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Abstract.

We examine Lefschetz pencils of a certain hypersurface in P3 over
an algebraically closed field of characteristic p > 2, and determine the
group structure of sections of the fiber spaces derived from the pencils.
Using the structure of a Lefschetz pencil, we give a geometric proof of
the unirationality of Fermat surfaces of degree pa + 1 with a positive
integer a which was first poved by Shioda [10]. As byproducts, we
also see that on the hypersurface there exists a (q3 + q2 + q + 1)q+1-
symmetric configuration (resp. a ((q3 + 1)(q2 + 1)q+1, (q

3 + 1)(q +
1)q2+1)-configuration) made up of the rational points over Fq (resp.
over Fq2) and the lines over Fq (resp. over Fq2) with q = pa.

§1. Introduction

Let k be an algebaically closed field of charactersitic p > 2 and we
set q = pa with a positive integer a. Let S be a hypersurface in the 3-
dimensional projective space P3 defined by the equation x0x

q
1 − x1x

q
0 +

x2x
q
3 − x3x

q
2 = 0. The aim of this paper is to examine the structure of

Lefschetz pencils on the surface S and to determine the singular fibers
and sections of the fiber spaces derived from the pencils. In particular,
in case of p = q = 3, this surface S is a K3 surface. In fact, it is known
that in this case the surface is a supersingular K3 surface with Artin
invariant 1. Our fiber space is a quasi-elliptic surface with 10 singular
fibers of type IV (for the existence of such a quasi-elliptic surface, see H.
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Ito [4]). As a corollary to our theory, we give a geometric proof of the
fact that the Fermat surface of degree q + 1 is unirational, which was
long ago proved by Shioda [10] (also see Rudakov-Shafarevich [7]).

To examine Lefschetz pencils, we need to calculate rational points
and lines on S defined over the finite field Fq2 . This part is known from
various points of view (cf [9], [8] and [6]), but since we need to know the
detailed structure to examine the Lefschetz pencils, we give here a down-
to-earth calculation for them. Summerizing our results, we conclude that
on this surface there exists a (q3+q2+q+1)q+1-symmetric configuration
(resp. a ((q3 + 1)(q2 + 1)q+1, (q

3 + 1)(q + 1)q2+1)-configuration) made
up of the rational points over Fq (resp. over Fq2) and the lines over Fq

(resp. over Fq2) (also see [6] on the relation with the notion of finite
generalized quadrangles). In particular, in case of p = q = 3, we have
a (2804, 11210)-configuration on this K3 surface. Such a structure is
related to the theory of Leech lattice and these 112 lines correspond
with Leech roots. We examined the lattice structure of these lines in [5].

Acknowledgments. The author was partially supported by JSPS
Grant-in-Aid (C), No 24540053. The author would like to thank Pro-
fessor Gerard van der Geer for suggesting him to examine the surface
S and for his advice. The author would also like to thank Professors
S. Kondo and T. Shioda for their valuable comments, and to thank the
referee for his careful reading and useful comments.

§2. Preliminaries

We first recall the notion of a geometric realization of an abstract
configuration. A triple {A,B, R}, where A,B are non-empty finite sets
and R ⊂ A × B is a relation, is called an abstract configuration if the
cardinality of the set R(x) = {B ∈ B | (x,B) ∈ R} (resp. R(B) = {x ∈
A | (x,B) ∈ R}) does not depend on x ∈ A (resp. B ∈ B). Elements
of A are called points, and elements of B are called blocks. Denoting by
| X | the number of elements in a finite set X, we set

v =| A |, b =| B |, k =| R(x) |, r =| R(B) | .
Then, the configuration is called a (vk, br)-configuration. We have the
relation kv = br. Therefore, if v = b, then we have k = r. In this case,
the configuration is called a symmetric configuration. Such a symmetric
configuration is called vk-configuration (for details, see Dolgachev[3]).

The most typical example of a geometric realization of an abstract
configuration is given by the projective plane over a finite field. Let p
(resp. a) be a prime number (resp. a positive integer) and let Fq be
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a finite field with q = pa elements. Then, in the projective plane P2

there are q2+ q+1 rational points over Fq and there are q2+ q+1 lines
defined over Fq. We see that q+1 lines pass through each point, and on
each line there exist q + 1 points. We denote the set of these points by
A and the set of these lines by B. The relation R consists of the pairs
of a point and a line which pass through the point. The triple A,B, R
gives a (q2 + q + 1)q+1-symmetric configuration.

One more typical configuration is given by Kummer surfaces. Let C
be a non-singular complete curve of genus 2 defined over an algebraically
closed field of characteristic p �= 2. We consider the Jacobian variety
J(C). Then, C gives a principal polarization on J(C), and by a suitable
translation we may assume that C is invariant under the inversion ι
of J(C). For a two-torsion point a ∈ J(C)2, we denote by Ta the
translation given by a. Then we have 16 curves {TaC | a ∈ J(C)2}. We
consider the quotient surface J(C)/〈ι〉, and let π : J(C) −→ J(C)/〈ι〉
be the projection. Then, we have the set A of 16 rational double points
of type A1 on J(C)/〈ι〉, and we have the set B = {π(TaC) | a ∈ J(C)2}
of 16 rational curves which are conics. The relation R consists of the
pairs of a point and a conic which pass through the point. The triple
{A,B, R} gives a 166-symmetric configuration.

§3. Rational points over a finite field

We consider the hypersurface S in the 3-dimensional projective space
P3 which is defined by

(1) x0x
q
1 − x1x

q
0 + x2x

q
3 − x3x

q
2 = 0

It is easy to show that over Fq2 this surface is isomorphic to the Fermat
surface defined by

xq+1
0 + xq+1

1 + xq+1
2 + xq+1

3 = 0.

However, since the number of rational points over Fq of S is different
from the one of the Fermat surface, we see that S is not isomorphic
to the Fermat surface over Fq. By the result in Weil [12], the number
of Fq2 -rational points of the Fermat surface is known. Therefore, the
number of Fq2 -rational points of S is also known. However, to know the
structure of the surface S in detail we give here a direct calculation of
the number of Fq2 -rational points.

Suppose x0 �= 0. To caluculate the rational points, we may assume
x0 = 1. Then, we have the equation

xq
1 − x1 = x3x

q
2 − x2x

q
3.
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We have the following exact sequence of Fq-vector spaces:

(2) 0 → Fq −→ Fq2
F−id−→ Fq2 .

Here, F is the Frobenius morphism over Fq and id is the identity map-
ping. We set

V = {α ∈ Fq2 |αq = −α}.
V is a vector space over Fq, and we have

Im(F − id) ⊂ V

Since dimFq V = dimFq Im(F − id) = 1, we see that V = Im(F − id).

Now, assume x2, x3 ∈ Fq2 . Then, x
q2

2 = x2 and xq2

3 = x3. Therefore,
we see x3x

q
2 − x2x

q
3 ∈ V . Hence, for each x2 and x3 ∈ Fq2 , we can find

q numbers of x1, using the exact sequence (2) with V = Im(F − id).
Hence, in this affine open set, the surface defined by the equation (1)
has q × q2 × q2 = q5 rational points over Fq2 .

Suppose now x0 = 0. Then, the equation (1) becomes

x2x
q
3 − x3x

q
2 = 0.

Factorizing the left hand side, we have

x2x3(x
q−1
3 − xq−1

2 ) = x2x3

∏
a∈F∗

q

(x3 − ax2).

Here, F∗
q is the multiplicative group of non-zero elements of Fq. If x2 =

x3 = 0, then we have only one rational point (0, 1, 0, 0). If x2 = 0 and
x3 �= 0, then the rational points are of the form (0, ∗, 0, 1). Therefore,
we have q2 rational points. If x2 �= 0 and x3 = 0, then the rational
points are of the form (0, ∗, 1, 0). Therefore, we have q2 rational points.
If x2 �= 0 and x3 �= 0, then the rational points are of the form (0, b, α, aα)
with b ∈ Fq2 , a ∈ F∗

q , α ∈ F∗
q2 . Moreover, if b = 0, the rational points

are of the form (0, 0, 1, a). Therefore, we have q − 1 rational points. If
b �= 0, the rational points are of the form (0, 1, α, aα). Therefore, we
have (q − 1)(q2 − 1) rational points.

Hence, in total the number of rational points over Fq2 is equal to

q5 + 1 + q2 + q2 + (q − 1) + (q − 1)(q2 − 1) = q5 + q3 + q2 + 1
= (q3 + 1)(q2 + 1)

Since the equation (1) contains all Fq-rational points of P
3, we see that

the number of rational points over Fq is equal to

q3 + q2 + q + 1
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§4. Lines defined over a finite field

Now, we will count the number of lines defined over Fq2 (resp. Fq)
on the surface S. This number is already known in Tate[11], Segre[9],
Schütt-Shioda-van Luijk[8] and Payne-Thas[6], but to examine Lefschetz
pencils we need to know how these lines sit on our surface S.

Suppose there exists a line � defined over Fq2 (resp. Fq) on the
surface (1). Then, on � we have q2 + 1 (resp. q + 1) rational points
defined over Fq2 (resp. Fq). Therefore, any such line on (1) can be
obtained by connecting two rational points on S.

Take two rational points P ′ = (α0, α1, α2, α3), Q
′ = (β0, β1, β2, β3)

on the surface (1) defined over Fq2(resp. Fq), and assume that the
line � which connects P ′ with Q′ lies on the surface (1). Then, for any
t ∈ k, points (α0 + tβ0, α1 + tβ1, α2 + tβ2, α3 + tβ3) lie on the surface
(1). Substitute these points into (1). Since P ′ and Q′ are points on the
surface (1), we have

α0β
q
1t

q + β0α
q
1t− α1β

q
0t

q − β1α
q
0t = α3β

q
2t

q + β3α
q
2t− α2β

q
3t

q − β2α
q
3t.

Since t is arbitrary, we have

α0β
q
1 − α1β

q
0 = α3β

q
2 − α2β

q
3 ,

β0α
q
1 − β1α

q
0 = β3α

q
2 − β2α

q
3.

These two equations have same solutions over Fq2 (resp Fq). Hence, the
condition becomes

(3) α0β
q
1 − α1β

q
0 = α3β

q
2 − α2β

q
3

Now, we consider the hyperplane H ′ defined by

H ′ : βq
1x0 − βq

0x1 + βq
3x2 − βq

2x3 = 0

This hyperplane is nothing but the tangent space of the surface (1) at the
point Q′. By (3), we see that H ′ passes through the point P ′. Hence,
any line defined over Fq2 (resp.Fq) on the surface (1) is obtained as
the lines cut by a tangent hyperplane at the rational points over Fq2

(resp.Fq).
Now, take a rational point P = (α, β, γ, δ) on the surface (1) defined

over Fq2 (resp. Fq). Then, the tangent space H of the surface (1) at P
is given by

(4) βqx0 − αqx1 + δqx2 − γqx3 = 0.
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Changing to inhomogeneous coordinates, without loss of generality we
may assume the case γ = 1. Then, we have

x3 = βqx0 − αqx1 + δqx2

Substituting this into (1) and using −αqβ + βqα = δq − δ, we have an
equation

(x0 − αx2)(x1 − βx2)
∏

ε∈Fq∗

{(x1 − βx2)− ε(x0 − αx2)} = 0.

This means that the intersection of the surface (1) and the tangent
space H splits into q+1 lines defined over Fq2(resp. Fq) which intersect
each other at the same point mutually transversely. Since there exist
q2 + 1(resp. q + 1) rational points over Fq2 (resp. Fq) on each line
defined over Fq2 (resp. Fq), we conclude that on the surface (1) there
are

(q3 + 1)(q2 + 1)× (q + 1)÷ (q2 + 1) = (q3 + 1)(q + 1)

lines defined over Fq2 . We also see that on the surface (1) there exist

(q3 + q2 + q + 1)× (q + 1)÷ (q + 1) = q3 + q2 + q + 1

lines defined over Fq.
Hence, considering rational points and lines over Fq2 (resp.Fq) on

the surface (1), we have the following theorem.

Theorem 4.1. On the hypersurface S in P3 which is defined by

x0x
q
1 − x1x

q
0 + x2x

q
3 − x3x

q
2 = 0,

there exist a ((q3 + 1)(q2 + 1)q+1, (q
3 + 1)(q + 1)q2+1)-configuration and

a (q3 + q2 + q + 1)q+1-symmetric configuration.

Remark 4.2. In case q = p = 3, the surface S given by (1) is
the supersingular K3 surface with Artin invariant 1. In this case, our
configuration is a (2804, 11210)-configuration. We showed in [5] that 112
lines correspond with Leech roots in the Picard lattice Pic(S).

Remark 4.3. In case q = p, the surface S is related to the mod-
uli space of supersingular K3 surfaces with Artin invariant σ ≤ 3 (cf.
Rudakov-Shafarevich [7], p1520 and p1522, Theorem 2).

Remark 4.4. In [10], Shioda considered the hypersurface defined by
xq
1x2+x1x

q
2 = xq

3x0+x3x
q
0 in P3. Over Fq2 , this surface is isomorphic to

the Fermat surface of degree q+1 and also to our surface. This surface is
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very similar to our surface S. However, counting the number of rational
points over Fq, we see that this surface is not isomorphic to our surface
S over Fq.

Remark 4.5. Let A and B be two sets, and R be a relation between
A and B. The elements of A are called points and the elements of B
are called blocks. A triple {A,B, R} is called a t-(v, k, λ) design if the
following three conditions hold.

(i) | A |= v;
(ii) Every block B ∈ B relates to precisely k points;
(iii) Every t distinct points together relates to precisely λ blocks.
Using this notion, our ((q3 + 1)(q2 + 1)q+1, (q

3 + 1)(q + 1)q2+1)-
configuration is a 1-((q3 + 1)(q2 + 1), q + 1, q + 1) design.

Remark 4.6. A (finite) generalized quadrangle is an incidence
structure {P,B, I} in which P and B are disjoint nonempty sets, called
points and lines, respectively, and for which I is a symmetric point-line
incidence relation which satisfies the following axioms:

(i) With an integer t ≥ 1, each point is incident with 1+ t lines and
two distinct points are incident with at most one line.

(ii) With an integer s ≥ 1, each line is incident with 1 + s points
and two distinct lines are incident with at most one point.

(iii) If x is a point and L is a line not incident with x, then there is
a unique pair (y,M) ∈ P ×B for which (x,M), (y,M), (y, L) ∈ I.

The integers s and t are called the parameters of the generalized
quadrangle and {P,B, I} is said to be order (s, t) (for the details, see
[6]).

Using this notion, our ((q3 + 1)(q2 + 1)q+1, (q
3 + 1)(q + 1)q2+1)-

configuration is the generalized quadrangle of order (q, q2). From this
point of view, this configuration is known in [6], Chapter 3.

§5. Lefschetz pencil

On the surface S defined by (1), we have (q3+1)(q+1) lines defined
over Fq2 . We take any line � from these. Let H and H ′ be two different
hyperplanes such that H∩H ′ = �. Suppose that H (resp. H ′) is defined
by the equation L = 0 (reps. L′ = 0). Then, our Lefschetz pencil on S is
defined as the pencil given by μL+μ′L′ = 0 with parameters μ, μ′. The
line � is the fixed component of the pencil. LetD+� be a general member
of the pencil. As we explained in Section 4, by a suitable choice of μ
and μ′, we can find a member

∑q
i=1 �i+ � whose irreducible components

�i (i = 1, 2, . . . , q) and � are smooth lines which intersect each other at
the same point mutually transversely. Since D+ � is linearly equivalent
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to
∑q

i=1 �i + �, we have

(D + �,D) = (H,

q∑
i=1

�i) = q.

On the other hand, we have

(D + �,D) = D2 + (�,D) = D2 + (�,

q∑
i=1

�i) = D2 + q.

Therefore, we have D2 = 0. Hence, our Lefschetz pencil gives rise to a
fiber space f : S −→ P1. Here, one of general fibers coincides with D.
We call this fiber space a Lefschetz fiber space.

First, we consider the following special case.

Lemma 5.1. Let � be a line on S ⊂ P3 given by (1, 0, 0, s) with
parameter s, and f : S −→ P1 be the Lefschetz fiber space by using the
line �. Then, the general fiber is a rational curve with one singularity
and we have the singular fibers on the points (t, 1) ∈ P1(Fq2).

Proof. LetH (resp. H ′) be the hyperplane defined by x1 = 0 (resp.
x2 = 0). Then, we have H ∩H ′ = �. The Lefschetz pencil is defined by

tx1 − x2 = 0,

and the Lefschetz fiber space is given by

(5) x0x
q−1
1 − xq

0 + txq
3 − tqxq−1

1 x3 = 0

with t ∈ P1. The cusp locus is given by x1 = 0 and the results follow
from the equation (5).

Theorem 5.2. Let Fq be a finite field with q = pa elements. Take
any line � on S and consider the Lefschetz fiber space f : S −→ P1 with
respect to �. Then, the general fiber is a rational curve with one singular
point and it has q2 + 1 singular fibers. Each singular fiber consists of q
lines which intersect each other at the same point mutually transversely.

Proof. The general unitary group GU4(q) acts naturally on the
surface S. By the Witt theorem, we know that GU4(q) acts transitively
on the set of lines on S (cf. Appendix). This means that to show the
first part of this theorem it suffices to show it for a line. Therefore, the
first statement follows from Lemma 5.1.

By the calculation of the previous section, the singular fibers exist
over the Fq2 -rational points of the base curve P1. Therefore, we have



Lefschetz pencils 273

q2 + 1 singular fibers. Again, by the calculation of the previous section,
each singular fiber consists of q nonsingular rational curves which all
intersect each other at the same point mutually transversely. Therefore,
we have in total q × (q2 + 1) lines in the singular fibers. The closure
of the singular loci of general fibers is given by �. Therefore, it is a
rational curve which is purely inseparable covering of degree q over the
base curve. In the proof of Theorem 5.2, we call the closure � of the
singular loci of general fibers the cusp locus. The following corollary
was first proved by Shioda [10] (also see Rudakov-Shafarevich [7]). Our
proof explains the geometric meaning of the result.

Corollary 5.3. The Fermat surface

xq+1
0 + xq+1

1 + xq+1
2 + xq+1

3 = 0,

is unirational over an algebraically closed field in characteristic p > 0.

Proof. The Fermat surface

xq+1
0 + xq+1

1 + xq+1
2 + xq+1

3 = 0,

is isomorphic to the surface S over an algebraically closed field in char-
acteristic p > 0. With the notation in Lemma 5.1, we consider the
change of base given by the Frobenius morphism t = sq. Incidentally,
this corresponds to the morphism from the singular locus to the base
space which is given by the restriction of the morphism f to the singular
locus. Then, by this change of base we have a ruled surface over the
projective line P1. Therefore, S is unirational. To show concretely by
calculation, first go to an inhomogeneous coordinate with x1 = 1. Then,
we have

x0 − xq
0 + sqxq

3 − sq
2

x3 = 0.

Setting x0 − sx3 = y, we have

(s− sq
2

)x3 + y − yq = 0,

which shows k(x0, x3, s) = k(s, y). Therefore, the surface S is unira-
tional. The following lemma follows from a result on the representation
of GU4(q) in Tate [11]. We give here a direct proof.

Lemma 5.4. Any line on the surface S is defined over Fq2 . Any
line on the Fermat hypersurface of degree q+1 is also defined over Fq2 .

Proof. Take any line � on S. Let P = (α0, α1, α2, α3) and Q =
(β0, β1, β2, β3) be any two different points on �. To prove this lemma,
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it suffices to find two different points on � which are defined over Fq2 .
With two parameters s, t, the point

(α0s+ β0t, α1s+ β1t, α2s+ β2t, α3s+ β3t)

exists on the surface S. Since t and s are arbitrary elements in k, we
have 4 equations:

α0α
q
1 − α1α

q
0 + α2α

q
3 − α3α

q
2 = 0

β0β
q
1 − β1β

q
0 + β2β

q
3 − β3β

q
2 = 0

α0β
q
1 − α1β

q
0 + α2β

q
3 − α3β

q
2 = 0

β0α
q
1 − β1α

q
0 + β2α

q
3 − β3α

q
2 = 0

We consider 4-dimensional vector space k4 and the following bilinear
form on it:

u0v0 + u1v1 + u2v2 + u3v3

for (u0, u1, u2, u3), (v0, v1, v2, v3) ∈ k4. We consider the 2-dimensional
subspace V in k4 generated by (αq

1,−αq
0, α

q
3,−αq

2), (β
q
1 ,−βq

0 , β
q
3 ,−βq

2).
Then, considering the q-th powers of four equations above, we see that
4 vectors

(α0, α1, α2, α3)
(β0, β1, β2, β3)

(αq2

0 , αq2

1 , αq2

3 , αq2

4 )

(βq2

0 , βq2

1 , βq2

2 , βq2

3 )

are in the orthogonal subspace V ⊥ of V . Since dimV = 2, we have
dimV ⊥ = 2. Therefore, we have a relation

t

(
αq2

0 αq2

1 αq2

2 αq2

3

βq2

0 βq2

1 βq2

2 βq2

3

)
= t

(
α0 α1 α2 α3

β0 β1 β2 β3

)
A

with a 2 × 2-matrix A. By the Lang-Steinberg theorem there exists a

regular 2×2-matrix B such that A = B−1B(q2). Here, B(q2) is the image
of Frobenius map of degree q2. Therefore, the first and the second rows
of the matrix

tB−1

(
α0 α1 α2 α3

β0 β1 β2 β3

)
give two points on � which are defined over Fq2 . Using the calculation
over Fq2 in Section 4, we have the following result.

Corollary 5.5. The number of lines on S is equal to (q3+1)(q+1).
The number of lines on the Fermat hypersurface of degree q + 1 is also
equal to (q3 + 1)(q + 1).
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Theorem 5.6. Under the same notation as in Theorem 5.2, the
group of the sections of the group scheme S \ � −→ P1 is isomorphic to
(Z/pZ)⊕4a.

Proof. Take a section C of the group scheme S \ � −→ P1. Then,
it intersects one of irreducible components of each singular fiber with
multiplicity one. Therefore, it intersects a line �′ in each singular fiber
with multiplicity one. Since any singular fiber is given by an intersection
of S and a tangent space, the section C intersects the tangent space,
which is a hyperplane in P3, with multiplicity one. Hence, C is a line
on S. By Lemma 5.4, the line on S is defined over the finite field Fq2 .
Therefore, by the consideration in the previous section, the hyperplane
which is spanned by C and �′ is a tangent space of S at the intersection
point of C and �′, and C is one of (q3 + 1)(q + 1) lines defined over Fq2

which we already had. Since the number of singular fibrs is equal to
q2 + 1 and we have the cusp locus � on S, we see that the number of
sections is equal to

(q3 + 1)(q + 1)− q × (q2 + 1)− 1 = q4 = p4a.

Since the general fiber of S \ � −→ P1 is an additive group scheme
Ga and any non-trivial torsion of Ga is of order p, we know that these
sections form a group isomorphic to (Z/pZ)⊕4a.

Finally, we give a remark on a special case where the characteristic
of the field k is equal to 3. Since it is known that the surface S :

x0x
3
1 − x1x

3
0 + x2x

3
3 − x3x

3
2 = 0.

is a supersingular K3 surface with Artin invariant 1, we summarize our
results in this interesting case. By the consideration above, we have 112
lines on S, which are all defined over F9. Take any line among these
112 curves and make the Lefschetz pencil f : S −→ P1 by using the
line. Then, we have a quasi-elliptic fibration over the rational curve P1

with 10 singular fibers of type IV. We have just 10 F9-rational points
on P1 on which the singular fibers lie. Hence, we have 30 lines in the
singular fibers and one line as the cusp locus which we use to make the
Letschetz pencil. The other lines are the sections of this quasi-elliptic
surface. Therefore, we have the following result.

Theorem 5.7. Assume q = p = 3. Let f : S −→ P1 be the
Lefschetz fiber space as above. Then, it forms a quasi-elliptic surface
with 10 singular fibers of type IV and the Mordell-Weil group of this
quasi-elliptic surface is isomorphic to (Z/3Z)⊕4.
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We note that the existence of quasi-elliptic surfaces with such sin-
gular fibers in characteristic 3 was shown by H. Ito. He also examined,
in details, the structure of Mordell -Weil groups of quasi-elliptic surfaces
(cf. Ito[4]).

§6. Appendix

We denote by GLn(q
2) the general linear group which consists of

all the regular n × n-matrices with entries in Fq2 . For x ∈ Fq2 , let
x �→ x̄ = xq be the automorphism of Fq2 whose fixed field is Fq. We
consider the non-singular Hermitian form given by

x1x̄3 + x3x̄1 + x2x̄4 + x4x̄2.

The general unitary group GU4(q) is the subgroup of all elements of
GL4(q

2) that fix the non-singular Hermitian form. We consider the
hypersurface S′ defined by

x1x̄3 + x3x̄1 + x2x̄4 + x4x̄2 = 0.

in the 3-dimensional projective space P3. It is clear that S′ is isomorphic
to the surface S defined by the equation (1) and GU4(q) acts on S′. The
following proposition is known, but for readers’ convenience we give here
a concrete calculation. Since the order of GU4(q) is equal to

(q + 1)q6(q4 − 1)(q3 + 1)(q2 − 1).

(cf. [2]) and the number of lines on S is equal to (q3+1)(q+1), we have,
by the following proposition, an elementary proof of the Witt theorem
which we used in Section 5.

Proposition 6.1. Let � be the line defined by x1 = x2 = 0. The
order of the stabilizer of GU4(q) at � is equal to

q6(q4 − 1)(q2 − 1).

We denote by M2(q
2) the set of all the 2 × 2-matrices with entries

in Fq2 , and we first show the following lemma.

Lemma 6.2. We set M = {X ∈ M2(q
2) | tX̄ = −X}. Then we

have | M |= q4.

Proof. We set

X =

(
a b
c d

)
.
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SInce tX̄ = −X, we have

a = −aq, b = −cq, c = −bq, d = −dq.

The number of solutions of a = −aq (resp. d = −dq) in Fq2 is equal to
q, and the number of common solutions of b = −cq and c = −bq in Fq2

is equal to q2. Hence, we have | M |= q4. Now, we prove Proposition
6.1. Since the general unitary group GU4(q) fixes the Hermitian form
x1x̄3 + x3x̄1 + x2x̄4 + x4x̄2, the element A ∈ GU4(q) satisfies

AJ tĀ = J,

where

J =

(
0 E
E 0

)

with 2× 2-identity matrix E. Setting

A =

(
A1 A2

A3 A4

)
,

with 2× 2-matrix Ai (i = 1, 2, 3, 4), we have

A1
tĀ2 +A2

tĀ1 = 0,
A1

tĀ4 +A2
tĀ3 = E,

A3
tĀ4 +A4

tĀ3 = 0.

Assume A fixes the line �. This means that A2 = 0. Therefore, we have

A1
tĀ4 = E,A3

tĀ4 +A4
tĀ3 = 0.

Therefore, A4 ∈ GL2(q
2), and the number of such matrices is equal to

(q4 − 1)(q4 − q2). Since

t(A3
tĀ4) = −A3

tĀ4,

for each A4 ∈ GL2(q
2) we have, by Lemma 6.2, q4 matrices in M2(q

2)
which satisfy this equation. Hence, we conclude that the order of the
stabilizer at the line � is equal to q6(q4 − 1)(q2 − 1).
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