gred) ⊂ F , we have the logarithmic ramification formula

KN + F = ν∗(KY +Gred) +Rν ,
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where Rν is an effective divisor. Note also that Rν + ν∗Gred − F is
effective, since Y is non-singular, and that F ⊂ Supp(Rν + ν∗Gred).
Comparing the formulas above, we have

g∗Δ+R = ν∗(G+Gred) +Rν .

If γi ≥ −1 for any i, i.e., G+Gred is effective, then g∗Δ+R is effective,
and it implies that Δ is effective, since g is surjective and since all the
common irreducible components of R and g∗E are contracted to points
by g. Thus, (X,B) is log-canonical in this case. If γi > −1 for any i,
i.e., G+Gred is effective with Supp(G+Gred) = Gred, then Δ is effective
and

F = Supp(g∗E +R) ⊃ Supp(g∗Δ+R) = Supp(ν∗Gred +Rν) ⊃ F.

Hence, in this case, SuppΔ = E, and (X,B) is log-terminal. Thus, we
are done. Q.E.D.

Corollary 3.20. Let τ : V → X be a proper surjective morphism
of normal surfaces. Let D and Δ be effective Q-divisors on V without
common irreducible components and let B be an effective Q-divisor on
X such that the ramification formula for τ is equivalent to:

KV +D = τ∗(KX +B) + Δ.

If (V,D) is log-canonical (resp. log-terminal), then so is (X,B). If Δ = 0
and if (X,B) is log-canonical (resp. log-terminal), then so is (V,D).

Proof. This is derived from Lemma 3.19 applied to Y → X for a
proper birational morphism Y → V from a certain non-singular surface
Y . Q.E.D.

Remark. Corollary 3.20 is proved essentially in [30, Prop. 5.20(4)]
in the case where f is a finite morphism, which uses the logarithmic
ramification formula only for birational morphisms. The proof of [30,
Prop. 5.20(4)] is sketchy and there are hidden some arguments like taking
Galois closure and equivariant partial resolution, or flattening.

Corollary 3.21. Let X be a normal surface with an effective Q-
divisor B. Let g : X → X be a proper birational morphism to another
normal surface X and set B := g∗(B).

(1) If (X,B) is log-canonical and −(KX+B) is g-nef, then (X,B)
is log-canonical.

(2) For a subset Z of X, if (X,B) is log-canonical along Z, the
g-exceptional locus is contained in Z, and if −(KX +B) is nef
on Z, then (X,B) is log-canonical along g(Z).
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Proof. It is enough to prove (1), since (2) is a consequence of (1)
applied to the proper birational morphism g−1(U) → U for an open
neighborhood U of g(Z). Let E be a g-exceptional Q-divisor determined
by

KX +B = g∗(KX +B) + E.

Then, −E is g-nef, and it implies that E is effective by Lemma 2.2. Let
Δ be the maximal effective Q-divisor such that B ≥ Δ and E ≥ Δ, and
set B′ := B −Δ and E′ := E −Δ. Then,

KX +B′ = g∗(KX +B) + E′.

Since (X,B) is log-canonical, (X ′, B′) is also log-canonical, and hence,
(X,B) is log-canonical by Corollary 3.20. Q.E.D.

3.4. Singularities on boundary curves for log-canonical
surfaces

The analytic germs of log-canonical pairs (X,B) of a normal sur-
face X and a reduced divisor B have been classified by Kawamata in
[23, Theorem 9.6] by a geometric construction. Alexeev gives the same
classification in [1] by a numerical calculation. Note that the case where
B = 0 has been done by Sakai in [50, Appendix] by another numerical
calculation. The numerical classification is also treated implicitly in [21,
§2], [56, §3], and [55, §2]. As the classification in case B �= 0, we have:

Theorem 3.22. Let X be a normal surface, B a reduced divisor on
X, and P a closed point of B. Then, the pair (X,B) is log-canonical at
P if and only if there is an étale neighborhood (U , Q) of (X,P ) satisfying
one of the following conditions:

(i) B|U = B1+B2 for prime divisors B1, B2 with {Q} = B1∩B2,
and (U , B|U ) is toroidal ;

(ii) B|U is non-singular, and there is another prime divisor B′ of
U such that B|U ∩B′ = {Q} and (U , B|U +B′) is toroidal ;

(iii) B|U is non-singular, and there exist a finite surjective mor-
phism τ : U ′ → U of degree two and prime divisors B′

1, B
′
2 on

U ′ such that
• τ is étale outside Q,
• τ∗(B|U ) = B′

1+B′
2, B

′
1∩B′

2 = τ−1(Q) = {Q′} for a point
Q′, and

• (U ′, B′
1 +B′

2) is toroidal.

As a consequence, when P ∈ SingX, the dual graph of the exceptional
divisor on the minimal resolution of X around P is embedded in the
graphs in Figure 2 for each case. In the graphs, �stands for the excep-
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Case (i): � � � �

Case (ii): � � �

Case (iii): � � � � −2

� −2

Fig. 2. Dual graphs in Theorem 3.22

tional components, and �stands for the proper transforms of irreducible
components of B; The number −2 indicates that the corresponding curve
is a (−2)-curve.

Definition 3.23. In the situation of Theorem 3.22, we say that the
point P is of type T (resp. P, resp. D) for (X,B) if the condition (i)
(resp. (ii), resp. (iii)) is satisfied.

As a consequence of Theorem 3.22, we have:

Corollary. Let X be a normal surface, B a reduced divisor, and
P a point of B. Then, the following conditions are equivalent to each
other :

(i) (X,B) is toroidal at P , and P ∈ SingB;
(ii) (X,B) is log-canonical at P , and P is of type T for (X,B);
(iii) (X,B) is log-canonical at P , and P ∈ SingB.

Remark. For a point P ∈ B, it is of type P for (X,B) if and only if
(X,B) is purely log terminal (plt) at P in the sense of [29], [30].

By using Theorem 3.22 and Example 3.2, it is an exercise to prove:

Corollary 3.24. Let X, B, and P be as in Theorem 3.22. Let r be
the smallest positive integer such that r(KX +B) is Cartier at P .

(1) If P is of type P and P ∈ SingX, then (X,P ) is a cyclic
quotient singularity of order r > 1.
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(2) If P is of type D, then r = 2, and (X,P ) is either a cyclic
quotient singularity with the dual graph of type A3 or a quotient
singularity by a binary dihedral group.

(3) Assume that P ∈ B ∩ SingX. Then, r = 1 if and only if
P ∈ SingB, and it is also equivalent to that P is of type T .

As a consequence of (1)–(3) above, we have:

Corollary 3.25. Assume that (X,B) is log canonical along an irre-
ducible component C of B. Then, the following conditions are mutually
equivalent :

• KX +B is Cartier along C;
• C ∩ SingX ⊂ SingB;
• (X,B) is toroidal along C;
• there is no singular points of X on C which are of type P or

D for (X,B).

Lemma 3.26. Let X be a normal surface with a unique singular
point P and B a reduced divisor containing P . Assume that (X,B) is
log-canonical at P . For the minimal resolution μ : M → X of singulari-
ties, let Δ be the μ-exceptional Q-divisor defined by

KM +B′ = μ∗(KX +B)−Δ,

where B′ is the proper transform of B in M . Then, Δ is effective, and
moreover :

• If P is of type P for (X,B), then ΔB′ = 1 − 1/r for the
smallest positive integer r such that r(KX + B) is Cartier at
P (cf. Corollary 3.24(1)).

• If P is of type D for (X,B), then ΔB′ = 1.

Proof. The μ-exceptional locus is a simple normal crossing divisor∑N
i=1 Γi consisting of non-singular rational curves Γi, and the dual graph

is the Dynkin diagram Ak or Dl+2 for some k ≥ 1 or l ≥ 1 (cf. Figure 2 of
Theorem 3.22). Moreover, B′ intersects a unique irreducible component,
say Γ1, and B′Γ1 = 1. Let Δ =

∑
i δiΓi be the prime decomposition. It

is enough to prove that

δ1 =

{
1− 1/r, if P is of type P;

1, if P is of type D.



A variant of Shokurov’s criterion 329

Note that δi ≥ 0 for any i, since −Δ is μ-nef. By adjunction and by the
definition of Δ, we have equalities

(KM +B′ +
∑N

j=1
Γj)Γi = −2 +B′Γi + �{j | Γi ∩ Γj �= ∅}(III-3)

= μ∗(KX +B)Γi +
∑N

j=1
(1− δj)ΓjΓi =

∑N

j=1
(1− δj)ΓjΓi

for any 1 ≤ i ≤ N .
Assume that P is of type P. Then, N = k, and by renumbering Γi’s,

we may assume that ΓiΓj = 0 if |i− j| > 1, and ΓiΓi+1 = 1 for any 1 ≤
i ≤ k−1. We set bi = −Γ2

i . Then, (X,P ) is a cyclic quotient singularity
of type (r, q) for integers 0 < q < r with gcd(r, q) = 1 determined by
r/q = [bk, bk−1, . . . , b1] (cf. Example 3.2). Putting εi = 1−δi, by (III-3),
we have equalities

(III-4) ε1b1 = ε2, εibi = εi−1 + εi+1, εkbk = εk−1 + 1,

where 2 ≤ i ≤ k − 1. Let mi for 0 ≤ i ≤ k + 1 be integers defined
inductively by

m0 = 0, m1 = 1, mibi = mi−1 +mi+1

for 1 ≤ i ≤ k. Then, gcd(mi,mi−1) = 1 for any 1 ≤ i ≤ l + 1, and

mk+1

mk
= bk −

mk

mk−1
= bk − 1

bk−1 −
mk−1

mk−2

= · · ·

= [bk, bk−1, . . . , b1] = r/q.

In particular, mk+1 = r and mk = q. Moreover, miε1 = εi for any
1 ≤ i ≤ k, and mk+1ε1 = 1 by (III-4). Therefore, ε1 = 1/r and
δ1 = 1− ε1 = 1− 1/r.

Assume next that P is of type D. Then, N = l + 2. Renumbering
Γi’s, we may assume that Γl+1 and Γl+2 are the end components of self-
intersection number −2, and Γl is the component intersecting Γl+1 and
Γl+2. Then, by (III-3), we have:

(KM +B′ +
∑l+2

j=1
Γj)Γi =

⎧⎪⎨⎪⎩
0, if i < l;

1, if i = l;

−1, if i > l.

On the other hand, we have

(1/2)(Γl+1 + Γl+2)Γi =

⎧⎪⎨⎪⎩
0, if i < l;

1, if i = l;

−1, if i > l.
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Thus,
∑

(1− δi)Γi = (1/2)(Γl+1 + Γl+2), and we have δ1 = 1. Q.E.D.

Definition 3.27. Let (X,B) be a log-canonical pair of a normal
surface X and a reduced divisor B. We define D(X,B) to be the set of
points of B which are of type D for (X,B). We also define P(X,B) to
be the set of points of B which are singular points of X and are of type
P for (X,B). Moreover, for an integer r > 1, we set Pr(X,B) to be the
subset of P(X,B) consisting of points P such that r equals the order of
the cyclic quotient singularities (X,P ) (cf. Corollary 3.24(1)).

Remark. For (X,B) above, one has

P(X,B) =
⊔

r>1
Pr(X,B),

(B ∩ SingX) \ SingB = P(X,B) � D(X,B).

3.5. On compact boundary curves of log-canonical pairs

For a normal surface X and a reduced divisor D, we shall classify
the singularities on a compact irreducible component C of D such that
(KX +D)C ≤ 0 and (X,D) is log-canonical along C.

Lemma 3.28. Let X be a normal surface and D a reduced divisor
such that (X,D) is log-canonical and X\D is non-singular. Let μ : M →
X be the minimal resolution of singularities and set D�

M to be the union
of the proper transform D′ of D on M and the μ-exceptional divisors
lying over SingD. Then,

(III-5) KM +D�
M = μ∗(KX +D)−Δ

for a μ-exceptional effective Q-divisor Δ lying over P(X,D)∪D(X,D).
Moreover, the following equalities hold for any compact irreducible com-
ponent C of D and its proper transform C ′ in M :

(D�
M − C ′)C ′ = �C ∩ (D − C) + 2nC ,(III-6)

ΔC ′ = νC(D) +
∑

r>1

r − 1

r
νC(P, r).(III-7)

Here, nC is the number of nodes of C \ (D − C) contained in SingX,

νC(D) := �C ∩ D(X,D), and νC(P, r) := �C ∩ Pr(X,D).

Proof. We define Δ by the equality (III-5). First, we shall prove
that Δ is effective with μ(SuppΔ) ⊂ P(X,D) ∪ D(X,D) and prove
(III-7). Let P be a singular point of X. Then, P ∈ D. If P ∈ SingD,
then (X,D) is toroidal at P by Theorem 3.22, and μ−1(P )∩SuppΔ = 0
by Corollary 3.15. If P �∈ SingD, then P is of type P or D for (X,D).
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In this case, by Lemma 3.26, Δ is effective on a neighborhood of μ−1(P ),
and ΔC ′ = 1 − 1/r (resp. ΔC ′ = 1) if P is of type P (resp. D), where
r equals the order of the cyclic quotient singularity (X,P ) in case P ∈
P(X,D). Therefore, Δ is effective, μ(SuppΔ) ⊂ P(X,D) ∪ D(X,D),
and the equality (III-7) holds.

Next, we shall prove (III-6). Let Q be an arbitrary point in C ∩
SingD. Then, (X,D) is toroidal at Q, and it is well known (cf. Corol-
lary 3.15 above) that μ−1(Q) for the minimal resolution μ is a union
of non-singular rational curves whose dual graph is the Dynkin diagram
Ak for some k (or a linear chain of rational curves in the sense of Def-
inition 4.1 below) and that μ−1(Q) intersects C ′ transversely at end
components. Thus, C ′ ∩μ−1(Q) consists of one point (resp. two points)
if Q ∈ C ∩ (D−C) (resp. Q is a node of C \ (D−C)). This observation
on μ−1(Q) implies the equality (III-6). Q.E.D.

Proposition 3.29. Let X be a normal surface and let D be a re-
duced divisor on X. Let C be a compact irreducible component of D
such that (X,D) is log-canonical along C and (KX +D)C ≤ 0. Then,
one of the following eight cases occurs:

(A) C is an elliptic curve and C∩(D−C) = C∩SingX = ∅; In this
case, KX +D is Cartier along C and OX(KX +D)|C � OC .

(B) C is a nodal rational curve with one node, C ∩ (D − C) = ∅,
and C∩SingX ⊂ SingC; In this case, KX+D is Cartier along
C and OX(KX +D)|C � OC .

(C) C � P1, �C∩(D−C) = 2, and C∩SingX ⊂ C∩(D−C); In this
case, KX +D is Cartier along C and OX(KX +D)|C � OC .

(D) C � P1 and C∩(D−C) = ∅; In this case, −2 ≤ (KX +D)C ≤
0.

(E) C � P1, �C ∩ (D−C) = 1, and C ∩ SingX ⊂ C ∩ (D−C); In
this case, KX +D is Cartier along C and (KX +D)C = −1.

(F) C � P1, �C ∩ (D − C) = 1, �C ∩ P(X,D) = 1, and C ∩
D(X,D) = ∅; In this case, r(KX +D) is Cartier along C for
the order r of the cyclic quotient singular point in C∩P(X,D),
and (KX +D)C = −1/r.

(G) C � P1, �C ∩ (D − C) = 1, �C ∩ P(X,D) = 2, and C ∩
D(X,D) = ∅; In this case, the points in C ∩ P(X,D) are A1-
singularities, 2(KX + D) is Cartier along C, KX + D is not
Cartier at C ∩ P(X,D), and (KX +D)C = 0.

(H) C � P1, �C ∩ (D − C) = 1, C ∩ P(X,D) = ∅, and �C ∩
D(X,D) = 1; In this case, 2(KX + D) is Cartier along C,
KX +D is not Cartier at C ∩D(X,D), and (KX +D)C = 0.
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Proof. We may assume that X \D is non-singular. Let μ : M → X,
D�

M , and Δ be as in Lemma 3.28. Then, we have

0 ≥ (KX +D)C = (KM +D�
M )C ′ +ΔC ′(III-8)

= 2pa(C
′)− 2 + (D�

M − C ′)C ′ +ΔC ′ ≥ 2pa(C
′)− 2,

from (III-5) in Lemma 3.28, since Δ is effective. In particular, pa(C
′) ≤

1. Assume that pa(C
′) = 1. Then, C ∩ (D − C) = C ∩ SingX = ∅

by (III-6) in Lemma 3.28. Consequently, C � C ′ is an elliptic curve or
a nodal rational curve, and we have OX(KX + D)|C � ωC � OC by
adjunction. Thus, we have the case (A) or (B).

Therefore, we may assume that pa(C
′) = 0, i.e., C ′ � P1. Then,

by (III-8), we have (D�
M − C ′)C ′ + ΔC ′ ≤ 2. Assume that (D�

M −
C ′)C ′ = 2. Then, (KX + D)C = ΔC ′ = 0 by (III-8). In particular,
KX + D is Cartier along C, and C ∩ SingX ⊂ SingD by (III-7) in
Lemma 3.28 and by Corollary 3.25. Here, if C is non-singular, then
C � P1, and �C∩(D−C) = (D�

M −C ′)C ′ = 2 by (III-6): Thus, the case
(C) occurs. Note that in this case, we have OX(KX + D)|C � OC by
(KX +D)C = 0. If C is singular, then C is a nodal rational curve with
one node and C∩(D−C) = ∅ by (III-6); moreover, C∩SingX ⊂ SingC
by (III-7), since ΔC ′ = 0: Thus, the case (B) occurs, where we have
OX(KX +D)|C � ωC � OC by Remark 3.16.

For the rest, we may assume that (D�
M − C ′)C ′ ≤ 1 and C ′ � P1.

Then, �C∩ (D−C) ≤ 1 and C � C ′ � P1 by (III-6). If C∩ (D−C) = ∅,
then the case (D) occurs, and we have −2 ≤ (KX +D)C ≤ 0 by (III-8).
Thus, we may assume that �C ∩ (D − C) = 1. Then, (D�

M − C ′)C ′ = 1
by (III-6), and

(III-9) 0 ≥ (KX +D)C = ΔC ′ − 1 ≥ −1

by (III-8). If ΔC ′ = 0, then C ∩ SingX ⊂ C ∩ (D − C) by (III-7)
and (KX + D)C = −1: Thus, we have the case (E). The remaining
cases are divided into the cases (F)–(H) by (III-7) and (III-9). In fact,
if C ∩ D(X,D) �= ∅ (resp. �C ∩ P(X,D) = 1, resp. �C ∩ P(X,D) ≥ 2),
we have the case (H) (resp. (F), resp. (G)), by (III-7). Therefore, one of
the cases (A)–(H) occurs, and we are done. Q.E.D.

§4. Key concepts

In this section, we prepare some concepts playing important roles
for proving Theorems 1.3, 1.5, 1.6, 1.7, etc. The notions of linear and
cyclic chains of rational curves are introduced in Section 4.1, where, as
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applications, we can prove some results on log-canonical surfaces (X,D)
with reduced divisor D such that −(KX+D) is nef. There is also proved
a result on c(X,D) for a linear (or cyclic) chain D of rational curves.
The structure of double-covers étale in codimension one is explained in
Section 4.2, and as an application, we obtain a result on the structure of
a log-canonical surface (X,D) such that D is a linear chain of rational
curves and that 2(KX +D) ∼ 0. The notion of toroidal blowing up is
introduced in Section 4.3, and it is proved that a toroidal blowing up
is étale locally a toric birational morphism. We also prove a result on
the existence of a toroidal blowing up and a fibration to P1 for a log-
canonical surface (X,D) with c(X,D) < 2 and H1(X,OX) = 0. The
notion of tangential blowing up is introduced in Section 4.4 and a few
properties are mentioned.

4.1. Linear and cyclic chains of rational curves

Definition 4.1. Let D be a compact non-zero connected reduced

divisor on a normal surface X. If D =
∑k

i=1 Ci for irreducible compo-
nents C1, . . . , Ck satisfying the following conditions, then D is called a
linear chain of rational curves:

(i) Each irreducible component Ci is a non-singular rational curve.
(ii) If k ≥ 2, then Ci ∩ Cj = ∅ for |i − j| > 1 and �Ci ∩ Ci+1 = 1

for 1 ≤ i ≤ k − 1.

In other words, D is a union of non-singular rational curves whose dual
graph is the Dynkin diagram Ak for some k ≥ 1. The components C1

and Ck above are called the end components of D. The union of non-end
component is denoted by D�, i.e., D� =

∑
1<i<k Ci.

Remark 4.2. The linear chain D of rational curves above has the
following properties when (X,D) is log-canonical along D:

• D is Gorenstein and pa(D) = 0;

• Pic(D) � ⊕k
i=1 Pic(Ci) � Z⊕k;

• If D is reducible, i.e., if k > 1, then ωD|C � OP1(−1) for any
end component C, and ωD|D� � OD� , where ωD stands for the
dualizing sheaf.

In fact, by Theorem 3.22(i), (X,D) is toroidal at any point of D, and
hence, D is locally isomorphic to a normal crossing divisor on a non-
singular surface (cf. Remark 3.3). Therefore, we have the properties
above by the configuration of the irreducible components Ci of D, and
by [4, Th. (1.7)].

Definition 4.3. A compact non-zero connected reduced divisor D
on a normal surface X is called a cyclic chain of rational curves if it
satisfies the following conditions:
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(i) Every irreducible component of D is a rational curve.
(ii) If D is irreducible, then D is a nodal rational curve with

pa(D) = 1.
(iii) If D is reducible, then any irreducible component C of D is

non-singular and �(D − C) ∩ C = 2.

Remark 4.4. Let D be a cyclic chain of rational curves and let l be
the number of irreducible components of D. By Theorem 3.22(i) and by
the configuration of the irreducible components, we have the following
properties when (X,D) is log-canonical along D:

• The divisor D is Gorenstein, pa(D) = 1, and ωD � OD.
• If l = 2, then D = C1+C2 for two non-singular rational curves

C1 and C2 intersecting with each other at two distinct points.
• If l ≥ 3, then the dual graph of D forms a cycle, i.e., we can

write
D =

∑
i∈Z/lZ

Ci

for non-singular rational curves Ci such that Ci ∩ Cj = ∅ for
j �∈ {i− 1, i, i+ 1} and �Ci ∩ Cj = 1 for j ∈ {i− 1, i+ 1}.

• The number l coincides with the topological Euler number
e(D).

Lemma 4.5. Let X be a normal surface and let D be a compact
non-zero connected reduced divisor on X such that

• (X,D) is log-canonical along D, and
• −(KX +D) is nef on D (cf. Definition 2.14(ii)), i.e., (KX +

D)C ≤ 0 for any irreducible component C of D.

Then, D is an elliptic curve, a linear chain of rational curves, or a cyclic
chain of rational curves, and the following hold :

(1) If D is an elliptic curve, then D ∩ SingX = ∅ and OX(KX +
D)|D � OD.

(2) If D is a cyclic chain of rational curves, then KX+D is Cartier
along D and OX(KX +D)|D � OD.

(3) Assume that D is a reducible linear chain of rational curves.
Then, KX +D is Cartier along D� ∪ SingD, and

OX(KX +D)|D� � OD� ,

where D� stands for the union of non-end components of D.

Proof. We shall consider the eight cases (A)–(H) of Proposition 3.29
for each irreducible component of D. Assume that an irreducible com-
ponent C of D is not rational. Then, C is in the case (A). Here, D = C,
since D is connected. Hence, D is an elliptic curve, D∩SingX = ∅, and
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OX(KX +D)|D � OD. Assume next that an irreducible component C
of D is singular. Then, C is in the case (B). Here, D = C, since D is
connected. Hence, D is a nodal rational curve with one node, i.e., an
irreducible cyclic chain of rational curve, KX + D is Cartier along D,
and OX(KX +D)|D � OD.

Therefore, by Proposition 3.29, we may assume that every irre-
ducible component C is isomorphic to P1, and �C ∩ (D − C) ≤ 2 for
any C. Then, D is a linear chain or a cyclic chain of rational curves.

Assume that D is a reducible cyclic chain of rational curves. Then,
every irreducible component C of D belongs to the case (C). In particu-
lar, KX +D is Cartier along D. Moreover, OX(KX +D)|D � ωD � OD

by Remarks 3.16 and 4.4.
Assume finally that D is a reducible linear chain of rational curves.

We know that KX +D is Cartier along SingD (cf. Corollary 3.24(3)).
Hence, we may assume that D� �= 0, i.e., n(D) ≥ 3. Then, every
irreducible component C ofD� belongs to the case (C), and consequently,
KX +D is Cartier along D�, and KX +D is numerically trivial on D�

(cf. Definition 2.14(ii)). Since D� is also a linear chain of rational curves,
Pic(D�) is the direct sum of Pic(C) for all C ⊂ D� by Remark 4.2, and
it implies that OX(KX +D)|D� � OD� . Thus, we are done. Q.E.D.

Corollary 4.6. Let D be a compact non-zero connected reduced
divisor on a normal surface X such that (X,D) is log-canonical along
D and KX +D is Cartier along D. Then, the following three conditions
are mutually equivalent :

(i) OX(KX +D)|D � OD;
(ii) (KX +D)C = 0 for any irreducible component C of D;
(iii) D is either an elliptic curve or a cyclic chain of rational curves.

Proof. If (ii) holds, then every irreducible component C of D sat-
isfies one of the conditions (A), (B), (C) of Proposition 3.29, since
KX +D is Cartier along D. Thus, we have (ii) ⇒ (iii) as in the proof
of Lemma 4.5. The implication (i) ⇒ (ii) is trivial, and the implication
(iii) ⇒ (i) follows from Remarks 3.16 and 4.4. Q.E.D.

Lemma 4.7. Let X be a normal Moishezon surface with a reduced
divisor D such that

• (X,D) is log-canonical along D,
• −(KX +D) is nef on D,
• D is connected and big, and
• D is not an elliptic curve.

Then, D is a linear chain or a cyclic chain of rational curves, and X is a
projective rational surface with only rational singularities. In particular,
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ρ̂(X) = ρ(X). If D is a cyclic chain of rational curves, then there is an
effective divisor G such that G ∼ KX + D, D ∩ SuppG = ∅, and that
the intersection matrix of G is negative definite if G �= 0.

Proof. The divisor D is a linear chain or a cyclic chain of rational
curves by Lemma 4.5. We have H1(M,OM ) = 0 for a non-singular pro-
jective surface M birational to X by Lemma 2.32, since the big divisor
D consists of rational curves and X has only rational singularities on
D by Theorem 3.22. In particular, H1(X,OX) = H1(X,OX(KX)) = 0.
On the other hand, KX is not pseudo-effective. In fact, for the Zariski-
decomposition D = P + N of D (cf. [57, Th. 7.7], [11, Th. (1.12)], [47,
Cor. (7.5)]), the positive part P is nef and big, andKXP < (KX+D)P ≤
0 by SuppP ⊂ D. Thus, X is a rational surface with only rational sin-
gularities by Lemma 2.32. Then, ρ̂(X) = ρ(X) by Remark 2.8 and
Lemma 2.31(2).

Assume that D is a cyclic chain of rational curves. Then, we have
an exact sequence

0 → OX(KX) → OX(KX +D) → OX(KX +D)|D � OD → 0

by Lemma 4.5 (cf. Remark 3.16). Since H1(X,OX(KX)) = 0, we can
find an effective divisor G such that G ∼ KX +D and D ∩ SuppG = ∅.
Here, G is negative definite by the Hodge index theorem, since GP = 0.
Thus, we are done. Q.E.D.

Remark. In Lemma 4.7, if G = 0, then (X,D) is log-canonical, since
X \D has only rational Gorenstein singularities by KX +D ∼ 0.

Proposition 4.8. Let X be a normal Moishezon surface and D a
reduced divisor on X.

(1) If c(X,D) ≤ 1 and if D is connected, then D is big.
(2) If D is a linear chain of rational curves, then c(X,D) ≥ 1.
(3) If D is a cyclic chain of rational curves, then c(X,D) ≥ 0.
(4) If D is a cyclic chain of rational curves with c(X,D) = 0 and

if −(KX +D) is nef, then δ(X,D) = 0.

Proof. We may assume that c(X,D) ≤ 1 for the proof. By con-
tracting negative components of D, we have a birational morphism
g : X → X to another Moishezon surface X such that

• the g-exceptional locus is contained in D, and
• every irreducible component of D := g∗(D) is nef.

Then, δ(X,D) = δ(X,D) and c(X,D) = c(X,D) by Lemma 2.27. In
particular, D is a reducible non-zero divisor, since we have n(D) ≥ 2 by

n(D) = r(D) + 2− c(X,D) ≥ r(D) + 1.
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If D is connected, then so is D, and now D
2
> 0 since it is reducible.

Therefore, D = g−1(D) is also big. This proves (1). If D is a linear
(resp. cyclic) chain of rational curves, then so is D. If −(KX + D) is
nef, then −(KX + D) = g∗(−(KX + D)) is also nef. Hence, in order

to prove the remaining assertions, by replacing (X,D) with (X,D), we
may assume that every irreducible component of D is nef.

Assume that D is a linear chain of rational curves. Let E and E′ be
the end components of D. If n(D) ≥ 4, then E ∩E′ = ∅ and there is an
irreducible component C ofD such that C∩E �= ∅ and C∩E′ = ∅. Then,
C +E is nef and big, and (C +D)E′ = 0. Hence, E′2 < 0 by the Hodge
index theorem, and this contradicts that E′ is nef. Therefore, n(D) ≤ 3.
As a consequence, we have c(X,D) ≥ r(D) − 1. If c(X,D) ≤ 0, then
r(D) = 1 and n(D) = 3. However, if n(D) = 3, then EC > 0, E′C > 0,
and EE′ = 0 for the other irreducible component C: This contradicts:
r(D) = 1. Therefore, c(X,D) ≥ 1, and we have proved (2).

Assume next that D is a cyclic chain of rational curves. If n(D) ≥ 5,
then we can find three irreducible components C0, C2, C3 of D such that
C0∩(C2∪C3) = ∅ and C2∩C3 �= ∅. Then, C2+C3 is nef and big, and we
have C2

0 < 0 by the Hodge index theorem applied to C0(C2 + C3) = 0.
This contradicts that C0 is nef. Thus, n(D) ≤ 4. As a consequence, we
have c(X,D) ≥ r(D) − 2. In particular, c(X,D) ≥ 0 when r(D) ≥ 2.
If r(D) = 1, then n(D) ≤ 3, since any two irreducible components of D
intersect with each other. Thus, c(X,D) = 3 − n(D) ≥ 0 in this case.
Therefore, c(X,D) ≥ 0 holds in any case, and we have proved (3).

For the proof of (4), we assume that c(X,D) = 0 and that −(KX +
D) is nef. Note that KX is not pseudo-effective by KXD < (KX +
D)D ≤ 0, since the nef divisor D is big by (1). Therefore, X is projective
by Lemma 2.31(1). Since 4 ≥ n(D) = r(D)+2 ≥ 3, one of the following
two cases occurs:

(I) r(D) = 1 and n(D) = 3.
(II) r(D) = 2 and n(D) = 4.

There is an extremal ray R on NE(X) such that DR > 0 and
KXR < 0 by Corollary 2.20(2), since (−D)−KX is nef and−D is not nef.
We consider the contraction morphism contR associated with R (cf. The-
orem 2.21). If contR is the trivial morphism to a point, then ρ̂(X) = 1,
and it implies that ρ̂(X) = r(D) = 1 and δ(X,D) = c(X,D) = 0.

Assume that contR is a fibration π : X → T to a non-singular pro-
jective curve T . Then, (KX +D)F ≤ 0 and DF > 0 for a general fiber
F of π. This implies that ρ̂(X) = 2, F � P1, and 1 ≤ DF ≤ 2. In the
case (I), since r(D) = 1, every irreducible component of D dominates



338 N. Nakayama

T , and thus n(D) ≤ DF = 2. This is a contradiction. In the case (II),
r(D) = ρ̂(X) = 2, and hence δ(X,D) = c(X,D) = 0.

Finally, we shall derive a contradiction assuming that contR is a bi-
rational morphism f : X → X ′. This f is just the contraction morphism
of a negative curve Γ on X such that R = R≥0 cl(Γ). Here, DΓ > 0 and
(KX +D)Γ < 0. Since Γ �⊂ D, we have �D ∩Γ = 1 by Lemma 2.18. Let
C0 be an irreducible component of D such that D ∩ Γ = C0 ∩ Γ. Since
n(D) ≥ 3, we have an irreducible component C1 such that C1 ∩ Γ = ∅;
this implies that r(D) ≥ 3, and hence, the case (I) does not occur. In
the case (II), since n(D) = 4, there is an irreducible component C2 of
D such that C0 ∩C2 = ∅. Then, C2

∼∼∼ rC0 for some r > 0 by the Hodge
index theorem, since C0 and C2 are nef with C0C2 = 0. Then, C2Γ > 0,
but this contradicts D ∩ Γ = C0 ∩ Γ. Thus, we are done. Q.E.D.

4.2. Double-covers étale in codimension one

We recall some basic properties on double-covers étale in codimen-
sion one, and apply them to certain log-canonical pairs (X,D) of dimen-
sion two such that 2(KX +D) ∼ 0.

Definition 4.9. Let X be a scheme with a quasi-coherent sheaf
L. For a homomorphism σ : L⊗2 → OX which factors through the
symmetric tensor product S2(L), let R = R(L, σ) be the OX -algebra
with OX ⊕ L as an underlying OX -module and with the multiplication
map R⊗OX R → R given by

(a, x)(b, y) = (ab+ σ(x⊗ y), ay + bx)

for local sections a and b of OX and local sections x and y of L. We
define V = V (L, σ) to be the scheme SpecX R(L, σ) affine over X,
and set τ : V → X to be the structure morphism. We denote by ι the
automorphism of V over X defined by (a, x) 
→ (a,−x).

It is an exercise to prove the following:

Lemma 4.10. In the situation above, let η : τ∗L → OV be the
homomorphism corresponding to the inclusion L ⊂ OX ⊕ L � τ∗OV

by the adjoint property of τ∗ and τ∗. Then, η⊗2 = τ∗(σ). Moreover, for
a given morphism f : Y → X of schemes, there is a functorial bijection

HomX(Y, V ) → {ζ ∈ HomOY (f
∗L,OY ) | f∗(σ) = ζ⊗2}

which associates the homomorphism g∗(η) : f∗L � g∗(τ∗L) → OY with
a morphism g : Y → V over X.

In the functorial bijection above, the automorphism ι : V → V cor-
responds to −η. Thus, we have:
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Corollary 4.11. Assume that 2 is a regular element of H0(X,OX).
Then, ι is an involution, i.e., an automorphism of order two. Let L′

be another quasi-coherent sheaf and σ′ : L′⊗2 → OX a homomorphism
factoring through S2(L′). Then, giving a morphism V (L, σ) → V (L′, σ′)
over X which is equivariant under the involutions ι, is equivalent to
giving a homomorphism u : L′ → L such that σ′ = σ◦u⊗2. In particular,
V (L, σ) � V (L, σ ◦ ε⊗2) for any automorphism ε : L → L.

Corollary 4.12. In the situation of Lemma 4.10, for a given quasi-
coherent sheaf M and a given homomorphism θ : τ∗M → OV , there exist
homomorphisms ϕ : M → OX and ψ : M → L such that

θ = τ∗(ϕ) + η ◦ τ∗(ψ).

Proof. Let θ̃ : M → τ∗OV � OX ⊕L be the homomorphism corre-
sponding to θ by the adjoint property of τ∗ and τ∗. Let ϕ : M → OX

(resp. ψ : M → L) be the composition of θ̃ with the first (resp. second)
projection. Then, ϕ and ψ satisfy the equality above. In fact, by the
adjoint property of τ∗ and τ∗, the homomorphism τ∗(ϕ) (resp. η◦τ∗(ψ))
corresponds to the composition of ϕ (resp. ψ) with the natural inclusion
OX ⊂ OX ⊕ L (resp. L ⊂ OX ⊕ L). Q.E.D.

Lemma 4.13. In the situation of Definition 4.9, assume that L is
an invertible sheaf and that any residual characteristic of X is not two.
Then, for a homomorphism σ : L⊗2 → OX , it is an isomorphism if and
only if V (L, σ) is étale over X.

Proof. Since OX ⊕L is locally free of rank two, τ : V → X is a flat
finite morphism of degree two. By base change, we may assume that
X = SpecA for a local ring A. Then, L � OX , and σ is considered
as an element of A. Thus, V � SpecA[x]/(x2 − σ). The A-algebra
A[x]/(x2 − σ) is étale over A if and only if σ is a unit element, since 2 is
invertible in A. Q.E.D.

In what follows in Section 4.2, we assume X to be a normal variety
over C, i.e., a normal integral separated scheme of finite type over C

(It is possible to treat the case of algebraic spaces, but it is enough to
consider only the case of schemes for our purpose).

Definition. By a double-cover of a normal variety X, we mean
a finite surjective morphism τ : V → X of degree two from a normal
variety V .

Remark. By the purity of branch locus, the double-cover τ is étale
in codimension one if and only if V is étale over the non-singular locus
Xreg of X.
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For a normal varietyX and for a coherent torsion-free sheaf L of rank
one, any homomorphism σ : L⊗2 → OX factors through S2(L), since the
image of σ is zero or torsion-free of rank one. Thus, we can consider
V (L, σ) of Definition 4.9 for such L and σ. Lemma 4.14 below gives a
criterion for V (L, σ) to be a double-cover of X étale in codimension one.

Lemma 4.14. Let X be a normal variety (which is a scheme) and
let (L, σ) be a pair of a reflexive sheaf L of rank one and a homomor-
phism σ : L⊗2 → OX . We set V = V (L, σ) and consider the following
two conditions for (L, σ):

(i) There is no homomorphism u : L → OX such that σ = u⊗2.
(ii) The homomorphism σ induces an isomorphism L[2] � OX from

the double-dual L[2] = (L⊗2)∨∨. In other words, σ is regarded
as a nowhere vanishing section of L[−2].

If (L, σ) satisfies (ii), then V is normal and V → X is a finite morphism
of degree two étale in codimension one. If (L, σ) satisfies (i) in addition,
then V is irreducible, and hence V is a double-cover étale in codimension
one. Conversely, for any double-cover W → X étale in codimension
one, there exists a pair (L, σ) above satisfying (i) and (ii) such that
W � V (L, σ) over X.

The proof of Lemma 4.14 is well known at least when L is invertible,
by Lemma 4.13 above, and the reduction to the case of invertible sheaf
is done by using a property that any reflexive sheaf satisfies Serre’s S2-
condition (cf. [15, Prop. 1.6]). We omit the proof.

Remark 4.15. In the situation of Lemma 4.14, assume that (L, σ)
satisfies (ii). Then, we have the following for V = V (L, σ) and for the
structure morphism τ : V → X.

(1) The homomorphism η of Lemma 4.10 induces an isomorphism
(τ∗L)∨∨ � OV . In fact, η is an isomorphism over an open
subset U of V on which τ∗L is invertible, by the equality η⊗2 =
τ∗(σ) in Lemma 4.10: Thus, we have an isomorphism

(τ∗L)∨∨ � j∗((τ∗L)|U )
j∗(η|U )−−−−−→ j∗OU � OV ,

for the open immersion j : U ⊂ V , since a reflexive sheaf satis-
fies Serre’s condition S2 and codim(V \ U, V ) ≥ 2.

(2) For any homomorphism σ′ : L⊗2 → OX satisfying (ii), there
exists a finite étale surjective morphism X∼ → X such that

V (L, σ)×X X∼ � V (L, σ′)×X X∼
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over X∼. In fact, σ′ = uσ for a unit element u of H0(X,OX),
and hence, X∼ = SpecX OX [x]/(x2 − u) satisfies the required
condition by Corollary 4.11. As a consequence, V (L, σ) and
V (L, σ′) have the same singularities.

(3) We have an isomorphism V � V (L, σ′) for any homomorphism
σ′ : L⊗2 → OX satisfying (ii). In fact, σ′ = cσ for a non-zero
constant c, and thus σ′ = ε2σ for a square-root ε of c (cf.
Corollary 4.11).

(4) The variety V is étale over a point P of X if and only if L is
invertible at P (cf. Lemma 4.13).

Lemma 4.16. Let X be a normal variety (which is a scheme) and
let τ : V = V (L, σ) → X be a double-cover étale in codimension one
associated with a reflexive sheaf L of rank one and a homomorphism
σ : L⊗2 → OX inducing an isomorphism (L⊗2)∨∨ � OX . Then, for any
reflexive sheaf M of rank one, the double-dual (τ∗M)∨∨ is an invertible
sheaf if and only if, for any point P , either M or HomOX (L,M) is
invertible at P .

Proof. It suffices to prove the ‘only if’ part. By replacingX with an
open subset, we may assume that there is a homomorphism θ : τ∗M →
OV which induces an isomorphism (τ∗M)∨∨ � OV . Let ϕ : M → OX

and ψ : M → L be the homomorphisms in Corollary 4.12 for θ. Note
that the homomorphism (ϕ,ψ) : M → OX⊕L = τ∗OV defined by ϕ and
ψ corresponds to θ by the adjoint property of τ∗ and τ∗. It is enough to
prove that, for any point P ∈ X, either ϕ or ψ is an isomorphism at P .

Since θ is an isomorphism, the homomorphism

ϕ⊗2 − σ ◦ ψ⊗2 : M⊗2 → OX

induces an isomorphism (M⊗2)∨∨ � OX . In fact, for the involution
ι of V , the tensor product θ ⊗ ι∗(θ) : τ∗M⊗2 → OV is identical to the
pullback of ϕ⊗2−σ◦ψ⊗2 by τ . Then, we can construct a homomorphism
k : OX⊕L → M such that k◦(ϕ,ψ) = idM. In particular, M is a direct
summand of OX ⊕L. The splitting k is constructed as follows: For the
homomorphism ψL : idL ⊗ψ : L⊗M → L⊗2, we define a homomorphism
κ : M⊕ (L ⊗M) → OX by

κ(x, y) = ϕ(x)− σ(ψL(y))

for local sections x and y of M and L ⊗ M, respectively. Then, the
composition

M⊗2 (ϕ,ψ)⊗idM−−−−−−−→ (OX ⊕ L)⊗M � M⊕ (L ⊗M)
κ−→ OX
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is nothing but the homomorphism ϕ⊗2 − σ ◦ ψ⊗2. Thus, we have the
splitting k from κ by taking tensor product with M−1 and by taking
double-dual.

Let us consider the fibers

ϕ(P ) : M⊗ C(P )
ϕ⊗C(P )−−−−−→ C(P ) and

ψ(P ) : M⊗ C(P )
ψ⊗C(P )−−−−−→ L⊗ C(P )

of ϕ and ψ, respectively, over a point P ∈ X, where C(P ) denotes the
residue field. If ϕ(P ) �= 0, then ϕ is an isomorphism at P . Hence, we
may assume that ϕ(P ) = 0. Then, M ⊗ C(P ) is a direct summand of
L ⊗ C(P ). In particular, k induces an isomorphism L → M at P , and
hence, ψ is an isomorphism at P . Thus, we are done. Q.E.D.

We apply the results above on double-covers étale in codimension
one to the study of two-dimensional log-canonical pairs. The following
is related to the notion of type D defined in Definition 3.23:

Lemma 4.17. Let X be a normal surface (which is a scheme), D
a reduced divisor, and P a point of D such that (X,D) is log-canonical
at P and KX +D is not Cartier at P . Let τ : V → X be a double-cover
étale in codimension one such that KV + DV is Cartier along τ−1(P )
for DV = τ−1(D). Then,

• P is a non-singular point of D, more precisely, P ∈ P2(X,D)∪
D(X,D) (cf. Definition 3.27),

• τ−1(P ) consists of one point Q, and
• (V,DV ) is log-canonical at Q.

Here, if P ∈ P2(X,D), then V and DV are non-singular at Q, and if
P ∈ D(X,D), then Q is a node of DV , i.e., Q is of type T for (V,DV ).
Moreover, for any isomorphism σ : OX(2(KX +D)) � OX , there is an
étale neighborhood U → X of (X,P ) such that

V ×X U � V (OX(KX +D), σ)×X U .

Proof. By Corollary 3.24(3), P is of type P or D for (X,D). In
particular, D is non-singular at P . Since τ is étale in codimension one,
we have KV + DV = τ∗(KX + D), and (V,DV ) is log-canonical along
τ−1(P ) by Corollary 3.20. SinceKX+D is not Cartier at P andKV +DV

is Cartier along τ−1(P ), the double-cover τ is not étale along τ−1(P ),
and hence, τ−1(P ) consists of one point, say Q.

By Lemma 4.14, we have a reflexive sheaf L of rank one on X and

an isomorphism σ0 : L[2] 
−→ OX such that V � V (L, σ0). Moreover, by
Lemma 4.16, we can find an isomorphism L|U � OX(KX +D)|U for an
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open neighborhood U of P . In particular, 2(KX +D) is Cartier at P .
Hence, the last assertion follows from Remark 4.15(2).

It remains to prove P ∈ P2(X,D)∪D(X,P ) and prove the assertion
onQ for each type of P . Since (V,DV ) is log-canonical atQ andKV +DV

is Cartier at Q, by Corollary 3.24, we have either

• V and DV are non-singular at Q, or
• Q is a node of DV .

In the first case, P is an A1-singular point, and P ∈ P2(X,D). In the
second case, P ∈ D(X,D) by Theorem 3.22. Q.E.D.

Remark. By Lemma 4.17, we can take V (OU (KU + B|U ), σ) → U
as the double-cover U ′ → U in Theorem 3.22(iii), for an isomorphism

σ : OU (2(KU +B|U )) 
−→ OU .

Proposition 4.18. Let X be a normal surface (which is a scheme)
and D a reduced divisor such that (X,D) is log-canonical along D and
that D is a reducible linear chain of rational curves; in particular, D is
compact and connected. Let τ : V = V (OX(KX + D), σ) → X be the

morphism associated with an isomorphism σ : OX(2(KX +D))

−→ OX .

Then,

(1) τ is a double-cover étale in codimension one,
(2) (V,DV ) is log-canonical along DV with KV +DV ∼ 0 for DV =

τ−1(D), and
(3) DV is a reducible cyclic chain of rational curves.

Let E1 and E2 be the end components of D and set

Σi := Ei ∩ (SingX \ SingD)

for i = 1, 2. Then, τ is étale along DV \ τ−1(Σ1 ∪ Σ2), and one of the
following cases occurs for each i = 1, 2:

(a) The set Σi consists of two A1-singular points of X belonging to
P2(X,D). The divisor τ−1(Ei) is irreducible and the induced
morphism τ−1(Ei) → Ei is a double-cover branched at Σi.

(b) The set Σi consists of one point of type D for (X,D). The
divisor τ−1(Ei) consists of two irreducible components E′

i and
E′′

i which are isomorphic to Ei by τ , and E′
i ∩ E′′

i is a point
identical to τ−1(Σi).

Proof. By assumption, KX + D is numerically trivial on D (cf.
Definition 2.14(ii)), and KX + D is Cartier along D \ (Σ1 ∪ Σ2) by
Lemma 4.5(3). By Proposition 3.29, the sets Σ1 and Σ2 are not empty,
and the singularity of X around Σi for each i is described as in either the
case (G) or (H) of Proposition 3.29. In particular, KX+D is not Cartier
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on Σ1 ∪ Σ2 (cf. Corollary 3.24(3)). Hence, τ is a double-cover étale in
codimension one by Lemma 4.14. Then, KV +DV = τ∗(KX +D), and
(V,DV ) is log-canonical by Corollary 3.20. Moreover, OV (KV +DV ) �
(τ∗OX(KX + D))∨∨ � OV by Remark 4.15(1). Thus, KV + DV ∼ 0.
Each connected component of DV is a cyclic chain of rational curves
or an elliptic curve by Corollary 4.6. Here, the connected components
dominateD, sinceD is connected. Hence,DV has at most two connected
components and these are reducible divisors. If DV is not connected,
then τ is étale along DV , and it implies that KX +D is Cartier along D.
This is a contradiction. Therefore, DV is connected and is a reducible
cyclic chain of rational curves.

We fix i = 1 or 2. Assume first that τ−1(Ei) is reducible. Then,
τ−1(Ei) = E′

i + E′′
i for two irreducible components of DV such that

E′
i � Ei and E′′

i � Ei via τ and that E′
i ∩ E′′

i consists of one point Qi.
Since τ is étale along τ−1(Ei)\{Qi}, we have Σi = {τ(Qi)} and E′

i∩E′′
i =

τ−1(Σi). Thus, (X,Ei,Σi) belongs to the case (H) of Proposition 3.29,
and the case (b) occurs.

Assume next that τ−1(Ei) is irreducible. Then, it is an irreducible
component of DV , and τ−1(Ei) → Ei is a double-cover whose branch
locus is just Σi. Thus, Σi consists of two points and these are belonging
to P2(X,D) by Lemma 4.17. In particular, (X,Ei,Σi) belongs to the
case (G) of Proposition 3.29, and the case (a) occurs. Thus, we are
done. Q.E.D.

4.3. Toroidal blowing up

We introduce the notion of toroidal blowing up and give character-
izations for a birational morphism to be a toroidal blowing up. We also
give a sufficient condition for the existence of a fibration from a toroidal
embedding.

Definition 4.19. Let X be a normal surface and D a reduced di-
visor. A proper birational morphism f : Y → X from another normal
surface Y is called a toroidal blowing up with respect to (X,D) if the
following conditions are satisfied:

• The f -exceptional locus Σ is contained in DY = f−1(D);
• (X,D) is toroidal along f(Σ), and (Y,DY ) is toroidal along Σ

(cf. Definition 3.12);
• KY +DY = f∗(KX +D).

Lemma 4.20. Let X be a normal surface and D a reduced divisor
such that (X,D) is toroidal along D.

(1) If f : Y → X be a toroidal blowing up with respect to (X,D),
then �(DY − E) ∩ E = 2 for any f -exceptional prime divisor
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E, where DY = f−1(D). Moreover, if X is compact, then

n(DY )− n(D) = r(DY )− r(D) = ρ̂(Y )− ρ̂(X).

(2) Let Γ be a compact irreducible component of D with Γ2 < 0,
(KX + D)Γ ≤ 0, and �(D − Γ) ∩ Γ ≥ 2. Let h : X → X be
the contraction morphism of Γ. Then, (X,D) is toroidal along
D = h∗(D), and h is a toroidal blowing up with respect to
(X,D).

Proof. (1): Since KX + D is Cartier along D (cf. Lemma 3.14,
Corollary 3.25), KY +DY is also Cartier along DY , and we have (KY +
DY )E = 0 for any f -exceptional prime divisor E. Then, (Y,DY ) and
E satisfy one of the four conditions corresponding to (A), (B), (C),
and (D) in Proposition 3.29 stated for (X,D) and C. Now, E is not
a connected component of DY . For, otherwise, the point f(E) is a
connected component ofD = f(DY ); this is a contradiction. Hence, only
the case (C) can occur, and thus, �(DY −E)∩E = 2. The latter equalities
of (1) follow from Lemmas 2.10 and 2.27, since the f -exceptional locus
is contained in DY .

(2): Applying Proposition 3.29 to (X,D) and Γ, we have (KX +
D)Γ = 0 and �(D − Γ) ∩ Γ = 2, since KX +D is Cartier along D with
(KX+D)Γ ≤ 0 and �(D−Γ)∩Γ ≥ 2. It implies that KX+D = h∗(KX+

D). Note that (X,D) is log-canonical along D by Corollary 3.21. Now,
h(Γ) is a singular point of D by �(D − Γ) ∩ Γ = 2. Thus, (X,D) is
toroidal at h(Γ) by Theorem 3.22. As a consequence, h is a toroidal
blowing up. Q.E.D.

A proper birational toric morphism of toric surfaces is of course a
toroidal blowing up. Conversely, a toroidal blowing up is regarded as
an étale localization of the toric morphism of toric surfaces. This is a
consequence of the following:

Proposition 4.21. Let X be a normal surface and D a reduced di-
visor such that (X,D) is toroidal along D. Let f : Y → X be a proper bi-
rational morphism from another normal surface Y such that the induced
morphism Y \ DY → X \ D is an isomorphism, where DY = f−1(D).
Then, the following conditions are equivalent to each other :

(i) The morphism f is a toroidal blowing up with respect to (X,D).
(ii) The pair (Y,DY ) is toroidal along DY , and (KY +DY )E = 0

and �(DY −E)∩E = 2 for any f -exceptional prime divisor E.
(iii) For the minimal resolutions μ : M → X and ν : N → Y of

singularities, the induced birational morphism g = μ−1 ◦ f ◦
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ν : N → M is a succession of blowings up at nodes of the in-
verse images of DM = μ−1(D).

(iv) For any point y ∈ DY , there exist
• an étale neighborhood X of f(y) in X,
• a proper birational toric morphism φ : W → V of two-

dimensional toric varieties,
• an étale morphism i : X → V such that D|X = i−1(B) for

the boundary divisor B of the toric variety V , and
• a Cartesian diagram

f−1(X )
f |f−1(X)−−−−−−→ X⏐⏐� ⏐⏐�i

W
φ−−−−→ V,

where f−1(X ) = Y ×X X .

Proof. The equivalence (i) ⇔ (ii) has been shown in Lemma 4.20,
and (iv) ⇒ (i) follows from that KV + B ∼ 0 for any toric pair (V,B)
(cf. Fact 3.6(3)). It is enough to prove (i) ⇒ (iii) and (iii) ⇒ (iv).

(i) ⇒ (iii): The minimal resolution μ (resp. ν) of singularities of X
(resp. Y ) is a toroidal blowing up by Corollary 3.15. Hence, g : N → M
is also a toroidal blowing up. On the other hand, g is a succession
blowings up at non-singular points. Then, the non-singular points are
nodes of the inverse image of DM by Lemma 4.20.

(iii) ⇒ (iv): For a point y of DY , we set x = f(y). If x �∈ SingD,
then x �∈ SingX, and f is an isomorphism over x by (iii). Thus, we may
assume that x ∈ SingD. By replacing X with an étale neighborhood
of x, we may assume that there is an étale morphism i : X → V to an
affine toric surface V such that D = i−1(B) for the boundary divisor B
of V and that i−1(i(x)) = {x}. In particular, i(x) ∈ SingB. Moreover,
we may assume that f : Y → X is an isomorphism over X \ {x}.

Let Ṽ → V be the minimal resolution of singularities. Then, Ṽ

is also a toric surface, and M � Ṽ ×V X for the minimal resolution
M of singularities of X. Let G (resp. E) be the exceptional locus for

Ṽ → V (resp. M → X) and let B′ (resp. D′) be the proper transform

of B (resp. D) in Ṽ (resp. M). Then, the induced morphism E → G is
an isomorphism, and in particular, D′ ∩ E → B′ ∩ G is bijective. For
the minimal resolution N → Y of singularities, the birational morphism
g : N → M induced by f is a succession of blowings up at nodes of the
inverse images of DM by (iii). Thus, there exists a proper birational

morphism h : W̃ → Ṽ of non-singular surfaces which is a succession of
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blowings up at nodes of the inverse images of B′ +G and which induces
g, i.e.,

N � M ×Ṽ W̃ .

Then, W̃ is a non-singular toric surface and h is a toric morphism. Since
the exceptional locus for N → Y is contained in g−1(E), it is the inverse

image of a divisor on W̃ contained in h−1(G). Hence, we have a proper

birational morphism W̃ → W to a normal surface W and a morphism
Y → W such that

N � Y ×W W̃ .

Then, W is also a toric surface by Lemma 3.9, and the induced birational
morphism W → V is a toric morphism, since it is equivariant for the
action of the open torus. By the isomorphisms

N � M ×Ṽ W̃ � X ×V W̃ � (X ×V W )×W W̃ ,

we have Y � X ×V W , and hence, Y → W is étale. Thus, (iii) ⇒ (iv)
has been proved, and we are done. Q.E.D.

The argument of (iii) ⇒ (iv) in the proof of Proposition 4.21 proves:

Corollary 4.22. Let X be a toric surface with boundary divisor B.
Then, a proper birational morphism f : Y → X from a normal surface
Y is a toroidal blowing up with respect to (X,B) if and only if Y is a
toric surface with boundary divisor f−1(B) and f is a toric morphism.

The following gives a sufficient condition for the existence of a fibra-
tion from a toroidal blown up surface of a given pair (X,D).

Lemma 4.23. Let X be a normal projective surface with only ra-
tional singularities such that H1(X,OX) = 0. Let D be a reduced divisor
on X such that

• (X,D) is toroidal along SingD, and
• n(D) > r(D).

Then, there exist a toroidal blowing up f : Y → X with respect to (X,D)
and a fibration π : Y → T � P1 such that DY = f−1(D) contains two
distinct fibers of π.

Proof. Let clD : F(D) ⊗ R → N(X) be the class map defined in
Definition 2.24. Then, clD has non-trivial kernel by n(D) > r(D). Note
that clD is defined over Q. Hence, by Lemma 2.31(4), we can find two
non-zero effective Cartier divisors Θ1 and Θ2 such that

• SuppΘ1 ∪ SuppΘ2 ⊂ D,
• SuppΘ1 ∩ SuppΘ2 is a finite set, and
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• Θ1 ∼ Θ2.

Let f : Y → X be the blowing up along the scheme-theoretic intersection
Θ1∩Θ2 followed by the normalization. Then, f is a toroidal blowing up
with respect to (X,D), since (X,D) is toroidal along Θ1 ∩Θ2 and since
f is étale locally a toric morphism (cf. Proposition 4.21). Then, there is
an f -exceptional effective Cartier divisor E such that

Θ∼
1 := f∗(Θ1)− E and Θ∼

2 := f∗(Θ2)− E

are mutually disjoint effective divisors. Thus, we have a morphism Y →
P1 associated with the base-point free pencil generated by Θ∼

1 and Θ∼
2 .

Let π : Y → T be the Stein factorization. Then, T � P1 by H1(X,OX) =
0, and DY = f−1(D) contains at least two distinct fibers of π. Q.E.D.

4.4. Tangential blowing up

We introduce the notion of tangential blowing up and explain a
few properties. The tangential blowing up is different from the toroidal
blowing up but has similar properties.

Definition 4.24. Let X be a normal surface and D a reduced di-
visor on X. Let P be a point of D such that X and D are non-singular
at P . Let (x, y) be a local coordinate of X at P in which D is defined
by y = 0. For an integer m ≥ 1, we set I ⊂ OX to be the ideal defined
by (xm, y), which is defined independently of the choice of the local co-
ordinate (x, y). We define the tangential blowing up of (X,D) at P of
order m to be the blowing up f : Y → X along I.

Remark. The referee pointed out that the notion of tangential blow-
ing up of order m has been introduced by Morrison in [37, Def. 1.1] as
“the directed blowup of weight m.”

If m = 1, then I is the maximal ideal at P , so the tangential blowing
up of order one is just the blowing up at P . In order to explain the
description of the tangential blowing up of order m ≥ 2, let us consider
a sequence

· · · → Xi → Xi−1 → · · · → X1 → X0

of blowings up, and reduced divisors Di on Xi with points Pi ∈ Di for
each i ≥ 0 determined by the following properties:

• X0 = X, D0 = D, and P0 = P ;
• Xi → Xi−1 is the blowing up at Pi−1 for any i ≥ 1;
• Di is the proper transform of Di−1 in Xi for any i ≥ 1;
• Pi is the intersection of Di and the inverse image of Pi−1 for
any i ≥ 1.
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Then, the inverse image of P = P0 in Xi for i ≥ 2 is a linear chain of
rational curves consisting of (−2)-curves and a unique (−1)-curve. Here,
the (−1)-curve is the inverse image of Pi−1 and the (−2)-curves do not
meet Di. It is an easy exercise to prove the following lemma giving a
geometric description of the tangential blowing up.

Lemma 4.25. Let f : Y → X be the tangential blowing up of
(X,D) at P of order m as above. Then, there is a birational mor-
phism ϕm : Xm → Y over X such that ϕm contracts all the irreducible
components of the inverse image of P except the component intersecting
Dm.

Remark. The birational morphismXm → X is called in [40, Def. 2.5]
the elimination of the 0-dimensional subscheme defined by I.

Remark. The tangential blowing up is a generalization of the so-
called “half point attachment” introduced in the theory of open surfaces
(cf. [18, §2], [12, (6.21)]): Let (X,D) be a pair of a non-singular surface
X and a normal crossing divisor D. Let P be a point of D \ SingD and
let f : Y → X be the blowing up at P . Then, f is not a toroidal blowup
with respect to (X,D). In fact, KY + DY = f∗(KX + D) + E for the
exceptional divisor E = f−1(P ), where the total transform DY = f∗(D)
is expressed as D′+E for the proper transform D′ of D in Y . Note here
that we have the equality KY +D′ = f∗(KX +D) instead. Moreover,
D′ is also a normal crossing divisor and D′ � D via f . The open surface
Y \D′ is called the half-point attachment of X \D.

We have the following immediately from Lemma 4.25.

Corollary 4.26. A tangential blowing up f : Y → X of order m
satisfies the following :

(1) There is a unique exceptional prime divisor E for f .
(2) The proper transform D′ of D in Y is isomorphic to D by f .
(3) One has f∗(D) = D′ +mE, and the intersection of D′ and E

is transversal.
(4) If m ≥ 2, then Y has a unique singular point Q on E, and

here, Q �∈ D′ and Q is a rational double point of type Am−1.
(5) The equality KY +D′ = f∗(KX +D) holds.

Remark. For the f above, we have D′ � f−1(D) and X \ D �
Y \ f−1(D) � Y \D′. If X is compact, then

0 = n(D′)− n(D) ≤ r(D′)− r(D) ≤ ρ̂(Y )− ρ̂(X) = 1

by Lemma 2.27. Here, r(D′) = r(D) if and only if r(D) > r(D−C) for
the irreducible component C of D containing P , by Lemma 2.28(3).



350 N. Nakayama

§5. Observation on P1-fibrations

In this section, we study in detail the structure of a pair (X,D) of
a normal Moishezon surface X and a reduced divisor D, and a fibration
π : X → T to a non-singular projective curve T which satisfy Condi-
tion 5.1 below. In Section 5.1, it is shown that X is a projective rational
surface with only rational singularities, the base curve T and a general
fiber of π are all rational, and that D is either a cyclic chain or a linear
chain of rational curves. We study the structure of (X,D) in case of
cyclic chain (resp. linear chain) in Section 5.2 (resp. 5.3).

5.1. Two possible cases

Throughout Section 5, we consider the triplet (X,D, π) consisting
of a normal Moishezon surface X, a reduced divisor D, and a morphism
π : X → T which satisfy Condition 5.1 below. In Section 5.1, we shall
give a rough classification of (X,D, π). Especially, it is shown that
(X,D, π) belongs to the case (A) or (B) of Lemma 5.2.

Condition 5.1.

(i) (X,D) is log-canonical along D;
(ii) −(KX +D) is nef on D (cf. Definition 2.14(ii)), i.e., −(KX +

D)C ≥ 0 for any irreducible component C of D;
(iii) π is a fibration and T is a non-singular projective curve;
(iv) D is connected and contains at least two distinct fibers of π.

Lemma 5.2. Let (X,D, π : X → T ) be a triplet satisfying Condi-
tion 5.1. Then, T and a general fiber of π are rational, and X is a
projective rational surface with only rational singularities. Moreover, D
is big, and one of the following cases occurs:

(A) The divisor D is a cyclic chain of rational curves expressed as
D = C1 + C2 + F1 + F2 for two distinct fibers F1 and F2 of π
and for two sections C1 and C2 of π such that C1 ∩ C2 = ∅.

(B) The divisor D is a linear chain of rational curves expressed
as D = C0 + F1 + F2 for two distinct fibers F1 and F2 and
for a non-end component C0 such that C0 is a section or a
double-section of π, i.e., C0F = 1 or 2 for a general fiber F of
π.

Proof. The divisor D is a linear or cyclic chain of rational curves by
Lemma 4.5. Suppose that D is expressed as in the case (A) or (B) above
for two sections C1 and C2 or for the horizontal component C0. Then,
the expression implies thatD is big, and by Lemma 4.7, X is a projective
rational surface with only rational singularities. In particular, T � P1,
which follows also from the rationality of C1 or C0. Moreover, a general
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fiber F of π is rational by KXF ≤ −DF < 0, where (KX + D)F ≤ 0
follows from (KX +D)C ≤ 0 for any curve C ⊂ F1. Thus, it is enough
to prove that (A) or (B) occurs.

Assume first that D is a cyclic chain. Then, the fibers F1 and F2

are linear chains of rational curves. Since D is connected, D− (F1+F2)
has an irreducible component C1 intersecting F1. Then, π(C1) = T , and
hence, C1 intersects also F2. Hence, F1 + C1 + F2 is a linear chain of
rational curves. Since D is assumed to be a cyclic chain, D− (F1+F2+
C1) has an irreducible component C2 intersecting F1. Then, π(C2) = T ,
and C2 intersects also F2. Therefore, the cyclic chain D is expressed as
C1 +C2 + F1 + F2, in which C1 ∩C2 = ∅. Now, KX +D is numerically
trivial on D (cf. Definition 2.14(ii)) by Lemma 4.5. Thus, (KX +D)F =
0 for a general fiber F , and it implies that F � P1 and FC1 = FC2 = 1.
Hence, C1 and C2 are sections of π. Thus, we have the case (A).

Assume next thatD is a linear chain. Then, F1 and F2 are also linear
chains and we can find an irreducible component C0 of D − (F1 + F2)
intersecting F1. Then, π(C0) = T , and C0 intersects also F2. Thus,
F1 + C0 + F2 is a linear chain in which C0 is not an end component.
We shall show that D = F1 +C0 +F2. If Γ is an irreducible component
of D not contained in F1 + C0 + F2 but intersecting F1 + C0 + F2,
then C0 ∩ Γ = ∅, and Γ intersects F1 or F2. But if so, π(Γ) = T , and Γ
intersects both F1 and F2, which implies that F1+C0+F2+Γ contains a
cyclic chain: This is a contradiction. Therefore, D = F1+C0+F2. Note
that (KX +D)F ≤ 0 for a general fiber F of π by the same argument as
above. Thus, F � P1 and 0 < DF = C0F ≤ −KXF = 2. Hence, either
C0F = 1 or C0F = 2 holds, and we have the case (B). Q.E.D.

5.2. The case where D is a cyclic chain

We study (X,D, π) in the case (A) of Lemma 5.2. Here, D is a
cyclic chain of rational curves expressed as C1 + C2 + F1 + F2 for two
mutually disjoint sections C1 and C2 and for two distinct fibers F1 and
F2. We set P1 := π(F1) and P2 := π(F2).

Proposition 5.3. In the case (A) of Lemma 5.2, the following hold :

(1) If −(KX +D) is nef, then KX +D ∼ 0.
(2) The inequality n(D) ≤ ρ(X)+2 holds, where the equality holds

if and only if π is smooth outside F1 ∪ F2.
(3) If n(D) = ρ(X) + 2, then (X,D) is a toric surface and π is a

toric morphism to the toric curve (T, P1 + P2).

Proof. Since D is big, by Lemma 4.7, there is an effective divisor
G on X \ D such that G ∼ KX + D and that G is negative definite if
G �= 0. If −(KX +D) is nef, then G = 0 ∼ KX +D. This proves (1).
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By Proposition 2.33(7), we have an inequality

ρ(X) ≥ 2 + (n(F1)− 1) + (n(F2)− 1) = n(D)− 2,

where the equality holds if and only if any fiber of π except F1 and
F2 is irreducible. Let F3 be an irreducible fiber different from F1 and
F2. Then, F3 is reduced as a scheme-theoretic fiber, since F3 ∩ (C1 ∪
C2) is contained in the non-singular locus of X (cf. Proposition 3.29).
Therefore, π is smooth along F3 by Proposition 2.33(4). Thus, (2) has
been proved.

Assume that ρ(X) = n(D) − 2. Then, G = 0 by (2), since X \ D
contains no compact curves. Thus, KX + D ∼ 0. In order to show
that (X,D) and π are toric, we shall reduce to the non-singular case.
Let μ : M → X be the minimal resolution of singularities. Then, μ is a
toroidal blowing up with respect to (X,D), sinceX\D is non-singular by
(2). We see that DM = μ−1(D) is a cyclic chain of rational curves with
KM +DM = μ∗(KX +D) ∼ 0. Moreover, DM = C ′

1 + C ′
2 + F∼

1 + F∼
2

for the proper transform C ′
i of Ci in M and for the total transform

F∼
i of Fi in M , for i = 1 and 2. Thus, the pair (M,DM ) with the

fibration π◦μ : M → T belongs also to the case (A) of Lemma 5.2. Here,
(X,D) is a toric surface if and only if (M,DM ) is so, by Lemma 3.9 and
Corollary 4.22. Thus, by replacing M with X, we may assume that X
is non-singular. We have a birational morphism ν : X → X over T to
a P1-bundle p : X → T in which ν contracts only curves contained in
F1 ∪ F2. Here, D = ν∗(D) is a cyclic chain consisting of two sections
ν(C1), ν(C2) and two fibers ν∗(F1) and ν∗(F2) of p. In particular, (X,D)
is a toric surface and p is a toric morphism (X,D) → (T, P1 + P2) (cf.
Example 3.8). Moreover, ν : (X,D) → (X,D) is a toroidal blowing
up. Therefore, (X,D) is a toric surface by Corollary 4.22, and we have
proved (3). Q.E.D.

Lemma 5.4. In the case (A) of Lemma 5.2, assume that KX+D ∼
0. Let F3 be a fiber of π different from F1 and F2, and assume that π
is not smooth along F3. Then, F3 is a reducible linear chain of rational
curves with end components Γ1 and Γ2 such that

(1) the section Ci intersects transversally with Γi for i = 1, 2, and
(2) (X,F3) is toroidal along F3.

As a consequence, X \ D has only rational double points of type A as
singularities.

Proof. By an argument in the proof of Proposition 5.3, the scheme-
theoretic fiber F3 is reduced at two points F3 ∩ (C1 ∪C2). Moreover, F3

is reducible by Proposition 2.33(4), since π is not smooth along F3. In
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particular, every irreducible component of F3 is a negative curve. Let
Γ1 and Γ2 be the irreducible components of F3 which intersect C1 and
C2, respectively.

First, we shall prove the assertion in the case where X is non-
singular. By KXΓi = −DΓi ≤ −CiΓi = −1 for i = 1, 2, we see that Γ1

and Γ2 are (−1)-curves and Γ1 ∩ C2 = Γ2 ∩ C1 = ∅. If F3 = Γ1 + Γ2,
we have nothing to prove. Assume that F3 �= Γ1 + Γ2. Then, the irre-
ducible components Γ of F3 different from Γ1 and Γ2 are all (−2)-curves
by KXΓ = −DΓ = 0. In this situation, we can prove that F3 is a linear
chain of rational curves with Γ1 and Γ2 as end components. Indeed, this
is proved by induction on the number of irreducible components of F3

and by considering the blowing down of the (−1)-curve Γ1. Thus, the
assertion holds when X is non-singular.

For general X, let us consider the minimal resolution μ : M → X
of singularities. Note that X \ D has only rational double points as
singularities, since X has only rational singularities and KX + D ∼ 0.
Hence, μ is a toroidal blowing up with respect to (X,D) along D and
is the minimal resolution of rational double points on X \ D. As a
consequence, (M,DM ) is toroidal and KM + DM = μ∗(KX + D) ∼ 0.
By the same argument as in the proof of Proposition 5.3, we see that
the pair (M,DM ) with the fibration π ◦ μ satisfies the assumption of
Lemma 5.4. Then, the assertion for the non-singular case implies that
the total transform F∼

3 = μ−1(F3) is a linear chain of rational curves
with Γ′

1 and Γ′
2 as end components, where Γ′

i is the proper transform of
Γi inM for i = 1, 2. Thus, Γ1 �= Γ2, and F3 = μ∗(F∼

3 ) is a linear chain of
rational curves such that (X,F3) is toroidal along F3 by Lemma 4.20(2).
Note that X has only cyclic quotient singularities on F3. Hence, the last
assertion holds, since X \D is Gorenstein. Thus, we are done. Q.E.D.

Proposition 5.5. In the case (A) of Lemma 5.2, assume that
−(KX + D) is nef and n(D) = ρ(X) + 1. Then, KX + D ∼ 0, and
there exist two rational curves Γ1 and Γ2 on X satisfying the following
properties:

(1) Γ1 + Γ2 is a linear chain of rational curves and is a fiber of π
different from F1 and F2;

(2) (X,Γ1 + Γ2) is toroidal along Γ1 + Γ2;
(3) Γ1C1 = Γ2C2 = 1 and Γ1 ∩ C2 = Γ2 ∩ C1 = ∅;
(4) if Γ is a negative curve on X not contained in D, then Γ = Γ1

or Γ2.

Let g : X → Z be the contraction morphism of Γ1, and set DZ = g∗(D)
and Q := g(Γ1). Then, the following also hold :
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(5) (Z,DZ) is a toric surface and the induced fibration Z → T by
π is a toric morphism to the toric curve (T, P1 + P2);

(6) g is a tangential blowing up (cf. Definition 4.24) of (Z,DZ) at
the point Q of order k ≥ 1. Here, if k = 1, then Γ1 ∩ Γ2 is
a non-singular point of X, and if k > 1, then Γ1 ∩ Γ2 is an
Ak−1-singularity of X.

Proof. We have KX + D ∼ 0 by Proposition 5.3(1). There is a
unique reducible fiber F3 of π different from F1 and F2 by Proposi-
tion 2.33(7), since

ρ(X) = n(D) + 1 = 2 + (n(F1)− 1) + (n(F2)− 1) + 1,

where n(F3) = 2. Let F3 = Γ1 + Γ2 be the irreducible decomposition.
Then, applying Lemma 5.4 and assuming C1Γ1 = 1 and C2Γ2 = 1, we
have the properties (1)–(3) above.

Let Γ be a negative curve on X not contained in D. Assume that
π(Γ) = T . Then, Γ ∩ F1 �= ∅ and Γ ∩ F2 �= ∅. Let μ : M → X be the
minimal resolution of singularities. Then, KM +DM = μ∗(KX +D) ∼ 0
for DM = μ−1(D), and

KMΓ′ = −DMΓ′ ≤ −2

for the proper transform Γ′ of Γ inM ; This contradicts Γ′2+KMΓ′ ≥ −2
and Γ′2 < 0. Hence, π(Γ) �= T . Thus, Γ is an irreducible component of
a reducible fiber. Therefore, Γ = Γ1 or Γ2, and we have proved (4).

The pair (Z,DZ) in (5) is log-canonical by Corollary 3.21, and the
pair with the induced fibration Z → T satisfies the conditions in the case
(A) of Lemma 5.2. Thus, (5) is a consequence of Proposition 5.3(3). By
Lemma 5.4, the inverse image of Γ1+Γ2 by the minimal resolution of X
is a linear chain such that the proper transforms of Γ1 and Γ2 are (−1)-
curves as well as end components and that the non-end components are
all (−2)-curves. Therefore, g is a tangential blowing up of (Z,DZ) at Q
of order k ≥ 1 by Lemma 4.25 and Corollary 4.26. Thus, (6) has been
proved, and we are done. Q.E.D.

5.3. The case where D is a linear chain

We study (X,D, π) in the case (B) of Lemma 5.2. Here, D is a
linear chain of rational curves expressed as C0 + F1 + F2 for a non-end
component C0 which is either a section or a double-section of π. We
also set P1 := π(F1) and P2 := π(F2).

Lemma 5.6. In the case (B) of Lemma 5.2, one has an inequality
n(D) ≤ ρ(X) + 1, where the equality holds if and only if π is smooth
outside F1 ∪ F2.
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Proof. By Proposition 2.33(7), we have ρ(X) ≥ n(F1) + n(F2) =
n(D)− 1, where the equality holds if and only if any fiber is irreducible
except for F1 and F2. Let F3 be an irreducible fiber different from
F1 and F2. By Proposition 2.33(4), it is enough to prove that F3 is
reduced as a scheme-theoretic fiber. Now C0 ∩ F3 is contained in the
non-singular loci ofX andD (cf. Proposition 3.29). Hence, F3 is reduced
if C0 is a section. If C0 is a double-section, then the induced double-cover
τ := π|C0 : C0 → T is étale outside C0∩(F1∪F2), since C0∩Fi = τ−1(Pi)
is a point for i = 1, 2. Thus, in this case, C0 ∩ F3 consists of two points
and is reduced. Therefore, F3 is reduced, and we are done. Q.E.D.

Proposition 5.7. In the case (B) of Lemma 5.2, assume that

• −(KX +D) is nef,
• n(D) = ρ(X) + 1, and
• C0 is a section of π.

Then, there is a section B of π not contained in D such that (X,B+D)
is a toric surface and that π : (X,B + D) → (T, P1 + P2) is a toric
morphism.

Proof. Since π is smooth outside F1 ∪ F2 by Lemma 5.6, we have
SingX ⊂ D. For i = 1, 2, let Ei be the end component of D such that
Ei ⊂ Fi. Then, (KX +D)Ei < 0 for any i. In fact, if (KX +D)E1 = 0
for example, then (KX +D)Γ = 0 for any irreducible component Γ of F1

by Lemma 4.5(3), and it implies that (KX + D)F = 0 for any general
fiber F of π. However, this contradicts (KX + D)F = (KX + C0)F =
−1. Therefore, by Proposition 3.29, SingX ⊂ E1 ∪ E2 ∪ SingD, and
Σi := (Ei \ SingD) ∩ SingX is empty or consisting of one point of type
P for (X,D).

Let μ : M → X be the minimal resolution of singularities. By the
information above of SingX, we see that the μ-exceptional divisor is a
union of linear chains of rational curves, and hence, DM = μ−1(D) is a

linear chain expressed as C̃0 + F̃1 + F̃2 for the proper transform C̃0 of

C0 in M and for the fiber F̃i = μ−1(Fi) = (π ◦μ)−1(Pi). We express the

linear chain F̃i as Γ1 +Γ2 + · · ·+Γl for rational curves Γj such that the

end component Γl intersects C̃0. More precisely, we write

Γ
(i)
j = Γj and l(i) = l

indicating i = 1, 2. Let m
(i)
j = mj be the multiplicity of the scheme-

theoretic fiber along Γi, i.e.,

(π ◦ μ)∗(Pi) =
∑lj

j=1
m

(i)
j Γ

(i)
j .
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Then, m1 = ml = 1 (cf. Lemma 5.8 below). Note that Σi = ∅ if and only
if Γ1 is the proper transform E′

i of Ei in M . If Σi �= ∅, then E′
i = Γk for

some k > 1, and μ−1(Σi) = Γ1 + · · · + Γk−1; Here, we have mj ≥ j for
any 1 < j ≤ k by Lemma 5.8 below, since μ is the minimal resolution of
singularities. We can write

(V-1) KM +DM = μ∗(KX +D) +
∑2

i=1

∑li

j=1
p
(i)
j Γ

(i)
j ,

with 0 ≤ p
(i)
j < 1, where p

(i)
j �= 0 if and only if Γ

(i)
j ⊂ μ−1(Σi) (cf. the

proof of Lemma 3.26). Thus, if a section C̃ of π ◦ μ intersects Γ
(i)
j with

p
(i)
j �= 0, then j = 1. Therefore,

(V-2) (KM +DM )C̃ ≤ p
(1)
1 + p

(2)
1 < 2

for any section C̃ of π ◦ μ, since −(KX +D) is nef.
Let h : M → Z be the contraction morphism of all the irreducible

components of F̃1+ F̃2− (Γ
(1)
1 +Γ

(2)
1 ). Then, KM +DM is h-numerically

trivial, since (KM + DM )Γ = 0 for any non-end component Γ of the
linear chain DM of rational curves. Thus,

(V-3) KM +DM = h∗(KZ +DZ)

for DZ = h∗(DM ). We have a fibration � : Z → T with � ◦ h = π ◦ μ.
For i = 1, 2, the image F i = h(F̃i) = h(Γ

(i)
1 ) is just the scheme-theoretic

fiber �−1(Pi), since m
(i)
1 = 1. Then, � : Z → T is a P1-bundle by

Proposition 2.33(4), since every scheme-theoretic fiber of� is irreducible

and reduced. Here, DZ = C0 + F 1 + F 2 for the section C0 := h(C̃0).

Assume that there is a section B of � such that B ∩C0 = ∅. Let B̃
be the proper transform of B in M and set B := μ(B̃). Then, B̃ +DM

is a normal crossing cyclic chain of rational curves, and KM +B̃+DM is

numerically trivial on B̃+DM (cf. Definition 2.14(ii)) by Corollary 4.6.
Since the μ-exceptional locus is contained in DM , the divisor B+D is a
cyclic chain of rational curves,KX+B+D is numerically trivial onB+D,
and (X,B +D) is log-canonical (cf. Corollary 3.21). Thus, (X,B +D)
and π satisfy the conditions of Lemma 5.2(A) with ρ(X) = n(B+D)−2.
Therefore, (X,B +D) is toric and (X,B +D) → (T, P1 + P2) is a toric
morphism by Proposition 5.3(3).

Therefore, it remains to find a section B not intersecting C0. As-
sume that there is no such a section. Then, C0 is not a minimal section
CZ of the Hirzebruch surface Z. We set e = −C2

Z ≥ 0 and let F denote



A variant of Shokurov’s criterion 357

a general fiber of �. Then,

C0 ∼ CZ + dF and KZ +DZ ∼ −CZ + (d− e)F

for an integer d ≥ e. By (V-3) and by (V-2) applied to the proper

transform C̃Z of CZ in M , we have

d = (KZ +DZ)CZ = (KM +DM )C̃Z ≤ p
(1)
1 + p

(2)
1 < 2.

If d = 0, then d = e = 0, and C0 is a minimal section; this contradicts
the assumption. Thus, d = 1, and 0 ≤ e ≤ 1. If e = 1, then we can take
B as CZ , since CZ ∩ C0 = ∅. Hence, we have (d, e) = (1, 0). Therefore,

p
(i)
1 > 0 for any i = 1, 2, and it implies that Σi �= ∅. The section C̃Z must

intersect Γ
(i)
1 for any i = 1, 2 by the observation above on irreducible

components Γ
(i)
j with p

(i)
j > 0. However, we can find another minimal

section CZ,1 such that CZ,1 ∩ C0 = F 1 ∩ C0. The proper transform

C̃Z,1 of CZ,1 in M does not intersect B
(1)
1 . This is a contradiction. As

a consequence, we can find a section B not intersecting C0, and we are
done. Q.E.D.

The following lemma is used in the proof of Proposition 5.7.

Lemma 5.8. Let M be a non-singular surface with a P1-fibration
ψ : M → T and let F be a reducible fiber of ψ. Assume that F is a
linear chain Γ1 + Γ2 + · · · + Γl of rational curves Γi in this order, and
let

∑
1≤i≤l miΓi be the scheme-theoretic fiber of ψ.

(1) If ml = 1, then m1 = 1.
(2) For an integer k > 1, assume that Γ2

i ≤ −2 for any i < k.
Then, mi ≥ i for any 1 ≤ i ≤ k.

Proof. Note that F is a simple normal crossing divisor (cf. Re-
mark 2.34). Hence, Γi � P1 for any i, and ΓiΓi+1 = 1 for any 1 ≤ i < l.
Then,

mi−1 +miΓ
2
i +mi+1 = 0

for any 1 ≤ i ≤ l, where we set m0 = ml+1 = 0. In particular, mi is
divisible by m1 for any 1 ≤ i ≤ l, and this proves (1). Moreover, under
the assumption of (2), we have

mi+1 −mi = mi(−Γ2
i − 2) +mi −mi−1 ≥ mi −mi−1

for any 1 ≤ i < k. This implies that mi ≥ i for any 1 ≤ i ≤ k. Q.E.D.
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Proposition 5.9. In the case (B) of Lemma 5.2, assume that C0

is a double-section and n(D) = ρ(X) + 1. Then, π is smooth outside
F1 ∪ F2, and 2(KX + D) ∼ 0. Let τ : V = V (OX(KX + D), σ) → X
be the double-cover étale in codimension one associated with an isomor-
phism σ : OX(2(KX + D))


−→ OX (cf. Definition 4.9). Then, (V,DV )
is a toric surface for DV = τ−1(D), and there is a toric morphism
πV : (V, τ−1(D)) → (T ′, P ′

1 + P ′
2) such that

• πV is the Stein factorization of π ◦ τ ,
• T ′ → T is a double-cover branched at {P1, P2} = π(F1 ∪ F2),

and
• P ′

i is the point of T ′ lying over Pi for i = 1, 2.

Proof. The morphism π is smooth outside F1 ∪ F2 by Lemma 5.6.
We shall show that 2(KX + D) ∼ 0. For i = 1, 2, let Ei be the end
component of D such that Ei ⊂ Fi. Then, KX + D is Cartier along
D−E1−E2 and is numerically trivial on D−E1−E2 by Lemma 4.5(3).
Since (KX +D)F = 0 for a general fiber F , we have (KX +D)Ei = 0
for i = 1, 2. Hence, (X,D,Ei) belongs to either the case (G) or (H)
of Proposition 3.29. As a consequence, 2(KX + D) is Cartier and π-
numerically trivial. Then, 2(KX + D) ∼ π∗L for a divisor L on T by
Proposition 2.33(5), and now L = 0 by 2 degL = C0π

∗L = 2(KX +
D)C0 = 0. Therefore, 2(KX +D) ∼ 0.

By Proposition 4.18 and Remark 4.15(4), (V,DV ) is log-canonical
with KV + DV ∼ 0, DV is a cyclic chain of rational curves, and V \
τ−1(F1∪F2) is non-singular and étale over X \(F1∪F2). Here, τ−1(D−
E1 −E2) is a disjoint union of two copies of D −E1 −E2, and for each
i = 1, 2, either τ−1(Ei) is irreducible or is a union of two copies of Ei

intersecting at one point. In particular, τ−1(Fi) is connected and is a
fiber of the Stein factorization πV : V → T ′ of π ◦ τ : V → T . Thus,
(V,DV ) and πV satisfy the condition of Lemma 5.2(A). Here, τ−1(C0)
is just the union of two sections of πV contained in DV . Hence, T

′ → T
is a double-cover isomorphic to C0 → T , which is branched at {P1, P2},
since C0F1 = C0F2 = 1. In particular, τ−1(Fi) is the fiber over the
point P ′

i ∈ T ′ lying over Pi for i = 1, 2. Since V \ τ−1(F1 ∪ F2) is
smooth over T ′, we have n(DV ) = ρ(V ) + 2 by Proposition 5.3(2).
Therefore, (V,DV ) is a toric surface and πV is a toric morphism by
Proposition 5.3(3). Q.E.D.

§6. Pseudo-toric surfaces

We introduce the notion of pseudo-toric surface in Section 6.1 and
explain its basic properties. Especially in Proposition 6.4, it is shown
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that the defect δ(X,D) of a pseudo-toric surface (X,D) is always non-
negative and that among pseudo-toric surfaces, the toric surfaces are
characterized by δ(X,D) = 0. The structure of pseudo-toric surface
of defect one is studied in detail in Section 6.2, where we shall give a
structure theorem as Theorem 6.5 and give a proof of Theorem 1.6.

6.1. Pseudo-toric surfaces and their basic properties

Definition 6.1. A pair (X,D) of a normal projective surface X
and a reduced divisor D is called a pseudo-toric surface if the following
conditions are satisfied:

(i) X is a rational surface with only rational singularities;
(ii) (X,D) is log-canonical along D, and KX +D ∼ 0;
(iii) every irreducible component of D is a rational curve;
(iv) D is big.

Remark. Let X be a non-singular projective surface and D an anti-
canonical reduced divisor of X. Assume that D is a simple normal
crossing divisor consisting of rational curves. Then, (X,D) is pseudo-
toric if and only if D is big, by Definition 6.1. It is an exercise to prove
that D is big if and only if one of the following holds.

• There is an irreducible component C of D with C2 > 0.
• There is an irreducible component C of D with C2 = 0 and

(D − C)C > 0.
• There is an irreducible component C of D such that C is a

(−1)-curve and that the push-forward D = g∗(D) is big for
the contraction morphism g : X → X of C.

Remark 6.2. Inspired by a comment of the referee, the author found
that the condition (i) is superfluous in Definition 6.1. In fact, the condi-
tions (ii) and (iii) imply that each connected component of D is a cyclic
chain of rational curves by Corollary 4.6. There is a big connected com-
ponent D� of D by (iv). Then, by applying Lemma 4.7 to (X,D�), we
have the condition (i).

Lemma 6.3. Let (X,D) be a pseudo-toric surface.

(1) The Weil-Picard number ρ̂(X) equals the Picard number ρ(X).
(2) The open subset X \D has only rational double points as sin-

gularities. In particular, (X,D) is log-canonical.
(3) The divisor D is connected and is a cyclic chain of rational

curves.
(4) If f : Y → X is a toroidal blowing up with respect to (X,D),

then (Y,DY ) is also pseudo-toric for DY = f−1(D).
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(5) Let f : Y → X be a tangential blowing up of (X,D) and let D′

be the proper transform of D. Then (Y,D′) is pseudo-toric if
and only if D′ is big.

(6) Let μ : M → X be the minimal resolution of singularities.
Then, (M,DM ) is also pseudo-toric for DM = μ−1(D).

(7) Let g : X → X be a birational morphism to a normal Moishezon
surface X and set D = g∗(D). Then, (X,D) is a pseudo-toric
surface. If the g-exceptional locus is contained in D, then g is
a toroidal blowing up with respect to (X,D).

(8) There is a birational morphism g : X → X contracting only
curves in X \D such that X \D is affine for D = g∗(D).

Proof. (1): This is a consequence of Lemma 2.31.
(2): This follows from thatKX+D ∼ 0 and that X has only rational

singularities. In fact, X\D is Gorenstein with only rational singularities.
(3): By Remark 6.2, we know that each connected component of D

is a cyclic chain of rational curves. Suppose that D is not connected.
Then, by the Hodge index theorem, a connected component E of D is
negative definite, since D is big. Let g : X → X be the contraction
morphism of E. Then, KX +D ∼ 0 for the divisor D = g∗(D) �= 0, and

H2(X,OX) = H0(X,O(KX))∨ = 0.

Hence, X has only rational singularities by Lemma 2.31(3). However,
the singular point π(E) is irrational, since E is a cyclic chain of rational
curves. This is a contradiction. Therefore, D is connected and (3) holds.

(4) and (5): Let f : (Y,DY ) → (X,D) be either a toroidal blowing
up or a tangential blowing up. Here, DY = f−1(D) in the case of
toroidal blowing up, and DY is the proper transform of D in the case of
tangential blowing up. Then, (Y,DY ) is also log-canonical, DY consists
of rational curves, and KY +DY = f∗(KX +D) ∼ 0 by Definition 4.19
and Corollary 4.26. Thus, (Y,DY ) is also pseudo-toric.

(6): The minimal resolution μ is expressed as a toroidal blowing up
along D and is the minimal resolution of X \D, which has only rational
double points by (2). Thus, KM+DM = μ∗(KX+D) ∼ 0, and (M,DM )
is also pseudo-toric by the argument above.

(7): The pair (X,D) is log-canonical by (2) and by Corollary 3.21.
We have KX +D = g∗(KX +D) ∼ 0. Therefore, D is also a cyclic chain

of rational curves by Corollary 4.6. Moreover, D is big by Remark 2.13.
Hence, X is a projective rational surface with only rational singulari-
ties by Lemma 4.7. Thus, (X,D) is a pseudo-toric surface. The latter
assertion of (7) follows from Definition 4.19.
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(8): The union of compact curves in X \D is negative definite by the
Hodge index theorem, since D is big. Hence, we have the contraction
morphism X → X of the union of these curves by Theorem 2.6. Then,
X \D contains no compact curves for the image D of D. Here, (X,D)
is pseudo-toric by (7) above. Thus, for the proof of (8), we may assume
thatX = X, i.e., X\D contains no compact curves. There is a birational
morphism π : X → X ′ to a normal Moishezon surface X ′ such that the
π-exceptional locus is contained in D and that D′ := π∗(D) contains no
negative curves. Then, X \ D � X ′ \ D′, since D = π−1(D′). Here,
(X ′, D′) is also pseudo-toric by (7). Thus, by replacing X ′ with X, we
may assume furthermore that every irreducible component of D is nef.
Then, it is enough to show that D is ample. Now, DC > 0 for any
irreducible component C of D. In fact, since D is connected by (3), we
have DC = (D−C)C +C2 > 0 in case D is reducible, and even in case
D is irreducible, we have D2 > 0, since D is big. Thus, if DΓ = 0 for
an irreducible curve Γ on X, then Γ ⊂ X \ D; this is a contradiction.
Hence, D is ample by the Nakai–Moishezon criterion of ampleness (cf.
Remark 2.12). Thus, we are done. Q.E.D.

Remark. Let (X,D) be a pseudo-toric surface such that X is non-
singular. The structure of (X,D) is studied by considering birational
morphisms f : X → Z and g : Z → S satisfying the following conditions:

• The pairs (Z,DZ) and (S,DS) are pseudo-toric surfaces for
DZ = f∗(D) and DS = (g ◦ f)∗(D), and Z and S are non-
singular.

• Every exceptional divisor for f is not contained in D.
• The exceptional locus of g is contained in DZ .
• There is no (−1)-curve on Z not contained in DZ , and there is

no (−1)-curve on S.

Here, f is a maximal succession of contractions of (−1)-curves not con-
tained in the images of D, and g is a succession of contractions of (−1)-
curves contained in DZ . Then, (Z,DZ) and (S,DS) are pseudo-toric by
Lemma 6.3(7). Note that every negative curve Γ on X not contained in
D is either a (−1)-curve or a (−2)-curve, since ΓD = −KXD ≥ 0. Since
the pseudo-toric surfaces (S,DS) are classified easily, we have a detailed
structure of (X,D) by investigating the birational morphisms f and g.

Proposition 6.4. Let (X,D) be a pseudo-toric surface. Then, the
defect δ(X,D) and the complexity c(X,D) (cf. Definition 2.23) are
non-negative. Here, c(X,D) = 0 if and only if (X,D) is a toric surface.
In particular, a pseudo-toric surface of defect zero is a toric surface.
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Proof. We have c(X,D) ≥ 0 by Proposition 4.8(3), and δ(X,D) ≥
c(X,D) by Definition 2.23. If (X,D) is toric, then it is pseudo-toric
with δ(X,D) = 0 by Lemma 3.11. For the rest, it is enough to prove
that (X,D) is toric when c(X,D) = 0. In this situation, we have also
δ(X,D) = 0 by Proposition 4.8(4). Since n(D) > ρ(X) ≥ r(D), by
Lemma 4.23, there exist a toroidal blowing up f : (Y,DY ) → (X,D) and
a fibration π : Y → T to a non-singular curve T such that DY = f−1(D)
contains at least two fibers of π. Here, (Y,DY ) is also pseudo-toric and
δ(Y,DY ) = δ(X,D) = 0 by Lemma 2.27. Since DY is connected by
Lemma 6.3(3), (Y,DY ) and π satisfy the condition of Lemma 5.2(A).
Thus, (Y,DY ) is toric by Proposition 5.3(3), and (X,D) is toric by
Lemma 3.9. Q.E.D.

6.2. The structure of pseudo-toric surfaces of defect one

We first prove a structure theorem as Theorem 6.5 for the pseudo-
toric surface (X,D) of defect one. Using a special linear chain of rational
curves defined in Definition 6.7 below, we obtain results on the group
Aut(X;D) of automorphisms of X preserving each irreducible compo-
nent of D, on the coordinate ring of X \D, and on the quasi-Albanese
map of X \ D. Finally, we prove Theorem 1.6 gathering these partial
results.

Theorem 6.5. Let X be a normal Moishezon surface with a reduced
divisor D. Then, (X,D) is a pseudo-toric surface of defect one if and
only if there exist a toroidal blowing up f : Y → X with respect to (X,D)
and a tangential blowing up g : Y → Z of a projective toric surface
(Z,DZ) such that f−1(D) is the proper transform of DZ in Y .

Proof. If Y is a tangential blowing up of toric surface (Z,DZ), then
(Y,DY ) is a pseudo-toric surface of defect one for the proper transform
DY of DZ in Y by Lemma 6.3(5) and by Proposition 4.8(1), since

c(Y,DY ) ≤ δ(Y,DY ) = n(DY )− (ρ(Y )+2) = n(DZ)− (ρ(Z)+1) = 1.

Thus, if there is also a toroidal blowing up f : Y → X with respect to
(X,D) such that DY = f−1(D), then (X,D) is also pseudo-toric by
Lemma 6.3(7), and δ(X,D) = δ(Y,DY ) = 1 by Lemma 2.27.

Conversely, if (X,D) is a pseudo-toric surface of defect one, then, by
Lemma 4.23, there exist a toroidal blowing up f : (Y,DY ) → (X,D) and
a fibration π : Y → T to a non-singular curve T such that DY = f−1(D)
contains at least two fibers of π. Here, (Y,DY ) is also a pseudo-toric
surface of defect one by Lemmas 6.3(4) and 2.27. Thus, (Y,DY ) and
π satisfy the condition of Lemma 5.2(A), and by Proposition 5.5, there
exist a toric surface (Z,DZ) and a tangential blowing up g : Y → Z of
(Z,DZ) such that DY is the proper transform of DZ . Q.E.D.
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Remark. Let (X,D) be a pair of a normal Moishezon surface X and
a reduced divisor D on X which satisfies the conditions of Definition 6.1
except (iv). If c(X,D) ≤ 1, then D is big by Proposition 4.8(1), and
(X,D) is a pseudo-toric surface. Thus, if δ(X,D) = 1, then (X,D) is
a pseudo-toric surface of defect one by Proposition 4.8(4), and in this
case, we have δ(X,D) = c(X,D), or equivalently, ρ(X) = r(D).

Lemma 6.6. Let (X,D) be a pseudo-toric surface of defect one.
Let f : (Y,DY ) → (X,D) be a toroidal blowing up and π : Y → T � P1

a P1-fibration such that DY = f−1(D) contains the fibers of π over two
distinct points P1 and P2 of T . The existence of f and π is shown in
Lemma 4.23. Then, the morphism

h := (π ◦ f−1)|X\D : X \D � Y \DY → T \ {P1, P2}

induces a group isomorphism

h∗ : O(T \ {P1, P2})� 
−→ O(X \D)�.

In particular, h is uniquely determined up to isomorphism, the rational
map π ◦ f−1 : X ···→T is independent of the choice of f and π up to
birational equivalence, and O(X \D)� � C� × Z.

Proof. Since c(X,D) = 1, the kernel of the class map clD : F(D)⊗
R → N(X) is one-dimensional, and hence, the kernel of clZD : F(D) →
CL(X) is of rank one. Therefore, the divisor Θ1 − Θ2 in the proof of
Lemma 4.23 is essentially unique, and indeed, π∗(P1−P2) is a generator

of Ker(clZD). Thus, we have a commutative diagram

1 −−−−→ O(T )� −−−−→ O(T \ {P1, P2})� −−−−→ Z −−−−→ 0



⏐⏐� h∗

⏐⏐� ⏐⏐�


1 −−−−→ O(X)� −−−−→ O(X \D)� −−−−→ Ker(clZD) −−−−→ 0

of exact sequences by Lemma 2.25, and the middle homomorphism h∗

is an isomorphism. Q.E.D.

Definition 6.7. For a pseudo-toric surface (X,D) of defect one,
let f : (Y,DY ) → (X,D) be a toroidal blowing up with a P1-fibration
π : Y → T � P1 such that DY = f−1(D) contains two fibers of π. Then,
by Proposition 5.5, we have two rational curves Γ1 and Γ2 on Y such that
Γ1 +Γ2 is a unique reducible fiber of π outside the two fibers contained
in D. For i = 1 and 2, we define Li to be the image f(Γi). The union
L1 + L2 is denoted by L.
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We have the following immediately from Proposition 5.5 and Lemma
6.6:

Lemma 6.8. (1) The union L = L1 + L2 is a linear chain of
rational curves, and is independent of the choice of f and π.

(2) The pair (X,L) is toroidal along L \D.
(3) The intersection point PL of L1 and L2 is not contained in D.
(4) If X \ D is singular, then PL is the unique singular point of

X \ D and it is a rational double point of type Ak for some
k ≥ 1.

The rational curves L1 and L2 have the following characterization:

Proposition 6.9. Let (X,D) be a pseudo-toric pair of defect one
and let ν : X ′ → X be an arbitrary toroidal blowing up with respect to
(X,D). If C is a negative curve on X ′ not contained in ν−1(D), then
ν(C) = L1 or L2.

Proof. The pair (X ′, D′) for D′ = ν−1(D) is also a pseudo-toric
surface of defect one by Lemmas 6.3(4) and 2.27. Let f : Y → X be the
toroidal blowing up in Definition 6.7. Then, there is a toroidal blowing
up Y ′ → X ′ with respect to (X ′, D′) such that the induced rational
map Y ′ → Y is also a toroidal blowing up with respect to (Y,DY ). By
replacing X ′ with Y ′ and replacing C with the proper transform in Y ′,
we may assume that ν = f ◦ τ for a toroidal blowing up τ : X ′ → Y
with respect to (Y,DY ). By Proposition 5.5, τ−1(Γ1 + Γ2) is a unique
reducible fiber of π ◦ τ outside τ−1(F1 ∪ F2). Then, C = τ−1(Γ1) or
τ−1(Γ2) by Proposition 5.5(4) applied to π ◦ τ : X ′ → T . Therefore,
ν(C) = L1 or L2. Q.E.D.

We present an example of L1+L2 for a simple pseudo-toric surface.

Example 6.10. For the projective plane X = P2, let D = D1 +D2

be a union of a line D1 and a conic D2 such that D1∩D2 consists of two
points P1 and P2. Then, (X,D) is pseudo-toric of defect one, and the
linear chain L1 + L2 is just the union of tangent lines of D2 at the two
points P1 and P2. In fact, we can take a toroidal blowing up f : Y → X
as two-times blowings up at each point of {P1, P2} so that f resolves
the indeterminacy of the pencil generated by 2D1 and D2. For i = 1,
2, the proper transform Γi in Y of the tangent line Li of D2 at Pi is a
(−1)-curve, and the union Γ1 + Γ2 is a fiber of the fibration Y → P1

associated with the pencil.

Proposition 6.11. For a pseudo-toric surface (X,D) of defect one,
the group Aut(X;D) of automorphisms of X preserving each irreducible
component of D is isomorphic to the multiplicative group C� = C \ {0}.
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Proof. Let f : (Y,DY ) → (X,D) be a toroidal blowing up. Then,
any automorphism in Aut(X;D) lifts to Aut(Y ;DY ), and conversely,
any automorphism in Aut(Y ;DY ) descends to Aut(X;D). Therefore,
Aut(Y ;DY ) � Aut(X;D). Hence, by replacing (X,D) by (Y,DY ) in
Definition 6.7, we may assume that there is a P1-fibration π : X → T �
P1 such that D contains two fibers F1 = π−1(P1) and F2 = π−1(P2).
Then, L1 +L2 is just Γ1 +Γ2 in Definition 6.7. For any σ ∈ Aut(X;D),
we have σ(Γi) = Γi for i = 1, 2 by the uniqueness of L1 + L2 shown in
Proposition 6.9 and by the uniqueness of the irreducible component of
D meeting Γi for each i. Hence, Aut(X;D) = Aut(X;D + Γ1 + Γ2).

Let g : X → Z be the contraction morphism of Γ1. Then, by Propo-
sition 5.5, (Z,DZ) is a toric surface for DZ = g∗(D) and the induced
fibration π̄ : Z → T is a toric morphism (Z,DZ) → (T, P1 +P2). We set
F := g(Γ2), which is a fiber of π̄. Since g is also a toroidal blowing up
with respect to (Z,DZ + F ), we have an isomorphism

Aut(X;D + Γ1 + Γ2) � Aut(Z;DZ + F )

by the same argument as above. For the toric surface (Z,DZ), it is well
known that Aut(Z;DZ) is isomorphic to the group of C-rational points
of the open torus Z \DZ , which is isomorphic to (C�)2. Now, the toric
morphism π̄ induces a projection

(C�)2 � Aut(Z;DZ) → Aut(T ;P1 + P2) � C�

and Aut(Z;DZ + F ) is considered as the preimage of Aut(T ;P1 + P2 +
P3) = {idT } for the point P3 = π̄(F ). Hence, Aut(Z;DZ + F ) � C�,
and consequently, Aut(X;D) � C�. Q.E.D.

Lemma 6.12. For a pseudo-toric surface (X,D) of defect one, the
complement X \D is an affine surface with the coordinate ring isomor-
phic to

C[x, s, t, t−1]/(sx− (t− 1)k+1)

for some k ≥ 0. Moreover, the following hold :

(1) Let f : (Y,DY ) → (X,D) be the toroidal blowing up in Defini-
tion 6.7 and let g : Y → Z be the contraction morphism of Γ1.

We set D�
Z := g∗(DY −C1) for the irreducible component C1 of

DY intersecting Γ1. Then, the morphism X \D � Y \DY →
Z \D�

Z of affine surfaces induced by g ◦ f−1 is associated with
the natural injective ring homomorphism

C[s, t, t−1] → C[x, s, t, t−1]/(sx− (t− 1)k).
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In particular, the morphism h in Lemma 6.6 is associated with
the natural injective ring homomorphism

C[t, t−1] → C[x, s, t, t−1]/(sx− (t− 1)k).

(2) The action of θ ∈ C� � Aut(X;D) onX \D in Proposition 6.11
is given by (x, s, t) 
→ (θx, θ−1s, t).

Proof. We may assume that (Y,DY ) = (X,D) and f = idX . Thus,
there is a P1-fibration π : X → T � P1 such that D = C1+C2+F1+F2

for two sections C1 and C2 of π with C1 ∩ C2 = ∅ and for two fibers
F1 = π−1(P1) and F2 = π−1(P2). For the reducible fiber Γ1+Γ2 outside
F1 ∪ F2, we may assume that Ci is the unique irreducible component
meeting Γi for i = 1, 2. For the toric surface (Z,DZ), the coordinate
ring of Z \ DZ is written as C[s±1, t±1], where the principal divisors
div(s) and div(t) on Z are expressed as

div(s) = g(C1)− g(C2) and div(t) = g∗(F1)− g∗(F2).

In particular, t is the pullback of a coordinate function of T \{P1, P2} �
Gm. The open subset Z \D�

Z is also affine and its coordinate ring A is
isomorphic to C[s, t±1]. We may assume that g(Γ2) is the fiber over
the point: t = 1. Then, the contraction morphism g : X → Z of Γ1

is expressed as the blowing up along an ideal (s, (t − 1)k+1) for some
k ≥ 0 (cf. Lemma 4.25). Thus, X \ D is affine and its coordinate ring
R is isomorphic to the degree zero part of the homogeneous coordinate
ring

A[X, Y±1]/(sX− (t− 1)k+1Y),

where X, Y are of degree one, and s, t are of degree zero. By setting
x = X/Y, we have

R � C[x, s, t±1]/(sx− (t− 1)k+1).

The assertions (1) and (2) follow from this description and from the
proof of Proposition 6.11. Q.E.D.

Proposition 6.13. Let (X,D) be a pseudo-toric surface of defect
one and let μ : M → X be the minimal resolution of singularities with
DM = μ−1(D).

(1) The divisor DM is normal crossing, and

KM +DM ∼ 0 and q̄(M \DM ) = 1

for the logarithmic irregularity q̄ (cf. [17], [19]).
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(2) For the morphism h in Lemma 6.6, the composition

h ◦ (μ|M\DM
) : M \DM → X \D → T \ {P1, P2} � Gm

is isomorphic to the quasi-Albanese map of M \DM (cf. [16],
[19]).

Proof. By Lemma 6.3(6), (M,DM ) is also a pseudo-toric surface.
In particular, DM is a normal crossing anti-canonical divisor, since M
is non-singular. Moreover, μ induces an isomorphism O(X \ D)� �
O(M \ DM )�. Since q(M) = 0, the equality q̄(M \ DM ) = 1 and the
assertion (2) are derived from Proposition 2.26 and Lemma 6.6. Q.E.D.

Finally in Section 6.2, we shall prove Theorem 1.6.

Proof of Theorem 1.6. The assertions (1) and (2) have been proved
in Proposition 6.11 and Lemma 6.12, respectively. The assertion (3)
follows from Proposition 6.13. Q.E.D.

§7. Half-toric surfaces

We introduce the notion of half-toric surface in Section 7.1 and study
fundamental properties. In Section 7.2, we introduce the notion of H-
surface, which is regarded as an NC-minimal completion of an open
surface of type H[−1, 0,−1] in the sense of Fujita [12] (cf. Remark 7.14).
The H-surface is unique up to isomorphism and it is useful to describe
the structure of half-toric surfaces. We have an explicit description of
the involution of the characteristic double-cover of a half-toric surface
in Section 7.3. Section 7.4 is devoted to prove Theorem 1.7.

7.1. Definition of half-toric surface

Definition 7.1. Let (X,D) be a pair of a normal projective surface
X and a reduced divisorD. It is called a half-toric surface if the following
conditions are satisfied:

(i) 2(KX +D) ∼ 0 but KX +D �∼ 0;
(ii) There is a double-cover τ : V → X étale in codimension one

such that V is a toric surface withDV := τ−1(D) as the bound-
ary divisor.

Lemma 7.2. Let (X,D) and τ : V → X be as in Definition 7.1.

(1) The pair (X,D) is log-canonical and KV +DV = τ∗(KX +D).
(2) The divisor D is big and is a linear chain of rational curves.
(3) The open subset X \D is non-singular and affine.
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(4) Let E1 and E2 be end components of D and set Σi = Ei ∩
(SingX\SingD) for i = 1, 2. Then, τ is étale over X\(Σ1∪Σ2)
and one of the cases (a) and (b) of Proposition 4.18 occurs for
each Σi.

(5) For any isomorphism σ : OX(2(KX +D))

−→ OX , one has an

isomorphism

V � V (OX(KX +D), σ)

over X (cf. Definition 4.9), and an isomorphism η : OV (KV +

DV )

−→ OV such that η⊗2 = τ∗(σ) via the canonical isomor-

phism τ∗OX(2(KX +D)) � OV (2(KV +DV )).

Proof. Since τ is étale in codimension one, (1) is a consequence of
Corollary 3.20. The divisor D is big and connected, since so is DV =
τ−1(D). Hence, D is either a cyclic chain of rational curves or a linear
chain of rational curves by Lemma 4.5. If D is a cyclic chain, then
KX +D ∼ 0 by Lemma 4.7; this is a contradiction. Thus, D is a linear
chain of rational curves, and this proves (2). The affineness of X \ D
follows from that of V \DV by Chevalley’s theorem (cf. EGA II, 6.7.1).
We shall prove the rest of (3) assuming (5). If P ∈ SingX \D, then P
is an A1-singular point of X, since τ is étale in codimension one. Then,
KX +D is Cartier at P , and it implies that V (OX(KX +D), σ) → X
is étale over P by Remark 4.15(4). This is a contradiction. Thus, (3) is
proved by assuming (5). The assertion (4) is a consequence of (5) and
Proposition 4.18. Hence, it remains to prove (5).

By Lemma 4.14, V � V (L, σ) for a reflexive sheaf L of rank one
on X and a homomorphism σ : L⊗2 → OX satisfying the conditions (i)
and (ii) of Lemma 4.14. Thus, in order to prove (5), it suffices to show
that L � OX(KX + D) by Remark 4.15(3), where the existence of η
follows from Remark 4.15(1). By (1) and by KV +DV ∼ 0, we have an
isomorphism

τ∗OV � τ∗OV (KV +DV ) � (τ∗OV ⊗OX OX(KX +D))
∨∨

.

Since π∗OV � OX ⊕ L, it induces

OX ⊕ L � OX(KX +D)⊕ (L ⊗OX(KX +D))∨∨.

On the other hand, H0(X,OX(KX+D)) = 0 by Definition 7.1(i). Hence,

HomOX (OX ,OX(KX +D)) = HomOX (L, (L ⊗OX(KX +D))∨∨) = 0.

Therefore, L � OX(KX +D), and we have proved (5). Q.E.D.
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Lemma 7.3. Let (X,D) be a log-canonical pair of a normal pro-
jective surface X and a reduced divisor D such that D is a big re-
ducible linear chain of rational curves and 2(KX + D) ∼ 0. Let V =
V (OX(KX +D), σ) → X be the double-cover étale in codimension one

associated with an isomorphism σ : OX(2(KX + D))

−→ OX . Then,

(V,DV ) is a pseudo-toric surface for DV = τ−1(D). Here, (V,DV ) is a
toric surface if and only if (X,D) is a half-toric surface.

Proof. By Proposition 4.18, we see that (V,DV ) is log-canonical,
KV +DV ∼ 0, andDV is a reducible cyclic chain of rational curves. Here,
DV = τ−1(D) is big. Thus, X is a rational surface with only rational
singularities by Lemma 4.7. Therefore, (V,DV ) is a pseudo-toric surface
(cf. Definition 6.1). The last assertion follows from Definition 7.1 and
Lemma 7.2(5). Q.E.D.

Definition. For a half-toric surface (X,D), by Lemma 7.2(5), the
double-cover τ : V → X in Definition 7.1 is unique up to isomorphism
over X. The double-cover τ or the pair (V, τ−1(D)) is called a charac-
teristic double-cover of (X,D).

Lemma 7.4. For a half-toric surface (X,D), the following hold :

(1) Let f : Y → X be a birational morphism from another nor-
mal projective surface Y such that (Y,DY ) is log-canonical and
2(KY +DY ) ∼ 0 for DY = f−1(D). Then, (Y,DY ) is also a
half-toric surface.

(2) Let f : Y → X be a toroidal blowing up with respect to (X,D).
Then, (Y,DY ) is also a half-toric surface for DY = f−1(D).

(3) Let g : X → X be a birational morphism of normal Moishe-
zon surface X. If g-exceptional locus is contained in D, then
(X,D) is also a half-toric surface for D = g∗(D).

Proof. Let τ : V → X be a characteristic double cover of (X,D).
We fix an isomorphism σ : OX(2(KX+D)) � OX . Then, V is isomorphic
to V (OX(KX +D), σ) by Lemma 7.2(5).

(1) and (2): It suffices to prove (1), since (2) is a special case of
(1). Now 2(KY + DY ) = f∗(2(KX + D)) ∼ 0, but KY + DY �∼ 0,
since f∗(KY + DY ) ∼ KX + D �∼ 0. For the induced isomorphism
f∗(σ) : OY (2(KY +DY )) � OY , we have a double-cover

λ : W := V (OY (KY +DY ), f
∗(σ)) → Y

étale in codimension one by Lemma 4.14. Here, (W,DW ) is log-canonical
for DW := λ−1(DY ) by Corollary 3.20, and KW + DW ∼ 0 by Re-
mark 4.15(1). Since KY +DY is f -numerically trivial, f∗OY (KY +DY )
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Fig. 3. Dual graph of DM in Proposition 7.5

is a reflexive sheaf on X, and hence, is isomorphic to OX(KX + D).
Thus, we have an isomorphism

τ∗OV = OX ⊕OX(KX +D) → f∗λ∗OW = f∗(OY ⊕OY (KY +DY ))

of OX -algebras, and it induces a morphism h : W → V such that f ◦λ =
τ ◦ h. Then, h is a toroidal blowing up with respect to (V,DV ), since
DW = h−1(D) and KW +DW = h∗(KV +DV ) ∼ 0. Therefore, (W,DW )
is a toric surface by Corollary 4.22, and consequently, (Y,DY ) is a half-
toric surface.

(3): Now 2(KX + D) = g∗(2(KX + D)) ∼ 0, and KX + D =

g∗(KX + D). Hence, KX + D �∼ 0. Let V → V → X be the Stein

factorization of τ ◦ g. Then, (V ,DV ) is a toric surface for the image

DV of DV by Lemma 3.9, since the exceptional locus of V → V is con-

tained in DV = τ−1(D). The surface X is projective, since the induced
morphism τ̄ : V → X is finite and V is projective. Moreover, τ̄ is étale
in codimension one and τ−1(D) = DV . Therefore, (X,D) is also a
half-toric surface. Q.E.D.

Proposition 7.5. Let (X,D) be a half-toric surface and let μ : M →
X be the minimal resolution of singularities. Then, DM = μ−1(D) is a
simple normal crossing divisor consisting of rational curves and its dual
graph is expressed as in Figure 3. Here, the four end components Θ1,
. . .Θ4 are (−2)-curves satisfying

2(KM +DM ) ∼
∑4

i=1
Θi.

Let g : M → M be the contraction morphism of these four end compo-
nents. Then, μ = μ̄ ◦ g for a birational morphism μ̄ : M → X, and
(M,DM ) is a half-toric surface for DM = g∗(DM ) = μ̄−1(D).
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Proof. By Lemma 7.2, μ is an isomorphism on X \ D and is a
toroidal blowing up with respect to (X,D) at least over an open neigh-
borhood of SingX ∩ SingD. The set of singular points of X lying on
D\SingD is Σ1∪Σ2 for the sets Σ1 and Σ2 in Lemma 7.2(4) and the sin-
gularities are described as in Proposition 4.18. Therefore, DM = μ−1(D)
is a simple normal crossing divisor consisting of rational curves with the
dual graph above. Here, the end components Θ1, . . . , Θ4 are (−2)-curves
lying over Σ1 ∪Σ2. Since μ is a toroidal blowing up over X \ (Σ1 ∪Σ2),
we can write

2(KM +DM )− μ∗(2(KX +D)) =
∑4

i=1
aiΘi +

∑
bjΓj

for the irreducible components Γj in μ−1(Σ1 ∪ Σ2) not contained in

Θ :=
∑4

i=1 Θi and for some integers ai and bj . By the information of
the dual graph of DM , we have

(KM +DM )Θi = −1 and (KM +DM )Γj =

{
1, if Γj ∩Θ �= ∅,
0, if Γj ∩Θ = ∅.

for any 1 ≤ i ≤ 4 and j. This implies that ai = 1 for any i and bj = 0
for any j, and hence, we have the required linear equivalence relation on∑4

i=1 Θi.
Since Θ is μ-exceptional, μ factors through the contraction mor-

phism g : M → M of Θ. Let μ̄ be the induced birational morphism
M → X and set DM := g∗(DM ) = μ̄−1(D). Then, DM is a lin-

ear chain of rational curves, (M,DM ) is log-canonical, and 2(KM +

DM ) = μ̄∗(2(KX + D)) ∼ 0. Thus, (M,DM ) is a half-toric surface by
Lemma 7.4(1). Q.E.D.

Proposition 7.6. In the situation of Lemma 7.3, if δ(X,D) = 1,
then (X,D) is a half-toric surface.

Proof. By Lemma 4.23, there exist a toroidal blowing up f : Y →
X with respect to (X,D) and a P1-fibration π : Y → T � P1 such
that DY = f−1(D) contains two distinct fibers of π. Here, (Y,DY )
satisfies the condition of Lemma 7.3, and δ(Y,DY ) = δ(X,D) = 1 by
Lemma 2.27. By Lemma 7.4(3), we may replace X with Y . Then,
(X,D) and π : X → T are as in the situation of Section 5, and we have
the case (B) in Lemma 5.2. Since δ(X,D) = 1 and 2(KX +D) ∼ 0, the
pair (X,D) is a half-toric surface by Proposition 5.9. Q.E.D.

7.2. An H-surface and a half-toric surface

Definition 7.7. Let S be a non-singular projective rational surface
and let DS be a reduced simple normal crossing divisor. If DS has an
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Fig. 4. Dual graph of DS in Definition 7.7

irreducible decomposition

DS = C + E1 + E2 +Θ1,1 +Θ1,2 +Θ2,1 +Θ2,2

with the dual graph in Figure 4 and if the following four conditions are
satisfied, then (S,DS) is called a pre H-surface:

(i) C is a non-singular rational curve;
(ii) E1 and E2 are (−1)-curves;
(iii) Θi,j are all (−2)-curves for any 1 ≤ i, j ≤ 2;
(iv) There is no (−1)-curve in S \DS .

If C2 = 0 holds in addition, then (S,DS) is called an H-surface.

Lemma 7.8. For the pre H-surface (S,DS) above, there is a linear
equivalence relation

(VII-1) 2(KS +DS) ∼ Θ :=
∑

1≤i,j≤2
Θi,j .

For i = 1, 2, we set

Fi := 2Ei +Θi,1 +Θi,2.

Then, there exists a P1-fibration π : S → T � P1 such that

• Fi is a scheme theoretic fiber of π for any i = 1, 2,
• C is a double-section of π, and
• the double-cover C → T is branched at two points P1 := π(F1)

and P2 := π(F2).

If π is smooth outside F1 ∪ F2, then (S,DS) is an H-surface.

Proof. By the information of the dual graph of DS , for each i = 1,
2, we have a P1-fibration S → T � P1 such that Fi is the scheme-
theoretic fiber. Here, we have the common fibration π, since F1∩F2 = ∅
and CF1 = CF2 = 2. In particular, π|C : C → T is a double-cover
branched at {P1, P2}, since C ∩ Fi is a point as a set.
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Next, we shall show (VII-1). We set

L := KS + C + E1 + E2 +
1

2
Θ = KS + C +

1

2
(F1 + F2).

Then, (VII-1) is equivalent to the numerical equivalence relation L ∼∼∼ 0,
since S is rational. We have LG = 0 for any irreducible component G of
DS by a direct calculation from the information of the dual graph of DS .
Since DS is big, if L is nef, then L ∼∼∼ 0 by the Hodge index theorem.
Thus, for the proof of (VII-1), it is enough to derive a contradiction
assuming that L is not nef. In this situation, there is an extremal curve
Γ with LΓ < 0 by the cone theorem (cf. Theorem 2.19). Note that
ρ(X) > 2, since we can contract E1 + Θ1,1 to a non-singular point.
Thus, Γ is a (−1)-curve satisfying

(C + E1 + E2) ∩ Γ = ∅ and ΘΓ ≤ 1.

Here, if ΘΓ > 0, then ΘF1 = ΘF2 > 0, and it implies that ΘΓ ≥
2. Therefore, Θ ∩ Γ = ∅ and this contradicts the condition (iv) of
Definition 7.7. Thus, (VII-1) has been proved.

The last assertion is shown as follows. Suppose that π is smooth
outside F1 ∪ F2. It is enough to prove: C2 = 0. Let g : S → Z be
the contraction morphism of E1 +Θ1,1 +E2 +Θ2,1. Then, the induced
P1-fibration πZ : Z → T is smooth. Hence, Z is isomorphic to the Hirze-
bruch surface Fn = P(O ⊕ O(n)) for some n ≥ 0. Here, the image
CZ := g(C) is isomorphic to C over T satisfying C2

Z = C2 + 4, and the
image Fi,Z := g(Θi,2) is the fiber over Pi for i = 1, 2. Hence,

KZ + CZ + FZ ∼ 0

for a fiber FZ of πZ by (VII-1). This implies that C2
Z = 4, since K2

Z = 8
and KZFZ = −2. Therefore, C2 = 0, and (S,DS) is an H-surface.

Q.E.D.

We can construct an H-surface from a plane conic with two tangent
lines as follows.

Example 7.9. Let C0 be a non-singular plane conic, and let L1 and
L2 be two tangent lines to C0. Let Q0 be the point L1 ∩ L2, and let Qi

be the point C0 ∩ Li for i = 1, 2. Let f : S1 → P2 be the blowing up at
the three points Qi and set Bi = f−1(Qi) for i = 1, 2. Let C1, L

′
1, and

L′
2 be the proper transforms of C0, L1, and L2 in S1, respectively. Then,

L′
i and Bi are (−1)-curves intersecting at a point Q′

i, and C1 intersects
L′
i + Bi at Q

′
i, for each i = 1, 2. Moreover, (L′

1 + B1) ∩ (L′
2 + B′) = ∅

and C2
1 = 2. Let g : S → S1 be the blowing up at {Q′

1, Q
′
2} and let DS
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be the union of the proper transform C of C1, the exceptional divisor
Ei = g−1(Q′

i), the proper transform Θi,1 of L
′
i, and the proper transform

Θi,2 of Bi for i = 1, 2. Then, (S,DS) is an H-surface, since DS have the
same dual graph as in Definition 7.7, S \DS is affine, and C2 = 0.

We can also construct an H-surface from a certain double-section of
a Hirzebruch surface, as follows.

Example 7.10. Let p : Fn → P1 be the ruling of the Hirzebruch
surface Fn = P(O ⊕ O(n)) and let C0 be a non-singular curve linearly
equivalent to −KFn − F for a fiber F of p. Such C0 exists only when
n ≤ 1, and in this case, we have C0 � P1 and C2

0 = 4. Then, there
exist exactly two fibers L1 and L2 which intersect C0 tangentially. Let
f : S1 → Fn be the blowing up at the two points C0 ∩ (L1 ∪ L2). Note
that S1 is isomorphic to the surface S1 in Example 7.9 when n = 1. Let
Bi be the exceptional curve f−1(C0 ∩Li) for i = 1, 2. Then, the proper
transform L′

i of Li is a (−1)-curve intersecting Bi transversely at a point
Q′

i, and the proper transform C1 of C0 intersects L
′
i+Bi at Q

′
i, for i = 1,

2. Here, C2
1 = 2. Let g : S → S1 be the blowing up at {Q′

1, Q
′
2}. Then,

(S,DS) is an H-surface for the union DS of the proper transform C of
C1, the g-exceptional divisor Ei = g−1(Q′

i), the proper transform Θi,1

of L′
i, and the proper transform Θi,2 of Bi, for i = 1, 2. In fact, DS has

the same dual graph as in Definition 7.7, S \DS is affine, and C2 = 0.

Lemma 7.11. Every H-surface (S,DS) is isomorphic to the H-
surface obtained in Example 7.9. In particular, S \ DS is affine, the
morphism π in Lemma 7.8 is smooth outside F1 ∪ F2, and moreover, π
induces a Gm-fiber bundle S \DS → T \ {P1, P2}.

Proof. Since C2 = 0 and C � P1, there is a fibration � : S → E �
P1 such that C is a smooth fiber of �. Here, E1 and E2 are sections of
π and the four (−2)-curves Θi,j are all contained in fibers of �, since
E1C = E2C = 1 and Θi,jC = 0. We can take an irreducible component
Δ1 of the fiber of � containing Θ1,1 such that Θ1,1 ∩ Δ1 �= ∅. We set
d1 := Θ1,1Δ1 > 0. Then, d1 = F1Δ1 = F2Δ1, and

0 = (KS + C +
1

2
(F1 + F2))Δ1 = KSΔ1 + d1

by (VII-1). Since Δ2
1 < 0, we see that Δ1 is a (−1)-curve and d1 = 1.

Moreover, F2Δ1 = 1 implies that E2 ∩Δ1 = ∅ and (Θ2,1 + Θ2,2)Δ1 =
1. By exchanging Θ2,1 and Θ2,2 if necessarily, we may assume that
Θ2,1Δ1 = 1 and Θ2,2 ∩ Δ1 = ∅. Then, H1 := 2Δ1 + Θ1,1 + Θ2,1 is a
scheme-theoretic fiber of �.
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Fig. 5. Dual graph of DS +Δ1 +Δ2

Let h : S → Z be the contraction morphism of Δ1 + E1 + Θ1,2 +
E2 + Θ2,2. We set Li := h∗(Θi,1) for i = 1, 2, and C0 := h∗(C). Then,
Z is also a non-singular surface, and C0, L1, and L2 are non-singular
rational curves such that

L2
1 = L2

2 = L1L2 = 1, C2
0 = 4, C0L1 = C0L2 = 2,

L1 ∼ L2 and 2(KZ + C0) + L1 + L2 ∼ 0.

Therefore, K2
Z = 9, and as a consequence, Z � P2, C0 is a conic, and

L1 and L2 are tangent lines of C0. Hence, (S,DS) is obtained as in
Example 7.9. We know that S \ DS is affine by Example 7.9. By the
construction of (S,DS) in Example 7.10, we see that π is smooth outside
F1 ∪ F2 and that the morphism S \DS → T \ {P1, P2} induced by π is
a Gm-fiber bundle. Q.E.D.

Corollary 7.12. For an H-surface (S,DS), there exist (−1)-curves
Δ1 and Δ2 on S such that

(1) Δ1 and Δ2 are sections of π,
(2) (Δ1 +Δ2) ∩ (E1 + E2 + C) = ∅, and
(3) (S,D�

S) is a toric surface for D�
S := DS − C +Δ1 +Δ2.

In particular, DS +Δ1 +Δ2 = D�
S + C has the dual graph in Figure 5

after interchanging Θ2,1 and Θ2,2 if necessarily.

Proof. By the proof of Lemma 7.11, after replacing Θ2,1 and Θ2,2

if necessary, we have (−1)-curves Δ1 and Δ2 on S such that Δi is a
section of π and Hi = 2Δi +Θi,1 +Θi,2 is a fiber of � for i = 1, 2. Let
k : S → Y be the contraction morphism of Δ1+Θ2,1+Δ2+Θ2,2. Then,
ρ(Y ) = ρ(S) − 4 = 2, and as a consequence, the induced morphism

Y → E � P1 is a P1-bundle. Let D�
Y be the image of D�

S . Then,

D�
S = k−1(D�

Y ) and (Y,D�
Y ) is a toric surface. Since k is a toroidal
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blowing up with respect to (Y,D�
Y ), by Corollary 4.22, (S,D�

S) is a toric
surface. Q.E.D.

Corollary 7.13. Let (S,DS) be an H-surface. Then,

CL(S \DS) � Z/2Z,

and the Gm-bundle S \DS → T \ {P1, P2} in Lemma 7.11 is isomorphic
to the quasi-Albanese map of S \DS. In particular,

O(S \DS)
� � C� × Z.

Proof. The class group CL(S \DS) is the cokernel of the class map

c := clZDS
: F(DS) → CL(S)

(cf. Definition 2.24). Since (S,D�
S) is toric for the divisor D�

S of Corol-
lary 7.12, CL(S) � Pic(S) � Z⊕6 is generated by the linear equivalence

classes of the irreducible components of D�
S . On the other hand, the im-

age of c is generated by the linear equivalence classes of the irreducible
components of DS . There is no divisor B supported on DS such that
BF = 1 for a fiber F of π : S → T . But Δ1F = 1 for the divisor Δ1 of
Corollary 7.12. Thus, CL(S\DS) �= 0. Since C ∼ H1 = 2Δ1+Θ1,1+Θ2,1

as in the proof of Lemma 7.11, we have CL(S \DS) � Z/2Z.
The kernel of c consists of principal divisors B supported on DS .

This B is a multiple of F1−F2. In fact, BF1 = 0 implies that SuppB ⊂
DS − C = F1 ∪ F2, and BC = 0 implies that Supp(B −m(F1 − F2)) ⊂
Θ =

∑
Θi,j for some m ∈ Z. Here, B = m(F1 −F2), since Θ is negative

definite. By the proof of Lemma 2.25, we have a commutative diagram

O(T )� −−−−→ O(T \ {P1, P2})� −−−−→ F(P1 + P2)
clZP1+P2−−−−−→ CL(T )

=

⏐⏐� φ

⏐⏐� π∗
⏐⏐� ⏐⏐�π∗

O(S)� −−−−→ O(S \DS)
� −−−−→ F(DS)

clZDS−−−−→ CL(S)

of exact sequences related to class maps. Since π∗(Pi) = Fi for i = 1, 2,
the homomorphism

Ker(clZP1+P2
) → Ker(clZDS

)

induced by π∗ is an isomorphism by the observation above on B. Hence,
the second vertical homomorphism φ in the diagram is an isomorphism.
Note that φ is induced from the Gm-fiber bundle p : S\DS → T \{P1, P2}.
Therefore, p is isomorphic to the quasi-Albanese map of S \ DS by
Proposition 2.26, since q(S) = 0. Q.E.D.
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Remark 7.14. By Lemma 7.11, we see that, for an H-surface (S,DS),
the open subset S \ DS is an open surface of type H[−1, 0,−1] in the
sense of Fujita in [12, (8.19)] and (S,DS) is an NC-minimal completion
of S \DS in his sense (cf. [12, Th. (8.5), (8.9), (8.18), Table (8.64)]).

Proposition 7.15. For an H-surface (S,DS), let S → S be the
contraction morphism of the four end components Θi,j of DS. Then,

(S,DS) is a half-toric surface for the image DS of DS, and the char-

acteristic double-cover of (S,DS) is isomorphic to P1 × P1. Moreover,

δ(S,DS) = 1 holds.

Proof. Let τ : V = V (OS(−(KS+DS)), σ) → S (cf. Definition 4.9)
be the double-cover associated with a natural homomorphism

σ : OS(−(KS +DS))
⊗2 � OS(−Θ) ↪→ OS

induced by (VII-1). Here, V is non-singular and the branch locus of τ
is Θ. Then, we have the following properties:

• Θ̂i,j := τ−1(Θi,j) is a (−1)-curve for any i, j.

• Êi := τ−1(Ei) is a (−2)-curve, and is a double-cover of Ei for
i = 1, 2.

• τ−1(C) is a disjoint union Ĉ1 ∪ Ĉ2 of two copies of C.

Let V → V be the contraction morphism of the four (−1)-curves Θ̂i,j .

Then, the induced morphism τ̄ : V → S is a double-cover étale in codi-
mension one. We set Gi,1 := τ∗(Êi) and Gi,2 := τ∗(Ĉi) for i = 1, 2.
Then, Gi,j � P1 and

Gi,jGi′,j′ =

{
1, if i = i′;
0, if i �= i′,

for any i, i′, j, and j′. Thus, DV :=
⋃

1≤i,j≤2 Gi,j is a cyclic chain
of four rational curves with self-intersection number zero. Note that
DV = τ̄−1(DS) and V \DV is affine, since V \DV � τ−1(S \DS) and

S \DS is affine. Therefore, V � P1×P1, and DV is a union of two fibers

of the first projection V → P1 and of two fibers of the second projection
V → P1. In particular, (V ,DV ) is a toric surface, and consequently,

(S,DS) is a half-toric surface. The equality δ(S,DS) = 1 is derived

from ρ(S) = ρ(S)− 4 = 2 and n(DS) = 3. Q.E.D.

Lemma 7.16. Let (X,D) be a half-toric surface with a P1-fibration
π : X → T � P1 such that δ(X,D) = 1 and that D contains two distinct
fibers of π. Let μ : M → X be the minimal resolution of singularities
and set DM := μ−1(D). Then, for the H-surface (S,DS) above, there
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is a toroidal blowing up f : M → S with respect to (S,DS) such that
DM = f−1(DS).

Proof. By Lemma 5.2 and Propositions 5.7 and 5.9, D is a linear
chain of rational curves expressed as C0+F1+F2 for a double-section C0

and two fibers F1 and F2 of π such that π is smooth outside F1∪F2. By
the proof of Proposition 7.5, DM = μ−1(D) is a simple normal crossing
divisor expressed as CM + F1,M + F2,M for the proper transform CM

of C0 in M and two fibers F1,M and F2,M of μ ◦ π : M → T . Here, for
i = 1, 2, the fiber Fi,M is written as Gi + Θi,1 + Θi,2 for a linear chain
Gi of rational curves and two (−2)-curves Θi,1 and Θi,2 such that, for
an end component Gi,0 of Gi, Θi,j ∩ Gi = Θi,j ∩ Gi,0 for any j = 1,
2. We have 2(KM + DM ) ∼ Θ :=

∑
i,j Θi,j by Proposition 7.5. Let

f : M → N be the contraction morphism of G1 + G2 − (G1,0 + G2,0).
Then, f is a succession of contractions of (−1)-curves. For, if Gi,0 is
a (−1)-curve, then Gi = Gi,0, since Gi,0 + Θi,1 + Θi,2 is not negative
definite. Hence, N is non-singular, and DN = f∗(DM ) has the same
dual graph as that of DS in Definition 7.7. Thus, (N,DN ) is a pre H-
surface. We set Fi,N := f∗(Fi,M ) for i = 1, 2. Then, the P1-fibration
πN : N → T induced from π : X → T is smooth outside F1,N ∪ F2,N by
construction. On the other hand, πN is isomorphic to the fibration π
in Lemma 7.8 defined for the pre H-surface (N,DN ), where F1,N ∪F2,N

corresponds to F1∪F2 in Lemma 7.8. Therefore, (N,DN ) is an H-surface
by Lemma 7.8. Q.E.D.

7.3. On certain involutions of toric surfaces

We shall show that a half-toric surface is characterized as the quo-
tient surface of a projective toric surface by a special involution.

Lemma 7.17. Let ι be an involution of the two-dimensional alge-
braic torus T := SpecC[t±1

1 , t±1
2 ] such that

(i) ι∗η = −η for the two-form η = (t−1
1 dt1) ∧ (t−1

2 dt2), and
(ii) the fixed point set of ι contains no prime divisor on T.

Then, ι is given by

ι∗(t1) = −t1 and ι∗(t2) = t−1
2

after changing the coordinate (t1, t2) of T. In particular, ι has no fixed
point.

Proof. The induced involution ι∗ : C[t±1
1 , t±1

2 ] → C[t±1
1 , t±1

2 ] is
given by

(VII-2) ι∗(t1) = λ1t
a1
1 ta2

2 and ι∗(t2) = λ2t
b1
1 tb22
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for suitable λ1, λ2 ∈ C� = C \ {0} and suitable integers a1, a2, b1, b2
such that the matrix

A =

(
a1 a2
b1 b2

)
has order at most two and

(VII-3) λ−1
1 = λa1

1 λa2
2 and λ−1

2 = λb1
1 λb2

2 .

Then, detA = −1 by (i). In particular, A has eigenvalues 1 and −1. For
a C-scheme Z, let T(Z) denote the set HomSpecC(Z,T) of the morphisms
from Z to the two-dimensional algebraic torus T. Then, T(Z) is an
abelian group. We write T(C) for T(SpecC). For an element u ∈ T(Z),
let σu denote the (left) action of u on T×Z = T×SpecCZ over Z. Then,

σu ◦ σv = σu·v

for any u, v ∈ T(Z), where · denotes the multiplication in T(Z). For
u ∈ T(C), the σu is an automorphism of T, and if (t1(u), t2(u)) =
(u1, u2) ∈ (C�)2, the associated ring homomorphism σ∗

u : C[t
±1
1 , t±1

2 ] →
C[t±1

1 , t±1
2 ] is given by

σ∗
u(t1) = u1t1, and σ∗

u(t2) = u2t2.

Let ιA be an involution of T defined by

ι∗A(t1) = ta1
1 ta2

2 , and ι∗A(t2) = tb11 tb22 .

Then, ιA is equivariant with respect to the action of T, i.e.,

ιA(u · v) = ιA(u) · ιA(v)

for any u, v ∈ T(Z) for any C-scheme Z. In particular,

ιA ◦ σν = σιA(ν) ◦ ιA and ιA ◦ σιA(ν) = σν ◦ ιA

for any ν ∈ T(C). The relations among ι, A, and (λ1, λ2) above (cf.
(VII-2) and (VII-3)) are translated as

ι = ιA ◦ σλ and ιA(λ) = λ−1,

where λ is an element of T(C) defined by (λ1, λ2) = (t1(λ), t2(λ)). In
particular, the action of ι on T(C) is given by

ν 
→ ι(ν) = ιA(λ · ν) = ιA(λ) · ιA(ν) = λ−1 · ιA(ν).
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Therefore, the fixed point set Fix(ι) of ι is the set of element ν ∈ T(C)
satisfying

(VII-4) λ = ιA(ν) · ν−1.

We shall show that Fix(ι) = ∅. Take an eigenvector t(p, q) of A
with eigenvalue 1 such that p and q are integers, we define a morphism
f : C := SpecC[s±1] → T by

f∗(t1) = sp and f∗(t2) = sq.

Then, f is a morphism of group schemes, and ιA ◦ f = f by the choice
of (p, q). If ν ∈ Fix(ι), then the image of σν ◦ f : C → T is contained in
Fix(ι) by (VII-4). Indeed, we have:

ι ◦ (σν ◦ f) = ιA ◦ σλ·ν ◦ f = ιA ◦ σιA(ν) ◦ f = σν ◦ ιA ◦ f = σν ◦ f.

This is a contradiction to (ii). Hence, Fix(ι) = ∅.
Next, we shall show that

P−1AP =

(
1 0
0 −1

)
for a matrix P ∈ SL(2,Z) by applying Lemma 7.18 below. Assume
the contrary. Then, A �≡ I mod 2 by Lemma 7.18(2) for the identity
matrix I. By Lemma 7.18(1) applied to the multiplicative abelian group
L = C�, we see that the image of the homomorphism T(C) → T(C)
given by ν 
→ ν−1ιA(ν) is just the set of elements λ′ of T(C) such that
ιA(λ

′) = λ′−1. Therefore, we have an element ν ∈ T(C) satisfying
λ = ν−1ιA(ν), which means that Fix(ι) �= ∅ by (VII-4). This is a
contradiction.

Therefore, by changing the coordinates (t1, t2), we may assume that

A =

(
1 0
0 −1

)
.

Then, λ2
1 = 1 by (VII-3). If λ1 = 1, then the locus {t2 = c} ⊂ T

for a constant c with c2 = λ2 is contained in Fix(ι) by (VII-2). Thus,
λ1 = −1. By changing t2 again, we may assume that the equalities
(VII-2) determining the action of ι is written as

ι∗(t1) = −t1 and ι∗(t2) = t−1
2 .

Thus, we are done. Q.E.D.

The lemma below is used in the proof of Lemma 7.17 above.
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Lemma 7.18. Let A be an integral 2× 2 matrix having eigenvalues
1 and −1. For the 2× 2 identity matrix I, the following hold :

(1) For an abelian group L, let (A ± I)L be the endomorphism
L⊕2 → L⊕2 induced from A± I : Z⊕2 → Z⊕2 by taking tensor
product with L over Z. If A �≡ I mod 2, then, Ker(A − I)L =
Im(A+I)L, where Ker and Im denote the kernel and the image,
respectively.

(2) If A ≡ I mod 2, then

P−1AP =

(
1 0
0 −1

)
for a matrix P ∈ SL(2,Z).

Proof. There is a positive integer e such that Im(A+I) = eKer(A−
I), since A has eigenvalues 1 and −1. Since A + I ≡ 0 mod e and
trace(A) = 0, we have e = 1 or 2. Assume that A �≡ I mod 2. Then
e = 1, and it implies that

0 → Z � Ker(A+ I) → Z⊕2 A+I−−−→ Z⊕2 A−I−−−→ Im(A− I) � Z → 0

is an exact sequence. Since this sequence is split, its tensor product with
L is also an exact sequence for any abelian group L. Thus, Ker(A−I)L =
Im(A+ I)L, and we have proved (1). Let t(p1, p2) (resp.

t(q1, q2)) be an
integral vector generating Ker(A− I) (resp. Ker(A+ I)). Then,

P−1AP =

(
1 0
0 −1

)
for P :=

(
p1 q1
p2 q2

)
.

By replacing (p1, p2) with (−p1,−p2) if necessary, we may assume that
detP > 0. It suffices to prove detP = 1 in case A ≡ I mod 2. Note
that we have e = 2 in this case, since Im(A + I) ⊂ 2Z2. The image of
t(p1, p2) by A+I is t(2p1, 2p2), and it generates Im(A+I) = 2Ker(A−I).
Therefore, t(p1, p2) and

t(q1, q2) generate Z2, and hence, detP = 1, and
we have proved (2). Q.E.D.

Proposition 7.19. Let (V,DV ) be a projective toric surface and let
ι : V → V be an involution such that ι(DV ) = DV . If ι∗η �= η for a
nowhere vanishing section η of OV (KV +DV ) and if the fixed point set
Fix(ι) of ι contains no prime divisor on V \DV , then Fix(ι) is a finite
set contained in D. In particular, (X,D) is a half-toric surface for the
quotient surface X of V by ι and for the image D of DV in X.

Proof. Let U be the open torus V \DV . Then, U � SpecC[t±1
1 , t±2 ],

where the coordinate function ti for i = 1, 2, is regarded as a rational
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function on V which is invertible on U . The restriction of η to U is
expressed as (t−1

1 dt1) ∧ (t−1
2 dt2) or its multiple by a non-zero constant.

Here, ι∗η = −η, since ι is an involution. Then, ι has no fixed point in
U by Lemma 7.17.

It is enough to prove that any irreducible component of DV is not
contained in the fixed point locus Fix(ι) of ι. In fact, if this is true,
then the quotient morphism τ : V → X is étale in codimension one, and
η⊗2 descends to a nowhere vanishing section of OX(2(KX + D)) with
2(KV +DV ) = τ∗(2(KX+D)), since η⊗2 is preserved by ι. Furthermore,
in this situation, KX + D �∼ 0. For, a nowhere vanishing section ζ of
OX(KX+D) induces a nowhere vanishing section τ∗(ζ) ofOV (KV +DV )
which satisfies ι∗(τ∗ζ) = τ∗ζ; this is a contradiction to: τ∗η = −η. This
implies that (X,D) is a half-toric surface. Therefore, we are reduced to
show the non-existence of irreducible components of DV contained in
Fix(ι).

Let Γ be an irreducible component of DV . By the description of the
toric surface V by a fan (cf. Example 3.4), Γ corresponds to a ray R≥0v
in N⊗R, where N is the group of one-parameter subgroups of the torus
U and v is a primitive element of N. Now, N is identified with Z⊕2 in
such a way that (m,n) ∈ Z⊕2 corresponds to a one-parameter subgroup
f : SpecC[s±1] → U defined by

f∗(t1) = sm and f∗(t2) = sn.

Hence, if an element (m,n) of Z2 corresponds to v, then

gcd(m,n) = 1, ordΓ(t1) = m, and ordΓ(t2) = n

(cf. [13, p. 61, Lemma], [25, I, Th. 1’], [43, Prop. 1.6, (v)]), where ordΓ(ϕ)
denotes the order of zeros (or the minus of the order of poles) of a rational
function ϕ along Γ. By Lemma 7.17, we may assume that the restriction
of ι to U corresponds to an automorphism ι∗ of C[t±1

1 , t±1
2 ] given by

ι∗(t1) = −t1 and ι∗(t2) = t−1
2 .

Assume that ι(Γ) = Γ. Then, n = 0 and m = ±1. Consequently,
Γ is an irreducible component of the principal divisor div(t1), and the
restriction t̄2 of t2 to Γ is a non-constant rational function on Γ. We
have ι∗Γ(t̄2) = t̄−1

2 for the induced automorphism ιΓ = ι|Γ : Γ → Γ. This
implies that ιΓ is not the identity morphism, and hence Γ �⊂ Fix(ι).
Therefore, Fix(ι) contains no irreducible component of DV , and we are
done. Q.E.D.
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7.4. The structure of a half-toric surface

By applying results in Sections 7.2 and 7.3, we investigate further
properties on the half-toric surfaces and prove Theorem 1.7. As a corol-
lary of Lemma 7.17, we have:

Proposition 7.20. For a half-toric surface (X,D), the open subset
X\D is a non-singular affine surface with the coordinate ring isomorphic
to

C[x, x−1, y, z]/(x(y2 − 1)− z2).

In particular, the isomorphism class of X\D is independent of the choice
of half-toric surfaces (X,D). The fundamental group π1((X \D)an) of
the associated complex analytic manifold (X \D)an is generated by two
elements a, b with one relation: ab = ba−1. In other words, π1((X \
D)an) � Z�Z, where the normal subgroup Z is regarded as a Z-module
by m · x = (−1)mx.

Proof. The open subset X \D is non-singular and affine by Lemma
7.2(3). This is derived also from Lemma 7.17. It implies that V \
DV → X \ D is a finite étale morphism from an affine surface for the
characteristic double-cover (V,DV ) of (X,D). The coordinate ring R
of X \ D is isomorphic to the ι∗-invariant ring of the coordinate ring
of V \ DV for the Galois involution ι. By Lemma 7.17, for a suitable
coordinate (t1, t2) of V \DV and for a monomial tm1 tn2 , we have

ι∗(tm1 tn2 ) = (−1)mtm1 t−n
2 .

Hence, the invariant ring of C[t±1
1 , t±1

2 ] is generated by

x := t21, x−1 = t−2
1 , y :=

1

2
(t2 + t−1

2 ), z :=
1

2
t1(t2 − t−1

2 ).

By writing t2 and t−1
2 in terms of t1, y, z, we have one relation: xy2 −

z2 = x. Since x(y2 − 1) − z2 is irreducible in C[x, y, z], we have the
description above of R.

Let C2 → (C�)2 be the map defined by (z1, z2) 
→ (e(z1), e(z2)),
where e(z) = exp(2π

√
−1z). This map is a universal covering map of

(V \ DV )
an. We may assume that e(z1) = t1 and e(z2) = t2 for the

coordinate (z1, z2) of C
2 and for the coordinate (t1, t2) above of V \DV .

The fundamental group π1((V \DV )
an) � Z⊕2 acts on C2 by (z1, z2) 
→

(z1 + m, z2 + n) for (m,n) ∈ Z⊕2. The involution ι : V → V lifts to
an automorphism b : C2 → C2 defined as (z1, z2) 
→ (z1 + 1/2,−z2).
Thus, π1((X \ D)an) is isomorphic to the automorphism subgroup of
C2 generated by b and Z⊕2. Since b2(z1, z2) = (z1 + 1, z2), the group
π1((X \ D)an) is generated by b and an automorphism a defined by
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a(z1, z2) = (z1, z2 + 1). Here, we have a relation: a ◦ b = b ◦ a−1, and
this determines π1((X \D)an). Q.E.D.

Remark 7.21. For an H-surface (S,DS) (cf. Definition 7.7), we have
a half-toric surface (S,DS) with S \DS � S \DS in Proposition 7.15.
By Proposition 7.20 above, we see that X \D is isomorphic to the open
surface S \ DS of type H[−1, 0,−1] in the sense of Fujita [12, (8.19)]
(cf. [12, Th. (8.5), Table (8.64)]) for any half-toric surface (X,D). The
topological fundamental group of the open surface of type H[−1, 0,−1]
is also calculated in [12, Table (8.64), Example (7.24)], but its method
is different from ours.

Proposition 7.22. For a half-toric surface (X,D), let Aut(X;D)
be the group of automorphisms of X preserving each irreducible compo-
nents of D. Then, Aut(X;D) � C�×Z/2Z, and the action of Aut(X;D)
on the open subset X \D is given by

(x, y, z) 
→ (λ2x, (−1)ky, (−1)kλz)

with respect to the expression of the coordinate ring of X \D in Propo-
sition 7.20 for λ ∈ C� and k ∈ {0, 1}.

Proof. Let τ : V → X be the characteristic double-cover of (X,D).
An automorphism σ of X lifts to an automorphism σV of V commuting
with the Galois involution ι of τ , since τ is étale in codimension one. As-
sume that σ ∈ Aut(X;D). Then σV preserves τ∗Di for any irreducible
component Di of D, and in particular, σV preserves DV = τ−1(D).
Hence, σV acts on V \ DV . The action of σV on V \ DV is deter-
mined by an automorphism σ∗

V of the coordinate ring C[t±1
1 , t±2

2 ], where
we may assume that the coordinate (t1, t2) satisfies ι∗(t1) = −t1 and
ι∗(t2) = t−1

2 by Lemma 7.17. The automorphism σ∗
V is given by

σ∗
V (t1) = λta1

1 ta2
2 and σ∗

V (t2) = νtb11 tb22

for some λ, ν ∈ C \ {0} and for some integers a1, a2, b1, b2 such that

det

(
a1 a2
b1 b2

)
= ±1.

The lift σV satisfies ι ◦ σV = σV ◦ ι. Thus,

a2 = b1 = 0, a1 = ±1, b2 = ±1, ν = ±1,

and σ∗
V is given by

σ∗
V (t1) = λtε11 and σ∗

V (t2) = ε3t
ε2
2
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for some constants λ ∈ C \ {0} and ε1, ε2, ε3 ∈ {±1}. As in the proof
of Proposition 7.19, an irreducible component Γ of DV corresponds to a
pair (m,n) of integers with gcd(m,n) = 1 defined by

ordΓ(t1) = m and ordΓ(t2) = n.

The irreducible component ι(Γ) corresponds to (m,−n). Since Γ + ι(Γ)
is preserved by σV , we have

(ordΓ(σ
∗
V (t1)), ordΓ(σ

∗
V (t2))) = (ε1m, ε2n) = (m,n) or (m− n).

Thus, ε1 = 1, since m �= 0 for some Γ. Conversely, if an automorphism
σ∗
V of C[t±1 , t

±
2 ] is given by

σ∗
V (t1) = λt1 and σ∗

V (t2) = ε3t
ε2
2

for some λ ∈ C� = C \ {0} and ε2, ε3 ∈ {±1}, then σ∗
V is induced from

an automorphism σV of V such that σV commutes with ι and that σV

preserves τ∗(Di) for any irreducible component Di of D. The subgroup
of Aut(V ) consisting of such σV is isomorphic to C� × (Z/2Z ⊕ Z/2Z),
and we have an exact sequence

0 → Z/2Z
φ−→ C� × (Z/2Z⊕ Z/2Z) → Aut(X;D) → 1

in which φ(1) = (−1, (1, 0)) corresponds to ι. Therefore, Aut(X;D) �
C� × Z/2Z. For an element (λ, k) ∈ C� × Z/2Z (where k = 0 or 1), let
σ be the associated automorphism in Aut(X;D). Then, the action of σ
on X \D lifts to an automorphism on C[t±1 , t

±
2 ] given by

(t1, t2) 
→ (λt1, (−1)kt2).

Hence, the induced automorphism σ∗ of the coordinate ring of X \D is
given by

σ∗(x) = λ2x, σ∗(y) = (−1)ky and σ∗(z) = λ(−1)kz.

Thus, we are done. Q.E.D.

Lemma 7.23. The equality δ(X,D) = 1 holds for any half-toric
surface (X,D).

Proof. We consider the class map clZD : F(D) → CL(X) (cf. Defini-

tion 2.24). The cokernel of clZD is isomorphic to the divisor class group

CL(X \ D), and the kernel of clZD is isomorphic to O(X \ D)�/C� by
Lemma 2.25. By Proposition 7.20 and Remark 7.21, we have an isomor-
phismX\D � S\DS for an H-surface (S,DS). Thus, CL(X\D) � Z/2Z
and O(X \ D)�/C� � Z by Corollary 7.13. Therefore, δ(X,D) =
ρ(X) + 2− n(D) = 1. Q.E.D.
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The isomorphism X \D � S \DS in Remark 7.21 is extended to a

suitable birational map X ···→S as follows.

Proposition 7.24. Let (X,D) be a half-toric surface. Then, there
exist birational morphisms ν : Y → X and h : Y → S satisfying the
following conditions:

(1) (Y,DY ) is a half-toric surface for DY = ν−1(D) and Y \DY �
X \D by ν;

(2) (S,DS) is the half-toric surface associated with an H-surface
(S,DS) in Proposition 7.15, where DY = h−1(DS) and h is a

toroidal blowing up with respect to (S,DS).

Proof. We have n(D) = ρ(X) + 1 > r(D) by Lemma 7.23, and
(X,D) is toroidal along SingD by Lemma 7.2. Thus, we can apply
Lemma 4.23 to (X,D). As a consequence, by replacing X by a toroidal
blowing up, we may assume that X admits a P1-fibration π : X → T
such that D has two distinct fibers of π. Let μ : M → X be the minimal
resolution of singularities. Then, there is a toroidal blowing up f : M →
S with respect to (S,DS) such that μ−1(D) = f−1(DS) by Lemma 7.16.
Let g : M → M be the contraction morphism of the four end components
of μ−1(D) in Proposition 7.5. Then, (Y,DY ) := (M, g∗(μ−1(D))) is a
half-toric surface and the morphism ν : Y → X induced by μ satisfies
(1) by the proof of Proposition 7.5. Moreover, the morphism h : Y → S
induced by f is just a toroidal blowing up with respect to (S,DS) and
DY = h−1(D) by Lemma 7.16. Q.E.D.

Lemma 7.25. For a half-toric surface (X,D), let μ : M → X be the
minimal resolution of singularities of X and set DM = μ−1(D). Then,
q̄(M \ DM ) = 1 for the logarithmic irregularity q̄. The quasi-Albanese
map of M \ DM is a smooth morphism α : M \ DM → Gm which is
described in the following two ways :

(1) The morphism α is the composition of the isomorphism M \
DM � X\D � S\DS in Remark 7.21 for an H-surface (S,DS)
and the Gm-fiber bundle S \ DS → T \ {P1, P2} induced from
the P1-fibration π : S → T in Lemma 7.8 (cf. Lemma 7.11).

(2) The morphism α of affine varieties is isomorphic to the mor-
phism associated with the natural ring homomorphism

C[x, x−1] → C[x, x−1, y, z]/(x(y2 − 1)− z2)

for the description of the coordinate ring of X \D � M \DM

in Proposition 7.20.
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Proof. By Lemma 7.12, Proposition 7.20, and Remark 7.21, we
have isomorphisms

C� ×Z � O(T \ {P1, P2})� � O(S \DS)
� � O(X \D)� � O(M \DM )�.

Then, the equality q̄(M \DM ) = 1 and the assertion (1) are derived from
Proposition 2.26, since q(M) = 0. The remaining assertion (2) follows
from the description of O(X \D) in Proposition 7.20. Q.E.D.

Finally in Section 7.4, we shall prove Theorem 1.7.

Proof of Theorem 1.7. For a half-toric surface (X,D), from Defini-
tion 7.1, we see that X is a projective rational surface with only rational
singularities. The pair (X,D) is log-canonical and D is a big linear chain
of rational curves by Lemma 7.2. The equality δ(X,D) = 1 is proved
in Lemma 7.23. This completes the proof of the first assertion (1) of
Theorem 1.7. The assertions (2) and (3) have been proved in Proposi-
tion 7.20. Similarly, the assertions (4), (5), and (6) have been proved in
Proposition 7.22, Lemma 7.25, and Proposition 7.5, respectively. Thus,
we are done. Q.E.D.

§8. Proofs of Theorems 1.3 and 1.5

Finally, we shall prove Theorems 1.3 and 1.5. Note that the proofs
below do not use the results on pseudo-toric surfaces and half-toric sur-
faces obtained in Sections 6 and 7 except Lemma 7.23 on the defect of
half-toric surface.

Proof of Theorem 1.3. We may assume that δ(X,D) ≤ 1 or c(X,
D) ≤ 0. For, otherwise, the assertions of Theorem 1.3 hold trivially.
Under the assumption, we have D �= 0, since δ(X, 0) = ρ̂(X) + 2 ≥ 3
and c(X, 0) = 2. Moreover, X is projective by Lemma 2.31(1), since
we have H2(X,OX) � H0(X,OX(KX))∨ = 0 by the assumption that
−(KX +D) is nef. Furthermore, we can prove the following:

(a) D is a big reducible linear (or cyclic) chain of rational curves;
(b) X is a projective rational surface with only rational singulari-

ties;
(c) 0 ≤ δ(X,D) = c(X,D) ≤ 1;
(d) δ(X,D) = c(X,D) = 1 when D is a linear chain.

In fact, D is connected and reducible by Proposition 2.29. Hence, D is a
linear chain or a cyclic chain of rational curves by Lemma 4.5, and D is
big by Proposition 4.8(1). Thus, we have (a). The assertion (b) follows
from Lemma 2.32, and the assertions (c) and (d) from Proposition 4.8.
In particular, we have proved the inequality δ(X,D) ≥ c(X,D) ≥ 0.
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For the rest of Theorem 1.3, “if” part follows from Lemma 3.11 on
toric surface, the definition of defect for pseudo-toric surface, and from
Lemma 7.23 on half-toric surface. Thus, it suffices to show the “only if”
part.

Let f : Y → X be a toroidal blowing up with respect to (X,D) and
set DY = f−1(D). Then, (Y,DY ) is also log-canonical along DY , and
−(KY +DY ) = f∗(−(KX+D)) is nef. Moreover, δ(X,D) = c(Y,DY ) =
δ(X,D) = c(X,D) by Lemma 2.27. In particular, (Y,DY ) also satisfies
the same conditions in Theorem 1.3. We shall show that if Theorem 1.3
holds on (Y,DY ), then the same holds on (X,D). In fact, Lemma 3.9
implies that if (Y,DY ) is toric, then (X,D) is also toric, and that if
(Y,BY + DY ) is toric for a prime divisor BY �⊂ DY , then (X,B + D)
is toric for B = f∗(BY ) �⊂ D. Moreover, if (Y,DY ) is a pseudo-toric
surface of defect one (resp. a half-toric surface), then so is (X,D) by
Lemma 6.3(7) (resp. Lemma 7.4(3)). Thus, we can replace (X,D) with
(Y,DY ).

Since n(D) − r(D) = 2 − c(X,D) ≥ 1, by applying Lemma 4.23
and by the replacement above, we may assume that there is a fibration
π : X → T � P1 and that D contains at least two fibers. Then, (X,D, π)
belongs to the case (A) or (B) of Lemma 5.2.

Suppose that (X,D, π) belongs to the case (B). Then, D is a linear
chain of rational curves containing a section or a double-section of π, and
δ(X,D) = 1 by (d) above or by Lemma 5.6. If D contains a section, then
(X,B+D) is a toric surface for a prime divisor B �⊂ D by Proposition 5.7.
If D contains a double-section, then (X,D) is a half-toric surface by
Proposition 5.9 (cf. Definition 7.1).

Suppose next that (X,D, π) belongs to the case (A). Then, D is a
cyclic chain of rational curves, and KX +D ∼ 0 by Proposition 5.3(1).
If δ(X,D) = 0, then (X,D) is a projective toric surface by Proposi-
tion 5.3(3). If δ(X,D) = 1, then (X,D) is a pseudo-toric surface of
defect one by Proposition 5.5 (cf. Definition 6.1).

These arguments complete the proof of Theorem 1.3. Q.E.D.

Proof of Theorem 1.5. We may assume that c(X,D) ≤ 1 for the
proof. Then, D is reducible by

n(D) = r(D) + 2− c(X,D) ≥ r(D) + 1 ≥ 2.

Moreover, D is big by Proposition 4.8(1). Then, Lemma 4.7 implies that
X is a normal projective rational surface with only rational singularities
and that D is a linear chain or a cyclic chain of rational curves. Hence,
we have c(X,D) ≥ 0 by (2) and (3) of Proposition 4.8.
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Here, assume that c(X,D) = 0. Then, D is a cyclic chain of rational
curves by Proposition 4.8(2). Thus, by Lemma 4.7, we have an effective
divisor G on X \ D such that KX + D ∼ G. Let g : X → X be the
contraction morphism of G: This exists because G is negative definite
when G �= 0 (cf. Lemma 4.7). We set D = g∗(D). Then, (X,D)
satisfies the same assumptions (i), (ii), and (iii) of Theorem 1.5, and
0 ≤ c(X,D) ≤ c(X,D) = 0 by Lemma 2.27. Moreover, KX + D ∼ 0.

Therefore, (X,D) is a projective toric surface by Theorem 1.3.
Conversely, assume that there is a morphism g : X → X satisfying

(1) and (2) of Theorem 1.5. Then, D � D and n(D) = n(D). For the
rest of the proof, it suffices to show: c(X,D) = 0. Let Δ be a divisor
on X supported on D such that g∗Δ ∼ 0. Then, Δ = g∗(g∗Δ) ∼ 0.

This argument implies that the kernel of the class map clZD : F(D) →
CL(X) (cf. Definition 2.24) is isomorphic to the kernel of the class map

clZD : F(D) → CL(X). Hence, r(D) = r(D), and c(X,D) = c(X,D) =
0. Thus, we are done. Q.E.D.
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[32] E. Looijenga, Rational surfaces with an anti-canonical cycle, Ann. of Math.,

114 (1981), 267–322.
[33] J. McKernan, A simple characterization of toric varieties, In: The proceed-

ings of Kinosaki symposium 2001, pp. 59–72.
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