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calculus
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Abstract.

We describe the positivity of Thom polynomials of singularities of
maps, Lagrangian Thom polynomials and Legendrian Thom polyno-
mials. We show that these positivities come from Schubert calculus.

§1. Introduction

In the present paper, we discuss the issue of positivity. The positivity
plays an important role in mathematics. For example, positivity in
algebraic geometry is a subject of a vast monograph [36] of Lazarsfeld.

There are two questions related to positivity: 1. Are the numbers
in question (mostly the coefficients of some polynomials) nonnegative?
2. If yes, what is a positive description of these numbers?

Positivity in Schubert calculus is an active area of the contempo-
rary research, related mainly to the second question, see, e.g., the sur-
vey article [9]. Answers to question 1. in many important situations
are known classically (many of them follow from the Bertini-Kleiman
theorem). Since the author hopes that the present article will also be
read by beginners, we discuss this issue briefly at the end of Section 3.

Our main goal here is to describe some positivities in the global
geometry of singularities. These positivities come from Schubert cal-
culus. The presented results are related mainly to the first question.
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The present knowledge about the second question in this area is rather
restricted. We survey several recent positivity results about Thom poly-
nomials. Some of them are obtained by the Bertini-Kleiman theorem
and its variants; other are deduced using the Fulton-Lazarsfeld theo-
rems on positive polynomials for ample vector bundles, or vector bun-
dles generated by their global sections. We also discuss positivity of the
restrictions of Schubert classes, and some other related positivities.

Here is a description of the content of the paper.
After the preliminaries, in Section 3, we recall basic definitions and

facts about Schubert classes in the cohomology rings of G/P . We put
an emphasis on Poincaré duality. Then – to start the discussion on
positivity – we recall two known positivities in the cohomology rings
of flag manifolds and explain the positivity of restrictions of Schubert
classes.

Thom polynomials came from algebraic topology and singularities.
The classical ones are associated with singularities of maps. Nowadays,
we also study Lagrangian Thom polynomials and Legendrian Thom
polynomials. In Sections 5, 7 and 8, we give brief introductions to
these three series of Thom polynomials. The computations of Thom
polynomials are, in general, quite hard. There are basically two ways to
compute the Thom polynomials of a singularity class Σ: 1. using desin-
gularization of Σ, and push-forward formulas (one should mention here
many names, making this article too long); 2. the interpolation method
of Fehér and Rimányi: by restricting to singularities of smaller codi-
mension than codimΣ, and using symmetries of singularities (see [49]).
It was the basis of monomials in Chern classes, which served at first
to compute the Thom polynomials. About a decade ago, the basis of
Schur functions started also to be used systematically for computations
of Thom polynomials (see Section 5 for more details).

In 2006 Weber and the author proved the positivity of the Thom
polynomials of stable singularity classes of maps in the basis of Schur
functions [47]. The method relies on classifying spaces of singularities
and on some global aspects of Schubert calculus. The Fulton-Lazarsfeld
theory [17] of polynomials numerically positive for ample vector bundles
is used. For details, see Sections 4 and 5. Thus methods of algebraic
geometry appear to be useful to study Thom polynomials.

Section 6 presents a generalization, by the same two co-authors, of
this positivity to Thom polynomials of invariant cones and, in particular,
to the Thom polynomials of possibly nonstable singularity classes of
maps [48].
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In section 7, we describe the positivity of Lagrangian Thom polyno-

mials in the basis of Q̃-polynomials. This is a result of Mikosz, Weber
and the author [37].

The positivity of Legendrian Thom polynomials is a subject of Sec-
tion 8, where we report on results of the same three co-authors [38]. The
argument is based on some variant of the Bertini-Kleiman theorem and
the Schubert calculus for Lagrangian Grassmann bundle associated with
a twisted skew-symmetric form. One constructs a basis in the cohomol-
ogy ring of that Lagrangian Grassmann bundle such that any Legendrian
Thom polynomial has, in this basis, an expansion with nonnegative co-
efficients. This leads to the construction of a one-parameter family of
such bases in the ring of Legendrian characteristic classes.

This is a written account of the talk delivered by the author at
the conference on Schubert calculus (July 23-27, 2012) at Osaka, where
apart from interesting lectures he enjoyed beautiful Japanese gardens
(cf. [50]). He wishes to thank the organizers of the conference for their
devoted work.

The main body of the paper is based on a cooperation with
Ma�lgorzata Mikosz and Andrzej Weber, with some assistance of Maxim
Kazarian and Alain Lascoux. The author is grateful to them for invalu-
able conversations. He also thanks Wojciech Domitrz, Letterio Gatto,
Megumi Harada, Jaros�law Kȩdra, Toshiaki Maeno, Piotr Mormul and
Krzysztof Pawa�lowski for useful comments. Finally, the author thanks
the referee for pointing out several defects in the previous version of this
article and suggesting some improvements.

§2. Preliminaries

General information about varieties, homology groups H∗(−), co-
homology groups H∗(−) and Chow groups A∗(−), A∗(−) in the scope
needed for this paper is contained in [19, App. A]. The multiplication
in cohomology and that in Chow rings of nonsingular varieties will be
denoted by “·”. For more detailed information concerning these mat-
ters, we refer the reader to [16]. We follow the notation for algebraic
geometry from this book. We use the following variants of fundamental
classes:

• Let X be a variety over a field k. Given a (closed) subscheme
Z of X of pure dimension d, by [Z] =

∑
mi[Zi] we denote its

fundamental class in the Chow group Ad(X), where Zi are irre-
ducible components of Z andmi = l(OZ,Zi) are their geometric
multiplicities.



422 P. Pragacz

• If k = C, a (closed) subscheme Z of a compact variety X
of pure dimension d determines in the same way a funda-
mental class in H2d(X,Z) denoted [Z]. If X is nonsingular,
by Poincaré duality, we have the class [Z] in H2e(X,Z) =
H2d(X,Z), where e is the codimension of Z in X.

• If Z is a (closed) subscheme of a possibly noncompact complex
manifold1 X of pure codimension e, then we have a class [Z] ∈
H2e(X,Z). Indeed, Z has a fundamental class [Z] in the Borel-
Moore homology group H2d(X), d = dim(Z) (see [6]), and that
group is naturally isomorphic to H2e(X,Z) (see [7, Thm 7.9]).

A cycle
∑

ni[Vi] on a scheme X is nonnegative if each ni is nonneg-
ative.

Let E and F be vector bundles on a nonsingular variety X. We
define two families of symmetric functions: sλ(E − F ) ∈ A|λ|(X) and

Q̃μ(E) ∈ A|μ|(X). We follow the notation for partitions from [19]. Let
{e} and {f} be the sets of Chern roots of E and F . We set

(1)
∑

si(E − F )zi :=
∏
f

(1− fz)/
∏
e

(1− ez) ,

where z is an independent variable. We see that si(E − F ) interpo-
lates between si(E) – the i-th Segre class of E times (−1)i (cf. [16])
and si(−F ) – the i-th Chern class of F times (−1)i (loc.cit.). Given a
partition

λ = (λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0) ,

we define

(2) sλ(E − F ) :=
∣∣sλi−i+j(E − F )

∣∣
1≤i,j≤l

.

If F = 0, we obtain sλ(E), that is, the classical Schur function of E. In
the following, the reader will find a formula, how, knowing the Chern
classes of E, to get sλ(E). For more detailed information on the super-
symmetric Schur functions sλ(E − F ), see [19, Sect. 3, 4 and 5].

We now define the second family of functions. We set Q̃i(E) =
ci(E). Given two nonnegative integers i ≥ j, we define

Q̃i,j(E) := Q̃i(E)Q̃j(E) + 2

j∑
p=1

(−1)pQ̃i+p(E)Q̃j−p(E) .

1A manifold here is always nonsingular.
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For a partition μ, Q̃μ(E) is defined recurrently on l(μ), by putting for
odd l(μ),

Q̃μ(E) =

l(μ)∑
p=1

(−1)p−1Q̃μp(E) Q̃μ�{μp}(E),

and for even l(μ),

Q̃μ(E) =

l(μ)∑
p=2

(−1)pQ̃μ1,μp(E) Q̃μ�{μ1,μp}(E).

This family of functions is modeled on Schur Q-functions, and is useful
in Schubert calculus of Lagrangian Grassmannians. The reader can find

in [19, Sect. 3 and 7] more details concerning the polynomials Q̃μ(E).

§3. Schubert varieties and Schubert classes

In this section, we collect basic information on the cohomology rings
of the flag manifolds G/P . We begin by fixing some notation.

Let G be a semisimple group over an algebraically closed field k, and
B ⊂ G a Borel subgroup. Choose a maximal torus T ⊂ B with Weyl
groupW = NG(T )/T of (G,T ). This determines a root systemR, simple
roots Δ, positive roots R+ etc. The group W is generated by simple
reflections {sα : α ∈ Δ} with length function l(w) and longest word w0:
l(w0) = card(R+). The Chevalley-Bruhat decomposition G = BWB
provides a “cell-decomposition” of the flag manifold

G/B =
∐

w∈W

BwB/B .

Recall that the flag manifold G/B is nonsingular algebraic and projec-
tive of dimension card(R+). Each subset Bw0wB/B of G/B is iso-
morphic, as a k-variety, to the affine space kl(w0)−l(w). Its closure
Bw0wB/B is called a Schubert variety. This is, in general, a singular
algebraic variety of codimension l(w) in G/B. We set in Al(w)(G/B), or
in H2l(w)(G/B,Z)

Xw := [Bw0wB/B] ,

and call it a Schubert class.
The same applies to all partial flag manifolds G/P , where P is a

parabolic subgroup of G. Let θ be a subset of Δ and let Wθ be the
subgroup of W generated by {sα}α∈θ. We set P = Pθ = BWθB, and
WP = Wθ.
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Consider the set

WP = W θ := {w ∈ W : l(wsα) = l(w) + 1 ∀α ∈ θ}.

This is the set of minimal length left coset representatives of WP in W .
The projection G/B → G/P induces an injection

A∗(G/P ) ↪→ A∗(G/B) ,

which additively identifies A∗(G/P ) with
⊕

w∈WP ZXw. In other words,

the Xw, w ∈ WP , form a Z-basis for A∗(G/P ) [4, Thm 5.5]. Multiplica-

tively, A∗(G/P )Q is identified with the ring of invariants A∗(G/B)Q
WP

[4, Sect. 5].

If k = C, since G/P admits a cell-decomposition, we have

(3) H2i+1(G/P,Z) = 0 and H2i(G/P,Z) = Ai(G/P )

(cf. [16, Ex. 19.1.11]).

Example 1. Let G = SLn. We set P = Pθ, where θ is obtained
by omitting the root εr − εr+1 in the basis ε1 − ε2, . . . , εn−1 − εn of the
root system of type An−1:

{εi − εj | i �= j} ⊂ ⊕n
i=1Rεi .

We have an identification SLn/P = Gr(k
n), the Grassmannian parame-

trizing r-dimensional linear subspaces in kn. It is an algebraic variety
of dimension r(n− r).

The Weyl group W is here the symmetric group Sn, and WP = Sr×
Sn−r. The poset WP is naturally identified with the poset of partitions

λ contained in ((n−r)r) (see, e.g., [24]) and the corresponding Schubert
class Xλ is represented by the following locus in the Grassmannian.
Consider a flag

V0 ⊂ V1 ⊂ · · · ⊂ Vn = kn

of vector spaces with dim(Vi) = i. Consider the following locus:

{L ∈ Gr(k
n) : dim(L ∩ Vn−r+i−λi) ≥ i, 1 ≤ i ≤ r} .

The class of this locus does not depend on the flag, and is equal to the
Schubert class Xλ.

Theorem 2 (Giambelli formula). In A|λ|(Gr(k
n)), we have

Xλ = sλ(R
∗) ,

where R is the tautological subbundle on the Grassmannian.



Positivity of Thom polynomials and Schubert calculus 425

Example 3. Let V be a symplectic vector space over k of dimension
2n, and let G = Sp(V ) be the symplectic group. We set P = Pθ, where θ
is obtained by omitting the root 2εn in the basis ε1−ε2, . . . , εn−1−εn, 2εn
of the root system of type Cn:

{±εi ± εj : 1 ≤ i ≤ j ≤ n} ∩ {±2εi : 1 ≤ i ≤ n} .

We have an identification Sp(V )/P = LG(V ), the Lagrangian Grassmann-
ian parametrizing all Lagrangian linear subspaces in V . It is an algebraic
variety of dimension n(n+ 1)/2.

We set ρ(n) = (n, n− 1, . . . , 2, 1).
The Weyl group W is here the hyperoctahedral group that can be

identified with group of signed permutations, and WP = Sn. The poset
WP is naturally identified with the poset of strict partitions μ contained
in ρ(n) (see, e.g., [24]), and the corresponding Schubert class Y μ, where

μ = (n ≥ μ1 > · · · > μr > 0)

is represented by the following variety. Consider a flag

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ V

of isotropic vector spaces with dim(Vi) = i. Consider the following locus:

{L ∈ LG(V ) : dim(L ∩ Vn+1−μi) ≥ i, 1 ≤ i ≤ r} .

The class of this locus does not depend on the flag, and is equal to the
Schubert class Y μ.

Theorem 4. [41], [42] In A|μ|(LG(V )), we have

Y μ = Q̃μ(R
∗),

where R is the tautological subbundle on the Lagrangian Grassmannian.

The original argument [42] made use of a comparison of Pieri for-
mulas for Lagrangian Schubert classes and for Schur Q-functions (for
references, see [42, Sect. 6]). There is also another proof in [35, p. 40],
which uses the characteristic map for a Lagrangian Grassmannian, and
relies on some divided difference and vertex operator computations.

We record the following “duality” result.

Theorem 5. Let G be a semisimple group, and let P ⊂ G be a
parabolic subgroup. For any w ∈ WP there exists exactly one w′ ∈ WP

such that dimXw + dimXw′
= dimG/P , and in A∗(G/P ) we have

Xw ·Xw′ �= 0. In fact, Xw ·Xw′
= 1.
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We call Xw′
the dual class to Xw. Let us discuss the following three

examples.
For P = B, we have w′ = w0 · w. Indeed,

Xw ·Xw′
= δw,w0w′Xw0 ,

where Xw0 is the class of a point (see [8, p. 20]).

In the situation of Example 1, the dual class to Xλ is Xλ′
where

λ′
i = n− r − λr+1−i for i = 1, . . . , r. (See, e.g., [16, p. 271].)

In the situation of Example 3, the dual class to Y μ is Y μ′
where

the parts of the strict partition μ′ complement the set of parts of μ in
{1, 2, . . . , n}. (See [42, p. 178].)

In general, the Poincaré duality for a partial flag manifold G/P is
described in terms of the Weyl group of G in [27, p. 197].

The following Bertini-Kleiman theorem is often used to show posi-
tivity.

Theorem 6. [31] Suppose a connected algebraic group G acts tran-
sitively on a variety X (over an algebraically closed field k). Let Y,Z be
subvarieties of X. Then, denoting by g · Y the translate of Y by g ∈ G,
the following two statements hold.
(1) There exists a nonempty open subset U ⊂ G such that for all g ∈ U ,
(g · Y ) ∩ Z is either empty or of pure dimension

dim(Y ) + dim(Z)− dim(X) .

(2) If Y and Z are nonsingular, and char(k)=0, then there is a non-
nempty open subset U ⊂ G such that for all g ∈ U , (g · Y ) ∩ Z is
nonsingular.

Corollary 7. With the notation of the theorem, if dim(Y )+dim(Z) =
dim(X), then (g·Y )∩Z is either empty or a zero-dimensional subscheme.
Under the assumptions of (2), all points in (g · Y ) ∩ Z are regular.

We end this section with the following fact on positivity of Schubert
classes. Assertions (i) and (ii) are classically known (also for G/P with
similar proofs).

Proposition 8. (i) Let Z be a subvariety of G/B. If in A∗(G/B),
we have

[Z] =
∑
w∈W

awX
w ,

where aw ∈ Z, then all the coefficients aw are nonnegative.



Positivity of Thom polynomials and Schubert calculus 427

(ii) If for w, v ∈ W , in Al(w)+l(v)(G/B), we have

Xw ·Xv =
∑
u

cuwvX
u ,

then cuwv ≥ 0.

(iii) Let G ⊂ H be an inclusion of algebraic groups. Let Q ⊂ H be a
parabolic subgroup. Set P = G ∩ Q, and let i : G/P → H/Q be the
inclusion. If Z ⊂ H/Q is a subvariety, and in A∗(G/P ) we have

i∗[Z] =
∑

w∈WP

awX
w ,

with aw ∈ Z, then all the coefficients aw are nonnegative.

Let us show, for instance, (i) and (iii). As for (i): For any w, we
have

aw =

∫
G/B

[Z] ·Xw′
,

where Xw′
is the dual class to Xw. Let Y be a subvariety representing

the class Xw′
. We apply to Z and Y the Bertini-Kleiman theorem: for

a general g ∈ G we obtain a zero-dimensional scheme (g ·Z)∩Y and aw
is its length, hence aw ≥ 0.

As for (iii): We use the Bertini-Kleiman theorem for the subvarieties Z
and G/P of H/Q: for a general h ∈ H, h · Z and G/P meet properly.
Let

V = (h · Z) ∩G/P ⊂ G/P ,

a schematic intersection. We now use Proposition 8(i) for the subvariety
V of G/P . Alternatively, to conclude, we can use again the Bertini-
Kleiman theorem, this time for V ⊂ G/P and a subvariety representing
the dual class to Xw. Q.E.D.

Corollary 9. Let V be symplectic vector space of dimension 2n and
let LG(V ) be the Lagrangian Grassmannian. Denote by

i : LG(V ) ↪→ Gn(V )

the inclusion. If in A∗(LG(V )) we have

i∗(Xλ) =
∑

aμY
μ ,

where aμ ∈ Z, then aμ ≥ 0.

A combinatorial positive rule for the coefficients aμ was given in [43,
Prop. 2].
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§4. Ample vector bundles and positive polynomials

In this section, we work over an algebraically closed field k of arbi-
trary characteristic. Let X be a scheme, and let F be a sheaf of OX -
modules. We say that F is generated by its global sections if there is a
family of global sections {si}i∈I , si ∈ Γ(X,F), such that for each x ∈ X,
the images of si in the stalk Fx generate that stalk as an Ox-module.

Recall that a line bundle O(D) on a smooth curve of genus g is
generated by its global sections if degD ≥ 2g. It is ample iff degD > 0;
so a sufficiently high power of an ample line bundle is generated by its
global sections.

This is also the case of vector bundles of higher ranks on higher
dimensional varieties. Given a vector bundle E, we denote by Sp(E)
its pth symmetric power. We say that a vector bundle E on a variety
X is ample if for any sheaf F there exists p0 ∈ N such that for any
p ≥ p0, the sheaf Sp(E)⊗F is generated by its global sections. This is
equivalent to say that the Grothendieck invertible sheaf O(1) on P(E∗),
the projective bundle2 of E∗ is ample.

Let us mention two properties of ample vector bundles [23]:

• a direct sum of ample vector bundles is ample;
• for a partition λ, the Schur bundle Sλ(E) (see [34], [19, p. 131])
of an ample vector bundle E is ample.

Perhaps this is a good moment to come back to positivity. Consider
the following example. If E is a vector bundle, λ, μ partitions, then the
integer coefficients aν in the expansion of the Schur polynomials of the
Schur bundle Sλ(E),

sμ(S
λ(E)) =

∑
ν

aνsν(E) ,

in the basis of Schur functions {sν(E)} are nonnegative [44, Cor. 7.2] (see
also [36, Ex. 8.3.13]). This is a consequence of the second property. This
information is nontrivial even for Chern classes (i.e. for μ = (1, . . . , 1));
for some examples of explicit computations, see [44].

Let E be a vector bundle of rank n on a variety X, and C a sub-
scheme of E. We say that C ⊂ E is a cone if it is stable under the
natural Gm action on E. If C ⊂ E is a cone of pure dimension c, then
one may intersect its cycle [C] with the zero-section of the vector bundle:

(4) z(C,E) = s∗E([C]) ∈ Ac−n(X) ,

2i.e. the bundle of lines in the fibers
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where s∗E : Ac(E) → Ac−n(X) is the Gysin map determined by the zero
section X → E. In fact, we can use any other section X → E and
z(C,E) is the unique cycle class on X such that

(5) p∗(z(C,E)) = [C]

in Ac(E) (see [17, (1.4)]).
Here is an example of a positivity result with a pretty simple proof.

Lemma 10. Let E be a vector bundle on a variety X, and let C be
an irreducible cone in E. If E is generated by its global sections, then
z(C,E) is represented by a nonnegative cycle.

Proof. Restricting E to the support of C 3, we may assume that
this support is equal to X. The inclusion C ⊂ E gives rise to a sub-
scheme P(C) ⊂ P(E). If E is generated by its global sections, then
O(1) on P(E) is generated by its global sections. By the Bertini the-
orem, a general hypersurface section on P(E) intersects P(C) properly
or this intersection is empty. Hence a general section of E intersects C
properly or the intersection is empty. Therefore z(C,E) is represented
by a nonnegative cycle. Q.E.D.

For a projective variety X, there is well defined degree∫
X

: A0(X) → Z

(see [16, Def. 1.4]). The following result of Fulton and Lazarsfeld is
basic for applications to positivity.

Theorem 11. [17] Let E be an ample vector bundle of rank n on a
projective variety X. Let C be a cone in E of pure dimension n. Then
we have ∫

X

z(C,E) > 0 .

For a more extensive study of positivity in intersection theory, com-
ing from ample vector bundles and vector bundles generated by their
global sections, see [16, Thm 12.1].

Remark 12. Suppose k = C. Under the assumptions of The-
orem 11, we have in H0(X,Z) the homology analog of z(C,E), de-
noted by the same symbol. We also have the homology degree map
degX : H0(X,Z) → Z. They are compatible with their Chow group

3Cf. [16, B.5.3].



430 P. Pragacz

counterparts via the cycle map: A0(X) → H0(X,Z) (cf. [16, Sect. 19]).
Thus we have

(6) degX
(
z(C,E)

)
> 0 .

We record the following result.

Proposition 13. [37] Let E be a vector bundle on a complete homo-
geneous variety X. Let C be a cone in E and let Y ⊂ X be a subvariety
of dimension dim(X) + rank(E) − dimC. Assume that E is generated
by its global sections. Then the intersection [C] · [Y ] is nonnegative.

Let c1, c2, . . . be commuting variables with deg(ci) = i. Fix d, n ∈ N.
Let P (c1, . . . , cn) be a weighted homogeneous polynomial of degree d.
We say that P is numerically positive for ample vector bundles, or simply
positive, if for every d-dimensional projective variety X and any ample
vector bundle of rank n on X, we have∫

X

P (c1(E), . . . , cn(E)) > 0 .

For example, Griffiths [21] who pioneered this subject, found the
following positive polynomials: c1, c2, c

2
1−c2. Bloch-Gieseker [5] showed

that cd is positive for d ≤ n.
Given a partition λ, with the conjugate partition μ, we set

(7) sλ = sλ(c1, c2, . . .) := |cμi−i+j |1≤i,j≤l(μ) .

Kleiman [30] showed that positive polynomials for surfaces are nonneg-
ative combinations of s2 and s1,1. Gieseker [20] proved that sd (the d-th
Segre class) is positive.

Fulton and Lazarsfeld gave the following characterization of positive
polynomials. Let P be a weighted homogeneous polynomial of degree d
in n variables. Write

(8) P =
∑
λ

aλsλ ,

where aλ ∈ Z.

Theorem 14. [17] The polynomial P is positive iff P is not zero
and all the coefficients aλ in (8) are nonnegative.

The proof of the theorem combines the hard Lefschetz theorem ap-
propriately adapted to this subject by Bloch and Gieseker [5] and the
Giambelli formula, which was recalled in Theorem 2.
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Remark 15. We now discuss some results related to Theorems 11
and 14. The latter was generalized by Demailly, Peternell and Schnei-
der to nef vector bundles in [11]. The former has a very simple proof
due to Fulton and Lazarsfeld in [18] in the case when E is ample and
generated by its global sections. Hacon [22] showed that these assump-
tions are not sufficient, for a positive polynomial P , to have

∫
X
P (E) ≥

P (n,
(
n
2

)
, . . . ,

(
n
d

)
) , as it was conjectured by Beltrametti, Schneider and

Sommese in [2]. This last inequality is true for very ample bundles
(loc.cit .). Consider a vector bundle E on a complex projective mani-
fold. Griffiths [21] defined E to be numerically positive if for any ana-
lytic subvariety W ⊂ M , and any rank q quotient Q of E|W , we have∫
W

P (c(Q)) > 0 for any homogeneous polynomial of degree equal to
dim(W ) from the Griffiths cone associated to q (see also [17, App. A]).
Griffiths speculated on the possibility that arbitrary ample bundles are
numerically positive. This was proved, using Schubert calculus, by Usui
and Tango [52] for bundles generated by their global sections. The nu-
merical positivity of all ample bundles was proved in [17, App. A].

§5. Thom polynomials for singularities of maps

Thom polynomials came from algebraic topology and singularities.
They are tools to measure the complexity of singularities. In this section,
we investigate Thom polynomials of singularities of maps. Let

f : M → N

be a map of complex analytic manifolds; we say that x ∈ M is a singu-
larity of f if dfx fails to have the maximal rank.

We now follow the terminology from [49] for what concerns map
germs (Cm, 0) → (Cn, 0) and their stable versions. Two map germs
κ1, κ2 : (Cm, 0) → (Cn, 0) are said to be right-left equivalent if there
exist germs of biholomorphisms φ of (Cm, 0) and ψ of (Cn, 0) such that
ψ ◦ κ1 ◦φ−1 = κ2. A suspension of a germ map κ is its trivial unfolding:
(x, v) 
→ (κ(x), v). Let us fix l ∈ N. Consider the equivalence relation on
stable map germs (C•, 0) → (C•+l, 0) generated by right-left equivalence
and suspension. An equivalence class of this relation is often called
singularity and denoted by η.

According to Mather’s classification [13], the finite dimensional (lo-
cal) C-algebras are in one-to-one correspondence with classes of contact
equivalence classes of singularities (cf. [15]). For instance, Ai stands
for the stable germs with local algebra C[[x]]/(xi+1), i ≥ 0; and Ia,b for
stable germs with local algebra C[[x, y]]/(xy, xa + yb), b ≥ a ≥ 2 (they
also depend on l).
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Following Thom, we look at the locus

η(f) := {x ∈ M : the singularity of f at x is η}

for a map f : M → N , and try to compute its class in terms of the
Chern classes of M and N . More precisely, we restrict ourselves only to
general maps, i.e., the maps from some open subset in the space of all
maps.

For example, let f : M → N be a general morphism of compact
Riemann surfaces. Suppose that the singularity is A1: z 
→ z2. Then
η(f) is the ramification divisor of f , and by the Riemann-Hurwitz for-
mula the wanted class is f∗c1(N) − c1(M). We refer the reader to [32,
p. 300] for more details.

The space of germs of maps from (Cm, 0) to (Cn, 0) has infinite
dimension, which is inconvenient from the point of view of algebraic
geometry. To remedy this, we pass to the spaces of jets of germs of
maps. Fix m,n, p ∈ N. Consider the space J p(Cm

0 ,Cn
0 ) of p-jets of

analytic functions from Cm to Cn, which map 0 to 0 (see [1, pp. 36-
38]). This space will also be denoted by J (m,n) or simply by J to
avoid too complicated notation.

Let Autpn denote the group of p-jets of automorphisms of (Cn, 0).
Consider the natural right-left action of the group Autpm ×Autpn on

the space J p(Cm
0 ,Cn

0 ). By a singularity class we mean a closed algebraic
right-left invariant subset of J p(Cm

0 ,Cn
0 ).

Given complex analytic manifolds Mm and Nn, a singularity class
Σ ⊂ J p(Cm

0 ,Cn
0 ) defines the following subset Σ(M,N) ⊂ J p(M,N),

where J p(M,N) is the space of p-jets of maps from M to N : using the
coordinate maps M ∼= Cm and N ∼= Cn, we declare that a point belongs
to Σ(M,N) iff it belongs to Σ. If we change the coordinate maps, then
the set Σ(M,N) remains unchanged by virtue of right-left invariance of
Σ.

Theorem 16. Let Σ ⊂ J p(Cm
0 ,Cn

0 ) be a singularity class. There
exists a universal polynomial T Σ over Z in m + n variables c1, . . . , cm,
c′1, . . . , c

′
n which depends only on Σ, m and n such that for any manifolds

Mm, Nn and for a general map f : M → N , the class of

Σ(f) := (jpf)−1(Σ(M,N))

is equal to

T Σ(c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N)),

where jpf : M → J p(M,N) is the p-jet extension of f ([1, pp. 36-38]).
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This is a theorem due to Thom, see [51]. The polynomial T Σ is
called the Thom polynomial of Σ.

Note that a singularity η corresponds here to the singularity class
Σ being the closure of a single right-left orbit, and the locus η(f) is
generalized to Σ(M,N). The key problem is to compute the classes of
these varieties in terms of the Chern classes of the manifolds M and N .

Lemma 17. Let Σ ⊂ J be a singularity class. Then Σ is a cone in
the vector space J .

Proof. For a function f ∈ Σ and a scalar c ∈ C∗, we have c · f ∈
Σ because Gm ⊂ Autpn, and the singularity class Σ is Autpm ×Autpn-
invariant. Q.E.D.

We follow Kazarian’s approach to Thom polynomials of singularities
of maps [28]. We set

G := Autpm ×Autpn .

Consider the classifying principal G-bundle EG → BG [39] (see also
[25, Sect. 7]). Here EG is a contractible space with a free action of
the group G. This action extends to the diagonal action on the product
space EG× J . Invoking [25, Def. 3.1] and its notation, we set

J̃ := EG×G J = (EG× J )/G .

This space is often called the classifying space of singularities4. For a
given singularity class Σ ⊂ J , we define

Σ̃ := EG×G Σ ⊂ J̃ .

We have codim(Σ̃, J̃ ) = codim(Σ,J ). We denote by

T Σ ∈ H2 codim(Σ,J )(J̃ ,Z)

the dual class of [Σ̃]. The classifying spaces BG, J̃ , etc. have infinite
dimensions and the notion of the “dual class” should be clarified, see
[28, Rem. 1.6] and [47, footnote (4)].

The projection to the second factor J̃ → BG is a bundle with fiber
isomorphic to J and structure group G. Since J is contractible, and
also G is contractible to the subgroup GLm×GLn of linear changes, we
get

H∗(J̃ ,Z) ∼= H∗(BG,Z) ∼= H∗(BGLm ×BGLn,Z) .

4Note that the same construction is used in the definition of Borel of equi-
variant cohomology for a G-space J .
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Hence T Σ is identified with a polynomial in c1, . . . , cm and c′1, . . . , c
′
n

which are the Chern classes of universal bundles Rm and Rn on BGLm

and BGLn. This is the Thom polynomial T Σ.
We now explain what we mean by stable singularity class. The

suspension
S : J (m,n) ↪→ J (m+ 1, n+ 1)

allows one to increase the dimension of the source and the target si-
multaneously: with the local coordinates x1, x2, . . . for the source and a
function f = f(x1, . . . , xm), the jet S(f) ∈ J (m+1, n+1) is defined by

S(f)(x1, . . . , xm, xm+1) := (f(x1, . . . , xm), xm+1) .

Suppose that the singularity class Σ is stable under suspension. By this
we mean that it is a member Σ0 = Σ of a family

{Σr ⊂ J (m+ r, n+ r)}r≥0

such that
Σr+1 ∩ J (m+ r, n+ r) = Σr

and
T Σr+1 |H∗(BGLm+r×BGLn+r,Z) = T Σr .

This means that if we specialize

cm+r+1 = c′n+r+1 = 0

in the polynomial T Σr+1 , we obtain the polynomial T Σr . If Σ is closed
under the contact equivalence (see [15]), then it is stable in our sense.

The theorem of Thom has the following refinement due to Damon
[10] for singularity classes Σ which are stable under suspension: T Σ is a
polynomial in

ci(Rm −Rn) , where i = 1, 2, . . . .

So, we can use the bases of monomials in the Chern classes in Rm −Rn

or Rn − Rm or R∗
m − R∗

n or R∗
n − R∗

m. We can also use the bases of
(supersymmetric) Schur functions in Rm −Rn or Rn −Rm or R∗

m −R∗
n

or R∗
n−R∗

m. About a decade ago, calculations of the Thom polynomials
using the bases of Schur functions were done independently by Fehér-
Kömüves and Lascoux-Pragacz.

For Morin singularities Ai, there is a positivity conjecture of Rimányi
(1998), asserting that the expansions of the Thom polynomials T Ai in
the basis of monomials in the Chern classes in Rn −Rm have nonnega-
tive coefficients. See [3] for a discussion of a link of this conjecture with
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the Green-Griffiths conjecture about holomorphic curves in nonsingular
projective varieties.

Example 18. We display here three Thom polynomials for the
Morin singularities between equal dimensional manifolds (so l = 0 in
the notation from the beginning of this section):
A3: c31 + 3c1c2 + 2c3;
A4: c41 + 6c21c2 + 2c22 + 9c1c3 + 6c4;
A5: c51 + 10c31c2 + 25c21c3 + 10c1c

2
2 + 38c1c4 + 12c2c3 + 24c5.

In general, the expansions of Thom polynomials of stable singulari-
ties in the basis of monomials in the Chern classes of Rn−Rm can have
negative coefficients.

Example 19. We give here three Thom polynomials for the singu-
larities Ip,q between equal dimensional manifolds (for the definition of
these singularities, see the beginning of this section):
I2,2: c22 − c1c3;
I2,3: 2c1c

2
2 − 2c21c3 + 2c2c3 − 2c1c4;

I2,4: 2c21c
2
2 + 3c32 − 2c31c3 + 2c1c2c3 − 3c23 − 5c21c4 + 9c2c4 − 6c1c5.

It is not obvious that T Σ �= 0 for a nonempty stable singularity class
Σ.

We now examine the expansions of Thom polynomials of stable sin-
gularities in the basis {sλ(Rn −Rm)} labeled by partitions λ. We refer
the reader for a variety of examples to [47, p. 93-94], [15] and [40].5

Theorem 20. [47] Let Σ be a nonempty stable singularity class.
Then for any partition λ the coefficient aλ in

(9) T Σ =
∑

aλsλ(Rn −Rm)

is nonnegative and
∑

aλ > 0.

This feature of Schur function expansions of Thom polynomials was
pointed out in [45], conjectured for Thom-Boardman singularities by
Fehér and Kömüves [14] (they computed the Schur function expansions
of the Thom polynomials of Σi,j [−i+ 1]), and conjectured for all singu-
larity classes in [46].

Note that each partition λ appearing in the RHS of (9) is contained
in the (n,m)-hook (see [19, p. 35]).

5In [47] and [40] the authors worked with the basis of Schur functions
{sλ(R∗

m −R∗
n)}, so the Schur functions given in the examples there are labeled

by the conjugate partitions of those appearing in the present convention.



436 P. Pragacz

To prove the theorem, we generalize the equation (9) for any pair of
complex vector bundles (E, F ) on any paracompact space X. To this
end, we apply the techniques of fiber bundles. Apart from vector bun-
dles, we also use principal G-bundles associated with finite collections
of vector bundles6 on a common base space (here G =

∏
i GLni , where

ni are the ranks of the vector bundles). For principal bundles, we refer,
e.g., to [33, Sect. I.5] or [25, Sect. 5].

Moreover, it is convenient to pass to the topological homotopy cat-
egory, where any pair of vector bundles can be pulled back from the
universal pair of vector bundles on BGLm ×BGLn.

We first pull back the bundle J̃ from BG to BGLm × BGLn via
the embedding

GLm ×GLn ↪→ Autm ×Autn .

Since GLm × GLn acts linearly on J , the obtained pullback bundle is
now the following vector bundle on BGLm ×BGLn:

J (Rm, Rn) :=
( p⊕

i=1

Si(R∗
m)

)
⊗Rn .

The bundle J (Rm, Rn) contains the preimage of Σ̃, denoted by Σ(Rm, Rn),
whose class is

(10) [Σ(Rm, Rn)] =
∑
λ

aλsλ(Rn −Rm) ,

with the same coefficients aλ as in (9).
Consider now a pair of vector bundles E and F of ranks m and n

on a variety X. We set

J (E,F ) :=
( p⊕

i=1

Si(E∗)
)
⊗ F .

Let P (E,F ) be the principal GLm × GLn-bundle associated with
the pair of vector bundles (E,F ). We have

J (E,F ) = P (E,F )×GLm×GLn J .

We set
Σ(E,F ) := P (E,F )×GLm×GLn Σ ⊂ J (E,F ) ,

a locally trivial fibration with the fiber equal to Σ.

6The associated principal GLn-bundle of a vector bundle E of rank n is
often called the frame bundle of E (its fibers consist of all ordered bases of the
fibers of E).
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Lemma 21. The variety Σ(E,F ) is a cone in the vector bundle
J (E,F ).

Proof. The assertion follows from Lemma 17. Q.E.D.

Lemma 22. The dual class of [Σ(E,F )] ∈ H2 dim(Σ)(J (E,F ),Z)
in

H2 codim(Σ,J )(J (E,F ),Z) = H2 codim(Σ,J )(X,Z)

is equal to

(11)
∑
λ

aλsλ(F − E) ,

where the coefficients aλ are the same as in (9) 7.

Proof. The pair of vector bundles (E,F ) on a variety X can be
pulled back from the universal pair (Rm, Rn) on BGLm ×BGLn using
a C∞ map. We get the assertion of the lemma by pulling back the
equation (10). Consequently, the coefficients of sλ(F − E) in (11) are
the same as the coefficients of sλ(Rn −Rm) in (10). Q.E.D.

Proof of Theorem 20.8 Let e = codim(C,J ). This means that for
any partition λ appearing in (11) its weight |λ | is equal to e.

The idea of the proof is to produce from (11) a numerically positive
polynomial for ample vector bundles, which captures positivity informa-
tion about all the aλ’s. Since (11) is a supersymmetric polynomial, and
we want a usual symmetric polynomial, we wish to specialize E to be a
trivial bundle. Since the singularity class Σ is stable, we can use a pair
of vector bundles E and F on X of the corresponding ranks m′ = m+ r
and n′ = n + r for some r ≥ 0, instead of m and n. So we can assume
that n′ >> 0. In particular, we may suppose that n′ ≥ e.

We use a specialization argument: let X vary over projective vari-
eties of dimension e, let F vary over ample vector bundles of rank n′ on
X, and let E be a trivial vector bundle 1m′

of rank m′ on X. By the
theory of symmetric functions (see, e.g., [19, Sect. 3.2]), the Schur poly-
nomials sλ(F−E) appearing in (11) are indexed by partitions λ of weight
|λ | = e, which are contained in the (n,m)-hook. In general, such poly-
nomials vanish under our specialization. But the assumption n′ ≥ e, or
equivalently, rankF ≥ |λ|, guarantees that the partition corresponding
to a summand aλsλ(F −E) appearing in (11) has at most n′ parts, and

7The meaning of the “dual class of [Σ(E,F )]” for a singular X is explained
in [47, Note 6].

8This is the same proof as that in [47], but with “mehr Licht”.
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thus this summand survives the specialization, giving aλsλ(F ). After
the specialization, the expression (11) becomes

(12)
∑
λ

aλsλ(F ) ,

where the summation is as in (11). Consider the polynomial

P :=
∑
λ

aλsλ ,

with the sλ’s as in (7) and the summation as in (12). We want to
show that P is positive. To this end, consider the cone Σ(E,F ) in
J (E,F ) (see Lemma 21) and its cone class z(Σ(E,F ),J (E,F )) (see
(4) and Remark 12). Since dimΣ(E,F ) = rankJ (E,F ), this cone class
belongs to H0(X,Z). It follows from Lemma 22 that the dual class

of z(Σ(1m′
, F ),J (1m′

, F )) is the element of H2e(X,Z) given by the
expression (12).

Since a direct sum of ample vector bundles is ample (see [23, Prop.

(2.2)]), and the vector bundle J (1m′
, F ) is a direct sum of several copies

of F , then J (1m′
, F ) is ample. Therefore by Theorem 11 and the in-

equality (6), we have∫
X

P (F ) = degX(z(Σ(1m′
, F ),J (1m′

, F )) > 0 ,

and thus conclude that P is positive.
In turn, by Theorem 14 we get that P is nonzero, and all the coef-

ficients aλ are nonnegative; hence also
∑

λ aλ > 0. Q.E.D.

Question. Does there exists a basis different (up to rescaling) from the
basis {sλ(Rn −Rm)} with the property that any Thom polynomial of a
stable singularity class has a positive expansion in that basis?

§6. Thom polynomials for invariant cones

In the previous section, in the context of classical Thom polynomials,
we have investigated the functor of p-jets:

(E,F ) 
→ J p(E,F ) =
( p⊕

i=1

Si(E∗)
)
⊗ F ,

defined on pairs of vector bundles, where p is large enough.
We want to generalize this setting. Suppose that (n1, . . . , nl) ∈ N∗l

and that V is a representation of G =
∏l

i=1 GLni . The representation
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V gives rise to a functor φ defined for a collection of bundles on a variety
X:

E1, . . . , El 
→ φ(E1, . . . , El) ,

with dimEi = ni, i = 1, . . . , l. By passing to the dual bundles, we may
assume that the functor φ is covariant in each variable.

Let P (E•) = P (E1, . . . , El) be the principal G-bundle associated
with the vector bundles E1, . . . , El. We define a new vector bundle:

V (E•) = V (E1, . . . , El) := P (E•)×G V

with fiber equal to V .
Suppose now that a G-invariant cone Σ ⊂ V is given. We set

Σ(E•) = Σ(E1, . . . , El) := P (E•)×G Σ ⊂ V (E•) ,

a fibration with fiber equal to Σ.
Let R(i), i = 1, . . . , l, be the pullback of the tautological vector

bundle from BGLni to

BG =
l∏

i=1

BGLni .

We denote by

T Σ ∈ H2codim(Σ,V )
(
V (R(1), . . . , R(l)),Z

)
= H2codim(Σ,V )(BG,Z)

the dual class9 of [Σ(R(1), . . . , R(l))], and call it the Thom polynomial of
Σ.

Then, the so defined Thom polynomial T Σ ∈ H∗(BG,Z) depends on
the Chern classes of the universal bundlesR(i)’s. We write T Σ(E1, . . . , El)
for the Thom polynomial T Σ, with cj(R

(i)) replaced by cj(Ei) for i =
1, . . . , l.

Arguing like in Lemma 22, we know that for any vector bundles
E1, . . . , El on a variety X, the class [Σ(E•)] in

H2 codim(Σ,J )(V (E•),Z) = H2 codim(Σ,J )(X,Z)

is equal to T Σ(E1, . . . , El).

9Here the “dual class” has the same meaning as in the approach to Thom
polynomials via classyfying spaces in the previous section.
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Since the Schur functions form an additive basis of the ring of sym-
metric functions, the Thom polynomial T Σ is uniquely written in the
following form:

(13) T Σ =
∑

aλ(1),...,λ(l) sλ(1)(R(1)) · . . . · sλ(l)(R(l)) ,

where aλ(1),...,λ(l) ∈ Z

We say that the functor φ, associated with a representation V , pre-
serves spannedness if for a collection of vector bundles E1, . . . , El gener-
ated by their global sections, the bundle φ(E1, . . . , El) is generated by
its global sections.

Examples of functors preserving spannedness over fields of character-
istic zero are polynomial functors. They are, at the same time, quotient
functors and subfunctors of the tensor power functors (cf. [23]).

Theorem 23. [48] Suppose that the functor φ preserves spanned-
ness. Then the coefficients aλ1,...,λl

in (13) are nonnegative. Assume
additionally that there exists a projective variety X of dimension greater
than or equal to codim(Σ, V ), and there exist vector bundles E1, . . . , El

on X such that the bundle φ(E1, . . . , El) is ample. Then at least one of
the coefficients aλ1,...,λl

is positive.

Consider now the Thom polynomial T Σ associated with a nonempty,
possibly nonstable singularity class Σ in the space of jets J (m,n). By
the theory of symmetric functions (see, e.g., [19, Sect. 3]), there exist
coefficients bλμ ∈ Z such that

(14) T Σ =
∑
λ,μ

bλμsλ(Rn) · sμ(R∗
m) .

The following result follows from Theorem 23.

Corollary 24. For any pair of partitions λ, μ, we have bλμ ≥ 0 and∑
bλμ > 0.

Let now Σ be a stable singularity class. There exist coefficients
aλ ∈ Z such that

(15) T Σ =
∑
λ

aλsλ(Rn −Rm) ,

the sum is over partitions λ with |λ| = codim(Σ,J (m,n)).
Here is another proof of Theorem 20. By the theory of symmetric

functions (loc.cit.), we have that the coefficient of sλ(Rn − Rm) in the
RHS of (15) is equal to the coefficient of sλ(Rn) in the RHS of (14),
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that is, aλ = bλ,∅ for any partition λ. The assertion now follows from
Corollary 24.

Remark 25. Another proof of the nonnegativity assertions of The-
orem 20 and Corollary 24 was communicated to the author by Klyachko
and indendependently by Kazarian (private communications). For de-
tails, see [40, p. 452]. These proofs use the Bertini-Kleiman theorem.
Coming back to the above proofs of Theorem 20, we see that the use of
ample vector bundles and the Fulton-Lazarsfeld Theorem 11, apart from
the nonnegativity of the considered coefficients, implies that at least one
of them is strictly positive.

§7. Lagrangian Thom polynomials

Lagrangian Thom polynomials were considered by Vassiliev [53] (see
also [29]).

Let us fix a positive integer n. Suppose that W be a complex vector
space, where dimW = n. Let

V = W ⊕W ∗

be a linear symplectic space, equipped with the symplectic form 〈, 〉,
defined by

〈(w1, f1), (w2, f2)〉 = f1(w2)− f2(w1)

for wi ∈ W and fi ∈ W ∗, i = 1, 2. We view V as a symplectic manifold.
Writing q = (q1, . . . , qn) for the coordinates ofW and p = (p1, . . . , pn) for
the dual coordinates of W ∗, the symplectic form on V is

∑n
i=1 dpi∧dqi.

Denote by 
 : V → W the projection.
Any germ of a Lagrangian submanifold L of V through 0 such that


|L is a submersion is a graph of a 1-form α : W → W ∗. The condition
that L is Lagrangian is equivalent to dα = 0. Since we deal with germs,
we can write α = df for some function f : W → C.

The space of germs of Lagrangian submanifolds L ⊂ V passing
through 0 has infinite dimension, which is inconvenient from the point
of view of algebraic geometry. To remedy this, we pass to the space of
jets of germs of Lagrangian submanifolds.

Let us fix, once for all, a nonnegative integer p. We identify two
germs of Lagrangian submanifolds L1, L2 through 0 if the tangency order
of L1 to L2 (see [12, Def. 2.6]) is greater than p. (See also [26, I.1], where
the name “contact of order” is used.) The equivalence class is called a
“p-jet of a submanifold”. In this way we obtain the space of p-jets of
Lagrangian manifolds denoted by J p(V ). This space is homogeneous
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with respect to the action of Symplp(V ) - the group of p-jet symplecto-
morphisms preserving 0 ∈ V : every p-jet of a Lagrangian submanifold
can be obtained from the “distinguished” Lagrangian submanifold W
by application of a symplectomorphism preserving 0.

The Lagrangian Grassmannian LG(V ) is embedded in J p(V ) in a
natural way. On the other hand, we have the Gauss map

π : J p(V ) → LG(V ) ,

which is a retraction to LG(V ), defined for a Lagrangian submanifold
L by π(L) = T0(L) , the tangent space of L at 0 ∈ L. Denote by {W}
the point of LG(V ) corresponding to the linear space W . The following
fact and its proof stems from [37].

Lemma 26. The fiber of π over {W} is isomorphic to the linear
space

p+1⊕
i=3

Si(W ∗) .

Proof. The fiber π−1{W} consists of those (jets of) Lagrangian
submanifolds L such that T0(L) = W . Every Lagrangian submanifold L
such that 
|L is a submersion is the graph of the differential of a function
f : W → C (note that df acts from W to W ∗). The condition: 0 ∈ L
corresponds to the condition: df(0) = 0, and the condition: T0(L) = W
corresponds to the vanishing of the second derivatives of f at 0. Q.E.D.

Thus π : J p(V ) → LG(V ) is an affine fibration. (Note that π is
not a vector bundle starting from p = 3, see [37, footnote on p. 68].)

Let H be the subgroup of Symplp(V ) consisting of p-jets of holo-
morphic symplectomorphisms preserving the fibration 
 : V → W . Two
Lagrangian p-jets are Lagrangian equivalent if they belong to the same
orbit of H. A Lagrange singularity class is any closed pure dimensional
algebraic subset of the manifold J p(V ), which is H-invariant.

A Lagrange singularity class Σ ⊂ J p(V ) defines the class [Σ] in the
cohomology groups

(16) H∗(J p(V ),Z) ∼= H∗(LG(V ),Z) .

This cohomology class in H∗(LG(V ),Z) will be called the (Lagrangian)
Thom polynomial of Σ, and denoted T Σ.

We now use Schubert calculus to investigate Lagrangian Thom poly-
nomials, that is, we study the expansions of Lagrangian Thom polyno-
mials in the basis of Lagrangian Schubert classes. (These are the classes
of the closures of the cells of a cellular decomposition of LG(V ), and
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thus they form a basis of H∗(LG(V ),Z).) By Theorem 4, we have

T Σ =
∑

strict μ⊂ρ(n)

aμQ̃μ(R
∗) ,

where aμ ∈ Z.

Lemma 27. [37] We have the following expression for the normal
bundle of LG(V ) in J p(V ):

NLG(V )J p(V ) ∼=
p+1⊕
i=3

Si(R∗) .

In particular, NLG(V )J p(V ) is generated by its global sections.

Proposition 28. Let Z be a subvariety of J p(V ). If, using (16),
we have

[Z] =
∑

aμQ̃μ(R
∗) ,

where aμ ∈ Z, then all the coefficients aμ are nonnegative.

Proof. Set G = LG(V ), J = J p(V ) and N = NGJ . Denote by
i : G ↪→ J the inclusion. We look at the coefficients aμ in the expression

i∗[Z] =
∑

aμ Q̃μ(R
∗) =

∑
aμY

μ ,

where the last equality follows from Theorem 4. Let Y μ′
be the dual

class to Y μ (see Example 3). We have

aμ = i∗[Z] · Y μ′
.

Invoking (3), we may compute this last intersection number using the
Chow groups of G. Let C = CG∩ZZ ⊂ N be the normal cone of G ∩ Z
in Z. Denote by j : G ↪→ N the zero-section inclusion. By deformation
to the normal cone (see [16, Sect. 6.1 and 6.2]), we have

i∗[Z] = j∗[C] (equality in A∗(G)) .

It follows that

aμ = [C] · Y μ′
(intersection in N) .

By virtue of Lemma 27, the assertion now follows from Proposition
13 for X = G, E = N , and Y = Y μ′

. Q.E.D.

Theorem 29. [37] For any Lagrange singularity class Σ, the Thom

polynomial T Σ is a nonnegative combination of Q̃-functions.
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Question. Does there exists a basis different (up to rescaling) from

{Y μ = Q̃μ(R
∗)} with the property that any Lagrangian Thom polyno-

mial has a positive expansion in that basis?

§8. Legendrian Thom polynomials

Fix n ∈ N. Let W be a complex vector space of dimension n, and
let L be a one dimensional complex vector space. Consider

(17) V := W ⊕ (W ∗ ⊗ L)

– a symplectic space equipped with the twisted symplectic form ω ∈
Λ2V ∗ ⊗ L.

Consider a contact space

V ⊕ L = W ⊕ (W ∗ ⊗ L)⊕ L .

Let α be a contact form on V ⊕ L (cf. [1, Sect. 20.1]). Legendrian
submanifolds of V ⊕ L are maximal integral submanifolds of the form
α, i.e., the manifolds of dimension n with tangent spaces contained in
Ker(α).

To study Legendrian submanifolds (through 0) of V ⊕ L, we use
Lagrangian submanifolds (through 0) of V . Any Legendrian submani-
fold in V ⊕ L is determined by its Lagrangian projection to V and any
Lagrangian submanifold in V lifts to V ⊕ L.

Legendrian Thom polynomials were considered by Vassiliev [53] (see
also [29]). In [38], the space J p(W,L) was constructed (with the help of
Kazarian) that can serve to address positivity questions about Legen-
drian Thom polynomials. This space is not a naive generalization of the
space of Lagrangian p-jets from the previous section. Roughly speaking,
one wants to parametrize the relative positions of two Lagrangian sub-
manifolds. More precisely, we define J p(W,L) to be the set of pairs of
p-jets of Lagrangian submanifolds of V consisting of a linear space and
a submanifold whose tangent space at 0 is W . For a motivation of this
construction and more details, we refer the reader to [38, Sect. 2 and 3].
The projection to the first factor gives a map

π : J p(W,L) → LG(V ) ,

which is a trivial vector bundle with the fiber equal to

p+1⊕
i=3

Si(W ∗)⊗ L .



Positivity of Thom polynomials and Schubert calculus 445

In fact, we need a relative version of this construction. Let X be a
topological space, W a complex rank n vector bundle over X, and L a
complex line bundle over X. Define a vector bundle V on X by (17).
Let

τ : LG(V ) → X

denote the induced Lagrange Grassmann bundle. We have a relative
version of the map π

π : J p(W,L) → LG(V ) ,

which is denoted by the same letter.
The space J p(W,L) fibers over X. It is equal to the pull-back

J p(W,L) = τ∗
(

p+1⊕
i=3

Si(W ∗)⊗ L

)
.

By a Legendre singularity class we mean a closed algebraic subset
Σ ⊂ J p(Cn,C) invariant with respect to holomorphic contactomor-
phisms of C2n+1. Additionally, we assume that Σ is stable with respect
to enlarging the dimension of W . Since any changes of coordinates of W
and L induce holomorphic contactomorphisms of V ⊕ L, any Legendre
singularity class Σ defines

Σ(W,L) ⊂ J p(W,L) .

The element [Σ(W,L)] ofH∗(J p(W,L),Z) is called the Legendrian Thom
polynomial of Σ.

In the following, we shall write J for the vector bundle J p(W,L).
We now use Schubert calculus to study Legendrian Thom polyno-

mials. Let L,M1,M2, . . . ,Mn be one dimensional vector spaces, and
let

W :=
n⊕

i=1

Mi , V = W ⊕ (W ∗ ⊗ L) .

We have a symplectic form ω defined on V with values in L. The
Lagrangian Grassmannian LG(V ) is a homogeneous space for the sym-
plectic group Sp(V ) ⊂ End(V ). We fix two “opposite” isotropic flags
E+ and E− in V :

E+
j :=

j⊕
i=1

Mi , E−
j :=

j⊕
i=1

M∗
n−i+1 ⊗ L , (j = 1, 2, . . . , n) .

Consider two Borel groups B± ⊂ Sp(V ), preserving the flags E±. The
orbits of B± in LG(V ) form two cell decompositions {Cμ(E±, L)} of
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the space LG(V ), labeled by strict partitions μ ⊂ ρ(n) (see [42] and
Sect.3). The cells of the C−-decomposition are transverse to the cells of

C+-decomposition. Denote the class of Cμ(E±, L) in H∗(LG(V ),Z) by
Y μ(E±, L).

All these data behave functorially with respect to the automor-
phisms of the lines L and Mi’s (they form a torus (C∗)n+1). Thus
the construction of the cell decompositions can be repeated for bundles
L and {Mi}ni=1 over any base X. We get a Lagrange Grassmann bundle

τ : LG(V ) → X ,

endowed with two (relative) stratifications

{Cμ(E±, L) → X}μ .

Suppose that X = G/P is a compact manifold, homogeneous with re-
spect to an action of a linear group G. Then X admits a Chevalley-
Bruhat cell decomposition {σλ}. The subsets

Z−
μλ := τ−1(σλ) ∩ Cμ(E−, L)

form an algebraic cell decomposition of LG(V ). Another cell decompo-
sition of LG(V ) is given by the collection of subsets

Z+
μλ := τ−1(σλ) ∩ Cμ(E+, L) .

Example 30. If X = P1, W = 1, L = O(d) (for d > 0), then
LG(V ) is the Hirzebruch surface Hd which can be presented as the sum
of the space of the line bundle L and the section at infinity, Hd = L∪P1

∞.
Then P1

0, the zero section of the bundle L, is a stratum of the C+-
decomposition and the section at infinity P1

∞ is a stratum of the C−-
decomposition. For the cell decomposition of X = P1 = C ∪ {∞}, we
obtain two cell decompositions ofHd. Two resulting bases of cohomology
are mutually dual with respect to the intersection product. The closures
of strata of Z+-decomposition have the following property: any effective
cycle has a nonnegative intersection number with them. This is not
true for the closures of strata of Z−-decomposition: for example, the
self-intersection of P1

∞ is equal to −d.

Theorem 31. [38] Fix a strict partition μ ⊂ ρ(n) and an index
λ. Suppose that the vector bundle J is generated by its global sections.
Then, in J , the intersection of Σ(W,L) with the closure of any π−1(Z−

μλ)
is represented by a nonnegative cycle.
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The proof in [38] is based (apart from the Schubert calculus for
LG(V ) → X) on some variant of the Bertini-Kleiman theorem.

We apply the theorem in the situation when all Mi are equal to the
same line bundle M (and then W = M⊕n) and M−m ⊗ L is generated
by its global sections for m ≥ 3.

Consider the following three cases: the base is always X = Pn and

• L1 = O(−2), M1 = O(−1), or
• L2 = O(1), M2 = 1, or
• L3 = O(−3), M3 = O(−1).

We obtain the symplectic bundles Vi = M⊕n
i ⊕ (M∗

i ⊗ Li)
⊕n with

twisted symplectic forms ωi for i = 1, 2, 3.
These three cases were crucial to discover and prove the forthcom-

ing Theorem 32. Case 1 was the subject of [37, Rem. 14]. In Case
2, the integral cohomology H∗(LG(V ),Z) is isomorphic to the ring of
Legendrian characteristic classes up to degree n; the Z−-decomposition
of LG(V ) gives us another basis of cohomology. In Case 3, the cohomol-
ogy of LG(V ) is isomorphic, up to degree n, to the ring of Legendrian
characteristic classes, provided we invert the number 3 this time. The
positivity property in Case 1 was known (loc.cit.), whereas in Cases 2
and 3, it was Kazarian who suggested the positivity.

To overlap all these three cases we consider X := Pn ×Pn and set

W := p∗1O(−1)⊕n , L := p∗1O(−3)⊗ p∗2O(1) ,

where pi : X → Pn, i = 1, 2, are the projections. Restricting the bundles
W and L to the diagonal or to the factors, we obtain the three cases
considered above.

The space LG(V ) has a cell decomposition Z+
μλ, where μ runs over

strict partitions contained in ρ(n), and λ = (a, b) with a and b natural
numbers smaller than or equal to n. The classes of closures of the cells
of this decomposition give a basis of the cohomology of LG(V ).

Let v1 and v2 be the first Chern classes of p∗1(O(1)) and p∗2(O(1)).
We have

(18) [Z+
μ,a,b] = Y μ(E+, L) va1v

b
2 .

Theorem 32. [38] Let Σ be a Legendre singularity class. Then

[Σ(W,L)] has nonnegative coefficients in the basis {[Z+
μ,a,b]}.

Example 33. Using the names of singularities from [29], we display
some Legendrian Thom polynomials in the basis from the theorem. The
bold terms give the Thom polynomials of the corresponding Lagrange
singularities.
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A2: Q̃1

A3: 3Q̃2 + v2Q̃1

A4: 12Q̃3 + 3Q̃21 + (3v1 + 7v2)Q̃2 + (v1v2 + v22)Q̃1

D4: Q̃21

P8: Q̃321.

A5: 60Q̃4 + 27Q̃31 + (6v1 + 16v2)Q̃21 + (39v1 + 47v2)Q̃3+

(6v21 + 22v1v2 + 12v22)Q̃2 + (2v21v2 + 3v1v
2
2 + v32)Q̃1

D5: 6Q̃31 + 4v2Q̃21,

P9: 12Q̃421 + 12v2Q̃321.

Using the theorem, one constructs, in the ring of Legendrian charac-
teristic classes, a one-parameter family of bases such that any Legendrian
Thom polynomial has, in any basis from the family, an expansion with
nonnegative coefficients (see [38]).

Remark 34. Positive descriptions of the coefficients of Schur func-
tion expansions of Thom polynomials are known for several series of
singularity classes of maps, see a survey article [40]. For those coeffi-
cients, which do not admit such descriptions, it is interesting to establish
their bounds. For the Legendrian Thom polynomials, this issue is dis-
cussed in [38, Sect. 9 and 10]. In particular, one examines there how
positivity of Thom polynomials of maps to curves implies some upper
bounds on the coefficients of Legendrian Thom polynomials.

Remark 35. It is shown in [38, Sect. 10] that the Thom polyno-
mials of nonempty stable Lagrangian and Legendrian singularity classes
are nonzero.
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