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Genus one Birkhoff sections for the geodesic flows of
hyperbolic 2-orbifolds

Norikazu Hashiguchi and Hiroyuki Minakawa

Abstract.

A hyperbolic 2-sphere is made from the double of an n-gon in
Poincaré disc. Its geodesic flow is a transitive Anosov flow. We con-
struct genus one Birkhoff sections for the geodesic flows of hyperbolic
2-spheres with n (≥ 3) singularities.

§1. Introduction

Since Anosov published the study of the geodesic flows on negatively
curved Riemannian manifolds [1], Anosov flows have been continuously
studied. If a flow has a dense orbit, we call it transitive. Verjovsky
showed that any codimension one Anosov flow on a closed manifold
whose dimension is greater than 3 is transitive [14]. But in 3-dimensional
case, Franks and Williams constructed a non-transitive Anosov flow [6].
On the other hand, there are many examples of topologically transitive
Anosov flows on 3-manifolds. We construct these examples by doing
Dehn surgeries along closed orbits of suspension Anosov flows which is
defined by Goodman [8] and is extended by Fried [5]. These transitive
flows admit genus one Birkhoff sections.

Definition ([2, 5]). A Birkhoff section for a flow ϕt on a closed
connected 3-manifold is an immersed compact connected surface S sat-
isfying the following conditions.

(1) The interior of S is embedded and transverse to ϕt.
(2) Each boundary component of S covers a closed orbit of ϕt.
(3) Every orbit of ϕt meets S within a uniformly bounded time.
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Fried also proved that any topologically transitive Anosov flow on
a 3-manifold has a Birkhoff section and it is constructed by doing Dehn
surgeries along finitely many closed orbits of a suspension of a (pseudo-)
Anosov homeomorphism of a closed surface. For example, the geodesic
flow on a closed surface Σ with constant negative curvature admits a
punctured torus as a Birkhoff section and this flow is made of the sus-
pension of a hyperbolic toral automorphism. This toral automorphism
is induced by

Ag =

(
2g2 − 1 2g(g − 1)
2g(g + 1) 2g2 − 1

)
∈ SL(2;Z)

where g ≥ 2 is the genus of Σ [9]. Brunella showed that this geodesic
flow is also constructed from

Bg =

(
4g2 − 2g − 1 2g2 − 2g

8g2 − 2 4g2 − 2g − 1

)
∈ SL(2;Z)

[3]. Brunella prepared other genus one Birkhoff sections in order to
calculate Bg.

The following is a natural question.

Question (Fried, [4]). Does every transitive 3-dimensional Anosov
flow admit a genus one Birkhoff section?

Dehornoy constructs genus one Birkhoff sections for geodesic
flows of hyperbolic 2-orbifolds which are 2-spheres with three or four
singularities.

In this article, we consider wider class of hyperbolic 2-orbifolds. We
construct genus one Birkhoff sections for the geodesic flows of hyperbolic
2-orbifolds which are 2-spheres with n-singularities (n ≥ 3). We provide
a few new methods of constructing Birkhoff sections of geodesic flows.
In the case of n = 3, 4, our methods are independent and different from
those of Dehornoy. In the case of n ≥ 5, we have found a hybrid of our
construction by using convex curves and that by using oriented geodesic
segments. (See [4]. See also [3].)

Theorem. Suppose we are given a positive integer n ≥ 5. And
suppose we are given n integers p1, p2, . . . , pn with n− 2−∑n

i=1
1
pi

> 0,

which satisfy either

(1) pi ≥ 4 for any i, or
(2) n is even.

Then, there is a hyperbolic 2-orbifold of signature (0; p1, p2, . . . , pn) whose
geodesic flow has a genus one Birkhoff section.



Genus one Birkhoff sections 369

We also calculate hyperbolic toral automorphisms corresponding to
the first return maps associated with some above Birkhoff sections.

§2. The geodesic flows of the 2-spheres with three singularities

2.1. The geodesic flows of hyperbolic 2-orbifolds

For any three positive integers p, q, r satisfying that 1
p + 1

q +
1
r < 1,

let S(p, q, r) be a 2-sphere with three singularities X, Y , Z whose cone
angles are 2π

p , 2π
q , 2π

r respectively (see Figure 1).

Fig. 1. S(p, q, r).

We can consider S(p, q, r) as a quotient space of Poincaré disc D2

by an action of a triangle group in the following fashion. By the abuse
of the notation, let XY Z ⊂ D2 be a triangle with angles π

p ,
π
q and π

r

(see Figure 2).
Let Γ∗(p, q, r) denote the group of isometries of D2 generated by

reflections in the side ZX, XY and Y Z, and Γ (p, q, r), the orientation
preserving subgroup of Γ∗(p, q, r). Γ (p, q, r) is the triangle group

〈τ1, τ2, τ3; (τ1)p = (τ2)
q = (τ3)

r = τ1τ2τ3 = 1〉
where τ1, τ2 and τ3 are clockwise rotations about X,Y and Z through
angles of 2π

p , 2π
q and 2π

r respectively. The fundamental region of Γ (p, q, r)
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Fig. 2. Poincaré disc D2.

is two of original triangle XY Z [11]. So the quotient space D2/Γ (p, q, r)
is the orbifold S(p, q, r) whose fundamental group as orbifold is Γ (p, q, r).
Γ (p, q, r) also acts the unit tangent bundle T1D

2 of D2. The action of
Γ (p, q, r) preserves geodesics in D2. Hence the geodesic flow on D2 in-
duces the flow Ft on T1D

2/Γ (p, q, r) = M(p, q, r) which is a Seifert fibred
space over S(p, q, r). We call this flow Ft on M(p, q, r) the geodesic flow
on S(p, q, r).

Remark 2.1. Ft is a transitive Anosov flow.

2.2. Birkhoff section for Ft

In this subsection, we will construct a Birkhoff section S for Ft which
is homeomorphic to the 2-dimensional torus with two discs deleted.
Then, the first return map associated with S gives us the matrices
Ap,q,r ∈ SL(2;Z).

To make a good Birkhoff section for the geodesic flow, we use the
same method as [5, 7] (see also [9, 3]). Before making it, we review
closed orbits of Ft.

Lemma 2.2 ([13]). In Γ (p, q, r), τ1τ
−1
2 has finite order if and only

if one of the following holds

(a) (p− 2)(q − 2) = 0,
(b) (p− 3)(q − 3) = 0 and r = 2.
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Therefore, if τ1τ
−1
2 is represented by an immersed geodesic loop in

S(p, q, r), then one of the following holds;

(a) (p− 2)(q − 2)(r − 2) �= 0.
(b) (p− 2)(p− 3)(q − 2)(q − 3) �= 0.

In these cases, τ1τ
−1
2 is of infinite order. Since S(p, q, r) is compact

without end, τ1τ
−1
2 is a hyperbolic isometry of D2. But the axis l of

τ1τ
−1
2 does not always draw a figure eight loop in S(p, q, r). We need a

closed geodesic as a figure eight loop in order to get a Birkhoff section
which is homeomorphic to the torus with two discs deleted [3].

Lemma 2.3 ([13]). If τ1τ
−1
2 is of infinite order and if one of the

following holds

(a) p ≥ 5 and q ≥ 5,
(b) p ≥ 4, q ≥ 4 and r �= 2,
(c) p = r = 3,

then the axis l of τ1τ
−1
2 draws a figure eight loop in S(p, q, r).

In this section, we are only interested in the cases above. Up to
permutations of p, q, r, the cases (3, q, 2) (q ≥ 7), (4, q, 2) (q ≥ 5)
are excluded among the (p, q, r)’s satisfying the hyperbolic condition:
1
p + 1

q + 1
r < 1.

Now, we construct a Birkhoff section. Let ρ be the immersed geo-
desic loop which represents τ1τ

−1
2 . ρ divides S(p, q, r) into two 1-gons

and a 2-gon. We notice this 2-gon and denote it by R (see Figure 1).
We choose a family C of convex smooth simple closed curves which fills
the interior of R with one singularity Z deleted (see Figure 3). Let
S ⊂ M(p, q, r) be the closure of the set of unit vectors tangent to the
curves belonging to C.

Fig. 3. R.
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Fig. 4. The intersection of S and the foliations.

The next lemma is proved by the fact that the Euler characteristic
of S is −2 and the convexity and the smoothness of the curves belonging
to C.

Lemma 2.4. S satisfies the following.

(1) S is diffeomorphic to the torus with two discs deleted. Bound-
ary components are the closed geodesics ρ and −ρ. Here −ρ
represents (τ1τ

−1
2 )−1 in Γ (p, q, r).

(2) The interior S − ∂S is transverse to Ft and the first return
map for S − ∂S extends to a diffeomorphism F of S.

(3) S−∂S is also transverse to the stable foliation and the unstable
foliation of Ft. The intersection of S − ∂S and them is like
Figure 4.

From the lemma above, we have the corollary below.

Corollary 2.5. (1) S is a Birkhoff section for Ft.
(2) F is semi-conjugate to a hyperbolic toral automorphism Āp,q,r

induced by a hyperbolic matrix Ap,q,r ∈ SL(2;Z). That is, there
exists a continuous map h : S → T 2 such that
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• the image of each boundary component of S is a point
of T 2,

• the restriction of h to S − ∂S is a homeomorphism,
• h ◦ F = Āp,q,r ◦ h.

Therefore, Ft is topologically constructed by two times (1, 1)-Dehn
surgeries to the suspension flow of Āp,q,r along its two closed orbits with
period 1 [5].

2.3. Relations to the geodesic flows on the oriented closed
surfaces

The geodesic flow on an oriented closed surface with constant nega-
tive curvature has Birkhoff sections which are punctured tori. And this
flow is obtained by doing Dehn surgeries along closed orbits of suspension
flows of hyperbolic toral automorphisms which are induced by hyperbolic
matrices. In [9] and [3], two different Birkhoff sections are constructed

and the corresponding hyperbolic matrices Ag =
(

2g2−1 2g(g−1)

2g(g+1) 2g2−1

)
and

Bg =
(

4g2−2g−1 2g(g−1)

8g2−2 4g2−2g−1

)
are calculated.

In this section, we calculate A2g+2,2g+2,g+1 and A2g+1,2g+1,2g+1 from
Ag and Bg (g ≥ 2).

Lemma 2.6. The oriented closed surface Σg with genus g (g ≥ 2) is
a (2g+2) (resp. (2g+1)) -fold branched covering of S(2g+2, 2g+2, g+1)
(resp. S(2g + 1, 2g + 1, 2g + 1)).

Proof. To begin with, we construct a (2g+2)-fold branched cover-
ing Σg → S(2g + 2, 2g + 2, g + 1).

We consider a (2g+2)-fold covering ξg : Σg,4 → S2
3 where Σg,i is Σg

with i open discs deleted and S2
i is a 2-dimensional sphere S2 with i open

discs deleted. Attaching an open disc to each boundary components of

Σg,4 and S2
3 , and extending ξg, we obtain a branched covering ξ̂g : Σg →

S(2g+2, 2g+2, g+1). To obtain a branched covering η̂g : Σg → S(2g+1,
2g + 1, 2g + 1), we begin a (2g + 1)-fold covering ηg : Σg,3 → S2

3 (see
Figure 5) and do the same construction as above. Q.E.D.

Then this branched covering induces a (2g+2) (resp. (2g+1))-fold
covering

T1ξ̂g : T1Σg → M(2g + 2, 2g + 2, g + 1)

(resp. T1η̂g : T1Σg → M(2g + 1, 2g + 1, 2g + 1)).

Lemma 2.7. If Σg is given a hyperbolic metric, then the geodesic
flow on Σg is a lift of the geodesic flow on S(2g + 2, 2g + 2, g + 1) or
S(2g + 1, 2g + 1, 2g + 1).
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Fig. 5. ηg : Σg,3 → S2
3 .

Proof. These geodesic flows are induced from the geodesic flow on
Poincaré disc through the covering maps

T1D
2 −→ T1D

2/π1(Σg) = T1Σg

T1ξ̂g−−−→ T1D
2/Γ (2g + 2, 2g + 2, g + 1) = M(2g + 2, 2g + 2, g + 1),

or

T1D
2 −→ T1D

2/π1(Σg) = T1Σg

T1η̂g−−−→ T1D
2/Γ (2g + 1, 2g + 1, 2g + 1) = M(2g + 1, 2g + 1, 2g + 1).

Q.E.D.

By this lemma, we can calculate A2g+2,2g+2,g+1 and A2g+1,2g+1,2g+1

from Ag and Bg.

Theorem 2.8. (1) A2g+2,2g+2,g+1 =
(

2g2−1 g(g−1)(g+1)

4g 2g2−1

)
,

(2) A2g+1,2g+1,2g+1 =
(

4g2−2g−1 2g(g−1)(2g+1)

2(2g−1) 4g2−2g−1

)
.

Proof. We prove (1) at first.

S̃ = (T1ξ̂g)
−1(S) is the Birkhoff section for the geodesic flow on Σg

which we used to calculate Ag [9].

S̃ is constructed as follows. We divide Σg into four (2g + 2)-gons.
In the Poincaré disc D2 shown in Figure 2, the fundamental region of
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Σg consists of four (2g + 2)-gons. We choose the two (2g + 2)-gons
containing Z or Z ′, and fill them by convex smooth simple closed curves
as in Subsection 2.2. S̃ is the closure of the set of unit vectors tangent
to these curves.

Let α be one of above convex smooth simple closed curves whose
center is Z. We give α the counterclockwise orientation (see Figure 2).
α̂ denotes the lift of α to S. Let β be the segment Z ′Z ′′ and we lift β to

the set β̂ consisting of the unit tangent vectors orthogonal to Z ′Z ′′ as
shown in Figure 2. We take 〈α̂, β̂〉 as a basis of S̃ to calculate Ag. Let
α′ be the arc in α corresponding to the angle Y ′ZY and β′, the segment

Z ′Z. We take the lifts of α′ and β′ to S, denoted by α̂′ and β̂′, as a

basis of S. Then, the (2g+2)-fold covering T1ξ̂g|S̃ : S̃ → S maps α̂ onto

(g + 1)-fold α̂′ and β̂ onto 2-fold β̂′.
So, the (2g+2)-fold covering map T1ξ̂g|S̃ is induced from the matrix(

g+1 0
0 2

)
. Hence,

A2g+2,2g+2,g+1 =

(
g + 1 0
0 2

)
Ag

(
g + 1 0
0 2

)−1

=

(
2g2 − 1 g(g2 − 1)

4g 2g2 − 1

)
.

As for (2), we remember Brunella’s construction. In this case, Σg is
divided into one (4g+2)-gon and two (2g+1)-gons. Hence, all (4g+2)-
gons in the universal covering space of Σg, i.e. the Poincaré disc, are
identified. So, the (4g + 2)-gon containing Z and the one containing Z ′

in Figure 2 are identified in Σg. To construct the Birkhoff section, we
fill the (4g+2)-gon by convex smooth simple closed curves and proceed

as above. When we calculate Bg, we use the basis of S̃ which are lifts of
a convex smooth simple closed curve used above and the segment Z ′Z
in Figure 2. The basis of S, 〈α̂′, β̂′〉, are the same as (1). Then, the

(2g + 1)-fold covering S̃ → S maps α̂ onto (2g + 1)-fold α̂′. Therefore,

A2g+1,2g+1,2g+1 =

(
2g + 1 0

0 1

)
Bg

(
2g + 1 0

0 1

)−1

=

(
4g2 − 2g − 1 2g(g − 1)(2g + 1)
2(2g − 1) 4g2 − 2g − 1

)
.

Q.E.D.

Remark 2.9. By use of the notation in [4], the conjugacy classes of
above matrices are as follows. Let X, Y be ( 1 1

0 1 ), (
1 0
1 1 ) respectively. In
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order to determine the conjugacy classes in SL(2;Z), we slightly modify
the method to determine the conjugacy classes in GL(2;Z) [12].

• A2g+1,2g+1,2g+1 ∼ XY 4g−4XY 2g−2. (This means that
A2g+1,2g+1,2g+1 is conjugate to XY 4g−4XY 2g−2.)

• A2g+2,2g+2,g+1 ∼ Xg−2Y X4g−2Y if g is even and g ≥ 2.
• A2g+2,2g+2,g+1 ∼ (Y 2Xg−1)2 if g is odd and g ≥ 3.

Hence, the Birkhoff sections constructed here are different from
Dehornoy’s sections on S(2g+2, 2g+2, g+1) and S(2g+1, 2g+1, 2g+1).

§3. Birkhoff sections for geodesic flows of 2-spheres with
n-singularities

3.1. Construction with figure eight loops

In this subsection, let n be a positive integer greater than or equal
to 4. Let D(p1, p2, . . . , pn) be a convex geodesic n-gon in Poincaré disc

D2 with vertexes X̃1, X̃2, . . . , X̃n with angles π
p1
, π
p2
, . . . , π

pn
respectively

(Figure 6). Then n−2−∑n
i=1

1
pi

> 0. We choose a positive real number

δ greater than the diameter of D(p1, . . . , pn) and fix it.

Let σi be the reflection of D2 in the side X̃iX̃i+1, where n + 1
describes 1. Let Γ∗(p1, . . . , pn) denote the group of isometries generated
by {σ1, . . . , σn}, and Γ (p1, . . . , pn) the orientation preserving subgroup
of Γ∗(p1, . . . , pn). The double of the n-gon gives rise to a hyperbolic
2-sphere S(p1, p2, . . . , pn) with singularities X1,X2, . . . ,Xn whose cone
angles are 2π

p1
, 2π
p2
, . . . , 2π

pn
respectively, that is to say S(p1, . . . , pn) =

Fig. 6. n-gon D(p1, p2, . . . , pn).
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D2/Γ (p1, . . . , pn). We denote the universal covering map as orbifold
D2 → S(p1, . . . , pn) by π. Then D2 has a natural cell complex structure

C which consists of the vertexes σ(X̃i), the edges σ(X̃i)σ(X̃i+1), and the
faces σ(int(D(p1, . . . , pn)), where int(B) denotes the interior of a region
B. A face σ(int(D(p1, . . . , pn))) is called to be right (resp. wrong) if σ
belongs to Γ (p1, . . . , pn) (resp. Γ∗(p1, . . . , pn)− Γ (p1, . . . , pn)).

Suppose we are given a unit speed geodesic γ(t) and real numbers
a, b with a < b. Then we say that γ(a, b) traverses a geodesic segment α
if there exist a number t0 ∈ (a, b) such that γ(t0) is an inner point of the
segment α and γ(a, b) and α transversely intersect at γ(t0). And we say
that γ(a, b) positively traverses an edge e of C if there exists t0 ∈ (a, b)
such that γ(a, b) traverses e through γ(t0) and γ(t0 − ε, t0) is contained
in the right face connecting to e for any sufficiently small ε > 0. In that
case, γ(t0 + ε) is automatically contained in the wrong face connecting
to e for sufficiently small ε > 0.

Suppose we are given an embedded convex geodesic k-gon R(Xi)
in S(p1, p2, . . . , pn) which contains a unique singularity Xi in its inter-
ior and does not the other singularities. We choose a family C(Xi) of
smooth convex simple closed curves which fills R(Xi)− {Xi} and gives
rise to a one-dimensional foliation. We also take an orientation O(Xi) of
the foliation. Then, let Σ(Xi) be the closure of the set of the unit vec-
tors tangent to the foliation C(Xi) with the direction O(Xi). Further,

suppose we are given a vertex Q̃ of C. Then we denote by R̃(Q̃) the con-

nected component of π−1(R(Q)) containing Q̃, where Q = π(Q̃). Fur-

ther, we denote by C̃(Q̃) the restriction of the induced foliation π∗(C(Q))

to R̃(Q̃). We give the foliation C̃(Q̃) the orientation induced by O(Q),

which is denoted by Õ(Q̃).

Theorem 3.1. Let S(p1, p2, . . . , pn) be as above. If pi ≥ 4 for any
i (1 ≤ i ≤ n), the geodesic flow of S(p1, p2, . . . , pn) has a genus one
Birkhoff section.

Before the proof, we will prove the following technical lemma.

Lemma 3.2. Let γ be a unit speed geodesic and a, b real numbers
with b−a ≥ 2δ. If γ(a, b) contains no vertexes of C, there exists an edge
e of C such that γ(a, b) positively traverses e.

Proof. Since the diameter of each face of C is less than δ, there
exist t1 ∈ (a, a + δ) and an edge e1 of C such that γ(t1) ∈ e1. By the
way of choice of δ, a and b, if γ(a, b) contains an open subsegment of an
edge e1, it contains at least one of the vertexes of e1. By the assumption
of this lemma, the case does not occur. Then γ(a, a + δ) traverses e1
through γ(t1) for some t1. And there exists the face F of C connecting
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to e1 such that, for any sufficiently small ε > 0, γ((t1, t1 + ε)) ⊂ F . If F
is a wrong face, e1 is the required edge.

We consider the case that F is a right face. We define a real number
t2 by

t2 = {t ∈ (t1, t1 + δ) | γ(t) ∈ F}.
Since the diameter of F is less than δ, we can see that t2 < t1 + δ < b
and that γ(t2) is contained in an edge e2 connected by F . By using the
same argument for e1, we can see that γ(t1, t1 + δ) positively traverses
e2 through γ(t2). Q.E.D.

Proof of Theorem 3.1. Suppose an integer i (1 ≤ i ≤ n) is fixed.
We can easily see that there exist geodesic segments α, β such that

(1) α starts from an interior point of the edge X̃i−1X̃i and arrives

at the point X̃i+1 = σi(X̃i+1),

(2) β starts from an interior point of the edge X̃i−1X̃i and arrives

at the point σi(X̃i+2), and

(3) both α and β is perpendicular to the edge X̃i−1X̃i.

(See Figure 7.) Let θα (resp. θβ) denote the angle between α (resp. β)

and σi(X̃i+1X̃i+2) as in Figure 7. Since every pj is greater than or equal
to 4, we have θα < π

2 and θβ > π
2 . Then there exists a unique oriented

geodesic segment γi in D2 such that

(1) γi starts from a point of the edge X̃i−1X̃i,

(2) γi arrives at a point of the edge σi(X̃i+1X̃i+2),

(3) γi is perpendicular to edges X̃i−1X̃i, σi(X̃i+1X̃i+2) respect-
ively.

Let γi be the oriented geodesic −σi(γi), where the minus means that the
orientation is reversed. Then the union γi ∪ γi gives rise to a closed ori-
ented geodesic ηi in S(p1, p2, . . . , pn) which draws an oriented figure eight
loop. The closed curve ηi cut out two 1-gons Ri(Xi), Ri(Xi+1) which
contains a singularity Xi, Xi+1 respectively. Choose families Ci(Xi),
Ci(Xi+1) of smooth convex closed curves in Ri(Xi), Ri(Xi+1) respect-
ively as described above. We can determine the orientations of the fo-
liations Ci(Xi) and Ci(Xi+1) from the orientation of the loop ηi. We
can obtain the surfaces Σi(Xi), Σi(Xi+1) from the oriented foliations
Ci(Xi), Ci(Xi+1) respectively by the construction described before the
theorem. Now, we define the surface by

S =
n⋃

i=1

(Σi(Xi) ∪ Σi(Xi+1)).
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Fig. 7. Existence of figure eight loops.

And we will show that S is a genus one Birkhoff section for the geodesic
flow of S(p1, p2, . . . , pn).

We can see that Σi(Xi) ∪ Σi(Xi+1) is homeomorphic to a sphere
with three holes, and that the boundary of Σi(Xi)∪Σi(Xi+1) consists of
(T1S(p1, . . . , pn))Xi , (T1S(p1, . . . , pn))Xi+1 , and the periodic orbit deter-
mined by the oriented closed geodesic ηi. Then the Euler characteristic
of S equals −n, and S has n boundary components. Thus we can see
that S is of genus one.

To complete the proof, it suffices to show that S is a Birkhoff section.
And we will check that S satisfies the conditions (1), (2) and (3) in the
definition of Birkhoff section.

Condition (1) Convexity of curves in Ci(Xi) and Ci(Xi+1) guar-
antees that geodesic flow transversely intersects the interior of S.
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Fig. 8. Convex curves and its tangent vectors near the edge
σ(X̃i)σ(X̃i+1).

Condition (2) The boundary of S consists of n periodic orbits
corresponding to ηi (i = 1, . . . , n).

Condition (3) Let (X, v) be a point of T1S(p1, . . . , pn) and γ(t)
a geodesic with initial conditions γ(0) = X and γ′(0) = v. We take

any lifts (X̃, ṽ) ∈ T1D
2 of (X, v) and γ̃(t) of γ(t) with initial conditions

γ̃(0) = X̃ and γ̃′(0) = ṽ. Since the constant δ does not depend on the

choice of initial data (X, v), it suffices to show that γ̂(0, 6δ) meets S̃,
where γ̂(t) = (γ̃(t), γ̃′(t)).

For any vertex Q̃ of C, we have (T1D
2)Q̃ ⊂ S̃. Then, if γ̃(2δ, 4δ)

contains a vertex of C, γ̂(2δ, 4δ) meets S̃.
Suppose that γ̃(2δ, 4δ) contains no vertexes. By Lemma 3.2, there

exists a real number t0 ∈ (2δ, 4δ), two vertexes Q̃1, Q̃2 of C such that

γ̃(2δ, 4δ) positively traverses the edge Q̃1Q̃2 through γ̃(t0). Then there

exist vertexes X̃i, X̃i+1 and an element σ ∈ Γ (p1, . . . , pn) such that

Q̃1 = σ(X̃i) and Q̃2 = σ(X̃i+1). Since, for any vertex Q̃ of C, the

diameter of R̃j(Q̃) is less than 2δ, both γ̃(0) and γ̃(6δ) are located outside

one of Cl(R̃i(Q̃1)) and Cl(R̃i(Q̃2)), where Cl(B) denotes the closure of
B. Then we can see that one of the following occurs. (See Figure 8.)

(a) γ̃(0, 6δ) is tangent to a convex curve which is a leaf of C̃(Q̃1)

or C̃(Q̃2). And at the tangent point, the velocity vector of

γ̃(t) and the unit vector determined by Õi(Q̃1) and Õi(Q̃2) are
the same.

(b) Any sufficiently small perturbation of the oriented geodesic seg-
ment γ̃(0, 6δ) not through γ̃(t0) is tangent to a convex curve
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which is a leaf of C̃(Q̃1) or C̃(Q̃2). And at the tangent point,
the velocity vector of the perturbed segment and the unit vec-
tor determined by Õi(Q̃1) and Õi(Q̃2) are the same.

Then γ̂(0, 6δ) meets S̃, which means that every geodesic flow line starting

at any point of T1D
2 meets S̃ in the bounded time 6δ. This completes

the proof. Q.E.D.

3.2. Construction with simple loops and geodesic segments
connecting two singularities with angle π

In this subsection, let n = 2m be an even positive integer greater
than or equal to 6. Let D(p1, p2, . . . , pn) be a convex geodesic n-gon in

Poincaré discD2 with vertexes X̃1, X̃2, . . . , X̃n with angles π
p1
, π
p2
, . . . , π

pn

respectively. Here, we assume that p1 ≤ p3 ≤ · · · ≤ p2m−1 ≤ p2 ≤ p4 ≤
· · · ≤ p2m. For any integer 2k (1 ≤ k ≤ m), we define a surfaces
Σ2k(X2k−1), Σ2k(X2k+1) as follows.

First, we consider the case of p2k = 2. Then, we have p2k−1 =
p2k = p2k+1 = 2 by the assumption above. We take oriented geo-

desic segments X̃2kX̃2k−1, X̃2k+1X̃2k in D2, which induce geodesic seg-
ments X2kX2k−1, X2k+1X2k in S(p1, p2, . . . , pn) respectively. Now let
Σ2k(X2k−1) (resp. Σ2k(X2k+1)) be the closure of the set of unit vectors
at points of X2kX2k−1 (resp. X2k+1X2k) which points to the left side of
the oriented geodesic segment X2kX2k−1 (resp. X2k+1X2k).

Next, we consider the case of p2k > 2. There are oriented geodesic
segment γ−

2k (resp. γ+
2k) in D(p1, p2, . . . , pn) such that

(1) γ−
2k (resp. γ+

2k) starts from a point of the edge X̃2k−2X̃2k−1

(resp. X̃2k+1X̃2k+2),

(2) γ−
2k (resp. γ+

2k) arrives at a point of the edge X̃2kX̃2k+1

(resp. X̃2k−1X̃2k),

(3) γ−
2k (resp. γ+

2k) is perpendicular to edges X̃2k−2X̃2k−1,

X̃2kX̃2k+1 (resp. X̃2k+1X̃2k+2, X̃2k−1X̃2k) respectively.

(See Figure 9.) Let γ−
2k, γ+

2k be the oriented geodesic segments

−σ2k−1(γ
−
2k), −σ2k(γ

+
2k) respectively. Then the union γ−

2k ∪ γ−
2k

(resp. γ+
2k ∪ γ+

2k) gives rise to a simple closed oriented geodesic

η−2k (resp. η+2k) of S(p1, p2, . . . , p2m). The union η−2k ∪ η+2k divides
S(p1, p2, . . . , p2m) into four 2-gons. Take a unique 2-gon R2k(X2k−1)
(resp. R2k(X2k+1)) which contains a singularity X2k−1 (resp. X2k+1).
Then we can apply the construction in Subsection 3.1 to these
2-gons R2k(X2k−1), R2k(X2k+1), and obtain the surfaces Σ2k(X2k−1),
Σ2k(X2k+1) respectively. Now we can prove the following theorem.
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Fig. 9. Geodesic segments.

Theorem 3.3. If S(p1, p2, . . . , p2m) be as above, the geodesic flow
of S(p1, p2, . . . , p2m) has a genus one Birkhoff section.

Before the proof, we will prove the following technical lemma.

Lemma 3.4. Let γ(t) be a unit speed geodesic and a, b real numbers
with b− a ≥ 6δ. If γ(a, b) contains no vertexes of C, there exist vertexes

X̃2i−1, X̃2i+1 of C and an element σ ∈ Γ∗(p1, . . . , pn) such that γ(a, b)

traverses the diagonal edge σ(X̃2i−1)σ(X̃2i+1) of σ(D(p1, . . . , pn)).

Proof. Let Godd be a graph in D2 consisting of the vertexes
σ(X̃2k−1) and the edges σ(X̃2k−1)σ(X̃2k+1), where k ∈ {1, . . . ,m}, σ ∈
Γ∗(p1, . . . , pn), and σ(X̃2k−1)σ(X̃2k+1) denotes the geodesic segment

between σ(X̃2k−1) and σ(X̃2k+1). Note that 2n + 1 describes 1 and

σ(X̃2k−1)σ(X̃2k+1) is a diagonal of n-gon σ(D(p1, . . . , pn)). Then every
connected component D2 − Godd is an interior of a convex geodesic
j-gon for some j ∈ {2p1, . . . , 2pn, n}, and has the diameter less than
2δ. Then there exists t0 ∈ (δ, 3δ) such that γ̃(t0) ∈ Godd . Since γ̃(δ, 3δ)
contains no vertex of Godd , γ̃(t0) is not a vertex of Godd . Then there
exists an edge e of Godd such that e contains γ̃(t0) in its interior. Since
the length of e is less than δ, if e is contained in γ̃(R), it is contained
in γ̃(0, 4δ), so the vertexes of e are. Since γ̃(δ, 3δ) contains no vertex



Genus one Birkhoff sections 383

Fig. 10. A local picture of the universal lift of Σ2k(X2k−1)∪
Σ2k(X2k+1). See [4] for more details.

Fig. 11. A local picture of the universal lift of Σ2(X1) ∪
Σn(X1) in the case p2 = 2 and pn ≥ 3. See Fig-
ure 12, in which the picture about Σ2(X3)∪Σ4(X3)
is like the picture above in shape.

of Godd , the case does not occur. Therefore, γ̃(0, 4δ) traverses e, and
this completes the proof. Q.E.D.

Proof of Theorem 3.3. We define a surface S by

S =

m⋃
k=1

(Σ2k(X2k−1) ∪ Σ2k(X2k+1)).

By using Figure 14, we see that the Euler characteristic of S equals
(−2) × m = −n and S has 2m = n boundary components. Thus we
can see that S is of genus one. Further, we can see that the surface S
gives rise to a Birkhoff section for the geodesic flow of S(p1, p2, . . . , p2m)
in a similar fashion of the proof of Theorem 3.1 by using Figure 12 and
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Fig. 12. Around the diagonal on the right face.

Fig. 13. Around the diagonal on the wrong face.

Figure 13. Note that both Figure 12 and Figure 13 show the case of
p1 = p2 = p3 = p5 = 2, p4 ≥ 3 and p6 ≥ 3. Q.E.D.
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Fig. 14. Topologies of the parts of S.
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