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Schubert calculus and puzzles

Allen Knutson

Abstract.

These are notes for four lectures given at the Osaka summer school
on Schubert calculus in 2012, presenting the geometry from the un-
published arXiv:1008.4302 giving an extension of the puzzle rule for
Schubert calculus to equivariant K-theory, while eliding some of the
combinatorial detail. In particular, §3 includes background material
on equivariant cohomology and K-theory.

Since that school, I have extended the results to arbitrary in-
terval positroid varieties (not just those arising in Vakil’s geometric
Littlewood-Richardson rule), in the preprint [Kn2].
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§1. Schubert varieties and interval positroid varieties

In my first lecture I'll present a family of varieties interpolating
between Schubert and Richardson, called “interval positroid varieties”.

1.1. Schubert varieties
Definitions:

e My, := k x n matrices over C.
e the Stiefel manifold M,gi“;‘ ¥ is the open subset in which the
rows are linearly independent.
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e the Grassmannian Gr(C") = GL(k)\M2"k * is the space
of k-planes in C".

Two matrices in M ,gin}; k give the same k-plane if they’re related by

row operations. To kill that ambiguity, put things in reduced row-
echelon form. From there we can associate a discrete invariant, a bit
string like 0010101101 with Os in the k pivot positions and 1s in the
remaining n — k (careful: not the reverse!). Let (}) denote the set of
such bit strings.

Examples:
(1) Most matrices in M2k ¥ give 000...11111.
(2) If all the columns are zero except the last k, the bit string is
111...00000.

(3) If the kth column is in the span of the first k£ — 1, but there are
no other dependencies, the bit string is 00...0101...1111.

Our reference for Grassmannian Schubert varieties, and their prop-
erties such as the following, is [Fu97].

Proposition 1.1. (1) There is a decomposition of the
Grassmannian indexed by \ € (Z), into complex cells X5. The
codimension £(\) of the A cell is the number of inversions in
A, where a 1 occurs somewhere left of a 0.

(2)  These cells give bases for homology and cohomology.

(3)  To figure out which cell a matriz is in, look at rank [1,i] := the
rank of the first i columns, for each i € [1,n].

(4)  The closure of a cell (or, its preimage in the Stiefel manifold)
satisfies a bunch of determinantal conditions.

(5) Fix X\. Let P\ C My, be the vector space of matrices where
the ith row has 0s left of the ith 0 in X. Then Py N Mjank b —
Gri(C™) has image X3.

The closures {X{} of these Bruhat cells in the Grassmannian are
called Schubert varieties and denoted X, A € (}). Hodge proved that
the determinantal equations (vanishing of the Pliicker coordinates on
the affine cone over the Grassmannian) give prime ideals, i.e. define
these as schemes.

Exercise 1.2. (1) Fiz A€ (7). Show that the rank conditions
on those initial intervals [1,i] for which 10 occur in positions
i,0+ 1 of X imply all of \’s other rank conditions.

(2) Let B < GL(n) denote the upper triangular matrices. Show
that the Bruhat cells are exactly the B-orbits (acting on My,
on the right).
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(3)  Show the same remains true if we replace B by N = B’, the
upper triangular matrices with 1s on the diagonal.

1.2. Schubert calculus

Let [X,] always denote the element of cohomology. Since we have a
basis, we know [X)][X,] = 3", ¢§,[X,]. The study of these Schubert
structure constants (and generalizations thereof) is Schubert cal-
culus.

Theorem 1.3 (e.g. [KI73]). X\ and wo - X, intersect transversely,
where wy € S, < GL(n) reverses My left/right (really, by a right
multiplication).

Let X*# := wq - Xy,., be the opposite Schubert variety, where
wp - p again means reverse left/right. Since wp lies in the connected
group GL(n), we have [X,] = [X"#], so [X)][X,] = [X,][X"#] =
[Xx N X™0#] (the last by Kleiman transversality).

First example: let A = u = 010, each defining the space of matrices
{[0 % %]}, so those points in the projective plane Gri(C*) that lie on
the yz line. Then X, = X, so they don’t intersect transversely. But
Xx Nwo - X, = {[0*0]}, the y point. Which is homologous to the
Schubert point {[0 0 |}.

An intersection X := X\NX* of a Schubert and opposite Schubert
variety is called a Richardson variety!. Schubert calculus then be-
comes the question of computing the cohomology classes Poincaré dual
to the XY, in the Schubert basis. To determine the smallest Richardson
variety containing a matrix, look at {rank [1,7]} and {rank [j,n|} for
1,7 <n.

Proposition 1.4. Define the Bruhat order A < p on (Z) by re-
quring the ith 1 in X\ to occur left of the ith 1 in p, i =1,...,n— k.

(1) If X < p, then dim X§' is nonempty of dimension £(u) — €(N).
(2) X3 is a point.

(3) IfA &, then X§ =0.
(4)  Let P{' C Myxy denote the vector space of matrices in which
the ith row is supported between the tth 0 in A and the ith O in

3
4

MNWarning: Richardson also studied nice nilpotent orbits in Lie algebras,
and non-cognoscenti often guess incorrectly that “Richardson variety” refers to
the closure of a Richardson orbit. It doesn’t seem to have been used that way
in the literature, or at least I prefer to believe that.



188

A. Knutson

. Then P{' 0 M2k * — Gry(C™) has image X4

kxn
E.g. A=1100110111, ¢ = 1101110101,
00 = 0 0 0 0 0 0 O0
Pl=[0 0 0 « = = = 0 0 0
00 0 0 0 0 = x % 0

Corollary 1.5. fcrk(cn)[X/\] [XH] = 0xp. In particular, if we define
the more symmetric Schubert intersection numbers

e = / XXX,
Gri(Cn)

then CKM =C\ p wov-

1.3.

First positivity result

Proposition 1.6. (1) (Borel) Let B act on a nonempty pro-

(2)

(4)
(5)

jective scheme (or more generally, a complete one). Then there
18 a B-fized point.

Any complete scheme over C has a natural fundamental class in
homology: the N-combination of the classes of its top-dimen-
sional (geometric) components, where the coefficients are the
lengths of the local Tings at the generic points.

(Grothendieck, Mumford) Let Y be a projective scheme (in a
moment, the Grassmannian) and X a subscheme. There is a
functorially associated “Hilbert scheme” parametrizing a family
of subschemes of Y, all of whom have the same homology class
(and more specifically, the same “K-class”, discussed later),
and this moduli space is projective. (Our reference for Hilbert
schemes is [EH00].)

Hence every subscheme X of the Grassmannian is homologous
to a schemy union X' of Schubert varieties.

Hence each CKH > 0.

Proof. (1) Filter B by normal subgroups, so that the sub-

quotients are 1-dimensional (most groups can’t be filtered like
this). Prove the theorem for those two groups, (C,+) and
(C*,-). Then use induction.

(2) As stated, this is a definition, reducing to the case of X a

variety (reduced and irreducible). Then we punt, appealing
either to the statement that complex varieties are triangulable
(1930s), or have resolutions of their singularities (1960s).

(3) Beyond our scope.



Schubert calculus and puzzles 189

(4) By the functoriality, since B acts on Gry(C™) it acts on X'’s
Hilbert scheme. Let X be a B-fixed point on there. Then Xj’s
support must be a union of B-orbits, which are the Schubert
varieties.

(5) Apply the previous to X ;1> Obtaining some B-invariant degen-
eration Xy with components X* and multiplicities diw ie.

%u € N is the length of the local ring at the generic point of
X* C Xy. Then [X;ﬂ =[Xo] =>_\ K#[XA]. Multiply by [Xx],
integrate, and we get [, cn)[X}] [(XA] = df,, so &5, = d,
and hence is nonnegative.

Q.E.D.

Examples:

(1) Let X be a conic in the zyz-plane. Then the Hilbert scheme
is the P® of all conics. The B-invariant one is the double line
z? = 0.

(2) Let X be a disjoint union of two lines in P?. First let one fall
across the other, giving a union of two lines with an extra point
embedded at the intersection (reduced everywhere else). Then
let those lines fall atop one another, giving a double (Schubert)
line with an extra embedded (Schubert) point, which doesn’t
contribute to the homology class (but will contribute to the
K-class).

This hints at some other related subschemes in P3: plane
conics union a disjoint point. Indeed, this Hilbert scheme has
two components, one consisting of pairs of lines and the other
of conics plus points. (It’s connected, which is true for all
Hilbert schemes of projective space, a theorem of Hartshorne.)

(3) A Schubert calculus example: X919 € Gry(C*) =2 Gri(CP3),
which interpreted projectively is the P! x P! worth of lines
that touch the xy line and zw line. Move the latter contin-
uously to xz, and we get lines that touch xy and zz. That’s
the (reduced) scheme Xigp1 U X¢110, with cohomology class
1[X1001] + 1[Xo110]-

So any subscheme of a Grassmannian (or more generally, a space
with an action of a unipotent group N with finitely many orbits) leads
naturally to a “Schubert calculus” problem with nonnegative integer
answers.

The real game, then: how to calculate these natural numbers in a
manifestly positive way, i.e. by counting some combinatorial objects?
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There are many known ways (and sometimes-tricky bijections between
them); the one we’ll give is to use puzzles [KnTao03, KnTaoWood04].

The following three shapes, with edges labeled 0 or 1, are the puzzle
pieces. They may be rotated but not reflected.

E@EZA@

A puzzle is a size n triangle made of puzzle pieces, glued so as to
have the edge labels match. The two possible puzzles with NW ,NE sides
labeled 0101.

P

LAVAVAVANAVAVANIRN

Theorem 1.7. [KnTao03, KnTaoWood04] 5, = #{puzzles with
A, i, v on their NW,NE,S sides respectively, all read left-to-right}. Equiv-
alently, cxu, = #{puzzles with A\, u,v on their NW,NE,S sides respec-
tively, all read clockwise}.

So these two puzzles compute the example (3) above.

In the remainder we’ll indicate a geometric proof of this theorem, fol-
lowing [Knl], and discuss harder problems requiring more puzzle pieces.

Note that in addition to the obvious Z3 rotational symmetry of
puzzles, which matches half of the S3 symmetry of Schubert intersection
numbers, one can flip a puzzle over while exchanging Os and 1s, which
matches the symmetry coming from Grassmannian duality. However, it
is hard to see directly that the puzzle product is commutative. (The
nicest self-contained combinatorial proof of this is in [P08].)
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1.4. Interval rank varieties

Before giving an answer to this, we generalize the problem just a
little, beyond Richardson varieties to interval rank varieties.

Given a matrix M € My, let’s compute all {rank [, j]}i<;. These
numbers are weakly increasing in j and —i¢, by 0 or 1 only, with the
additional restriction that one doesn’t see the pattern

r r+1
r r

anywhere in the matrix (or really, triangle) r.

Define a partial permutation matrix 7 to be one with at most one 1
in any row/column. To avoid confusion we refer to and draw the 1s as
dots e.

Proposition 1.8. Such rank matrices r correspond 1:1 to upper
triangular partial permutation matrices ™ under the correspondence

Tij = ’[i,j]’—#{dots n ™ weakly SW of box [i,j]}, Vi<i<j<n.
If M has rank k, then m will have n — k dots.

As before, many of these rank conditions imply others. Define the
diagram? of 7 by crossing out strictly South and West (but not South-
west) of each dot, and any rows or columns without dots, and taking
the remaining boxes. (So each box with a dot is in the diagram.) Define
the essential set® as the Northeast corners of the diagram boxes.

For example,

.. L. + + = [e] | [e]
o« . .. + ] I [
= R has diagram LA
.. e + + EI
+ o+
+
with —, |, + to indicate the crossing-out, and es to indicate the essential

boxes.

2This is closely related to the Rothe diagram used e.g. in Fulton’s essential
set definition [Fu92], but not the same, both for being flipped East/West and
for the “strictly”.

3It’s actually possible to cut this down further, but we’re using this name
in analogy to [Fu92].
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It is easy to show that given two adjacent rank conditions e.g. from
(i,7) and (i + 1,7), one implies the other, so very few are not implied
by one of their neighbors, and this was worked out in [Fu92], where the
essential set was introduced (slightly differently from here).

Proposition 1.9. The rank conditions rank [i,j] < r;; in the es-
sential set imply all the other rank conditions.

(More specifically, any other rank condition is implied by some single
essential condition; one doesn’t have to cleverly combine them.)

Exercise 1.10. (1)  Show that m has a unique essential rank
condition, at (i,7), iff its dots are the diagonal of some square
with NE corner (i,7).
(2) Find aw forn =4 with three “essential” rank conditions, one
of which is actually implied by the other two taken together.
(3)  Show that the following are equivalent:
o All the essential rank conditions are in the first row.
e The dots are NW/SE, and in the first n — k rows.
o Il is a Schubert variety.

Theorem 1.11. Let w be an upper triangular partial permutation
with n — k dots. Then the scheme Il defined by the rank conditions in
proposition 1.8 is reduced and irreducible. Moreover, any intersection of
such schemes is reduced.

I hoped we would have time to prove this later, but we didn’t. The
quickest proof I know is in [Kn, §7.3], combined with [Knl, theorem 1.8].

If we simply tmposed random rank conditions, with some matrix r,
what different schemes could we get? Different rs can give the same
scheme: anywhere rij > Tij+1, we can cut down 74 to r; 41 without
changing the scheme, and anywhere r;; +1 < r; j11, we can cut down
7541 to 135 +1 without changing the scheme, and similarly for j instead
of i. So it’s enough to consider matrices r that only increase by 0,1 as
one goes North or East.

That leaves the forbidden pattern from before.

Proposition 1.12. Let

m m++1
m m

occur in the middle of a rank matriz, and I1,. be the associated scheme.
Then 11, =11, Un,. . 1L.,, where

712

m m—+1 m m

m m
T = To =
Yomom) 27 m-1 m
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in those spots.

Proof. Set-theoretically this is easy linear algebra. There is also
a boring proof with determinants that lets one establish the scheme-
theoretic statement. (The “quickest proof” referred to four paragraphs
above also gives a short proof of this.) Q.E.D.

§2. Vakil’s Littlewood-Richardson rule, from shifting

The results in this section appeared first in [Kn1], though we prefer
to direct the reader to [Kn2] for their proofs.

2.1. Combinatorial shifting
Define the shift sh;_,; in the following contexts:

e When applied to a number k, give k back unless k = 4, in which
case it becomes j.

o When applied to a set S C [1,n], just apply sh;_,; to every
element k € S, but don’t shift i to j if j is “in the way”, i.e.
j € S already.

e When applied to a collection P C 2[1’"], just apply sh,_,; to
every set S € P, but don’t shift S to sh;_,;5 if sh;_,;S is “in
the way”, i.e. sh;,;S € P already.

In particular the shift of a set or collection is always the same size as
the original. Shifting was invented by Erdés-Ko-Rado [EKR61] to study
extremal combinatorics of highly intersecting collections, and nowadays
is also used to study simplicial complexes.

Exercise 2.1. (1) Let P C (}) be a collection where every
pair S1,S2 € P intersects nontrivially. Show that sh;_,;P has
the same property. Replace P by sh,_, P for each i, to force
n € S,VS e P. Hence [P| < (}7}).

(2) Let P := (}) \ P. Show sh;,;(P°) = (sh;_;P)°, i.e. back-
wards.

2.2. Geometric shifting
Let X C Gri(C™), and define

1

t—o0

Shi_n‘X = lim . - X
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where the t is in position (i,j). More specifically, define F° C P x
Gri(C™) as

o= {t} x ! N - X,

teAL

then F' as its closure (adding the ¢t = oo fiber), and sh;,; X = F N
({oo} x Gri(C™)).
Examples:

(1) Let X be a single point, the coordinate k-plane C° that uses
the k coordinates
S C {1,...,n}. Then sh;,;{C} = {Ch~i%}, a first link of
the two notions.

(2) Let X be the divisor ps = 0, given by the vanishing of the
Pliicker coordinate. Then sh;_,; X = {pa,_,,s5 = 0}, backwards.
One should think of X as corresponding to (}) \ {S}, the set
of coordinate subspaces lying in X.

(3) Generalizing both examples, let C' C 2(%) be a collection of
k-element subsets, and define W C Gry(C™) as the vanishing
set {ps = 0,5 ¢ C}. Then sh,,;We = Wa,,_,,c. (W is for
Neil White, who first considered these schemes in [W75].)

(4) Let X = CY [[C' C Gr(C?), defined by the equation po1p1o =
0. Then moving it by ¢ as in the definition, it becomes (po1 +
tp10)p1o = 0, so as t — oo we get the double point (p19)? = 0.

By construction, F' is a flat family over P!, with the effect that all
of its fibers have the same Hilbert polynomial (as subvarieties of the
Grassmannian, hence of projective space under the Pliicker embedding).
One way to determine Fl, is to give an upper bound (F.)T on it by
determining (what are a priori) some of the equations that hold on it, and
then to show that that upper bound has the same Hilbert polynomial
as Fy = X.

Proposition 2.2. Let X =Y N {pg = 0}, where Y is a sh;_,;-
invariant variety, and Y 2 {C%,Ch~5Y (remember, backwards). Then
Shig)jX =YnN {pShjﬂiS = O}

Proof. By the condition, both ps = 0 and ps,, ,,s = 0 define

J
nonzero elements of Y’s coordinate ring. Since Y is a variety, they
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both define non-zerodivisors. Modding out a non-zerodivisor of degree
1 replaces the Hilbert polynomial h(d) by its difference h(d) — h(d — 1),
so the two have the same Hilbert polynomial.

Following the equations gives the containment C, so by the equality
of Hilbert polynomials they are equal. Q.E.D.

Our key result is similar-sounding, in that it is about having only
one non-shift-invariant rank condition, but that condition may involve
several equations. I thank Nicolas Ford for catching this mistake from a
previous version.

Proposition 2.3. Let r be a rank matriz defining some I, and let
a <b. Assume that for

e one of the essential rank conditions is on [a + 1,b], and

e for the others [i, 7], shy—ali, j] = [4, j].
Then shy_ 11, is contained in a union of various Il,.., whom can be
determined through repeated use of proposition 1.12.

We can always ensure these hypotheses hold, assuming II, is not
a Schubert variety; let [a + 1,b] be the essential box with maximum
a, then maximum b. (The not-Schubert condition says that a +1 >
2.) Consequently, we have a combinatorial algorithm with which to
degenerate any interval rank variety in the Grassmannian towards a
union of Schubert varieties, and can thereby determine its homology
class!

To spell this out further, we introduce also the combinatorial and
geometric sweeping operations. The combinatorial sweep ¥;_,;C of
a collection C'is just CUsh;_,;C. The geometric sweep ¥,;_,; X is the
image of the projection to Gry(C™) of the family F' from the beginning
of 22, SO \Ifl_>JX 2 XU Shi_>jX.

Proposition 2.4. e [If X 1is irreducible, then so too are F
and \I/z—>]X
o If any two of X,sh;—,; X, ¥;_,; X are equal, so is the third.
o Ifnot, then dim ¥, ,; X = dim X + 1.

Theorem 2.5. Assume the setup of proposition 2.3. There is nec-
essarily a dot in column b, which we’ll call the wandering dot.

Then U, 11, = Il,, where o is constructed from w by moving the
wandering dot up from whatever row k to row a, and the dot (if any) in
row a down to that row k.

The 7' are constructed from this o. If there is no dot in column
b—1, one ' comes from moving the wandering dot in o left one square
to column b — 1.
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For the other ', consider the dots in o that are minimally NW
of the wandering dot (nobody else is in between). Fach w' comes from
moving the wandering dot West, while one of them moves Fast, ending
in the same two columns. (If this causes the wandering dot to end up in
the lower triangle, discard this misbegotten 7'.)

For example, let

e . . +

_ o o +
= . with diagram n

where the es are essential boxes. Let (a,b) = (3,6), above the SErnmost.
Then

[} [ )
[ ° .
w , W <«
g = , T = 5
T
. @ — ®
— ° °
w — —

where the W indicates the wandering dot, and the arrows are only to
show where dots have most recently moved from.

We won’t hack through the combinatorics to prove this from propo-
sition 2.3. A different approach is taken in [Knl], where this is related
to Lascoux’s “transition formula” for Schubert polynomials.

Exercise 2.6. (1)  Check the theorem in this example, using
the algorithm from proposition 2.3.

(2) Do the same for all n =3 examples.

(3) Do the same for alln =4,k = 2 examples.
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2.3. Vakil’s degeneration order

Geometric shifts were introduced? in [Va06], where he considers the
following degeneration order of shifts:

n—1-—n,
n—2-—-n n—2-—-n-—1,

n—-3—-n n—-3—-n—-1, n—-3—-n—2,

l1—-n 1—=n-1 ... 1—=4 1—=3 1—=2.

Proposition 2.7 (essentially in [Va06]). Let © be an upper trian-
gular partial permutation matriz, and a < b. Assume

e the dots in rows [1,a] are NW/SE,
e the dots in rows [a + 1,n] are NW/SE, and
e the j dots in rows [a+1,n] are in the first such rows, [a+1,a+
jl-
If (a+1,b) is not an essential box of 7, then shy_ 11, = IL;, so the
unique ' 1s just .
Otherwise shy 11 # I, and we compute its components I with
theorem 2.5. There are at most two 7.
Let (a,b) be the next shift after (a,b), i.e. (a,b) = (a,b—1) unless
a =0b—1, in which case (a,b) = (a —1,n). Then each ©’ satisfies the
conditions of the first paragraph, for (a,b)’.

Vakil only shows that the components of the shift have length 1, i.e.
that the shift is generically reduced, whereas the above says that it’s
actually reduced. We’ll need this actual reducedness later in order to
compute in K-theory.

Example. Start with

g

™= o . , diagram , (a,b) =(2,4),

+ o

4Though not under that name — he didn’t connect them with Erdés-Ko-
Rado shifting theory.
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Then the two 7 are

o . — °
W which is Schubert, and w -
+ - + e
. . e + +
h
with diagram I
+
For the latter one take (a,b) = (1,2), and get
W W«
o= T ¢ , = ®
The final result is thus
H [ ] - H . [ ] + H [ ]
. [ ] [ ]
[ ]

or
[Xotot] = [X1001] + [Xo110]-

2.4. Partial puzzles

Imagine a would-be puzzle with © on NE and v on South, both
read left-right, but no other edge labels. Shear this to fit into the upper
triangle where 7s live, so the v ends up on the diagonal and the p on
the upper right. For the rest of this section we’ll draw puzzles in this
way.

Now we can think about Vakil’s order as specifying a sequence of
squares in the matrix upper triangle, or rhombi in the puzzle triangle.
Note that once one gets to the (a, a) triangles, they are uniquely fillable,
so it’s harmless to add them as (a,a) at the end of each line of the
degeneration order.

Define an (a, b)-partial puzzle to be a filling of the puzzle triangle
with puzzle pieces, but only through positions (a,b) as indexed in the
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above paragraph. Its puzzle path is the labels along its top, whose
shape

starts at (0,0) in matrix coordinates (row,column),

goes SE to (a,a),

goes E to (a,b),

has a kink up to (a —1,b),

goes E to (a —1,n),

finally up to (0,n).

Note that in this correspondence, the edges of the matrix boxes may cut
puzzle rhombi in half. As such, we have to ditch our rhombus puzzle
piece in favor of a triangle with labels 1,0, R clockwise, and declare that
a puzzle can’t have any Rs on its boundary.” The main idea: we’ll
associate an interval rank variety to each puzzle path, such that the
components of sh,_,; correspond to the ways to fill in one more square in
the matrix. The partial permutation matrix should have the properties
in proposition 2.7, in particular being NW/SE in each half of the triangle
(above/below the path).

The construction, in the upper half: first draw little rays inside the
puzzle

e left from each ()

e up from each § and B

e left from the kink if it’s 11%, in which case also make the next +
to its left get an upward pointing ray.

We require there be the same number of up and left rays for the puzzle
path to be viable. If there are, put the dots on the intersections of these
rays, in the only NW/SE way possible.

In the lower half, draw rays down from each -6-. If the kink is ]l, and
there is a - to its right, the 8- gets a downward ray, and these two rays
meet at a dot. Put dots on all remaining downward rays NW/SE, as N
as possible (& la proposition 2.7). Lots of pictures appear in [Knl].

Write this association puzzle path +— partial permutation matrix as
v = ().

Theorem 2.8. Let v be a puzzle path.

If the labels on the kink and the edge just leftward are not 91[, then

(1) there is a unique way to put in two puzzle pieces,
(2) the new path ' has the same w(), and

SExercise: prove that if a sheared “puzzle” without this new condition has
the same number of 1s on the N and E sides, and no Rs there, then it has no
Rs on the SW side either.
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(3)  Ilx(y is she_p-invariant.
If those labels are indeed 91, then there are either one or two ways to

fill two triangles and remain viable. The corresponding {~'} correspond
to the components of shq_pllr(y) # Il (4.

In this way, filling in the puzzle corresponds to keeping track of the
components encountered during Vakil’s degeneration.

The proof of this is a several-page case check [Knl], quite straight-
forward yet somehow miraculous.’® The hard work was really in theorem
2.5.

§3. Equivariant and K- extensions

3.1. K-homology

To begin with, let A be a commutative ring, and consider its finitely
generated modules, under direct sum. The K-homology group K,(A)
is freely generated by the set of isomorphism classes [M] of finitely gen-
erated A-modules M, “modulo exact sequences”, meaning we impose
[Ms] = [M1]+[Ms3] for any exact sequence 0 — My — My — M3 — 0. In
particular, [My ® Ms] = [M;]+ [Ms]. If A — B is a ring homomorphism
making B a finitely generated A-module, we get a map Ko(B) — Ko(A),
contravariantly.

One can easily soup this up by assuming A is graded and only using
graded modules, or a group G acts on A and its modules, etc., in which
case we'd write K& (A).

We can reinterpret this ring-theoretic construction in terms of affine
schemes, where the statement becomes “Given an affine scheme X, de-
fine its K-homology using coherent sheaves, and this gives a covariant
functor for finite maps (proper with finite fibers).” At that point one
can leave out the word “affine” and obtain a K-homology theory for
all schemes and finite maps. (Using higher sheaf cohomology, one can
extend this to proper maps.)

The most important example to understand will be the following.
Let A = Clz, y], considered as a bigraded ring. Then we have an exact
sequence of bigraded modules and maps

0= A/(zy) = (A/{x)) © (A/(y)) = A/{z,y) = 0.
Hence [A/(zy)] = [A/(x)] + [A/(y)] = [A/ (2, y)]-

6The combinatorics in [Kn2], of “IP pipe dreams”, is better adapted than
puzzles are to the geometry of shifting, and the proof looks less miraculous.
After which the connecting of IP pipe dreams to puzzles is quite short.
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3.1.1. Comparison with ordinary homology. Given a (closed) sub-
scheme X C Y, we can associate a K-class [X] € K,(Y), really short-
hand for [Ox] where Ox is the structure sheaf of X. In the example
above, we have the equation

[union of axes] = [z-axis| + [y-axis] — [origin]

in KT7(C2). This differs from what we would expect in ordinary homol-
ogy, where we wouldn’t have the last term.

One can make this precise; filter Ko (Y') according to the dimension
of the support of the sheaf. Then there is a map from the associated
graded ring to H,(Y") (or even better, to the Chow group, which then
maps to H.(Y)).

In the example from before, we computed the homology class of
X(}lo(}lo by degenerating it to X1001 U Xo110, glued along X1919. Therefore
we get the equation on K-classes,

[Xot0t] = [X1001] + [Xo110] — [X1010]-

3.2. K-cohomology

Not only can we @ sheaves, we can ® them, suggesting we make
K,(Y) into a ring. But it turns out that ® is not well-defined on K-
equivalence classes, i.e. tensoring with M is not exact.

Of course, tensoring with a free module is just repeated direct sum,
so that’d be okay. More generally tensoring with projective modules is
fine; in scheme-theoretic language, use (finite-dimensional) vector bun-
dles instead of all coherent sheaves. So define the K-cohomology
K*(Y) in the same way as Ko(Y), but only using exact sequences of
vector bundles over Y. All of the following are easy except half of (5),
for which it seems difficult to find a reference.

Proposition 3.1. (1) K°® is a contravariant functor from
schemes to rings.

(2) K°*(Y) acts on K¢(Y), a “cap product” in K -theory.

(3) Ko(Y) comes with a “fundamental class” [Y].

(4) There is a “Poincaré map” K*(Y) — Ko(Y), taking a vector
bundle [V] to its sheaf of sections, i.e. to [V]N[Y].

(5) IfY is smooth and proper, this is an isomorphism (“Poincaré
duality”).

(6) The Schubert varieties on the Grassmannian (or any other
G/P) give bases for K-homology and K -cohomology.

(The ontoness of the Poincaré map is not hard to see; it is based on
Hilbert’s theorem that modules over polynomial rings have free resolu-
tions of finite length.)
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So now we have K-theoretic Schubert calculus to compute:
what is the cup product [X,][X,], where these denote the elements of
K-cohomology constructed using Poincaré duality?

For the geometry, we need to soup up Vakil’s proposition 2.7 us-
ing proposition 1.12: when sh;_,;II; has two components, their inter-
section is another interval rank variety, whose class must therefore be
subtracted, as in the example [XJ9?] = [X1001] + [Xo110] — [X1010]-

3.2.1. Second positivity result The minuses may seem to kill the pos-
itivity statement ¢, > 0 from before, but this can be fixed:

; Theorem 3.2. [Buc02, Bri02] In K*(Grj,(C")), (—1)WI=1A=luley >

The history is a little weird — Anders Buch gave an explicit combina-
torial formula for (—1)'”“”"““‘0@ (in terms of tableaux, later bijected
to K-puzzles, only much later explained geometrically), after which
Michel Brion gave an abstract geometric proof that holds for general
flag manifolds. Usually the geometry comes first (as, in this very story
told, it has for all G/P other than Grassmannians).

The cleanest way to puzzlify Buch’s theorem is with the K-piece,
which is twice the size of other pieces (4x the area), and cannot be
rotated. Try it out in the [Xg101]? case.

Theorem 3.3. [Buc02] In K*(Gri(C™)), (—1)‘”|_‘>“_|“|c§\# is the
number of puzzles using the usual three pieces and now the K -piece, with
A, i, v on the NW, NE and S sides respectively, each left-to-right.

K-puzzles have a very weird Z3 rotational symmetry. Why weird?
The obvious analogue of corollary 1.5 in K-theory is

1 ifA<
) [XAMXH]z{ ot
Gri(Cn) 0 if not

where If denotes the pushforward to a point in K-homology. But there
is a less obvious analogue [Buc02, §8],

H o I ) =
Gri(C™)
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with which one can interpret the number of K-puzzles with A, i, v clock-
wise as the S3-symmetric number

§ o X X))
Gri(Cr)

3.3. Equivariant K-theory

As we said above, the definition of K-theory of a scheme X extends
in a trivial way to G-equivariant K-theory (homology or cohomology).
One extreme case is X a point, in which case a G-equivariant sheaf on X
is just a G-representation, and K°®(X) is the representation ring Rep(G).

The natural group to use in Schubert calculus is B. However, since
the only irreps V of B are 1-dimensional (apply Borel’s theorem to PV'),
every rep is K-equivalent to a sum of 1-d reps, which are thus really reps
of B/[B,B] 2 T. The effect is that K§(pt) = K3.(pt) canonically, and
it’s traditional to use T-equivariant instead of B-equivariant K-theory.

Proposition 3.4. The K-theoretic Schubert classes [Ox,] are a
basis of K3(Gri(C™)), as a module over K% (pt) = Rep(T'), a Laurent
polynomial ring.

I like to call the elements of K3.(pt) (and later, of Hi.(pt)) “equi-
variant numbers”.

To keep track of the relation of the additively written group 7™ :=
Hom(T,C*) and its multiplicative role inside K (pt), it helps to denote
the generators of K (pt) by e*, not A. In the application to Schubert
calculus on Grassmannians, we’ll write y; € T* for the representation
taking diag(t1,...,t,) — ;.

Example: Gri(C?) = P!. The T-fixed points are s = [+ 0] and
n = [0 %], but only the latter point is Schubert. To compute the Kr-
class [s] as a combination of [n] and [P!], start with the surjections
Opr — Oy, The kernel of this is nonequivariantly O(—1) — Op, the
dual of the section o of O(1) vanishing at s (once, and nowhere else,
hence the 1). Equivariantly, we have to twist by the weight of o, which
we can determine by its restriction to n, giving the equivariant exact
sequence

0-0(-1)®C_), 5 O0p - Oy =0

Hence
[O(=1) ® C_y,] + [Og3] = [Op1]

or

[O(=1)] = ([P']~[s]) exp(y1) and similarly [O(~1)] = ([B']~[n]) exp(yz).
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hence
[s] = (1 — expya — y1)[P'] + expyz — y1[n].

If S — T is a homomorphism of groups, there is an obvious map
K3(X) = K&(Y). In the case that S is the trivial group, this factors
through setting each e = 1, or “\ +— 07,

Theorem 3.5 (see [HL]). If a torus T acts on a smooth projective
variety M, then the map

K}(M)/ ({e* =1} A eT*) —» K*(M)

18 an isomorphism.
While less relevant to us, it’s also true that the natural localization
map
K3 (M) = K3(M7T) = K3.(M) @ K7.(pt)

18 an inclusion, as was used frequently in T. Ikeda’s and T. Lam’s lec-
tures, where it was written a — (aly) pepr for MT isolated, following
[KnTao03].

On the Grassmannian and other flag manifolds G/P, an abstract
positivity result was proven in [AGriMil], and is a little complicated to
state. With more puzzle pieces, one can compute the Kp-class of X} in
their positive sense.

However, that is not Schubert calculus, because [X#] # [X,,,.,.] as
equivariant classes. Before, we could turn X,,,., into X* by multiplying
it with wg, which lives in the connected group GL(n), so this preserved
the homology and K-homology classes.

In any case the puzzle rule for the Kp-class of [X{] becomes intricate
enough that we won’t bother detailing it here. One very unfortunate
thing is that the matching rules are no longer completely local; one must
sometimes look ahead along a row to see if a puzzle piece is allowed.
Update: the nonlocality is more natural-looking in the “IP pipe dream”
formulation in [Kn2].

3.4. Equivariant cohomology
First we describe some properties, then some interpretation, and
finally puzzles. There are many references, one being [Ki84].
(1) Equivariant cohomology H¢ is a functor from {G-spaces and
G-equivariant maps} to (supercommutative) rings, with a nat-
ural transformation to ordinary H*.
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(2) Since every G-space has a canonical G-equivariant map to the
(G-invariant) point, and triangles connecting these commute,
we could instead say H(, takes values in H (pt)-algebras.

(3) If M is compact with a G-invariant even-dimensional cell de-
composition, then H (M) is a free module over H (pt) with
a basis indexed by the cells.

(4) If G is a torus T, then Hi(pt) is the symmetric algebra in
the weight lattice T* of T' (where weights are given degree 2,
making it commutative).

(5) If M is a complex projective manifold, then over Q the natural
map

HE(M) /(€ T%) — H* (M)

is an isomorphism, and the localization map H} (M) —
Hi:(MT) = H*(M™) @ Hj(pt) is injective.

Why aren’t we proceeding from an actual definition of equivariant
cohomology? The odd thing is that, in contrast to the easy equivariant
extension of K-theory, actually defining equivariant cohomology requires
infinite-dimensional spaces. (There is a de Rham theory, called the
Cartan model, that does not.) As such it is generally easier to proceed
from its universal properties rather than worrying about the details of
a concrete definition.

We now interpret the ring structure. What is ordinary cohomol-
ogy ring structure? The product [X] U [Y] for X, Y C Z measures the
difficulty in disentangling X from Y (say, for X,Y, Z compact oriented
manifolds). A topologist would say we should perturb Y to miss X as
much as possible, i.e. become transverse, and then [X]U[Y] = [X NY].

Now assume a group acts on Z, and X,Y are invariant. Then we
may not be able to perturb Y while keeping it invariant. In keeping
with not actually defining equivariant cohomology, we won’t derive the
following result from first principles. (But just as homology is related
to the associated graded of K-theory, one should see this as the leading-
order terms as ¢ — 1 of the formula after proposition 3.4.)

Proposition 3.6. Let T act on 1-dimensional spaces C,V with
weights 0,A € T*, so and n,s denote the T-fixed points [ 0], [0 *].
Then as classes in H2(P(C & V)),

[s] =X [P(C® V)] + [n].

Here [n] and [s] are degree 2 because the points are real codimension
2 inside the line P(C & V'), and the third term is degree 2 because we
put T* into HZ(pt). This formula accords with the fact that one can
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T-equivariantly deform n to s iff A happens to be 0. Or, that passing
from equivariant to ordinary corresponds to imposing A = 0.

Corollary 3.7. If we pick the shift sh,_p of an interval rank variety
II; as in proposition 2.3, then

[Hﬂ'] = [Sha—>bH7r] + (ya - yb)[\I’aawa]-

Proof. Recall the total space F' of the family degenerating I, to
its shift. This has a projection to P!, and when we pull back the H%
equation from 3.6, we get

[{0} x Ix] = [{oo} x shapllx] + (Ya — yo) [F]-

One must then check that the projection F' — W,_,,II; has degree 1,
which is in [Knl] and T will skip here. Pushing the equation above
forward along that projection, we get the desired equation. Q.E.D.

The effect is, we should get an extra correction term with a factor
of the equivariant number y, — y, each time sh, ;I # II;. We know
when the latter happens, from theorem 2.8: the labels on the kink and
edge immediately left must be 4;]|. The equivariant puzzle piece we
create to fit in there looks like

and may not be rotated. To determine the factor y, — y; it contributes,
we drop lines SW and SE from it, coming out of the puzzle at the South
edges a,b. Then the Hj.(pt) structure constant is

= I Getr —w)

P eqvt rhombi p in P

The proof of this formula in [KnTao03] worked backwards from the
“most equivariant” case c§ » and gaily divided by factors y, —y, through-
out in its derivation. Such a derivation becomes impossible if one spe-
cializes to ordinary cohomology in advance, taking each y; — 0.
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§4. Puzzles for the Belkale-Kumar Schubert calculus of other
partial flag manifolds

There is a degeneration of the cohomology ring of G/P in [BeKu06]
that is more useful for their applications to inequalities in linear algebra
problems. (Each nonvanishing structure constant in ordinary Schubert
calculus implies a certain inequality [BS], but this list of inequalities
is very redundant. To have a less redundant list, it’s actually nice to
replace most of the structure constants by zero.)

Unlike ordinary cohomology, this Belkale-Kumar product is not func-
torial under projections G/P — G/@, so each flag manifold must be
handled separately. Let us consider only GL, /P, where the reductive
part of P is []"; GL(n;). Then the Schubert classes can be indexed
not by bit strings A, u, v as on the Grassmannian, but by words 7, p, o
in 1...m where the letter 7 is used n; times.

Theorem 4.1. (1)  [BeKu06] If the B-K structure constant dg,,
is nonzero, then it matches the actual structure constant c7 .

(2) [KnP] dg, is the number of puzzles with boundary labels m, p, o,
made of (i,14,1)-triangles and (i, 7,1, j)-rhombi where i > j.

(3) [KnP] It factors as [, <, Cxilpi;» where myj is m with all other
letters removed (likewise p, o).

Around 2000 (so, long before [BeKu06]) I circulated among a small
number of people, a conjectural puzzle rule for actual Schubert calculus
on GL,/P. T'm still very pleased with this beautiful conjecture and
quite annoyed that it’s wrong — already for 3-step flag manifolds in 5-
space, it defines a noncommutative ring. (’est la vie. However, for
quantum Schubert calculus purposes Anders Buch was interested in 2-
step flag manifolds [BuKrTam03], where this conjecture seems to be
correct! One can think of it with all triangular pieces

(O’ 07 0)7 (]‘7 ]‘? 1)’ (27 27 2)7 (13 05 10)’ (27 07 20)7 (27 ]‘? 2]‘)3 (27 (]‘0)7 2(10))?
((21),0,(21)0)

with edge-labels 0, 1, 2, 10, 20, 21, 2(10), (21)0. As before only single num-
bers can appear on the boundary of a puzzle. Examples appear in
[BuKrTam03]. Update: Indeed, the 2-step conjecture is now a theorem,
proven in [BuKrPTam03].
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