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One-ended subgroups of mapping class groups

Brian H. Bowditch

Abstract.

Suppose we have a one-ended finitely presented group with a purely
loxodromic action on a Gromov hyperbolic space satisfying an acylin-
dricity condition. We show that, given a finite generating set, there
is an automorphism of the group, and some point in the space which
is moved a bounded distance by each of the images of the generators
under the automorphism. Here the bound depends only on the group,
generating set, and constants of hyperbolicity and acylindricity. With
results from elsewhere, this implies that, up to conjugacy, there can
only be finitely many purely pseudoanosov subgroups of a mapping
class group that are isomorphic to a given one-ended finitely presented
group.

§1. Introduction

Let Σ be a closed orientable surface, and write Map(Σ) for its map-
ping class group — the group of self-homeomorphisms up to homotopy.
The Nielsen-Thurston classification partitions the non-trivial elements
of Map(Σ) into finite order, reducible, and pseudoanosov, the last being
the “generic” case. A subgroup of Map(Σ) is purely pseudoanosov if ev-
ery non-trivial element is pseudoanosov. Such a subgroup is torsion-free.
We shall say that a group is indecomposable if it does not split as a free
product. It is a theorem of Stallings that a non-cyclic torsion-free finitely
generated group is indecomposable if and only if it is one-ended. It is an
open question as to whether Map(Σ) can contain any one-ended finitely
generated purely pseudoanosov subgroup. Indeed the only purely pseu-
doanosov subgroups known at present are all free. (See the surveys [Re]
and [Mo].)
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In this paper, we give an independent proof of the result in [DaF]
that there can be only finitely many conjugacy classes of finitely pre-
sented one-ended subgroups of a given isomorphism type. More pre-
cisely:

Theorem 1.1. Let Σ be a closed surface, and Map(Σ) its mapping
class group. Let Γ be a finitely presented one-ended group. Then there is
a finite collection, Γ1, . . . ,Γn, of subgroups of Map(Σ) such that if Γ0 ≤
Map(Σ) is a purely pseudoanosov subgroup isomorphic to Γ, then there
is some g ∈ Map(Σ) and some i ∈ {1, . . . , n} such that Γ0 = gΓig

−1.

Both our proof, and that of [DaF], make use of Proposition 8.1 of
[Bo3]. The aim is to show that the hypotheses of that result hold in
general. The methods we employ here are rather different from those
of [DaF]. They are based on a general result about acylindrical actions
on a hyperbolic space, namely Theorem 1.2 below. Acylindrical actions
have recently been much studied (see for example, [O]). We therefore
hope that this result may be of some independent interest. First, we
give a few more definitions.

We will write Aut(Γ), Inn(Γ) and Out(Γ), respectively for the groups
of automorphisms, inner automorphisms and outer automorphisms of a
group Γ. If Γ is one-ended and finitely presented, then one can define a
normal subgroup, Mod(Γ)�Out(Γ), which we call the modular group (cf.
[RiS1]). It can be defined as the subgroup of Out(Γ) generated by Dehn
twists arising from splittings of Γ over infinite cyclic subgroups. (It is
tied up with the JSJ splitting of Γ, and is discussed further in Section 4.)
We remark that for a hyperbolic group, Mod(Γ) is finite index in Out(Γ),
though this need not be the case in general. The preimage of Mod(Γ) in
Aut(Γ) is called the “internal automorphism group”, Int(Γ), in [RiS1].
In other words Inn(Γ) � Int(Γ) �Aut(Γ), and Mod(Γ) = Int(Γ)/ Inn(Γ).

Suppose that G is a Gromov hyperbolic graph. The following notion
is used in [Bo2] (in the context of curve graphs). It generalises Sela’s
notion of acylindrical actions on simplicial trees. The terminology arises
from the theory of 3-manifolds.

Definition. We say that an action of a group Γ on G is acylindrical
if, given any r ≥ 0, there exist R,N such that if x, y ∈ G with d(x, y) ≥
R, then there are at most N elements g ∈ Γ with both d(x, gx) ≤ r and
d(y, gy) ≤ r.

Less formally, this says that only boundedly many elements of Γ
move a long geodesic a short distance.

In this paper, we will show:
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Theorem 1.2. Let Γ be a finitely presented one-ended group, and
let A ⊆ Γ be a finite subset. Suppose that Γ admits a purely loxodromic
acylindrical action on a k-hyperbolic graph G. Then there is some x ∈ G,
and some θ ∈ Mod(Γ), such that for all g ∈ A, d(x, θ(g)x) ≤ K, where
K depends only on Γ, A, k and the acylindricity parameters.

In fact, we could take G to be any Gromov hyperbolic space, though
we will deal with a graph here to avoid technical details.

In the case where Γ is a closed orientable surface group, Theorem
1.2 is proven in [Ba], and used in [Bo3]. We shall elaborate on arguments
from [Ba] for a proof in the general case. A similar statement to Theorem
1.1 for uniformly locally finite graphs is given in [RiS1]. Indeed the
arguments as given there might be adaptable, though we shall phrase
things a little differently here.

As we will explain in Section 2, this verifies the hypotheses of Propo-
sition 8.1 of [Bo3], thereby proving Theorem 1.1. Indeed, we only need
θ ∈ Out(Γ) for this. Using the above, we can formulate a strengthening
of Theorem 1.2. We define a purely pseudoanosov homomorphism from
a group Γ to Map(Σ) as one which sends every non-trivial element to
a pseudoanosov — i.e. injective with purely pseudoanosov image. The-
orem 1.1 can then be rephrased by saying that there are only finitely
many purely pseudoanosov homomorphisms up to precomposition by an
element of Out(Γ) and postcompostion by an element of Inn(Map(Σ)).
(Note that it makes sense to refer to Out(Γ) rather than Aut(Γ) here,
since any inner automorphism of Γ goes over to an inner automorphism
of Map(Σ).)

Given that we can always take θ ∈ Mod(Γ), we can reduce from
Out(Γ) to Mod(Γ).

Theorem 1.3. If Γ is a finitely presented one-ended group, then
there are only finitely many purely pseudoanosov homomorphisms from
Γ to Map(Σ) up to precomposition in Mod(Γ) and postcomposition in
Inn(Map(Σ)).

We note the case of Theorem 1.1 where Γ is an orientable surface
group Theorem 1.1 is equivalent to Theorem 1.3, and was proven in
[Bo3]. In that case, where the conclusion of Theorem 1.2 was already
known (see [Ba]). I have been informed by Daniel Groves that he has
an alternative approach to Theorem 1.1, as well as some more general
statements if one allows for pseudoanosovs.

We remark that analogues of Theorem 1.1 for hyperbolic and rela-
tively hyperbolic groups are proven respectively in [De] and [Da].

We note that, in the case where Σ is the torus, the orientation
preserving subgroup of Map(Σ) is PSL(2,Z) ∼= Z2 ∗ Z3. In particular,
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Map(Σ) is virtually free, and so any torsion-free subgroup is free. For
this reason, we can assume that genus(Σ) ≥ 2.

Acknowledgements. I thank Thomas Delzant for some early dis-
cussion regarding subgroups of the mapping class group, which partly
inspired me to think about questions of this sort. I am indebted to
Misha Kapovich for suggesting the use of R-tree actions for the proof,
in particular, that something along the lines of Lemma 5.1 may be true
and useful. I also thank him for his many helpful comments on an ear-
lier draft of this paper. I thank Mustafa Korkmaz for his explanation of
Proposition 4.2.

§2. Hyperbolic spaces and graphs

In this section, we explain how to reduce the main results (Theorems
1.1 and 1.3) to Theorem 1.2. To apply this, we use the action of the
mapping class on the curve graph, together with the result from [Bo3]
alluded to in the introduction. The remainder of the paper will then be
devoted to proving Theorem 1.2.

Let G be a k-hyperbolic graph in the sense of Gromov (see [Gr1,
GhH]). (Note that we are not assuming G to be locally finite.) We write
d for the combinatorial metric — so that each edge has length 1. We
denote the vertex set by V (G).

Suppose that a group Γ acts on G. The stable length, ||g||, of an
element g ∈ Γ is defined as ||g|| = limn→∞ 1

nd(x, g
nx) for some, hence

any, x ∈ G. We say that g is loxodromic if ||g|| > 0. (This is equivalent to
saying that g moves some bi-infinite quasigeodesic a bounded Hausdorff
distance — indeed the constants can be chosen to depend only on k.) We
say that Γ is purely loxodromic if each non-trivial element is loxodromic.
We write inj(G,Γ) = inf{||g|| | g ∈ Γ \ {1}} (cf. the injectivity radius of
a negatively curved manifold).

The following is proven in [Bo2]:

Lemma 2.1. Suppose that Γ acts acylindrically on G, and that g ∈ Γ
is loxodromic. Then ||g|| ≥ η where η > 0 depends only on the hyperbol-
icity constant, k, and the parameters of acylindricity.

The following is also easily verified:

Lemma 2.2. If Γ admits a purely loxodromic acylindrical action
on a hyperbolic graph, then every infinite cyclic subgroup of Γ has finite
index in its centraliser.

This can be proven by a similar argument as that for subgroups of
a hyperbolic group — only the acylindricity of the action on the Cayley
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graph is needed to make that work. We omit a proof here, since the
conclusion is readily seen in the case we wish to apply it, namely purely
pseudoanosov subgroups of the mapping class group.

As noted, the key new ingredient that we shall prove in this paper
is Theorem 1.2 given in the previous section.

We remark that Theorem 1.2 could be applied in the case where G
is a uniformly locally finite graph to give the result of [De] that there
are only finitely many conjugacy classes of one-ended subgroups of any
particular isomorphism type in a hyperbolic group. Of course, this ap-
proach would be a rather indirect and non-constructive route to that
result. As noted in the introduction, a version of Theorem 1.2 specific
to the curve complex (with Out(Γ) replacing Mod(Γ)) has been inde-
pendently proven by Dahmani and Fujiwara by different methods [DaF].
This can, of course, be substituted for Theorem 1.2 to deduce Theorem
1.1.

We will be applying the above results to the curve graph. Let Σ be
a closed orientable surface. The curve graph, G(Σ), of Σ is the 1-skeleton
of the curve complex as defined by Harvey [Ha]. That is to say, its vertex
set, V (G(Σ)), is the set of homotopy classes of essential simple closed
curves in Σ, and two such vertices are adjacent if these curves can be
homotoped to be disjoint in Σ. Note that Map(Σ) acts on G(Σ) with
compact quotient.

We have:

Theorem 2.3. [MaM, Bo2] G(Σ) is Gromov hyperbolic. The action
of Map(Σ) on G(Σ) is acylindrical. The loxodromic elements of Map(Σ)
are precisely the pseudoanosovs.

The first and last statements are proven in [MaM] and the second
statement (acylindricity) in [Bo2]. Of course, all the parameters involved
depend only on genus(Σ). Note that there is some constant, η > 0, again
depending only on genus(Σ), such that if g ∈ Γ is pseudoanosov, then
||g|| ≥ η. A direct argument for this is given in [MaM], though it also
follows from Lemma 2.1.

We remark that the curve graphs are now known to be uniformly
hyperbolic [A, CRS, HePW, Bo4]. Also, simpler and constructive proofs
of acylindricity (via the combinatorics of tight geodesics) are given in
[We] and in [Wa].

We are now in a set up where we can apply Theorem 1.2. To explain
how this implies Theorems 1.1 and 1.3, we need a result from [Bo3].

Suppose that Γ is a finitely presented group and that A ⊆ Γ is a
finite generating set. We can define its complexity, c(A), as the minimal
total length of a set of relators for Γ with respect to A. Here the “total
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length” is the sum of the lengths of the cyclic words in elements of A
and their inverses representing the relators.

The following is proven in [Bo3]:

Theorem 2.4. Suppose that Γ is a finitely presented and one-ended,
and that A ⊆ Γ is a finite generating set. Suppose that φ : Γ −→ Map(Σ)
is a purely pseudoanosov homomorphism, and that there is some x ∈
V (G(Σ)) such that d(x, φ(g)x) ≤ K for all g ∈ A. Then there is some
h ∈ Map(Σ) such that the word length of hφ(g)h−1 in Map(Σ) is bounded
above for all g ∈ A, in terms of K and c(A).

Here the word length in Map(Σ) is measured in terms of some fixed
generating set of Map(Σ). The purpose of the result is to reduce these
elements to some predetermined finite subset of Map(Σ).

We explain how Theorems 1.2 and Theorem 2.4 together imply The-
orem 1.3, which of course, in turn implies Theorem 1.1.

Suppose that Γ is finitely presented and one-ended and that φ :
Γ −→ Map(Σ) is a purely pseudoanosov homomorphism. We fix some
finite generating set, A ⊆ Γ, and consider the action of Γ on G(Σ).
In view of Theorem 2.3, Theorem 1.2 tells us that, after precompos-
ing by some element of Mod(Γ), there is some x ∈ V (G(Σ)) such that
d(x, φ(g)x) ≤ K for all g ∈ A, where K depends only on Γ, A and
genus(Σ). Applying an outer automorphism of Γ does not affect the
complexity of A, and Theorem 2.4 tells us that there is some h ∈ Map(Σ)
such that the word lengths of hφ(g)h−1 in Map(Σ) are bounded above in
terms of c(A) and K, and hence in terms of Γ, A and genus(Σ). In other
words, after postcomposing with an inner automorphism of Map(Σ),
φ(A) is contained in a finite subset of Map(Σ), predetermined by Γ and
A. It follows that after these pre and post compositions, there are only
finitely many possibilities for φ, as required for Theorem 1.3.

§3. Degeneration of hyperbolic structures

To prove Theorem 1.2, we will be arguing by contradiction, bringing
the theory of actions on R-trees into play. We begin by recalling some
general facts about degenerating hyperbolic metrics. We shall use the
formulation in terms of asymptotic cones [VW] (see also [Gr2]).

In this section, we fix a finitely generated group, Γ, and a finite
generating set, A ⊆ Γ. Suppose that Γ acts on a hyperbolic graph
G. Given a ∈ G, we write D(G,Γ, a) = max{d(a, ga) | g ∈ A} and
D(G,Γ) = min{D(G,Γ, a) | a ∈ G}.

Suppose that we have a sequence, (Gn)n, of k-hyperbolic graphs and
points an ∈ Gn, and a sequence of numbers (Ln)n with Ln → ∞ and
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D(Gn,Γ, an) ≤ Ln for all n. We write 1
Ln

Gn for the graph Gn scaled

by a factor 1
Ln

, i.e. so that each edge has length 1
Ln

. Choosing a non-

principal ultrafilter on N, the pointed spaces, ( 1
Ln

Gn, an) converge to a

space (T, a∞). In this case, T is an R-tree, admitting a limiting action
of Γ.

In general, the limiting action might be elliptic, i.e. Γ fixes a point of
T . However, in certain cases, this can be avoided. For example, suppose
that we choose an so that D(Gn,Γ, an) = D(Gn,Γ) and it happens that
D(Gn,Γ)/Ln is bounded below by a positive constant. In this case, the
limiting action will be non-elliptic.

For this to be useful, we need some more information. This may be
provided by acylindricity:

Lemma 3.1. Suppose that Gn is a sequence of k-hyperbolic spaces
admitting purely loxodromic uniformly acylindrical actions of a finitely
generated group, Γ, and let A ⊆ Γ be a finite generating set. Suppose that
an ∈ Gn, and for all n, D(Gn,Γ, an) ≤ Ln, where (Ln)n is some sequence
of numbers tending to ∞. Let T be the limiting R-tree of ( 1

Ln
Gn, an).

Then each arc stabiliser of T is trivial or infinite cyclic.

Here “uniformly acylindrical” means that the parameters of acylin-
dricity are independent of n. An arc stabiliser is the pointwise stabiliser
in Γ of a non-trivial arc in T . This is the same as the intersection of the
stabilisers of its endpoints.

The proof of Lemma 3.1 will be an adaptation of the argument for a
locally finite graph, that is frequently applied to hyperbolic groups (cf.
[P, RiS1]).

We begin with the following general observation:

Lemma 3.2. Let G be a group with only finitely many commutators.
Then there is a finite index normal subgroup N�G, and a finite (abelian)
normal subgroup F � N such that N/F is abelian.

Proof. Let C ⊆ G be the set of all commutators, which we assumed
finite. Now G acts on C by conjugation. Let N � G be the kernel of
this action. Thus, C ∩ N is central in N . Moreover, each element of
C ∩ N has finite order (since [x, y]n = [xn, y] ∈ C ∩ N for all x, y ∈ N
and n ∈ N). Thus, the group generated by C ∩N is finite abelian and
normal in N , and N/F is abelian. Q.E.D.

Note that if G, or equivalently, N/F is finitely generated, then G is
virtually abelian. It is well known that any torsion-free virtually cyclic
group is cyclic, and so, in the case of interest to us where all abelian
subgroups are trivial or infinite cyclic, we can deduce that G is trivial
or infinite cyclic.
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Now let Γ, Gn, Ln, T be as in the hypotheses of Lemma 3.1. Let
p, q ∈ T be distinct points, and let G ≤ Γ be the intersection of their
stabilisers. In view of Lemma 3.2, it is enough to show that G has only
finitely many distinct commutators.

In fact, we show that G has at most N0 commutators, where N0 is
determined by the hyperbolicity constant, k, and the fixed parameters
of acylindricity, in the manner to be described below.

Let us assume, for contradiction, that G has more than N0 com-
mutators. This means that there is a finite symmetric subset B ⊆ G
with |{[g, h] | g, h ∈ B}| > N0. Let C ⊆ G be the finite set of el-
ements of word length at most 4 in the elements of B. Now each
g ∈ C fixes p, q ∈ T . This means there are points pn, qn ∈ Gn so that
d(pn, qn)/Ln → d(p, q) > 0, whereas for each g ∈ C, d(pn, gpn)/Ln and
d(qn, gqn)/Ln both tend to 0. Thus, for any L ≥ 0, for all n sufficiently
large we have d(pn, qn) ≥ 4L, d(pn, gpn) ≤ L and d(qn, gqn) ≤ L for
all g ∈ C. We fix some such n, given the choice of L to be determined
below, and set a = pn and b = qn.

We now bring uniform hyperbolicity of the graphs Gn into play. We
will give a fairly informal account, since more precise definitions can be
found in [Bo2], and the argument broadly follows that of [P].

Let α be any geodesic from a to b in Gn. This has length at least
4L. Let β ⊆ α be the middle segment of α of length 2L. For each
g ∈ C, β is k0-closely translated some signed distance ψ(g) ∈ [−L,L],
where k0 is some fixed multiple of k. (If ψ(g) ≥ 0, this means that for
all t ∈ [0, 2L − ψ(g)], d(gβ(t), β(t + ψ(g)) ≤ k0, where β : [0, 2L] −→ G
is a parameterisation of β. This also has an obvious interpretration
when ψ(g) ≤ 0.) Now, it’s not hard to see that if g1, g2, g3, g4 ∈ B,
then |ψ(g1g2g3g4)−ψ(g1)−ψ(g2)−ψ(g3)−ψ(g4)| is bounded above by
some fixed multiple of k0. In particular, if g, h ∈ B, then we see that
|ψ([g, h])| is bounded in terms of k. Thus, for every x ∈ β, we have
d(x, [g, h]x) ≤ r, where r depends only on k.

The uniform acylindricity condition now gives us constants R,N
such that if x, y ∈ Gn and d(x, y) ≥ R, then at most N elements of Γ
move both x and y a distance at most r. We now retrospectively setN0 =
N giving rise to our sets B and C defined above. We choose any L ≥ R.
Now let n, α, β be as determined above and let x, y ∈ β be any points
with d(x, y) ≥ R. If g, h ∈ B, then by construction, d(x, [g, h]x) ≤ r
and d(y, [g, h]y) ≤ r, and so acylindricity tells us that there are at most
N0 possibilities for [g, h]. But B was chosen precisely because there
were strictly more than N0 possibilities for the commutators [g, h] for
g, h ∈ B. This gives a contradiction.

This proves Lemma 3.1.
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§4. JSJ splittings

In this section, we consider splittings of indecomposable groups over
infinite cyclic subgroups. In particular, we are interested in variants of
the JSJ splitting, which, in a certain sense describes all possible such
splittings. These are motivated by the 3-manifold constructions of Wald-
hausen, Johanson, Jaco and Shalen, and were introduced by Sela in the
context of hyperbolic groups. The basis of our account will be that
of Rips and Sela [RiS2] for finitely presented groups. (See also [DuS]
and [FP] for generalisations.) It seems that the version in [RiS2] is not
quite in the form we need here, so we use it to construct a variant for
a restricted class of groups, for which we can give a slightly stronger
conclusion.

Our splitting will have two kinds of vertices: “taut” and “hanging”,
the latter being surface-type groups, and the underlying graph will be
bipartite. We will allow the underlying surface of a hanging vertex group
to be an annulus, so that the group is infinite cyclic. (This is disallowed
in some formulations elsewhere.)

We begin with some formal definitions. We start with an indecom-
posable torsion-free group, Γ. By a cyclic splitting, Υ, of Γ, we mean
a representation of Γ as a finite graph of groups with every edge group
infinite cyclic. We write V (Υ) for the vertex set, and if v ∈ V (Υ), we
write Γ(v) for the corresponding vertex group. We similarly write Γ(e)
for the group corresponding to an edge e. In general, such groups are
only defined up to conjugacy in Γ, though some constructions are best
viewed formally in terms of the action of Γ on the Bass-Serre tree, where
one can talk about actual subgroups.

A vertex (or vertex group) is trivial if it has degree 1 in Υ and if
the vertex group is equal to the incident edge group. We shall normally
assume that there are no trivial vertices — such a vertex can simply be
deleted along with the incident edge. Any group featuring as the edge
group in some cyclic splitting will be referred to as a (cyclic) splitting
group. Two such groups are compatible if they feature simultaneously in
some common cyclic splitting.

We note that if Γ is finitely generated (respectively finitely pre-
sented) then each vertex group is finitely generated (respectively finitely
presented). These facts appear to be have been known for some time. A
proof in the finitely presented case can be found, for example, in [Bo1].

Definition. A vertex group is of surface type if it is the fundamental
group of a compact surface, other than the Möbius band, and each
incident edge group is a peripheral subgroup.
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Note that we are allowing annuli here. (A Möbius band is best
viewed as a non-surface type vertex attached by an edge group which we
can subdivide to give an annular surface-type vertex group — effectively
cutting the Möbius band along the core curve.)

Note that each peripheral subgroup must contain at least one inci-
dent edge group — otherwise, in the case of an annulus the vertex would
be trivial, and in all other cases, we could obtain a splitting of Γ as a
free product.

By a two-sided curve on a compact surface, we mean a locally sep-
arating homotopically non-trivial simple closed curve. (It might be pe-
ripheral.) Any two-sided curve in a surface-type vertex group gives rise
to a splitting of Γ, namely with the edge group supported on the curve.
Compatible splittings correspond to disjoint curves. Conversely, it’s not
hard to see that if H ≤ Γ(v) is a cyclic splitting group, then either H
arises in this way, or else is a proper subgroup of one of the peripheral
subgroups.

Elaborating on this, one can show that if G ≤ Γ(v) is itself a vertex
group in some other cyclic splitting of Γ, then G is also of surface type.

Definition. We say that a vertex group is of strong surface type if
the incident edge groups are precisely the peripheral subgroups.

In [RiS2] it was shown that any finitely presented group admits a
cyclic splitting (possibly trivial) such that each cyclic splitting subgroup
is either conjugate into a (non-annular) surface type subgroup, or else
some finite index subgroup is conjugate into an edge group. (More is
said in [RiS2], but the above is a consequence. See also the account
of a related splitting in [DuS].) We shall see that if we make stronger
assumptions on Γ, then we can draw stronger conclusions.

We shall assume henceforth that:

(∗) Γ is torsion-free and each infinite cyclic subgroup is finite index in
its centraliser.

It follows that the centraliser is also the commensurator, and the unique
maximal cyclic subgroup containing the original cyclic group.

By a bipartite splitting of Γ we mean a cyclic splitting, Υ, with
V (Υ) = VH(Υ) � VT (Υ) so that each edge group has one vertex in each
of VH(Υ) and VT (Υ), and each vertex in VH(Υ) is of strong surface type.
We refer to the vertices of VH(Υ) as hanging and those in VT (Υ) as taut.
We write VC(Υ) = {v ∈ VT (Υ) | Γ(v) ∼= Z} for the cyclic taut vertices.
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By a JSJ splitting of Γ we mean a bipartite cyclic splitting with the
following properties:

(J1) If H ≤ Γ is a cyclic splitting group, then H ≤ Γ(v) for some
v ∈ VH(Υ) ∪ VC(Υ).

(J2) If v ∈ VC(Υ) then Γ(v) is a maximal cyclic subgroup of Υ, and if
v, w ∈ VC(Υ) with Γ(v) = Γ(w), then v = w.

(J3) No subgroup of of the form Γ(v) for v ∈ VT (Υ) splits over Z relative
to the incident edge groups.

Note that, in view of (J1), the only way that a taut vertex group
might split relative to the incident edge groups is over a proper subgroup
of one of the incident edge groups, and so (J3) is designed to rule out
that possibility. It is, in fact, equivalent here to saying that there are
no “unfoldings” of edge groups, as we discuss later. Also, note that
non-cyclic taut surface group cannot be of surface type, since any group
of surface type would admit a relative splitting. In other words, we see
that if v ∈ V (Υ) and Γ(v) is of surface type, then v ∈ VC(Υ) ∪ VH(Υ).

We claim:

Proposition 4.1. Let Γ be a one-ended finitely presented torsion-
free group such that each cyclic subgroup is finite index in its centraliser.
Then Γ admits a JSJ splitting (of the type described above).

(It is not clear if this splitting is unique, though the underlying
graph is canonically determined.)

To prove Proposition 4.1, we begin with a more general cyclic split-
ting of the type described in [RiS2], and proceed by series of simple
modification to obtain one of the type desired. We begin by describing
a few general principles.

Suppose first that Υ is any cyclic splitting of Γ. Suppose that v, w ∈
V (Υ) are adjacent vertices with Γ(v) and Γ(w) cyclic. They are therefore
commensurable, and generate a cyclic subgroup, H. We can therefore
collapse the edge, replacing it by one vertex with vertex group H. (In
fact, v and w must be distinct vertices.)

Suppose that v ∈ V (Υ) and e1, . . . , en are incident edges, all of
whose groups are commensurable. Then they generate a cyclic subgroup,
H ≤ Γ(v). We can “pull out” the subgroup H from Γ(v). That is, we
produce a new vertex w, with Γ(w) = H, incident on each of e1, . . . , en,
and a new edge e0, connecting w to v, with edge group H. In fact, we
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could instead, pull out any cyclic subgroup, H, with Γ(ei) ⊆ H ⊆ Γ(v)
for all i.

Let us now go back to the splitting, Υ, given by [RiS2]. We now
modify this in a series of steps. (We do not, for the moment, assume
our splittings to be bipartite.)

First note that if Γ(v) is of surface type, we can assume it to be of
strong surface type, after pulling out the peripheral subgroups if neces-
sary. (We have already observed that each peripheral subgroup contains
at least one edge group.) By adding degree-2 vertex groups, we can as-
sume that each edge group is commensurable with a cyclic vertex group.

Suppose now that H ≤ Γ s a maximal cyclic subgroup. Let W =
{v ∈ V (Υ) | Γ(v) ≤ H}. (Formally this construction is best viewed
in terms of the Bass-Serre tree where we don’t need to worry about
conjugacy classes, though we shall describe it less formally in terms of
the graph Υ.) Now we can assume that there is a connected graph,
Ψ ⊆ Υ, with vertex set W . To see this, let Ψ0 be the union of all edges
with both endpoints in W . If Ψ0 is not connected, let α be an arc in Υ
connecting two components of Ψ0, and with each edge group contained
in H. Now by pulling out subgroups of H from the corresponding vertex
groups along α, we can assume that these vertex groups are all contained
in H, so that, after this process is completed all the vertices of α will
be contained in W . This reduces the number of components of Ψ0, and
so we eventually end up with a connected graph, Ψ, as claimed. We
can now collapse this graph to a single vertex, whose vertex group is a
subgroup of H. (In fact Ψ has to be a tree, since any circuit would give
rise to a subgroup containing an infinite-index central cyclic subgroup.)

After performing this construction for all maximal cyclic subgroups,
we can arrange that if v, w ∈ V (Υ) with Γ(v) and Γ(w) cyclic and
commensurable, then v = w.

Now suppose that Γ(v) is cyclic. Let H ≤ Γ be its centraliser.
(This is a maximal cyclic subgroup of Γ.) Now either H = Γ(v) or else
H ≤ Γ(w) for some adjacent w ∈ V (Υ). By pulling out H from Γ(w),
and collapsing the new vertex with v, we can arrange that Γ(v) = H.
In other words, we can now assume that all cyclic vertex groups are
maximal cyclic subgroups of Γ, and that any two such subgroups are
distinct.

In the original splitting we started with, any cyclic splitting group,
H, was contained in a vertex group of non-annular surface-type, or else
commensurable with an edge group. After the above tinkering, we can
now assume that any such group is contained in a vertex group of non-
annular strong surface type, or else contained in a cyclic vertex group.
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Next, we can make the graph Υ bipartite. Suppose that two strong
surface type groups are adjacent. They cannot both be annular, and
collapsing the edge gives another such group. (In fact, at least one of
the original surfaces must be an annulus, otherwise there would be a
splitting corresponding to a curve crossing the edge group. Indeed, this
reasoning shows that this edge cannot be a loop.) We can therefore
eliminate all edges of this type. If two non surface type vertices are
adjacent, we just introduce a degree-2 vertex in the middle of the edge.
This is of annular strong surface type.

We now write VH(Υ) for the set of all surface type vertices, and
VT (Υ) = V (Υ) \ VH(Υ). We refer to these as “hanging” and “taut”
respectively.

There is one remaining complication. Suppose v ∈ VT (Υ). It is still
possible that Γ(v) might split relative to the incident edge groups over
a proper subgroup, H1, of one of these edge groups, H. We can now
pull out the subgroup H1 from from Γ(v) and collapse the original edge.
This does not change the graph, Υ, or the vertex group, but replaces
the edge group, H, by the smaller group H1. This is an “unfolding”.
It may be that Γ(v) still splits over a proper subgroup H2 ≤ H1, and
we unfold again to H2. We thus get a sequence of such unfoldings,
H1 ≥ H2 ≥ H3 ≥ · · · . Now it is a theorem of Sela (see [RiS2]) that
since Γ is finitely generated, any such sequence must terminate after a
finite number of steps on some subgroup, Hn ≤ H. We thus replace H
with Hn. We do this whenever such an unfolding exists.

The resulting graph now has all the properties (J1)–(J3) listed above,
as required by Proposition 4.1.

We can give a more geometric picture by constructing a complex,
Δ, with π1(Δ) ∼= Γ. For each v ∈ V (Υ), let Δ(v) be a complex with
π1(Δ(v)) ∼= Γ(v). If v ∈ VC(Υ), we take Δ(v) to be a circle, and if
v ∈ VH(Υ), we take Δ(v) to be a compact surface. We refer to Δ(v) as
“hanging” or “taut” depending on whether v lies in VH(Υ) or VT (Υ).
We now glue the hanging surfaces to the taut complexes by gluing their
boundary components to corresponding closed curves in the adjacent
taut complexes. We can assume these curves lie in the 1-skeletons, so
that the complex Δ is simplicial. We note that if Γ is finitely presented,
then each Γ(v) is finitely presented, so we can take each Δ(v) hence Δ
to be finite.

Suppose that Π is a set of embedded closed curves in Δ such that
for each v ∈ VT (Υ), Π∩Δ(v) = ∅, and for each v ∈ VH(Υ), Π∩Δ(v) is a
(possibly empty) set of two-sided curves, no two of which are homotopic
in Δ(v). (We are allowing peripheral curves.) Now Π gives rise to a
splitting, Ψ, of Γ where the edge groups correspond to the components of
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Π, and the vertex groups are the fundamental groups of the components
of Δ \Π.

Note that, by construction, each taut vertex group, G, of Υ is con-
jugate into a vertex group, K, of Ψ. Indeed, if G �∼= Z, then K cannot
be of surface type in Ψ, since we have observed that, in such a case,
G would have to be of surface type in Υ, and hence hanging, by the
observations after the statements of properties (J1)–(J3).

We will write ModΥ(Γ) for the subgroup of Out(Γ) which respects
the splitting Υ (fixing the conjugacy classes of vertex groups). Any such
outer automorphism is supported on the hanging and cyclic vertices. In
other words it is a product of outer automorphisms of groups of the
form Γ(v) for v ∈ VH(Υ) ∪ VC(Υ), which preserve the incident edge
groups. Such automorphisms are induced by mapping classes of the
corresponding surfaces which fix the boundary.

Before finishing this section, we say a few words about the modular
group, Mod(Γ). This makes sense for any group, Γ, though we shall
restrict our attention to groups satisfying (∗) as in the hypotheses of
Proposition 4.1.

Suppose that Γ splits as an amalgamated free product or HNN ex-
tension over an infinite cyclic subgroup, C ≤ Γ. We can perform a “Dehn
twist” along H, giving us an element of Out(Γ). This is best seen by
representing it as a complex where the edge group is supported on an an-
nulus, and then twisting this annulus. Thus, for example, if Γ = A∗C B,
this has the effect (up to inner automorphism) of holding A fixed while
conjugating B by an element of C. We write Mod(Γ) � Out(Γ) for the
subgroup of Out(Γ) generated by all Dehn twists for all such splittings.

In terms of the complex Δ described above, any Dehn twist about
any two-sided curve in any hanging surface will be a Dehn twist of this
type. There may be other Dehn twists arising from splitting groups
lying inside taut cyclic vertex groups.

We claim that Mod(Γ) and ModΥ(Γ) are commensurable subgroups
of Out(Γ). The fact that Mod(Γ)∩ModΥ(Γ) has finite index in Mod(Γ)
follows from the description of the JSJ splitting together with the fact
that every cyclic splitting of a surface group is geometric. We will not
elaborate on that here since it is not logically required for our main
result. The fact that it has finite index in ModΥ(Γ) is implicit in [RiS1]
by an indirect non-constructive argument. It also follows from the fact
that mapping class groups are virtually generated by Dehn twists.

To be more precise, let D be a compact surface with (possibly
empty) boundary, ∂D, and let M be the relative mapping class group,
i.e. homeomorphisms up to homotopy fixing ∂D pointwise. Let T � M
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be the subgroup generated by Dehn twists along two-sided curves (in-
cluding peripheral curves). Then:

Proposition 4.2. T has finite index in M .

For closed surfaces, it was shown by Lickorish that T = M in the
orientable case and that that T has index 2 in M in the non-orientable
case (see [L]). For compact orientable surfaces one can readily deduce
that T = M also, though the non-orientable case is more subtle. The
general result for non-orientable surfaces is implicit in [Ko] and also
in [S] though only explicitly stated for large genera (at least 7 and 3
respectively). In fact, M/T is an abelian 2-group (quite possibly always
Z2). I am indebted to Mustafa Korkmaz for explaining the following
argument to me.

First factor out both M and T by peripheral Dehn twists, and col-
lapse each boundary component of D to a point to give us a closed
surface, D0, with a finite set of preferred points or “punctures”. We can
then identify (the quotient of) M with the subgroup, P0, of the pure
mapping class group, P , of D0 (“PM” in the notation of [Ko]), where
P0 preserves the local orientation at each puncture. We claim that P/T
is a finite abelian 2-group. This is stated explicitly in [Ko] for genus
at least 7 (see Corollary 6.2 thereof), though the argument works in
general. The following refers to notation and results of that paper.

The group P is generated by finite sets {vi} in genus 1 (Theorem
4.3), {tb, y, vi, wi} in genus 2 (Theorem 4.9), and {tl, y, vi} or {tl, y, vi, wi}
in genus at least 3 (Theorem 4.13). Here the t’s are Dehn twists (in T ),
the y’s slide cross caps around one-sided curves, and v’s and w’s slide
punctures around one-sided curves. The squares of all of these generat-
ing elements lie in T . Moreover, using Lemma 4.2, we have (vivj)

2 ∈ T
for all i, j. As discussed in the proof of Theorem 6.1, viwi ∈ T and
(yvi)

2 ∈ T for all i. In other words, Tvi = Twi, and the Tvi and Ty all
commute. It follows that P/T is abelian.

§5. Actions on R-trees

In this section we prove a lemma about groups with JSJ splittings
acting on R-trees. We will make use of the Rips theory of such actions,
in particular, a result originating in the work of Bestvina and Feighn
[BeF]. We make specific reference to the account given in [Ka], in par-
ticular, Theorem 12.72, which refers to stable minimal actions of finitely
presented groups, and classifies such actions into four types: “non-pure”,
“surface type”, “toral type” and “thin type”, which will feature in the
proof.



28 B. H. Bowditch

We show:

Lemma 5.1. Let Γ be a torsion-free finitely presented one-ended
group where each infinite cyclic subgroup is finite index in its centraliser.
Let Υ be a JSJ splitting of Γ (as given by Proposition 4.1). Suppose that
Γ acts by isometry on an R-tree, T , with trivial or cyclic arc stabilisers.
Then any taut vertex group of the splitting Υ is elliptic (i.e. fixes a point
of T ).

Proof. We begin by noting that the condition on centralisers im-
plies that the action on T is stable, which allows us to bring the Rips
theory into play.

Let Δ be the complex associated to Υ, as described in Section 4. For
each v ∈ VH(Υ), we take a maximal set, Π(v), of curves in Δ(v) \∂Δ(v)
in distinct homotopy classes such that the subgroups of Γ supported on
each of these curves is elliptic. We let Π =

⋃
v∈VH(Υ) Π(v). As discussed

in Section 4, Π gives rise to a splitting, Ψ, of Γ. By construction all the
edge groups of Ψ are elliptic in T . Note that if v ∈ VC(Υ) and Γ(v)
is elliptic, then Γ(v) is also a vertex group of Ψ. To see this, suppose
that v′ ∈ VH(Υ) is an adjacent vertex. Now, Δ(v′) is attached to Δ(v)
along a boundary curve (possibly wrapping several times around Δ(v′)).
Since the boundary curve is elliptic in T , a homotopic peripheral curve
in Δ(v′) \ ∂Δ(v′) is necessarily included in Π. (This will be a core curve
if Δ(v′) happens to be an annulus.) As v′ varies of the set of adjacent
vertices, the set of such curves bound a component of Δ \ Π, and the
inclusion of Δ(v) into this component will be a homotopy equivalence.
Thus Γ(v) is a vertex group of the splitting Ψ as claimed.

Let w ∈ V (Ψ), and let Γ(w) be the corresponding vertex group of
Ψ. We claim that Γ(w) does not split over any elliptic cyclic subgroup
relative to the incident edge groups in Ψ. For suppose that Γ(w) did
split over some such subgroup H ≤ Γ(w). Now H is a splitting group
of Γ, and so is conjugate into a vertex group, Γ(v), of the splitting Υ,
where v ∈ VC(Υ)∪ VH(Υ). Now if v ∈ VH(Υ), then H corresponds to a
curve in Δ(v). By maximality such a curve must already be contained
in Π, and so the relative splitting would be trivial. So we can assume
that v ∈ VC(Υ). As observed above, Γ(v) is also a vertex group of Ψ,
and the components of Δ \ Π corresponding to Γ(v) and to Γ(w) meet
along a component, π, of Π which is peripheral in some hanging surface
Δ(u) of the splitting Υ. This π corresponds to an edge group of both
splittings. But now the fact that Γ(w) splits means that Γ(u) also splits
relative to its incident edge groups. (That is, there is an unfolding along
the edge in each splitting.) This gives a contradiction.
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Now, we also noted in Section 4 that each taut vertex group of Υ is
contained in a vertex group of Ψ that is not of surface type. To prove
the lemma it therefore suffices to show that if G ≤ Γ is a non-cyclic
vertex group of Ψ, then either G is elliptic or of surface type.

Suppose that G is not elliptic. Let T ′ be the minimal G-invariant
subtree of T . Let H1, . . . ,Hn be the incident edge groups of Ψ. By
construction, each edge group, Hi, is elliptic in T , and hence also in
T ′. Let N � G be the kernel of the action of G on T ′. As in [Ka], we
distinguish four cases:

(1) “non-pure”:
In this case, G splits relative to {Hi} over an elliptic subgroup

J ≤ G, such that J contains a normal subgroup, I � J , with J/I cyclic,
and such that I fixes an arc of J . Thus I is also cyclic. Now since every
abelian subgroup of G is cyclic, we can deduce that J is cyclic, contra-
dicting the statement made earlier that no vertex group of Ψ splits of a
cyclic group relative to the incident edge groups.

(2) “orbifold case”:
G/N is a 2-orbifold group, and each subgroup NHi/N is peripheral.

Since every abelian subgroup of G is cyclic, it follows that N is trivial
in this case, and since G is torsion-free, it must be a surface group. In
other words, G is of surface type.

(3) “toral case”:
G/N admits an action by isometry on the real line. We deduce that

G ∼= Z contrary to our assumption.

(4) “thin case”:
G splits relative to {Hi} over a subgroup J that fixes an arc of T ′.

Thus J is cyclic and elliptic, again giving a contradiction as in (1).

This proves the claim and hence the lemma. Q.E.D.

§6. Carrying graphs

In this section we discuss some constructions involving carrying
graphs. Most of this elaborates on ideas in [Ba].

Suppose that Γ is finitely presented, and let Δ be a finite simplicial
complex with Γ ∼= π1(Δ). A carrying graph, Ω, for Γ is an embedded
connected graph Ω ⊆ Δ carrying all of π1(Δ). (We can assume that Ω

lies in the 1-skeleton of some subdivision of Δ.) We write Ω̃ ⊆ Δ̃ for the
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lift of Ω to the universal cover, Δ̃, of Δ. Thus, Γ acts freely on Ω̃ with
Ω̃/Γ = Ω.

Suppose that Γ acts on a (hyperbolic) graph G. A realisation of

Ω is a Γ-equivariant map, f : Ω̃ −→ G, sending each edge of Ω to a
geodesic segment. The length, L(Ω, f), of f can be defined as the sum

of the lengths of the edges in some Γ-transversal to the action of Γ on Ω̃.
(Informally, this can be thought of as the length of the image of Ω in G/Γ,
descending to the quotients.) If Ω0 ⊆ Ω we write L(Ω0, f) for the length
of Ω0 under this realisation. Note that if x ∈ Ω, then D(G,Γ, f(x)) ≤
L(Ω, f), so certainly D(G,Γ) ≤ L(Ω, f). Note conversely, that if Ω is a
wedge of circles, then this determines a generating set, A, of Γ. In this
case, L(Ω, f) =

∑
g∈A d(fx, gfx) for a suitable lift, x ∈ Ω̃, of the unique

vertex of Ω. In particular, we have L(Ω, f) ≤ |A|D(G,Γ, f(x)).
Let us first consider the case where Δ is a compact surface, with

boundary ∂Δ. We write G = π1(Δ). We say that a carrying graph
Ω ⊆ Δ is simple if ∂Δ ⊆ Ω, if Ω has no degree-1 vertices and every
degree-2 vertex lies in ∂Δ, and if Δ\Ω is connected (hence a single disc).
Note that, in this case, if the structure of Ω on ∂Δ is determined, then
there are only finitely many possibilities for Ω up to homeomorphism
of Δ fixing ∂Δ. By slight abuse of notation, we will use Ω \ ∂Δ for
the subgraph of Ω where we omit all edges and degree-2 vertices in ∂Δ.
(Note that Ω \ ∂Δ need not be connected.)

Suppose that f : Ω̃ −→ G is a realisation of Ω. If α is a component
of ∂Δ, then f(α̃) is a piecewise geodesic bi-infinite path, invariant under
the associated cyclic peripheral subgroup, H ≤ G. The break points will
all be vertices of Ω̃, though it is possible that it may have fewer genuine
geometric breakpoints. (For example, if it happens to be geodesic, it will
have none.) We write b(α, f) for the number of geometric break points
of α, and write b(∂Δ, f) for the sum over all boundary components, α,
of ∂Δ.

Proposition 6.1. Let n ∈ N. Let Δ be a compact surface and
G = π1(Δ). Suppose that G acts as a purely loxodromic group on a

k-hyperbolic graph G with inj(Γ, G) ≥ η > 0. Suppose that f : ∂Δ̃ −→ G
is a G-equivariant map sending each boundary component to a broken
geodesic, with b(∂Δ, f) ≤ n. Then there is a simple carrying graph,

Ω ⊆ Δ, and a realisation f : Ω̃ −→ G, extending f |∂Δ̃ and with L(Ω \
∂Δ, f) ≤ l where l depends only on k, η, n and the topological type of
Δ.

Here, each component of ∂Δ may contain degree-2 vertices, as re-
quired by the original break points. A bounded number of higher degree
vertices may have been introduced in the construction of Ω.
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Proof. The case when Δ is orientable, and ∂Δ = ∅ is proven in
[Ba]. Essentially the same argument works here, and it only requires a
few comments to explain why. Let us first consider the orientable case.

We choose a simple carrying graph, Ω, and a realisation, f : Ω̃ −→ G,
extending f as given on ∂Δ̃, such that L(Ω, f) (hence L(Ω \ ∂Δ, f)) is
minimal. Since Ω has a bounded number of edges, it suffices to bound
L(α, f) for each edge, α, of Ω \ ∂Δ.

Suppose that α is an edge of Ω \ ∂Δ, with L(α, f) very large. The
complement of Ω in Δ is a disc, P , with a bounded number of edges, so
that Δ is recovered by carrying out certain edge identifications around
∂P . The idea is to carry out a modification of Ω by adding an edge that
crosses P from α to another edge of P , and then deleting part of the
edge α. The effect will be to reduce L(Ω, f), giving a contradiction.

The geometric construction is best described in the universal cover,
Δ̃. Let P̃ be a lift of P , and let α̃ be a lift of α. Now f(∂P̃ ) is a closed
curve in G, consisting of a bounded number of geodesic segments. By
hyperbolicity, there is another edge, β̃, of ∂P̃ , so that f(α̃) and f(β̃)
remain close over a large distance. More precisely, there are segments
α′ ⊆ α̃ and β′ ⊆ β̃, such that f(α′) and f(β′) are long and a bounded
Hausdorff distance apart (depending on k). We write β ⊆ Ω for the

projection of β̃.
Now if β does not lie in ∂Δ, we can perform a shortening operation

exactly as in [Ba] so as to give a contradiction. (This requires the lower
bound on inj(G, G) if it happens that β = α.)

If β ⊆ ∂Δ, then a similar construction works. Let x̃ ∈ α′ be such
that f(x̃) is the midpoint of the segment f(α′). There is some ỹ ∈ β′

such that d(f(x̃), f(ỹ)) is bounded (in terms of k). We let x ∈ α, y ∈ β
be the projections to Ω. We now connect x to y by an arc in P , and
remove one half of the edge α, starting at x, to give us a new graph, Ω′

(deleting degree 2 vertices if necessary). By removing the correct half
of α, the complement of Ω′ remains connected, and so is also a simple
carrying graph. In terms of the realisation we have effectively replaced
a long edge by one of bounded length, and so after straightening, we get
a realisation f ′ of Ω′ with L(Ω′, f ′) < L(Ω, f), contradicting minimality.

Finally we need to say something about the non-orientable case.
The only essentially new situation that may arise is when α = β. Let
γ be a simple closed curve containing α = β, and with γ ⊆ Ω. If γ
is two-sided, we can perform a shortening as usual. If it is one-sided,
then it becomes more complicated to arrange that the supporting graph
remains embedded in this process. We can get around this as follows.
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Let g ∈ Γ be the element corresponding to γ, so that β̃ = gα̃. We
can assume that each component of α̃ \ α′ has bounded f -image in G,
otherwise we could find a segment in a different edge of P̃ whose f -
image is long and close to f(α̃) and so we reduce to one of the earlier

cases. The same must also be true of β′ in β̃ = gα̃. It now follows
easily that g must translate some point, z, of f(α′) a bounded distance.
We can define a 〈g〉-equivariant map, f ′ : γ̃ −→ G, mapping to the
broken geodesic

⋃
n∈Z

[gnz, gn+1z]. Thus, b(γ, f ′) = 1 and L(γ, f ′) is
bounded. We now cut Δ along γ to give us a simpler surface Δ1 with new
boundary component, δ, which doubly covers γ. We get a realisation,
f : ∂Δ̃1 −→ G, with b(δ, f) = 2 and L(δ, f) bounded. We can now
proceed by induction on genus. We eventually end up with a carrying
graph, Ω, with L(Ω \ ∂Δ, f) bounded. After deleting some edges, we
can assume it to be simple. Q.E.D.

We can apply this to the complex associated to a JSJ splitting. Let
Γ be as in Proposition 4.1, and let Υ be the JSJ splitting, and Δ an
associated complex with Γ = π1(Δ).

For each w ∈ VT (Υ), we take a carrying graph, Ω(w) ⊆ Δ(w) for
Γ(w) ∼= π1(Δ(w)). We can assume Ω(w) to be a wedge of circles. (This
is not essential, but it will make certain arguments easier to see.) We
write ΩT =

⋃
w∈VT (Υ) Ω(w). We can assume that we constructed Δ so

that for all v ∈ VH(Υ), ∂Δ(v) ⊆ ΩT . We regard Δ and ΩT ⊆ Δ as

fixed once and for all. We write Ω̃T ⊆ Ω̃ for its preimage in Δ̃. For
each v ∈ VH(Υ), we can choose a simple carrying graph Ω(v) ⊆ Δ(v),
and let Ω = ΩT ∪⋃

v∈VH(Υ) Ω(v). Now if v ∈ VH(Υ), we have ∂Δ(v) ⊆
Ω(v) (by definition of “simple”). If w ∈ VT (Υ) is adjacent, then the
corresponding component of ∂Δ(v) is attached to Δ(w) along a curve
in Ω(w). In particular, Ω(v) ∩ Ω(w) �= ∅. Since Υ is connected and
bipartite, it follows that Ω is connected. One can also easily see that
any closed curve in Δ can be homotoped into Ω. Thus Ω ⊆ Δ is a
carrying graph for Γ. We refer to a graph, Ω, constructed in this way as
a “simple extension” of ΩT . Note that any element of gModΥ Γ gives
rise to another carrying graph, gΓ, with gΩ(v) = Ω(v) for all v ∈ VT (Υ)
(in particular gΩT = ΩT ). We note that there are only finitely many
combinatorial possibilities for a simple extension, modulo the action of
ModΥ(Γ), as defined in Section 4.

Lemma 6.2. Let Γ, Δ and ΩT be as described above. Suppose Γ has
a purely loxodromic action on a k-hyperbolic graph, G, with inj(G,Γ) ≥
η > 0. Given any realisation, f : Ω̃T −→ G, there is a simple extension,
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Ω, of ΩT , and a realisation f : Ω̃ −→ G extending f |Ω̃T , with L(Ω \
ΩT , f) ≤ l, where l depends only on k, η, Δ and ΩT .

Proof. If v ∈ VH(Υ), then ∂Δ(v) ⊆ ΩT , so f |∂Δ̃(v) is determined,
and b(∂Δ, f) is bounded in terms of the number of edges in ΩT . We can

thus apply Lemma 6.1, to give Ω(v) and f : Ω̃(v) −→ G. We do this for
all such v. Q.E.D.

§7. Proof of Theorem 1.2

In this section, we prove Theorem 1.2, thereby concluding the proofs
of Theorems 1.1 and 1.3, as described in Section 2.

Let Γ be a one-ended finitely presented group, and suppose A ⊆ Γ
is a finite subset, which we can assume to be a generating set. Suppose
that Γ has a purely loxodromic acylindrical action on a k-hyperbolic
space, G. In the notation of Section 3, we want to show that D(G,Γ)
is bounded above in terms of Γ, A, k and the acylindricity parameters,
modulo precomposition with Mod(Γ).

Note first that the existence of such an action implies that every
cyclic subgroup of Γ is finite index in its centraliser. Let Υ be a JSJ
splitting of Γ, as given by Proposition 4.1, and let ΩT ⊆ Δ be as con-
structed in Section 6. For each v ∈ VT (Υ), Ω(v) is a wedge of circles,
determining a generating set, A(v), for Γ(v).

Recall that Mod(Γ) and ModΥ(Γ) are commensurable. Thus, if
Theorem 1.2 fails, we can construct a sequence of actions of Γ on k-
hyperbolic spaces, Gn, which are purely loxodromic and uniformly acylin-
drical, and such that Dn → ∞, where Dn is the minimal value of
D(Gn,Γ) among all precompositions of the action of Γ on Gn by an
element of ModΥ(Γ). In fact, we can suppose we have realised this
minimum, so that D(Gn,Γ) = Dn.

Now, for each n, and each v ∈ VT (Υ), we choose some an(v) ∈ Gn,
so that D(Gn,Γ(v), an(v)) = D(Gn,Γ(v)) (i.e. to minimise the maximum
displacement by elements of the generating set, A(v), of Γ(v)). We can

now take a realisation fn : Ω̃(v) −→ Gn, so that L(Ω(v), fn) is bounded
above by some fixed multiple of D(Gn,Γ(v)) (namely, L(Ω(v), fn) ≤
|A(v)|D(Gn,Γ(v))). We perform this construction for each v ∈ VT (Υ),

to give us a realisation, fn : Ω̃T −→ Gn.
Note that inj(Gn,Γ) is bounded below by some positive constant

depending only on k and the acylindricity parameters (Lemma 2.1). We
can thus apply Lemma 6.2 to get a simple extension, Ω, of ΩT , together
with a realisation fn : Ω̃n −→ Gn, extending fn|Ω̃T , with L(Ωn \ΩT , fn)
uniformly bounded.
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Now there are only finitely many combinatorial possibilities for Ωn

up to the action of ModΥ(Γ) (which fixes ΩT ). After passing to a sub-
sequence, and precomposing the actions, we can suppose that Ωn = Ω
is fixed. The combined effect of applying ModΥ(Γ) to the domain and
conjugating the action means that the image of fn, and hence L(Ω, fn),
remains unchanged. Also, D(Gn,Γ) can only increase, so we still have
D(Gn,Γ) → ∞. Setting Ln = L(Ω, fn), this implies that Ln → ∞.
It remains true that L(Ω(v), fn) is bounded above by some multiple of
D(Gn,Γ(v)) for each v ∈ VT (Υ).

But now, Ln = L(Ω, fn) = L(Ω \ ΩT , fn) +
∑

v∈VT (Υ) L(Ω(v), fn),

and so, again after passing to a subsequence, there must be some v0 ∈
VT (Υ), so that D(Gn,Γ(v0), an(v0))/Ln is bounded below by a positive
constant.

We now obtain a limiting action of Γ on a R-tree, T , where
(

a

Ln
Gn, an(v0)

)
→ (T, a∞).

Since D(Gn,Γ(v0)) = D(Gn,Γ(v0), an(v0)) = L(Ω(v0), fn),

L(Ω(v0), fn)

Ln

is bounded below by a positive constant, and so the action of Γ(v0) on
T is not elliptic. Moreover, by Lemma 3.1, each arc stabiliser of T in Γ
is trivial or infinite cyclic.

We can now apply Lemma 5.1, to tell us that Γ(v) is elliptic for all
v ∈ VT (Υ). In particular, Γ(v0) is elliptic, contradicting the statement
above.

This proves Theorem 1.2.
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