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Abstract.

Let G be a finite subgroup of SL(n,C), then the quotient Cn/G
has a Gorenstein canonical singularity. If n = 2 or 3, it is known that
there exist crepant resolutions of the quotient singularity. In higher
dimension, there are many results which assume existence of crepant
resolutions. However, few examples of crepant resolutions are known.
In this paper, we will show several trials to obtain crepant resolutions
and give a conjecture on existence of crepant resolutions.

§1. Introduction

Let X be an irreducible algebraic variety over C, and consider a
crepant resolution:

Definition 1.1. A resolution π : X̃ → X is called a crepant reso-

lution if the canonical isomorphism π∗KU
∼= KŨ over Ũ = π−1(U) ⊂ X̃

extends to a bundle isomorphism π∗KX
∼= K

X̃
over X, where U ⊂ X

is a non-singular open subset such that π : Ũ = π−1(U) → U is an
isomorphism.
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Let G be a finite subgroup of SL(n,C) and X := Cn/G. The canoni-
cal bunleKX is trivial, and ifX has a crepant resolution, thenK

X̃
∼= O

X̃
holds.

When n = 2, the quotientX has an isolated hypersurface singularity
which is called a rational double point. The minimal resolution is a
crepant resolution.

In the case n = 3, the quotient singularity is a canonical Gorenstein
singularity (but not terminal), and a crepant resolution was constructed
by Roan, Markushevich and Ito by using classification of the finite sub-

groups of SL(3,C) (cf. [12, 20, 23]). Moreover, the Euler number of X̃ is
just the number of conjugacy classes of G. In dimension two, it is known
that the Euler number of the minimal resolution of the quotient singu-
larity C

/G for G ⊂ SL(2,C) is the number of irreducible representation
of G that is the same as the number of congulacy classes. Therefore,
the formula of the Euler number in dimension three was thought as a
generalization of the McKay correspondence.

If n ≥ 4, then very few crepant resolutions are known. We can
construct a resolution of an abelian quotient singularity via toric geom-
etry, but it is not so easy to get a crepant resolution. Dais, Henk and
Ziegler obtained some conditions on G to have a crepant resolution of
the abelian quotient singularity ([6]). In addition, when the group G
is a finite subgroup of Sp(n,C), the quotient C

2n/G has a symplectic
singularity. It was proved that if the quotient admits a crepant resolu-
tion, then G is generated by symplectic reflections by Kaledin ([17]) and
Verbitsky ([24]).

After the construction of crepant resolutions in dimension three, G-
Hilbert scheme was introduced as a crepant resolution of Cn/G in dimen-
sion 2 by Ito and Nakamura ([16]) and generalized to 3-dimensional cases
of abelian groups in SL(3,C) by Nakamura([22]). Moreover, Bridgeland,
King and Reid proved that G-Hilbert schemes are crepant resolutions
for any finite subgroup in SL(3,C) and constructed a generalized McKay
correspondence as an equivalence of derived categories([2]).

The G-Hilbert scheme is the moduli space of G-clusters, where a G-
cluster Z is a G-invariant subscheme Z ⊂ C

n such that H0(OZ) ∼= C[G]
the regular representation of G as C[G]-modules. It was convenient
tool for explaining the McKay correspondence. The generalized McKay
correspondence was studied more after [2]. It is known that the Euler
number of a crepant resolution is always the number of conjugacy classes
of G ([1]). More generalized McKay correspondence via derived category
was also known for abelian cases in arbitrary dimension by Kawamata
([18], Theorem 4.2), but we need to assume the existence of crepant
resolutions to state these higher dimensional McKay correspondences.
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Now, let us consider when crepant resolution exist in higher dimen-
sion. The G-Hilbert scheme is obtained uniquely from the construction
and it may be related with a crepant resolution in higher dimension.
When G is abelian, the second author showed that the G-Hilbert scheme
in dimension 2 or 3 can be constructed as a toric variety determined by
the Gröbner fan ([12], [14]). As the generalization of these results, the
G-Hilbert scheme can be obtained in terms of Gröbner basis when G is
a finite abelian subgroup of GL(n,C) as follows:

Theorem 1.2. (=Theorem 2.16) Let G be a finite abelian subgroup
of GL(n,C), then the following hold.

(i) {W (G)} is an affine covering of HilbG.

(ii) Fan(G) = GF (IG), therefore the normalization of HilbG is
isomorphic to T (GF (IG)).

In this theorem, HilbG is the component of G-Hilbert scheme which
dominate Cn/G and T (GF (IG)) is the toric variety given by the Gröbner
fan of aG-invariant ideal IG. By this theorem, we can see the structure of
HilbG by convex geometry and check the smoothness and the crepantness
by the simplicity and the structure of the cones in this Gröbner fan
GF (IG).

When the group G is non-abelian, we cannot use toric geometry.
However, if it is possible to divide the group into its abelian subgroups,
we may obatin a crepant resolution as a combination of toric resolutions
for the abelian subgroups. The second author constructed a crepant res-
olution by this method for 3-dimensional non-abelian (trihedral) groups
and we will show you 4-dimensional examples.

Theorem 1.3. (=Theorem 3.1) Let H ⊂ SL(4,C) be one of the
following groups:

(i) H =
〈
1
n (1, 0, 0,−1), 1

n (0, 1, 0,−1), 1
n (0, 0, 1,−1)

〉
, where n ∈

Z, n ≥ 2.
(ii) H =

〈
1
2n (1, n− 1, 1, n− 1), 1

2 (0, 1, 0, 1)
〉
, where n ∈ Z, n ≥ 1.

(iii) H =
〈

1
4n (1, 2n− 1, 1, 2n− 1)

〉
, where n ∈ Z, n ≥ 2.

(iv) H =
〈

1
m (1,−1, 0, 0), 1

n (0, 0, 1,−1)
〉
, where m,n ∈ Z, m ≥ 3,

n ≥ 2.

Let K ⊂ SL(4,C) be a group generated by

T =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ∈ SL(4,C),
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and G = 〈H,K〉. Then G is a non-abelian finite subgroup of SL(4,C),
and C

4/G has a crepant resolution.

Thus we tried to find examples of quotient singularities which admit
a crepant resolution in higher dimension and propose a conjecture on
existence of crepant resolutions here.

Conjecture 1.4. Let G be a finite subgroup of SL(n,C) and Hi

be the abelian subgroups of G. The quotient singularity Cn/G admits
a crepant resolution, if any of the quotients C

n/Hi admits a crepant
resolution.

This conjecture is true for 2 and 3 dimensional cases. Moreover,
in dimension two, we can construct the minimal resolution of non-cyclic
singularities, that is, of type Dn, E6, E7 and E8, as birational fiber prod-
uct of the minimal resolution of quotient singularities by the maximal
cyclic subgroups Hi, where maximal cyclic subgroup means that there
are no larger cyclic subgroup containing Hi.

In dimension two or three, the opposite statement of this conjecture
also holds: If Cn/G admits a crepant resolutions, then Cn/Hi for all
abelian subgroups admit crepant resolutions. However, it is not true
even in dimension four. In case a group G ⊂ SL(4,C) is generated by
T of Theorem3.1 and H = 1

4 (1, 3, 1, 3). As the quotient C
4/H has a

terminal singularity, it does not admit a crepant resolution, but C4/G
has a crepant resolution (cf.[9]). Moreover, there are examples of non-
abelian G ⊂ Sp(n,C) with abelian H ⊂ G such that neither Cn/G nor
C

n/H have crepant resolutions (cf. [17]).
Related with this conjecture, another description of crepant resolu-

tions for non-abelian quotient singularity in dimension three has already
obtained by Ishii, Nolla de Celis and the second author ([11]). They
constructed a crepant resolution as iterated G-Hilbert scheme, that is,
G/H-Hilbert scheme of H-Hilbert scheme, via toric geometry, and it is
the moduli space of G-constellations, where a G-constellation F on X
is a generalized notion of a G-cluster, and is a G-equivariant coherent
sheaf on X such that H0(F) ∼= C[G]. This method works for any fi-
nite subgroups in SL(3,C) except two simple groups of order 60 and
168. Moreover, this may help to check the above conjecture in higher
dimension.

This paper is organized as follows. We have already introduced
known and new results on existence of crepant resolutions and proposed
a conjecture in this section. In the next section, we discuss on the
relation between G-Hilbert schemes and Gröbner bases for abelian finite
subgroups in GL(n,C) and show Theorem 1.2. There are also examples
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of G-Hilbert schemes which were computed by Gröbner method, and
you will see the singular one and reducible one among them. In section
3, we will show Theorem 1.3 which gives examples of crepant resolutions
of 4-dimensional non-abelian quotient singularities. It is hard to draw
picture even for 4-dimensional toric varieties, and we hope you feel the
difficulties.

Acknowledgements. This paper contains results in the master
theses of the first and the third authors. Both of them got the good
thesis prize of Graduate School of Mathematics of Nagoya University.
Moreover, all of the authors thank to the graduate school for the stu-
dent’s project program to give them a chance to visit Sogan University
and University of Warwick to attend a conference together and give
talks.

§2. G-Hilbert schemes and Gröbner bases

In this section, we show that (the normalizations of) the G-Hilbert
scheme for a finite abelian subgroup of G ⊂ GL(n,C) is constructed by
using Gröbner bases. Though such a result is already known in [4, 21], we
prove it by a different and simpler way. It seems thatG-graphs developed
by Nakamura [22] is a basic tool to study the G-Hilbert scheme and it
is easy to understand for non-experts. So here we consider a relation
between G-graphs and Gröbner bases and as its consequence we show
that the G-Hilbert scheme is constructed by Gröbner bases.

2.1. Notations

In this section, G denote a finite abelian subgroup of GL(n,C) of
order r. Since G is abelian, we can assume that any g ∈ G is of the form
g = diag(εa1 , · · · , εan) with 0 ≤ ai ≤ r−1, where ε is a primitive rth root
of unity. Let ρ0, · · · , ρr be the all irreducible representations of G up
to isomorphism and put Irr(G) = {ρ0, · · · , ρr}. Let S = C[x1, . . . , xn]
be the coordinate ring of Cn. A monomial in S are denoted by xu =
xu1
1 · · · xun

n and identified with a lattice point u = (u1, . . . , un) in Zn
≥0,

where Z
n
≥0 stands for the non-negative integers. We denote by M a set

of all monomials in S.
For toric geometry, we prepare following notations. Let N = Zn +∑

g∈G Zḡ be a free Z-module of rank n, where ḡ = 1
r (a1, · · · , an) ∈ R

n

for g = diag(εa1 , · · · , εan) ∈ G. Let M be the dual Z-module of N , and
NR := N ⊗Z R, MR := M ⊗Z R. Let Δ be the region of NR whose
all entries are non-negative. Then the toric variety determined by Δ is
isomorphic to C

n/G.
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2.2. G-graphs and G-Hilbert schemes

We recall the definition of G-graphs. We write deg(xu) = ρi if
xu(g · p) = ρi(g)x

u(p) holds for any g ∈ G and p ∈ Cn. Since any
monomial is contained in some ρi, we can define a map deg : M →
Irr(G).

Definition 2.1. A subset Γ ⊂ M is called a G-graph if the following
conditions are satisfied.
(1) If xu ∈ Γ and xu is divided by xv, then xv ∈ Γ.
(2) The restriction map deg : Γ → Irr(G) is a bijection.

Remark 2.2. In the original definition, a G-graph is defined as a
subset of Zn

�0
. The above definition is equivalent to the original one via

the bijection Zn
�0

→ M;u �→ xu.

We may regard G-graphs as n-dimensional Young diagrams with r
boxes having irreducible representations different from each other. By
the definition, for a G-graph Γ, 1 ∈ Γ and the cardinal of Γ is r.

Next we recall the definition of G-Hilbert scheme. The G-Hilbert
scheme has two inequivalent definitions as follows. The first version,
denoted by G-Hilb, is the moduli space of G-clusters. A G-cluster is
a G-invariant subscheme Z ⊂ C

n such that OZ is isomorphic to the
regular representation C[G] as a C[G]-module. For a G-cluster Z, we
also call its defining ideal I(Z) a G-cluster since we mainly consider
defining ideals rather than subschemes. Note that an ideal I ⊂ S is a
G-cluster if it is G-invariant and the quotient ring S/I is isomorphic to
C[G] as a C[G]-module. We write I ∈ G-Hilb if I is a G-cluster. G-Hilb
is a union of connected components of (Hilbr(Cn))G (see [15]).

The second (and the original) version, denoted by HilbG, is called
G-Hilbert scheme of Ito-Nakamura type. It is the irreducible component
of (Hilbr(Cn))G which dominates Cn/G. HilbG is birational to Cn/G
and projective over C

n/G via the Hilbert-Chow morphism. Of course,
HilbG is a irreducible component of G-Hilb.

A relation between G-graphs and the G-Hilbert scheme is as follows.
For a G-graph Γ we define

I(Γ) := 〈xu ∈ S | xu �∈ Γ〉,
and for a monomial ideal I ∈ G-Hilb we define

Γ(I) := {xu ∈ M | xu �∈ I}.
Lemma 2.3. The following hold.
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(i) I(Γ) ∈ G-Hilb.
(ii) Γ(I) is a G-graph.
(iii) There is a one-to-one correspondence between a set of G-

graphs and a set of monomial G-clusters.

Proof. (1) Since I(Γ) is a monomial ideal, it is G-invariant. By the
definition of G-graph, the basis of S/I(Γ) as a C-vector space consists
of r monomials with degree ρi ∈ Irr(G) different from each other. So
S/I(Γ) ∼= C[G] holds. Hence I(Γ) ∈ G-Hilb.

(2) It is clear that Γ(I) satisfies the condition (1) in Definition 2.1.
Moreover since S/I ∼= C[G], it also satisfies the conditions (2). Hence
Γ(I) is a G-graph.

(3) If Γ is a G-graph, we have Γ = Γ(I(Γ)). Conversely if I is
a monomial G-cluster, we have I = I(Γ(I)). Therefore the assertion
holds. Q.E.D.

Since G-graphs such that I(Γ) ∈ HilbG are important, we name
them as follows.

Definition 2.4. A G-graph Γ is distinguished if I(Γ) ∈ HilbG.

By Lemma 2.3 there are one-to-one correspondences.

{G-graphs} 1−1↔ {monomial G-clusters in G-Hilb},
{distinguished G-graphs} 1−1↔ {monomial G-clusters in HilbG}
Remark 2.5. G-Hilb is a semi-projective toric variety, that is, for

each component there exists a Zariski dense algebraic torus T whose
action on itself can be extended to an action on the whole space (see [3,
§3,4] for details). Monomial G-clusters are torus fixed points on G-Hilb.

Next we recall a way of construction of HilbG and its normaliza-
tion by using G-graphs. When we fix a G-graph Γ, for any u ∈ Z

n
�0

there exists a unique element wtΓ(u) ∈ Z
n
�0

such that xwtΓ(u) ∈ Γ and

deg(xu) = deg(xwtΓ(u)).

Definition 2.6. Let AΓ be a set of minimal generators of I(Γ). For
a distinguished G-graph Γ, we define the cone

σ(Γ) := {w ∈ NR | w · (u− wtΓ(u)) > 0 for all xu ∈ AΓ}
in NR. We define a fan Fan(G) in NR as a set of all closed cone σ(Γ)

and all their faces where σ(Γ) is the closure of σ(Γ).

It is known that for any distinguished G-graph, dimσ(Γ) = n (See
[22, Definition 2.2]).
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Definition 2.7. For any distinguished G-graph Γ, we define affine
schemes

W (Γ) := SpecC

[
xu

xwtΓ(u)

∣∣∣∣ xu ∈ AΓ

]
,

U(Γ) := SpecC[Δ∨ ∩M ].

Note that U(Γ) is the normalization of W (Γ). We denote the toric
variety determined by Fan(G) by T (Fan(G)), which is obtained by
gluing of U(Γ).

Theorem 2.8 ([22, Theorem 2.11]). The following hold.

(i) Fan(G) is a finite fan with its support Δ.

(ii) HilbG is given by gluing ofW (Γ) for all distinguishedG-graphs
Γ.

(iii) The normalization of HilbG is isomorphic to T (Fan(G)).

Remark 2.9. It is stated that G-Hilb is irreducible in the original
version [22]. However there are counterexamples (see subsection 2.5). A
proof of the above theorem is almost same as [22] without considering
distinguished G-graphs.

2.3. Gröbner fans

We assume that the readers know the definitions of term orders and
(reduced) Gröbner bases.

We fix an arbitrary point p ∈ (C∗)n. Let IG := I(G · p) be the
defining ideal of the G-orbit G · p. By the definition, IG is a G-cluster.
In this paper we only consider Gröbner bases for IG. In general any
reduced Gröbner basis for a binomial ideal consists of only binomials.
So since IG is a binomial ideal, any element of each reduced Gröbner
basis G for IG is of the form f = xu − cxv where c = xu(p)/xv(p) and
xu > xv. For an ideal I, it is known that there are only finitely many
reduced Gröbner bases for I.

In the following, we call an element of Rn a weight vector. For a
weight vector w and a polynomial f =

∑
cix

ui , we define the initial form
inw(f) of f to be the sum of all terms ci ·xui such that the inner product
w · ui is maximal. Note that inw(f) is not necessarily a monomial. For
an ideal I ⊂ S, we call inw(I) := 〈inw(f) | f ∈ I〉 the initial ideal of I.

Next we define the Gröbner fan of IG.

Definition 2.10. For any reduced Gröbner basis G for an ideal I
with respect to <, we define a Gröbner cone σ(G) by

σ(G) := {w ∈ R
n | inw(f) = in<(f) for all f ∈ G}.
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The Gröbner fan GF (IG) of an ideal I is a set of all faces of σ(G) for all
reduced Gröbner bases G for I.

Since f ∈ G is of the form xu − cxv with xu > xv we have

σ(G) = {w ∈ R
n | w · (u− v) > 0 for all f = xu − cxv ∈ G s.t. xu > xv}.

In the rest, we consider Gröbner fan in NR
∼= R

n. Actually it is possible
because all xu − cxv ∈ G are G-semi-invariant, so xu−v is G-invariant,
hence σ(G) is a cone in NR.

Proposition 2.11. The support of GF (IG) is equals to Δ.

Proof. Since xr
i−pri ∈ IG for each i = 1, 2, . . . , n, we haveGF (IG) ⊂

Δ. Conversely for any w ∈ Δ, if w is zero, then it is trivial that
w ∈ GF (IG). If w is not zero, for an arbitrary term order <, we get a
new term order <w as follows. xu <w xv if and only if w · u < w · v or
(w · u = w · v and xu < xv). Then we have w ∈ σ(G) for the reduced
Gröbner basis G for IG with respect to <w. Q.E.D.

Definition 2.12. For each reduced Gröbner basis G for IG with
respect to >, we define an affine scheme

W (G) := SpecC

[
xu

xv

∣∣∣∣ xu − cxv ∈ G,xu > xv

]
.

We denote by T (GF (IG)) the toric variety determined by the Gröbner
fan GF (IG).

In the next subsection, we observe a relation between G-graphs and
reduced Gröbner bases and show that there is a natural correspondence
between them.

2.4. G-graphs and reduced Gröbner bases

The purpose of this subsection is to prove that HilbG and its nor-
malization are completely described in terms of Gröbner bases.

Lemma 2.13. For any term order <, we have in<(IG) ∈ HilbG.

Proof. We consider a one parameter group in G-Hilb as follows.
If we take a weight vector w = (w1, . . . , wn) ∈ σ(G) ∩ Zn

>0, then by
the definition we have in<(IG) = inw(IG). For any t ∈ C

∗, we define
pt = (tw1p1, . . . , t

wnpn) and IG,t = I(G · pt). Since p is a point on (C∗)n

and t �= 0, G · pt is a free G-orbit, so we have IG,t ∈ G-Hilb. Moreover

since π(IG,t) is a non-singular point on Cn/G, we have IG,t ∈ HilbG

where π is the Hilbert-Chow morphism.
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Next we show that lim
t→0

IG,t = 〈in<(IG)〉. Let G be the reduced

Gröbner basis for IG with respect to <. Each element f ∈ G is of the
form f = xu − cxv with xu > xv and c = xu(p)/xv(p). Thus if we put

ft = xu − ctx
v, ct = xu(pt)/x

v(pt),

then a set Gt = {ft | f ∈ G} is the reduced Gröbner basis for IG,t with

respect to <. Since ct = xu(pt)/x
v(pt) = t〈w,u〉xu(p)/t〈w,v〉xv(p) =

t〈w,u−v〉c and 〈w,u− v〉 > 0 hold, we have lim
t→0

ct = 0, hence lim
t→0

IG,t =

〈in<(IG)〉.
It follows that 〈in<(IG)〉 ∈ G-Hilb since we have S/〈in<(IG)〉 ∼=

S/IG ∼= C[G] as a C[G]-module. Therefore we have in<(IG) ∈ HilbG

since HilbG is an irreducible component of G-Hilb. Q.E.D.

For a reduced Gröbner basis G for IG with respect to <, we define

ϕ(G) := Γ(〈in<(G)〉) = {xu ∈ M | xu �∈ 〈in<(G)〉},
and for a distinguished G-graph Γ, we define

ψ(Γ) = {xu − cxwtΓ(u) | xu ∈ AΓ, c = xu(p)/xwtΓ(u)(p)}.
Note that we have inw(G) = AΓ for any w ∈ σ(Γ) by the definition.

Proposition 2.14. The following hold.

(i) ϕ(G) is a distinguished G-graph.
(ii) ψ(Γ) is a reduced Gröbner basis for IG with respect to w ∈

σ(Γ).
(iii) ϕ and ψ are mutually inverse maps. Therefore we have a

one-to-one correspondence:

{distinguished G-graphs} 1−1←→ {reduced Gröbner bases for IG}
Proof. (1) By Lemma 2.13 〈in<(G)〉 is a monomial G-cluster in

HilbG. So by Lemma 2.3 (2), ϕ(G) is a distinguished G-graph.
(2) We put G = ψ(Γ). It is clear that G ⊂ IG. We have dimC S/〈inw(G)〉 =

dimC S/〈AΓ〉 = r = dimC S/IG = dimC S/inw(IG) and 〈inw(G)〉 ⊂
inw(IG), hence we have 〈inw(G)〉 = inw(IG). Therefore G is a Gröbner
basis for IG. Moreover, since AΓ is the minimal generators of I(Γ) and
I(Γ) = 〈inw(G)〉, any term contained in f ∈ G is not divisible by any
g ∈ inw(G \ {f}), so G is reduced.

(3) For any distinguished G-graph Γ and reduced Gröbner basis
G, we have ϕ(ψ(Γ)) = Γ and ψ(ϕ(G)) = G, so the assertion follows.

Q.E.D.
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Proposition 2.15. Let Γ be a distinguished G-graph and G = ψ(Γ)
the corresponding reduced Gröbner basis. Then we have

(i) W (Γ) = W (G)
(ii) σ(Γ) = σ(G).
Proof. Let < be a term order such that G is the reduced Gröbner

basis with respect to <, then any f ∈ G is of the form xu − cxwtΓ(u)

such that xu ∈ AΓ and xu > xwtΓ(u). So we have

W (Γ) = SpecC

[
xu

xwtΓ(u)

∣∣∣∣ xu ∈ AΓ

]
= W (G)

σ(Γ) = {w ∈ NR | w · (u− wtΓ(u)) > 0 for all xu ∈ AΓ} = σ(G).
Q.E.D.

As a consequence of the above results we have the following. This
is the main result in this section.

Theorem 2.16. Let G be a finite abelian subgroup of GL(n,C),
then the following hold.

(i) {W (G)} is an affine covering of HilbG.

(ii) Fan(G) = GF (IG), therefore the normalization of HilbG is
isomorphic to T (GF (IG)).

Proof. It follows from Theorem 2.8 and Proposition 2.15. Q.E.D.

It is known that G-Hilb is the minimal resolution of C2/G for G ⊂
GL(2,C) ([10, 16, 19]) and a crepant resolution of C3/G for G ⊂ SL(3,C)

([2, 22]), and in this case G-Hilb = HilbG. In particular we have next
corollaries.

Corollary 2.17 (Ito [13, Theorem 1.1]). For a finite abelian sub-
group G of GL(2,C), T (GF (IG)) is the minimal resolution of C2/G.

Corollary 2.18 (cf. Ito [14]). For a finite abelian subgroup G of
SL(3,C), T (GF (IG)) is a crepant resolution of C3/G.

In general, G-Hilb is not necessarily smooth even if G ⊂ GL(3,C).
Moreover, Craw-Maclagan-Thomas found a non-normal HilbG for a fi-
nite abelian subgroup G ⊂ GL(6,C) ([4, Example 5.7]).

2.5. Examples

We show several examples of the Gröbner fans of IG in dimension
three. In this subsection we assume G ⊂ GL(3,C) and p = (1, 1, 1).
We say a cyclic subgroup G ⊂ GL(3,C) is of type 1

r (a1, a2, a3) if it is
generated by an element diag(εa1 , εa2 , εa3) where 0 ≤ ai < r for each
i = 1, 2, 3. We write x = x1, y = x2, z = x3.
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Lemma 2.19. If G is of type 1
r (1, a, b), a set

{xr − 1, y − xa, z − xb}
is the reduced Gröbner basis for IG with respect to w = (w1, w2, w3)
with w1 > 0, w2 > aw1, w3 > bw1.

Proof. For a G-graph Γ = {1, x, . . . , xr−1}, we have the reduced
Gröbner basis ψ(Γ) for IG with respect to w ∈ σ(Γ) by Proposition
2.14. We have ψ(Γ) = {xr − 1, y − xa, z − xb} and σ(Γ) = {w =
(w1, w2, w3) ∈ Δ | w1 > 0, w2 > aw1, w3 > bw1} since AΓ = {xr, y, z}
and deg(xr) = deg(1),deg(y) = deg(xa),deg(z) = deg(xb). Q.E.D.

Example 2.20. Next we show examples in SL(3,C). The following
picture is the Gröbner fan of G of type 1

6 (1, 2, 3) and
1
13 (1, 3, 9) respec-

tively. By Corollary 2.18 this fan gives a crepant resolution of C3/G.
We remark that the number of chambers is equal to the order of G. In
general this number equals to the Euler number of HilbG. This shows
a generalized McKay correspondence, that is, the Euler number of a
crepant resolution equals to the number of conjugacy classes of G.

1
6 (1, 2, 3)

1
13 (1, 3, 9)

Example 2.21. LetG be of type 1
4 (1, 2, 3). Note thatG �⊂ SL(3,C).

This is a singular example where the order of the group G is minimum.
By Lemma 2.19 {x4 − 1, y − x2, z − x3} is a reduced Gröbner basis for
IG. Then all reduced Gröbner bases, the corresponding G-graphs and
the Gröbner fan for IG are as follows. In G-graphs, for example Γ2

stands for {1, y, z, yz}. These can be calculated by software “Gfan” [8].

An affine cover W (G) of HilbG is smooth if σ(G) is a triangle and has
a singularity if a quadrangle. In particular this singularity is a terminal
singularity described by xy − zw = 0.
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The reduced Gröbner bases

G1 = {z4 − 1, y − z2, x− z3}
G2 = {z2 − y, y2 − 1, x− yz}
G3 = {z2 − y, yz − x, y2 − 1, xz − 1,

xy − z, x2 − y}
G4 = {z − xy, y2 − 1, x2 − y}
G5 = {z3 − x, y − z2, xz − 1, x2 − z2}
G6 = {z2 − x2, y − x2, xz − 1, x3 − z}
G7 = {z − x3, y − x2, x4 − 1}

(0, 1, 0)

xy : z

y
2
: 1

y : z
2

x
: yz

y
2
: 1

z4 : 1

x
2
:
y

x
2
:
y

x 4
: 1

x
: z 3

x 2
: z 2

x 3
: z

y : z
2

(1, 0, 0)

(0, 0, 1)

The Gröbner fan for IG
The G-graphs

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7

Example 2.22. Let G be of type 1
101 (1, 7, 93) which is a exercise

appearing in [5]. Though they provide a method to calculate Fan(G),
we can also obtain it by calculating GF (IG). We can check directly that
there are 101 reduced Gröbner bases for IG and so GF (IG) consists of
101 small triangles.

Finally we consider examples such that G-Hilb is reducible. Craw-
Maclagan-Thomas [4] show that if G is of type 1

14 (1, 9, 11) then HilbG

is reducible. However, there are more reducible examples. The next is
a criterion to determine whether G-Hilb is reducible or not.

Proposition 2.23. If the number of G-graphs is bigger than the
number of reduced Gröbner bases for IG, then G-Hilb is reducible.

Proof. It is clear by Proposition 2.14. Q.E.D.

Example 2.24. Table 1 shows all reducible G-Hilb of type 1
r (1, a, b)

for r ≤ 26. A. Ishii tell the author that G-Hilb of type 1
8 (1, 3, 5, 7) is

also reducible.
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e2e1

e3

Fig. 1. Craw-Reid’s exercise : 1
101

(1, 7, 93)

type #{G-graphs} #{reduced G-bases}
1
14 (1, 9, 11) 35 33
1
19 (1, 6, 8) 44 42
1
20 (1, 12, 17) 37 35
1
23 (1, 9, 20) 58 56
1
24 (1, 15, 19) 59 57
1
25 (1, 11, 20) 39 37
1
26 (1, 5, 7) 46 44
1
26 (1, 8, 11) 52 49

Table 1. reducible G-Hilb of type 1
r
(1, a, b) with r ≤ 26

§3. Examples of crepant resolutions of 4-dimensional non-
abelian quotient singularities

In this section, we introduce some examples of four-dimensional
quotient singularities by non-abelian finite groups, for which we can
construct crepant resolutions. For the rest of this section, we denote
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1
n (a1, . . . , a4) a diagonal matrix diag(εa1 , εa2 , εa3 , εa4) where ε = exp(2πi/n)
and 0 ≤ ai < n for each i = 1, 2, 3, 4 , and call (a1 + · · ·+ a4)/n its age.

Theorem 3.1. Let H ⊂ SL(4,C) be one of the following groups:

(i) H =
〈
1
n (1, 0, 0,−1), 1

n (0, 1, 0,−1), 1
n (0, 0, 1,−1)

〉
, where n ∈

Z, n ≥ 2.
(ii) H =

〈
1
2n (1, n− 1, 1, n− 1), 1

2 (0, 1, 0, 1)
〉
, where n ∈ Z, n ≥ 1.

(iii) H =
〈

1
4n (1, 2n− 1, 1, 2n− 1)

〉
, where n ∈ Z, n ≥ 2.

(iv) H =
〈

1
m (1,−1, 0, 0), 1

n (0, 0, 1,−1)
〉
, where m,n ∈ Z, m ≥ 3,

n ≥ 2.

Let K ⊂ SL(4,C) be a group generated by

T =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ∈ SL(4,C),

and G = 〈H,K〉. Then G is a non-abelian finite subgroup of SL(4,C),
and C

4/G has a crepant resolution.

Proof. For each group G of Theorem 3.1, H coincides with the set
of all diagonal matrices in G, and G is decomposed into a semi-direct
product H � K. Now, we construct a crepant resolution in two steps,
as is done in the paper by Ito [12].

X̃

(2) crepant resolution

��
Ỹ

/K
��

(1) K-equivariant crepant resolution

��

K ��
Ỹ /K

crepant morphism

��
C

4 �� Y = C
4/H

/K
�� X = C

4/G.

(1) Construct aK-equivariant crepant resolution Ỹ → Y = C4/H.

By taking quotient of Ỹ → Y by K, we can obtain a crepant

morphism Ỹ /K → X = C
4/G.

(2) Construct a crepant resolution X̃ → Ỹ /K. Then the compos-

ite X̃ → X is also a crepant resolution.

Since H is abelian, crepant resolutions of Y can be constructed by
toric methods. For that purpose, we only need to subdivide a tetra-
hedron P , which is an intersection of a cone σ =

∑4
i=1 R≥0ei and a
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hyperplane
∑4

i=1 xi = 1, into #H pieces of small tetrahedrons, using
points of age one. In order the corresponding crepant resolution to be
K-equivariant, we should take a K-invariant subdivision. (K acts on P
by the natural action on the standard basis of C4.)

For the groups of Theorem 3.1, points in P of age one are drawn
in Figures 2–5, and subdivisions that give K-equivariant crepant resolu-
tions are shown in Figures 6–9. Note that each octahedron in Figure 6
is divided into four tetrahedrons as in Figure 10.

Fig. 2. (i) n = 3 Fig. 3. (ii) n = 3 Fig. 4. (iii) n = 3

Fig. 5. (iv) m = 3,
n = 2

Fig. 6. (i) n = 3 Fig. 7. (ii) n = 3

Fig. 8. (iii) n = 3 Fig. 9. (iv) m = 3,
n = 2

Fig. 10. subdivision of
an octahedron

Now, by changing coordinates analytically around the fixed locus of

K, we can find all singularities in Ỹ /K are written as a product of A1-

singularity and C2. Therefore, Ỹ /K has a crepant resolution. Q.E.D.
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Remark 3.2. In dimension four, we have to choose H and K care-
fully. For C4/H does not necessarily have a K-equivariant crepant res-

olution, and terminal singularities could appear in Ỹ /K. Although this
method is applicable to only a few groups, there exist examples for other
H and K than we presented here.

Remark 3.3. The crepant resolutions Ỹ are H-Hilb except 6(i) in

the figures. For these H-Hilb, X̃ could be the iterated G-Hilb, that is,

G/H-Hilb of H-Hilb because the crepant resolution of Ỹ /K is K-Hilb.
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