Divisors on Burniat surfaces

Valery Alexeev

Abstract

. In this short note, we extend the results of [Alexeev-Orlov, 2012] about Picard groups of Burniat surfaces with $K^{2}=6$ to the cases of $2 \leq K^{2} \leq 5$. We also compute the semigroup of effective divisors on Burniat surfaces with $K^{2}=6$. Finally, we construct an exceptional collection on a nonnormal semistable degeneration of a 1-parameter family of Burniat surfaces with $K^{2}=6$.

Dedicated to Prof. Shigeru Mukai on the occasion of his 60 th birthday

Contents

Introduction 287

1. Definition of Burniat surfaces 288
2. Picard group of Burniat surfaces with $K^{2}=6$ 290
3. Picard group of Burniat surfaces with $2 \leq K^{2} \leq 5$ 291
4. Effective divisors on Burniat surfaces with $K^{2}=6$ 294
5. Exceptional collections on degenerate Burniat surfaces 297

§ Introduction

This note strengthens and extends several geometric results of the paper [AO12], joint with Dmitri Orlov, in which we constructed exceptional sequences of maximal possible length on Burniat surfaces with $K^{2}=6$. The construction was based on certain results about the Picard group and effective divisors on Burniat surfaces.

Here, we extend the results about Picard group to Burniat surfaces with $2 \leq K^{2} \leq 5$. We also establish a complete description of the

Received November 24, 2013.
Revised February 23, 2014.
2010 Mathematics Subject Classification. 14J29, 14J10, 18E30.
Key words and phrases. Burniat surfaces, derived categories, exceptional collections.
semigroup of effective \mathbb{Z}-divisors on Burniat surfaces with $K_{X}^{2}=6$. (For the construction of exceptional sequences in [AO12] only a small portion of this description was needed.)

Finally, we construct an exceptional collection on a nonnormal semistable degeneration of a 1-parameter family of Burniat surfaces with $K^{2}=6$.

§1. Definition of Burniat surfaces

In this paper, Burniat surfaces will be certain smooth surfaces of general type with $q=p_{g}=0$ and $2 \leq K^{2} \leq 6$ with big and nef canonical class K which were defined by Peters in [Pet77] following Burniat. They are Galois \mathbb{Z}_{2}^{2}-covers of (weak) del Pezzo surfaces with $2 \leq K^{2} \leq 6$ ramified in certain special configurations of curves.

Recall from [Par91] that a \mathbb{Z}_{2}^{2}-cover $\pi: X \rightarrow Y$ with smooth and projective X and Y is determined by three branch divisors $\bar{A}, \bar{B}, \bar{C}$ and three invertible sheaves L_{1}, L_{2}, L_{3} on the base Y satisfying fundamental relations $L_{2} \otimes L_{3} \simeq L_{1}(\bar{A}), L_{3} \otimes L_{1} \simeq L_{2}(\bar{B}), L_{1} \otimes L_{2} \simeq L_{3}(\bar{C})$. These relations imply that $L_{1}^{2} \simeq \mathcal{O}_{Y}(\bar{B}+\bar{C}), L_{2}^{2} \simeq \mathcal{O}_{Y}(\bar{C}+\bar{A}), L_{3}^{2} \simeq \mathcal{O}_{Y}(\bar{A}+$ $\bar{B})$.

One has $X=\operatorname{Spec}_{Y} \mathcal{A}$, where the \mathcal{O}_{Y}-algebra \mathcal{A} is $\mathcal{O}_{Y} \oplus \oplus_{i=1}^{3} L_{i}^{-1}$. The multiplication is determined by three sections in

$$
\operatorname{Hom}\left(L_{i}^{-1} \otimes L_{j}^{-1}, L_{k}^{-1}\right)=H^{0}\left(L_{i} \otimes L_{j} \otimes L_{i}^{-1}\right)
$$

where $\{i, j, k\}$ is a permutation of $\{1,2,3\}$, i.e. by sections of the sheaves $\mathcal{O}_{Y}(\bar{A}), \mathcal{O}_{Y}(\bar{B}), \mathcal{O}_{Y}(\bar{C})$ vanishing on $\bar{A}, \bar{B}, \bar{C}$.

Burniat surfaces with $K^{2}=6$ are defined by taking Y to be the del Pezzo surface of degree 6, i.e. the blowup of \mathbb{P}^{2} in three noncollinear points, and the divisors $\bar{A}=\sum_{i=0}^{3} \bar{A}_{i}, \bar{B}=\sum_{i=0}^{3} \bar{B}_{i}, \bar{C}=\sum_{i=0}^{3} \bar{C}_{i}$ to be the ones shown in red, blue, and black in the central picture of Figure 1 below.

The divisors $\bar{A}_{i}, \bar{B}_{i}, \bar{C}_{i}$ for $i=0,3$ are the (-1)-curves, and those for $i=1,2$ are 0 -curves, fibers of rulings $\mathrm{Bl}_{3} \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$. The del Pezzo surface also has two contractions to \mathbb{P}^{2} related by a quadratic transformation, and the images of the divisors form a special line configuration on either \mathbb{P}^{2}. We denote the fibers of the three rulings f_{1}, f_{2}, f_{3} and the preimages of the hyperplanes from \mathbb{P}^{2} 's by h_{1}, h_{2}.

Burniat surfaces with $K^{2}=6-k, 1 \leq k \leq 4$ are obtained by considering a special configuration in Figure 1 for which some k triples of curves, one from each group $\left\{\bar{A}_{1}, \bar{A}_{2}\right\},\left\{\bar{B}_{1}, \bar{B}_{2}\right\},\left\{\bar{C}_{1}, \bar{C}_{2}\right\}$, meet at common points P_{s}. The corresponding Burniat surface is the \mathbb{Z}_{2}^{2}-cover of the blowup of $\mathrm{Bl}_{3} \mathbb{P}^{2}$ at these points.

Fig. 1. Burniat configuration on $\mathrm{Bl}_{3} \mathbb{P}^{2}$

Up to symmetry, there are the following cases, see [BC11]:
(1) $K^{2}=5: P_{1}=\bar{A}_{1} \bar{B}_{1} \bar{C}_{1}$ (our shortcut notation for $\bar{A}_{1} \cap \bar{B}_{1} \cap \bar{C}_{1}$).
(2) $K^{2}=4$, nodal case: $P_{1}=\bar{A}_{1} \bar{B}_{1} \bar{C}_{1}, P_{2}=\bar{A}_{1} \bar{B}_{2} \bar{C}_{2}$.
(3) $K^{2}=4$, non-nodal case: $P_{1}=\bar{A}_{1} \bar{B}_{1} \bar{C}_{1}, P_{2}=\bar{A}_{2} \bar{B}_{2} \bar{C}_{2}$.
(4) $K^{2}=3: P_{1}=\bar{A}_{1} \bar{B}_{1} \bar{C}_{2}, P_{2}=\bar{A}_{1} \bar{B}_{2} \bar{C}_{1}, P_{3}=\bar{A}_{2} \bar{B}_{1} \bar{C}_{1}$.
(5) $K^{2}=2: ~ P_{1}=\bar{A}_{1} \bar{B}_{1} \bar{C}_{1}, P_{2}=\bar{A}_{1} \bar{B}_{2} \bar{C}_{2}, P_{3}=\bar{A}_{2} \bar{B}_{1} \bar{C}_{2}, P_{4}=$ $\bar{A}_{2} \bar{B}_{2} \bar{C}_{1}$.

Notation 1.1. We generally denote the divisors upstairs by D and the divisors downstairs by \bar{D} for the reasons which will become clear from Lemmas 2.1, 3.1. We denote $Y=\mathrm{Bl}_{3} \mathbb{P}^{2}$ and $\epsilon: Y^{\prime} \rightarrow Y$ is the blowup map at the points P_{s}. The exceptional divisors are denoted by \bar{E}_{s}.

The curves $\bar{A}_{i}, \bar{B}_{i}, \bar{C}_{i}$ are the curves on Y, the curves $\bar{A}_{i}^{\prime}, \bar{B}_{i}^{\prime}, \bar{C}_{i}^{\prime}$ are their strict preimages under ϵ. (So that $\epsilon^{*}\left(\bar{A}_{1}\right)=\bar{A}_{1}^{\prime}+E_{1}$ in the case (1), etc.) The divisors $A_{i}^{\prime}, B_{i}^{\prime}, C_{i}^{\prime}, E_{s}$ are the curves (with reduced structure) which are the preimages of the latter curves and \bar{E}_{s} under $\pi^{\prime}: X^{\prime} \rightarrow Y^{\prime}$. The surface X^{\prime} is the Burniat surface with $K^{2}=6-k$.

The building data for the \mathbb{Z}_{2}^{2}-cover $\pi^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ consists of three divisors $A^{\prime}=\sum \bar{A}_{i}^{\prime}, B^{\prime}=\sum \bar{B}_{i}^{\prime}, C^{\prime}=\sum \bar{C}_{i}^{\prime}$. It does not include the exceptional divisors \bar{E}_{s}, they are not in the ramification locus.

One has $\pi^{\prime *}\left(\bar{A}_{i}^{\prime}\right)=2 A_{i}^{\prime}, \pi^{\prime *}\left(\bar{B}_{i}^{\prime}\right)=2 B_{i}^{\prime}, \pi^{\prime *}\left(\bar{C}_{i}^{\prime}\right)=2 C_{i}^{\prime}$, and $\pi^{\prime *}\left(\bar{E}_{s}\right)=E_{s}$.

For the canonical class, one has $2 K_{X^{\prime}}=\pi^{*}\left(-K_{Y^{\prime}}\right)$. Indeed, from Hurwitz formula $2 K_{X^{\prime}}=\pi^{*}\left(2 K_{Y^{\prime}}+R^{\prime}\right)$, where $R^{\prime}=A^{\prime}+B^{\prime}+C^{\prime}$. Therefore, the above identity is equivalent to $R^{\prime}=-3 K_{Y^{\prime}}$. This holds on $Y=\mathrm{Bl}_{3} \mathbb{P}^{2}$, and

$$
R^{\prime}=\epsilon^{*} R-3 \sum \bar{E}_{s}=\epsilon^{*}\left(-3 K_{Y}\right)-3 \sum \bar{E}_{s}=-3 K_{Y^{\prime}}
$$

For the surfaces with $K^{2}=6,5$ and 4 (non-nodal case), $-K_{Y}$ and K_{X} are ample. For the remaining cases, including $K^{2}=2,3$, the divisors $-K_{Y}$ and K_{X} are big, nef, but not ample. Each of the curves \bar{L}_{j} (among $\bar{A}_{i}, \bar{B}_{i}, \bar{C}_{i}$) through two of the points P_{s} is a (-2)-curve (a \mathbb{P}^{1} with square -2) on the surface Y. (For example, for the nodal case with $K^{2}=4$ $\bar{L}_{1}=\bar{A}_{1}$ is such a line). Its preimage, a curve L_{j} on X, is also a (-2)curve. One has $-K_{Y} \bar{L}_{j}=K_{X} L_{j}=0$, and the curve L_{j} is contracted to a node on the canonical model of X.

Note that both of the cases with $K^{2}=2$ and 3 are nodal.

§2. Picard group of Burniat surfaces with $K^{2}=6$

In this section, we recall two results of [AO12].
Lemma 2.1 ([AO12], Lemma 1). The homomorphism $\bar{D} \mapsto \frac{1}{2} \pi^{*}(\bar{D})$ defines an isomorphism of integral lattices $\frac{1}{2} \pi^{*}: \operatorname{Pic} Y \rightarrow \operatorname{Pic} X /$ Tors. Under this isomorphism, one has $\frac{1}{2} \pi^{*}\left(-K_{Y}\right)=K_{X}$.

This lemma allows one to identify \mathbb{Z}-divisors \bar{D} on the del Pezzo surface Y with classes of \mathbb{Z}-divisors D on X up to torsion, equivalently up to numerical equivalence. This identification preserves the intersection form.

The curves A_{0}, B_{0}, C_{0} are elliptic curves (and so are the curves $A_{3} \simeq$ A_{0}, etc.). Moreover, each of them comes with a canonical choice of an origin, denoted P_{00}, which is the point of intersection with the other curves which has a distinct color, different from the other three points. (For example, for A_{0} one has $P_{00}=A_{0} \cap B_{3}$.)

On the elliptic curve A_{0} one also defines $P_{10}=A_{0} \cap C_{3}, P_{01}=$ $A_{0} \cap C_{1}, P_{11}=A_{0} \cap C_{2}$. This gives the 4 points in the 2-torsion group $A_{0}[2]$. We do the same for B_{0}, C_{0} cyclically.

Theorem 2.2. [[AO12], Theorem 1] One has the following:
(1) The homomorphism

$$
\begin{aligned}
\phi: \operatorname{Pic} X & \rightarrow \mathbb{Z} \times \operatorname{Pic} A_{0} \times \operatorname{Pic} B_{0} \times \operatorname{Pic} C_{0} \\
L & \mapsto\left(d(L)=L \cdot K_{X},\left.L\right|_{A_{0}},\left.L\right|_{B_{0}},\left.L\right|_{C_{0}}\right)
\end{aligned}
$$

is injective, and the image is the subgroup of index 3 of

$$
\mathbb{Z} \times\left(\mathbb{Z} \cdot P_{00}+A_{0}[2]\right) \times\left(\mathbb{Z} \cdot P_{00}+B_{0}[2]\right) \times\left(\mathbb{Z} \cdot P_{00}+C_{0}[2]\right) \simeq \mathbb{Z}^{4} \times \mathbb{Z}_{2}^{6}
$$

consisting of the elements with $d+a_{0}^{0}+b_{0}^{0}+c_{0}^{0}$ divisible by 3. Here, we denote an element of the group $\mathbb{Z} \cdot P_{00}+A_{0}[2]$ by $\left(a_{0}^{0} a_{0}^{1} a_{0}^{2}\right)$, etc., where $a_{0}^{0}=\left.\operatorname{deg} L\right|_{A_{0}}$, etc.
(2) ϕ induces an isomorphism $\operatorname{Tors}(\operatorname{Pic} X) \rightarrow A_{0}[2] \times B_{0}[2] \times C_{0}[2]$.
(3) The curves $A_{i}, B_{i}, C_{i}, 0 \leq i \leq 3$, generate $\operatorname{Pic} X$.

This theorem provides one with explicit coordinates for the Picard group of a Burniat surface X, convenient for making computations.

§3. Picard group of Burniat surfaces with $2 \leq K^{2} \leq 5$

In this section, we extend the results of the previous section to the cases $2 \leq K^{2} \leq 5$. First, we show that Lemma 2.1 holds verbatim if $3 \leq K^{2} \leq 5$.

Lemma 3.1. Assume $3 \leq K^{2} \leq 5$. Then the homomorphism $\bar{D} \mapsto \frac{1}{2} \pi^{\prime *}(\bar{D})$ defines an isomorphism of integral lattices $\frac{1}{2} \pi^{\prime *}: \operatorname{Pic} Y^{\prime} \rightarrow$ $\operatorname{Pic} X^{\prime} /$ Tors, and the inverse map is $\frac{1}{2} \pi_{*}^{\prime}$. Under this isomorphism, one has $\frac{1}{2} \pi^{\prime *}\left(-K_{Y^{\prime}}\right)=K_{X^{\prime}}$.

Proof. The proof is similar to that of Lemma 2.1. The map $\frac{1}{2} \pi^{*}$ establishes an isomorphism of \mathbb{Q}-vector spaces $\left(\operatorname{Pic} Y^{\prime}\right) \otimes \mathbb{Q}$ and $\left(\operatorname{Pic} X^{\prime}\right) \otimes \mathbb{Q}$ together with the intersection product because:
(1) Since $h^{i}\left(\mathcal{O}_{X^{\prime}}\right)=h^{i}\left(\mathcal{O}_{Y^{\prime}}\right)=0$ for $i=1,2$ and $K_{X^{\prime}}^{2}=K_{Y^{\prime}}^{2}$, by Noether's formula the two vector spaces have the same dimension.
(2) $\frac{1}{2} \pi^{\prime *} \bar{D}_{1} \cdot \frac{1}{2} \pi^{\prime *} \bar{D}_{2}=\frac{1}{4} \pi^{\prime *}\left(\bar{D}_{1} \cdot \bar{D}_{2}\right)=\bar{D}_{1} \bar{D}_{2}$.

A crucial observation is that $\frac{1}{2} \pi^{\prime *}$ sends $\operatorname{Pic} Y^{\prime}$ to integral classes. To see this, it is sufficient to observe that Pic Y^{\prime} is generated by divisors \bar{D} which are in the ramification locus and thus for which $D=\frac{1}{2} \pi^{\prime *}(\bar{D})$ is integral.

Consider for example the case of $K^{2}=5$. One has Pic $Y^{\prime}=$ $\epsilon^{*}(\operatorname{Pic} Y) \oplus \mathbb{Z} E$. The group $\epsilon^{*}(\operatorname{Pic} Y)$ is generated by $\bar{A}_{0}^{\prime}, \bar{B}_{0}^{\prime}, \bar{C}_{0}^{\prime}, \bar{A}_{3}^{\prime}, \bar{B}_{3}^{\prime}$, \bar{C}_{3}^{\prime}. Since $\epsilon^{*}\left(\bar{A}_{1}\right)=\bar{A}_{1}^{\prime}+\bar{E}_{1}$, the divisor class \bar{E}_{1} lies in group spanned by \bar{A}_{1}^{\prime} and $\epsilon^{*}(\operatorname{Pic} Y)$. So we are done.

In the nodal case $K^{2}=4, \bar{E}_{1}$ is spanned by \bar{B}_{1}^{\prime} and $\epsilon^{*}(\operatorname{Pic} Y), \bar{E}_{2}$ by \bar{B}_{2}^{\prime} and $\epsilon^{*}(\operatorname{Pic} Y)$; exactly the same for the non-nodal case. In the case $K^{2}=3, \bar{E}_{1}$ is spanned by \bar{C}_{2}^{\prime} and $\epsilon^{*}(\operatorname{Pic} Y), \bar{E}_{2}$ by \bar{B}_{2}^{\prime} and $\epsilon^{*}(\operatorname{Pic} Y)$, \bar{E}_{3} by \bar{A}_{2}^{\prime} and $\epsilon^{*}(\operatorname{Pic} Y)$.

Therefore, $\frac{1}{2} \pi^{\prime *}\left(\operatorname{Pic} Y^{\prime}\right)$ is a sublattice of finite index in $\operatorname{Pic} X^{\prime} /$ Tors. Since the former lattice is unimodular, they must be equal.

One has $\frac{1}{2} \pi_{*}^{\prime} \circ \frac{1}{2} \pi^{\prime *}(\bar{D})=\bar{D}$, so the inverse map is $\frac{1}{2} \pi_{*}^{\prime}$. Q.E.D.
Remark 3.2. I thank Stephen Coughlan for pointing out that the above proof that $\mathrm{Pic} Y^{\prime}$ is generated by the divisors in the ramification locus does not work in the $K^{2}=2$ case. In this case, each of the
lines $\bar{A}_{i}, \bar{B}_{i}, \bar{C}_{i}, i=1,2$ contains exactly two of the points P_{1}, P_{2}, P_{3}. What we can see easily is the following: there exists a free abelian group $H \simeq \mathbb{Z}^{8}$ which can be identified with a subgroup of index 2 in $\operatorname{Pic} Y^{\prime}$ and a subgroup of index 2 in Pic X^{\prime} / Tors.

Consider a \mathbb{Z}-divisor (not a divisor class) on Y^{\prime}

$$
\bar{D}=a_{0} \bar{A}_{0}^{\prime}+\ldots+c_{3} \bar{C}_{3}^{\prime}+\sum_{s} e_{s} \bar{E}_{s}
$$

such that the coefficients e_{s} of \bar{E}_{s} are even. Then we can define a canonical lift

$$
D=a_{0} A_{0}+\ldots+c_{3} C_{3}+\sum_{s} \frac{1}{2} e_{s} E_{s}
$$

which is a divisor on X^{\prime}, and numerically one has $D=\frac{1}{2} \pi^{\prime *}(\bar{D})$. Note that \bar{D} is linearly equivalent to 0 iff D is a torsion.

By Theorem 2.2, for a Burniat surface with $K^{2}=6$, we have an identification

$$
V:=\operatorname{Tors} \operatorname{Pic} X=A_{0}[2] \times B_{0}[2] \times C_{0}[2]=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{2}^{2}
$$

It is known (see [BC11]) that for Burniat surfaces with $2 \leq K^{2} \leq 6$ one has Tors Pic $X \simeq \mathbb{Z}_{2}^{K^{2}}$ with the exception of the case $K^{2}=2$ where Tors Pic $X \simeq \mathbb{Z}_{2}^{3}$. We would like to establish a convenient presentation for the Picard group and its torsion for these cases which would be similar to the above.

For the above definiiton, recall the standard coordinates on V given at the beginning of Section 2.

Definition 3.3. We define the following vectors, forming a basis in the \mathbb{Z}_{2}-vector space $V: \vec{A}_{1}=001000, \vec{A}_{2}=001100, \vec{B}_{1}=000010$, $\vec{B}_{2}=0000$ 11, $\vec{C}_{1}=100000, \vec{C}_{2}=110000$.

Further, for each point $P_{s}=A_{i} B_{j} C_{k}$ we define a vector $\vec{P}_{s}=\vec{A}_{i}+$ $\vec{B}_{j}+\vec{C}_{k}$.

Definition 3.4. We also define the standard bilinear form $V \times V \rightarrow$ $\mathbb{Z}_{2}:\left(x_{1}, \ldots, x_{6}\right) \cdot\left(y_{1}, \ldots, y_{6}\right)=\sum_{i=1}^{6} x_{i} y_{i}$.

Lemma 3.5. The restriction map ρ : $\operatorname{Tors} \operatorname{Pic}\left(X^{\prime}\right) \rightarrow A_{0}[2] \times B_{0}[2] \times$ $C_{0}[2]$ is injective, and the image is identified with the orthogonal complement of the subspace generated by the vectors \vec{P}_{s}.

Proof. The restrictions of the following divisors to V give the subset $B_{0}[2]$:
$0, A_{1}-A_{2}=001000, A_{1}-A_{3}-C_{0}=001100, A_{2}-A_{3}-C_{0}=000100$.
Among these, the divisors containing A_{1} are precisely those for which the vector $v \in B_{0}[2] \subset V$ satisfies $v \cdot \vec{A}_{1}=1$. Repeating this verbatim, one has the same results for the divisors A_{2}, \ldots, C_{2} and vectors $\vec{A}_{2}, \ldots, \vec{C}_{2}$.

Let \bar{D} be a linear combination of the divisors $\bar{A}_{1}-\bar{A}_{2}, \bar{A}_{1}-\bar{A}_{3}-\bar{C}_{0}$, $\bar{A}_{2}-\bar{A}_{3}-\bar{C}_{0}$, and the corresponding divisors for $C_{0}[2], A_{0}[2]$. Define the vector $v(D) \in V$ to be the sum of the corresponding vectors $A_{1}-A_{2} \in V$, etc.

Now assume that the vector $v(D)$ satisfies the condition $v(D) \cdot \vec{P}_{s}=0$ for all the points P_{s}. Then the coefficients of the exceptional divisors \bar{E}_{s} in the divisor $\epsilon^{*}(\bar{D})$ on Y^{\prime} are even (and one can also easily arrange them to be zero since the important part is working modulo 2). Therefore, a lift of $\epsilon^{*}(\bar{D})$ to X^{\prime} is well defined and is a torsion in $\operatorname{Pic}\left(X^{\prime}\right)$.

This shows that the image of the homomorphism ρ : Tors Pic $X^{\prime} \rightarrow$ V contains the space $\left\langle\vec{P}_{s}\right\rangle^{\perp}$. But this space already has the correct dimension. Indeed, for $3 \leq K^{2} \leq 5$ the vectors \vec{P}_{s} are linearly independent, and for $K^{2}=2$ the vectors $\vec{P}_{1}=\vec{A}_{1}+\vec{B}_{1}+\vec{C}_{1}, \vec{P}_{2}=\vec{A}_{1}+\vec{B}_{2}+\vec{C}_{2}$, $\vec{P}_{3}=\vec{A}_{2}+\vec{B}_{1}+\vec{C}_{2}, \vec{P}_{4}=\vec{A}_{2}+\vec{B}_{2}+\vec{C}_{1}$ are linearly dependent (their sum is zero) and span a subspace of dimension 3 ; thus the orthogonal complement has dimension 3 as well. Therefore, ρ is a bijection of Tors $\operatorname{Pic}\left(X^{\prime}\right)$ onto $\left\langle\vec{P}_{s}\right\rangle^{\perp}$.
Q.E.D.

Theorem 3.6. Let $3 \leq K^{2} \leq 5$. Then one has the following:
(1) The homomorphism

$$
\begin{aligned}
\phi: \operatorname{Pic} X^{\prime} & \rightarrow \mathbb{Z}^{1+k} \times \operatorname{Pic} A_{0}^{\prime} \times \operatorname{Pic} B_{0}^{\prime} \times \operatorname{Pic} C_{0}^{\prime} \\
L & \mapsto\left(d(L)=L \cdot K_{X^{\prime}}, L \cdot \frac{1}{2} E_{s},\left.L\right|_{A_{0}^{\prime}},\left.L\right|_{B_{0}^{\prime}},\left.L\right|_{C_{0}^{\prime}}\right)
\end{aligned}
$$

is injective, and the image is the subgroup of index $3 \cdot 2^{n}$ in $\mathbb{Z}^{4+k} \times A_{0}^{\prime}[2] \times B_{0}^{\prime}[2] \times C_{0}^{\prime}[2]$, where $n=6-K^{2}$ for $3 \leq K^{2} \leq 6$ and $n=3$ for $K^{2}=2$.
(2) ϕ induces an isomorphism $\operatorname{Tors}\left(\operatorname{Pic} X^{\prime}\right) \xrightarrow{\sim}\left\langle\vec{P}_{s}\right\rangle^{\perp} \subset A_{0}^{\prime}[2] \times$ $B_{0}^{\prime}[2] \times C_{0}^{\prime}[2]$.
(3) The curves $A_{i}^{\prime}, B_{i}^{\prime}, C_{i}^{\prime}, 0 \leq i \leq 3$, generate Pic X^{\prime}.

Proof. (2) is (3.5) and (1) follows from it. For (3), note that $\operatorname{Pic} X^{\prime} /$ Tors $=\operatorname{Pic} Y^{\prime}$ is generated by the divisors $A_{i}^{\prime}, B_{i}^{\prime}, C_{i}^{\prime}$ and that the proof of the previous theorem shows that Tors Pic X^{\prime} is generated by certain linear combinations of these divisors. Q.E.D.

\S 4. Effective divisors on Burniat surfaces with $K^{2}=6$

Since $\frac{1}{2} \pi^{*}$ and $\frac{1}{2} \pi_{*}$ provide isomorphisms between the \mathbb{Q}-vector spaces $(\operatorname{Pic} Y) \otimes \mathbb{Q}$ and $(\operatorname{Pic} X) \otimes \mathbb{Q}$, it is obvious that the cones of effective \mathbb{Q} - or \mathbb{R}-divisors on X and Y are naturally identified. In this section, we would like to prove the following description of the semigroup of effective \mathbb{Z}-divisors:

Theorem 4.1. The curves $A_{i}, B_{i}, C_{i}, 0 \leq i \leq 3$, generate the semigroup of effective \mathbb{Z}-divisors on Burniat surface X.

We start with several preparatory lemmas.
Lemma 4.2. The semigroup of effective \mathbb{Z}-divisors on Y is generated by the (-1)-curves $\bar{A}_{0}, \bar{B}_{0}, \bar{C}_{0}, \bar{A}_{3}, \bar{B}_{3}, \bar{C}_{3}$.

Proof. Since $-K_{Y}$ is ample, the Mori-Kleiman cone $N E_{1}(Y)$ of effective curves in $(\operatorname{Pic} Y) \otimes \mathbb{Q}$ is generated by extremal rays, i.e. the (-1)-curves $\bar{A}_{0}, \bar{B}_{0}, \bar{C}_{0}, \bar{A}_{3}, \bar{B}_{3}, \bar{C}_{3}$. We claim that moreover the semigroup of integral points in $N E_{1}(Y)$ is generated by these points, i.e. the polytope $Q=N E_{1}(Y) \cap\left\{C \mid-K_{Y} C=1\right\}$ is totally generating. The vertices of this polytope in \mathbb{R}^{3} are $(-1,0,0),(0,-1,0),(0,0,-1)$, $(0,1,1),(1,0,1),(1,1,0)$, and the lattice $\operatorname{Pic} Y=\mathbb{Z}^{4}$ is generated by them. It is a prism over a triangular base, and it is totally generating because it can be split into 3 elementary simplices.
Q.E.D.

Lemma 4.3. The semigroup of nef \mathbb{Z}-divisors on Y is generated by $f_{1}, f_{2}, f_{3}, h_{1}$, and h_{2}.

Proof. Again, for the \mathbb{Q}-divisors this is obvious by MMP: a divisor \bar{D} is nef iff $\bar{D} \bar{F} \geq 0$ for $\bar{F} \in\left\{\bar{A}_{0}, \bar{B}_{0}, \bar{C}_{0}, \bar{A}_{3}, \bar{B}_{3}, \bar{C}_{3}\right\}$, and the extremal nef \bar{D} divisors correspond to contractions $Y \rightarrow Y^{\prime}$ with $\operatorname{rkPic} Y^{\prime}=1$. Another proof: the extremal nef divisors correspond to the faces of the triangular prism from the proof of Lemma 4.2, and there are 5 of them: 3 sides, top, and the bottom.

Now let $\bar{D} \in \operatorname{Pic} Y$ be a nonnegative linear combination $\bar{D}=$ $\sum a_{i} f_{i}+b_{j} h_{j}$ with $a_{i}, b_{j} \in \mathbb{Q}$ and let us assume that $a_{1}>0$ (resp. $\left.b_{1}>0\right)$. Since the intersections of f_{1} (resp. h_{1}) with the curves F above are 0 or 1 , it follows that $\bar{D}-f_{1}$ (resp. $\bar{D}-h_{1}$) is also nef. We finish by induction on $\operatorname{deg} \bar{D}=-K_{Y} \bar{D}$.
Q.E.D.

We write the divisors \bar{D} in Pic Y using the symmetric coordinates $\left(d ; a_{0}^{0}, b_{0}^{0}, c_{0}^{0} ; a_{3}^{0}, b_{3}^{0}, c_{3}^{0}\right)$, where $d=\bar{D}\left(-K_{Y}\right), a_{0}^{0}=\bar{D} \bar{A}_{0}, \ldots, c_{3}^{0}=\bar{D} \bar{C}_{3}$.

Note that, as in Theorem 2.2, Pic Y and can be described either as the subgroup of \mathbb{Z}^{4} with coordinates $\left(d ; a_{0}^{0}, b_{0}^{0}, c_{0}^{0}\right)$ satisfying the congruence $3 \mid\left(d+a_{0}^{0}+b_{0}^{0}+c_{0}^{0}\right)$, or as the subgroup of \mathbb{Z}^{4} with coordinates $\left(d ; a_{3}^{0}, b_{3}^{0}, c_{3}^{0}\right)$ satisfying the congruence $3 \mid\left(d+a_{3}^{0}+b_{3}^{0}+c_{3}^{0}\right)$.

Lemma 4.4. The function $p_{a}(\bar{D})=\frac{\bar{D}\left(\bar{D}+K_{Y}\right)}{2}+1$ on the set of nef \mathbb{Z}-divisors on Y is strictly positive, with the exception of the following divisors, up to symmetry:
(1) $(2 n ; n, 0,0 ; n, 0,0)$ for $n \geq 1$, one has $p_{a}=-(n-1)$
(2) $(2 n ; n-1,1,0 ; n-1,1,0)$ for $n \geq 1$, one has $p_{a}=0$.
(3) $(2 n+1 ; n, 1,1 ; n-1,0,0)$ and $(2 n+1 ; n-1,0,0 ; n, 1,1)$ for $n \geq 1, p_{a}=0$.
(4) $(6 ; 2,2,2 ; 0,0,0)$ and $(6 ; 0,0,0 ; 2,2,2), p_{a}=0$.

The divisors in (1) are in the linear system $\left|n f_{i}\right|$, where f_{i} is a fiber of one of the three rulings $Y \rightarrow \mathbb{P}^{1}$. The divisors in (2) and (3) are obtained from these by adding a section. The divisors in (4) belong to the linear systems $\left|2 h_{1}\right|$ and $\left|2 h_{2}\right|$.

Proof. Let \bar{D} be a nef \mathbb{Z}-divisor. By Lemma 4.3, we can write $\bar{D}=\sum n_{i} f_{i}+m_{j} h_{j}$ with $n_{i}, m_{j} \in \mathbb{Z}_{\geq 0}$. Let us say $n_{1}>0$. If $\bar{D}=n_{1} f_{1}$ then $p_{a}(\bar{D})=-\left(n_{1}-1\right)$. Otherwise, $n_{1} f_{1}+g \leq \bar{D}$, where $g=f_{j}$, $j \neq 1$, or $g=h_{j}$. Then using the elementary formula $p_{a}\left(\bar{D}_{1}+\bar{D}_{2}\right)=$ $p_{a}\left(\bar{D}_{1}\right)+p_{a}\left(\bar{D}_{2}\right)+\bar{D}_{1} \bar{D}_{2}-1$, we see that $p_{a}\left(n_{1} f_{1}+g\right)=0$. Continuing this by induction and adding more f_{j} 's and h_{j} 's, one easily obtains that $p_{a}(\bar{D})>0$ with the only exceptions listed above. Starting with $m_{1} h_{1}$ instead of $n_{1} f_{1}$ works the same.
Q.E.D.

Corollary 4.5. The function $\chi(D)=\frac{D\left(D-K_{X}\right)}{2}+1$ on the set of nef \mathbb{Z}-divisors on Y is strictly positive, with the same exceptions as above.

Proof. Indeed, since $\chi\left(\mathcal{O}_{X}\right)=1$, one has $\chi(D)=p_{a}(\bar{D}) . \quad$ Q.E.D.
Lemma 4.6. Assume that $\bar{D} \neq 0$ is a nef divisor on X with $p_{a}(\bar{D})>$ 0 . Then the divisor $\bar{D}+K_{Y}$ is effective.

Proof. One has $\chi\left(\bar{D}+K_{Y}\right)=\frac{\left(\bar{D}+K_{Y}\right) \bar{D}}{2}+1=p_{a}(\bar{D})>0$. Since $h^{2}\left(\bar{D}+K_{Y}\right)=h^{0}(-\bar{D})=0$, this implies that $h^{0}(\bar{D})>0 . \quad$ Q.E.D.

Definition 4.7. We say that an effective divisor D on X is in minimal form if $D F \geq 0$ for the elliptic curves $F \in\left\{A_{0}, B_{0}, C_{0}, A_{3}, B_{3}, C_{3}\right\}$, and for the curves among those that satisfy $D F=0$, one has $\left.D\right|_{F}=0$ in $F[2]$.

If either of these conditions fails then $D-F$ must also be effective since F is then in the base locus of $|D|$. A minimal form is obtained by repeating this procedure until it stops or one obtains a divisor of negative degree, in which case D obviously was not effective. We do not claim that a minimal form is unique.

Proof of Thm. 4.1. Let D be an effective divisor on X. We have to show that it belongs to the semigroup $\mathcal{S}=\left\langle A_{i}, B_{i}, C_{i}, 0 \leq i \leq 3\right\rangle$.

Step 1: One can assume that D is in minimal form. Obviously.
Step 2.: The statement is true for $d \leq 6$. There are finitely many cases here to check. We checked them using a computer script. For each of the divisors, putting it in minimal form makes it obvious that it is either in \mathcal{S} or it is not effective because it has negative degree, with the exception of the following three divisors, in the notations of Theorem 2.2: (3; 1101101 10), (3; 000000000), (3; 1001001 00). The first two divisors are not effective by [AO12, Lemma 5]. The third one is not effective because it is K_{X} and $h^{0}\left(K_{X}\right)=p_{g}(X)=0$.

Step 3: The statement is true for nef divisors of degree $d \geq 7$ which are not the exceptions listed in Lemma 4.4.

One has $K_{X}\left(K_{X}-D\right)<0$, so $h^{0}\left(K_{X}-D\right)=0$ and the condition $\chi(D)>0$ implies that D is effective. We are going to show that D is in the semigroup \mathcal{S}.

Consider the divisor $D-K_{X}$ which modulo torsion is identified with the divisor $\bar{D}+K_{Y}$ on Y. By Lemmas 4.6 and $4.2, \bar{D}+K_{Y}$ is a positive \mathbb{Z}-combination of $\bar{A}_{0}, \bar{B}_{0}, \bar{C}_{0}, \bar{A}_{3}, \bar{B}_{3}, \bar{C}_{3}$. This means that
$D=K_{X}+\left(\right.$ a positive combination of $\left.A_{0}, B_{0}, C_{0}, A_{3}, B_{3}, C_{3}\right)+($ torsion $\nu)$
A direct computer check shows that for any torsion ν the divisor $K_{X}+$ $F+\nu$ is in \mathcal{S} for a single curve $F \in\left\{A_{0}, B_{0}, C_{0}, A_{3}, B_{3}, C_{3}\right\}$. (In fact, for any $\nu \neq 0$ the divisor $K_{X}+\nu$ is already in \mathcal{S}.) Thus,

$$
\begin{array}{r}
D-\left(\text { a nonnegative combination of } A_{0}, B_{0}, C_{0}, A_{3}, B_{3}, C_{3}\right) \in \mathcal{S} \\
\Longrightarrow D \in \mathcal{S} .
\end{array}
$$

Step 4: The statement is true for nef divisors in minimal form of degree $d \geq 7$ which are the exceptions listed in Lemma 4.4.

We claim that any such divisor is in \mathcal{S}, and in particular is effective. For $d=7,8$ this is again a direct computer check. For $d \geq 9$, the claim is true by induction, as follows: If D is of exceptional type (1,2 , or 3) of Lemma 4.4 then $D-C_{1}$ has degree $d^{\prime}=d-2$ and is of the same exceptional type. This concludes the proof.
Q.E.D.

Remark 4.8. Note that we proved a little more than what Theorem 4.1 says. We also proved that every divisor D in minimal form and of degree ≥ 7 is effective and is in the semigroup \mathcal{S}.

Remark 4.9. For Burniat surfaces with $2 \leq K^{2} \leq 5$, a natural question to ask is whether the semigroup of effective \mathbb{Z}-divisors is generated by the preimages of the $(-1)-$ and (-2) curves on Y^{\prime}. These include the divisors $A_{i}^{\prime}, B_{i}^{\prime}, C_{i}^{\prime}$ and E_{s} but in some cases there are other curves, too.

§5. Exceptional collections on degenerate Burniat surfaces

Degenerations of Burniat surfaces with $K_{X}^{2}=6$ were described in [AP09]. Here, we will concentrate on one particularly nice degeneration depicted in Figure 2.

Fig. 2. One-parameter degeneration of Burniat surfaces

It is described as follows. One begins with a one-parameter family $f:\left(Y \times \mathbb{A}^{1}, \sum_{i=0}^{3} \bar{A}_{i}+\bar{B}_{i}+\bar{C}_{i}\right) \rightarrow \mathbb{A}^{1}$ of del Pezzo surfaces, in which the curves degenerate in the central fiber $f^{-1}(0)$ to a configuration shown in the left panel. The surface \mathcal{Y} is obtained from $Y \times \mathbb{A}^{1}$ by two blowups in the central fiber, along the smooth centers \bar{A}_{0} and then (the strict preimage of) \bar{C}_{3}. The resulting 3 -fold \mathcal{Y} is smooth, the central fiber $\mathcal{Y}_{0}=\mathrm{Bl}_{3} \mathbb{P}^{2} \cup \mathrm{Bl}_{2} \mathbb{P}^{2} \cup\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ is reduced and has normal crossings. This central fiber is shown in the third panel.

The \log canonical divisor $K_{\mathcal{Y}}+\frac{1}{2} \sum_{i=0}^{3}\left(\bar{A}_{i}+\bar{B}_{i}+\bar{C}_{i}\right)$ is relatively big and nef over \mathbb{A}^{1}. It is a relatively minimal model. The relative canonical model $\mathcal{Y}^{\text {can }}$ is obtained from \mathcal{Y} by contracting three curves. The 3 -fold $\mathcal{Y}^{\text {can }}$ is singular at three points and not \mathbb{Q}-factorial. Its central fiber $\mathcal{Y}_{0}^{\text {can }}$ is shown in the last, fourth panel.

The 3 -folds $\pi: \mathcal{X} \rightarrow \mathcal{Y}$ and $\pi^{\text {can }}: \mathcal{X}^{\text {can }} \rightarrow \mathcal{Y}^{\text {can }}$ are the corresponding \mathbb{Z}_{2}^{2}-Galois covers. The 3 -fold \mathcal{X} is smooth, and its central fiber \mathcal{X}_{0} is reduced and has normal crossings. It is a relatively minimal model: $K_{\mathcal{X}}$ is relatively big and nef.

The 3 -fold $\mathcal{X}^{\text {can }}$ is obtained from \mathcal{X} by contracting three curves. Its canonical divisor $K_{\mathcal{X}}$ can is relatively ample. It is a relative canonical model. We note that \mathcal{X} is one of the 6 relative minimal models $\mathcal{X}^{(k)}$, $k=1, \ldots, 6$, that are related by flops.

Let $U \subset \mathbb{A}^{1}$ be the open subset containing 0 and all $t \neq 0$ for which the fiber \mathcal{X}_{t} is smooth, and let $\mathcal{X}_{U}=\mathcal{X} \times_{\mathbb{A}^{1}} U$. The aim of this section is to prove the following:

Theorem 5.1. Then there exists a sequence of line bundles \mathcal{L}_{1}, \ldots, \mathcal{L}_{6} on \mathcal{X}_{U} whose restrictions to any fiber (including the nonnormal semistable fiber \mathcal{X}_{0}) form an exceptional collection of line bundles.

Remark 5.2. It seems to be considerably harder to construct an exceptional collection on the surface $\mathcal{X}_{0}^{\text {can }}$, the special fiber in a singular 3 -fold $\mathcal{X}^{\text {can }}$. And perhaps looking for one is not the right thing to do. A well-known result is that different smooth minimal models $\mathcal{X}^{(k)}$ related by flops have equivalent derived categories. In the same vein, in our situation the central fibers $\mathcal{X}_{0}^{(k)}$, which are reduced reducible semistable varieties, should have the same derived categories. The collection we construct works the same way for any of them.

Notation 5.3. On the surface \mathcal{X}_{0}, we have 12 Cartier divisors $A_{i}, B_{i}, C_{i}, i=0,1,2,3$. The "internal" divisors $A_{i}, B_{i}, C_{i}, i=1,2$ have two irreducible components each. Of the 6 "boundary" divisors, A_{0}, A_{3}, C_{0} are irreducible, and $B_{0}=B_{0}^{\prime}+B_{0}^{\prime \prime}, B_{3}=B_{3}^{\prime}+B_{3}^{\prime \prime}, C_{3}=$ $C_{3}^{\prime}+C_{3}^{\prime \prime}$ are reducible.

Our notation for the latter divisors is as follows: the curve C_{3}^{\prime} is a smooth elliptic curve (on the bottom surface $(\mathcal{Y})_{0}$ the corresponding curve has 4 ramification points), and the curve $C_{3}^{\prime \prime}$ is isomorphic to \mathbb{P}^{1} (on the bottom surface the corresponding curve has 2 ramification points).

For consistency of notation, we also set $A_{0}^{\prime}=A_{0}, A_{3}^{\prime}=A_{3}, C_{0}^{\prime}=C_{0}$.
Definition 5.4. Let $\psi=\psi_{C_{3}}: C_{3} \rightarrow C_{3}^{\prime}$ be the projection which is an isomorphism on the component C_{3}^{\prime} and collapses the component $C_{3}^{\prime \prime}$ to a point.

We have natural norm map $\psi_{*}=\left(\psi_{C_{3}}\right)_{*}: \operatorname{Pic} C_{3} \rightarrow \operatorname{Pic} C_{3}^{\prime}$. Indeed, every line bundle on the reducible curve C_{3} can be represented as a Cartier divisor $\mathcal{O}_{C_{3}}\left(\sum n_{i} P_{i}\right)$, where P_{i} are nonsingular points. Then we
define

$$
\psi_{*}\left(\mathcal{O}_{C_{3}}\left(\sum n_{i} P_{i}\right)\right)=\mathcal{O}_{C_{3}^{\prime}}\left(\sum n_{i} \psi\left(P_{i}\right)\right)
$$

Since the dual graph of the curve C_{3} is a tree, one has $\operatorname{Pic}^{0} C_{3}=\operatorname{Pic}^{0} C_{3}^{\prime}$ and Pic $C_{3}=\operatorname{Pic}^{0} C_{3}^{\prime} \oplus \mathbb{Z}^{2}$.

We also have similar morphisms $\psi_{B_{0}}, \psi_{B_{3}}$ and norm maps for the other two reducible curves.

Definition 5.5. We define a map $\phi_{C_{3}}$: $\operatorname{Pic} \mathcal{X}_{0} \rightarrow \operatorname{Pic} C_{3}^{\prime}$ as the composition of the restriction to C_{3} and the norm map $\psi_{*}: C_{3} \rightarrow C_{3}^{\prime}$. We also have similar morphisms $\phi_{B_{0}}, \phi_{B_{3}}$ for the other two reducible curves. For the irreducible curves A_{0}, A_{3}, C_{0} the corresponding maps are simply the restriction maps on Picard groups.

For the following Lemma, compare Theorem 2.2 above.
Lemma 5.6. Consider the map

$$
\phi_{0}: \operatorname{Pic} \mathcal{X}_{0} \rightarrow \mathbb{Z} \oplus \operatorname{Pic} A_{0}^{\prime} \oplus \operatorname{Pic} B_{0}^{\prime} \oplus \operatorname{Pic} C_{0}^{\prime}
$$

defined as $D \mapsto D \cdot K_{\mathcal{X}_{0}}$ in the first component and the maps $\phi_{A_{0}}, \phi_{B_{0}}$, $\phi_{C_{0}}$ in the other components. Then the images of the Cartier divisors $A_{i}, B_{i}, C_{i}, i=0,1,2,3$ are exactly the same as for a smooth Burniat surface $\mathcal{X}_{t}, t \neq 0$.

Proof. Immediate check. Q.E.D.
Definition 5.7. We will denote this image by $\operatorname{im} \phi_{0}$. One has $\operatorname{im} \phi_{0} \simeq \mathbb{Z}^{4} \oplus \mathbb{Z}_{2}^{6}$. We emphasize that $\operatorname{im} \phi_{0}=\operatorname{im} \phi_{t}=\operatorname{Pic} \mathcal{X}_{t}$, where \mathcal{X}_{t} is a smooth Burniat surface.

Lemma 5.8. Let D be an effective Cartier divisor D on the surface \mathcal{X}_{0}. Suppose that $D \cdot A_{i}<0$ for $i=0$ or $i=3$. Then the Cartier divisor $D-A_{i}$ is also effective. (Similarly for B_{i}, C_{i}.)

Proof. For an irreducible divisor this is immediate, so let us do it for the divisor $C_{3}=C_{3}^{\prime}+C_{3}^{\prime \prime}$ which spans two irreducible components, say $X^{\prime}, X^{\prime \prime}$ of the surface $\mathcal{X}_{0}=X^{\prime} \cup X^{\prime \prime} \cup X^{\prime \prime \prime}$. Let $D^{\prime}=\left.D\right|_{X^{\prime}}, D^{\prime \prime}=\left.D\right|_{X^{\prime \prime}}$, $D^{\prime \prime \prime}=\left.D\right|_{X^{\prime \prime \prime}}$. Then

$$
D \cdot C_{3}=\left(D^{\prime} \cdot C_{3}^{\prime}\right)_{X^{\prime}}+\left(D^{\prime \prime} \cdot C_{3}^{\prime \prime}\right)_{X^{\prime \prime}},
$$

where the right-hand intersections are computed on the smooth irreducible surfaces. One has $\left(C_{3}^{\prime}\right)_{X^{\prime}}^{2}=0$ and $\left(C_{3}^{\prime \prime}\right)_{X^{\prime \prime}}^{2}=-1$. Therefore, $\left(D^{\prime} \cdot C_{3}^{\prime}\right)_{X^{\prime}} \geq 0$. Thus, $D \cdot C_{3}<0$ implies that $\left(D^{\prime \prime} \cdot C_{3}^{\prime \prime}\right)_{X^{\prime \prime}}<0$. Then $C_{3}^{\prime \prime}$ must be in the base locus of the linear system $\left|D^{\prime \prime}\right|$ on the smooth
surface $X^{\prime \prime}$. Let $n>0$ be the multiplicity of $C_{3}^{\prime \prime}$ in $D^{\prime \prime}$. Then the divisor $D^{\prime \prime}-n C_{3}^{\prime \prime}$ is effective and does not contain $C_{3}^{\prime \prime}$.

By what we just proved, D must contain $n C_{3}^{\prime \prime}$. Thus, it passes through the point $P=C_{3}^{\prime} \cap C_{3}^{\prime \prime}$ and the multiplicity of the curve $\left(D^{\prime}\right)_{X^{\prime}}$ at P is $\geq n$, since D is a Cartier divisor. Suppose that D does not contain the curve C_{3}^{\prime}. Then $\left(D^{\prime} \cdot C_{3}^{\prime}\right)_{X^{\prime}} \geq n$, and

$$
D \cdot C_{3}=\left(D^{\prime} \cdot C_{3}^{\prime}\right)_{X^{\prime}}+\left(D^{\prime \prime} \cdot C_{3}^{\prime \prime}\right)_{X^{\prime \prime}} \geq n+(-n)=0
$$

which provides a contradiction. We conclude that D contains C_{3}^{\prime} as well, and so $D-C_{3}$ is effective.
Q.E.D.

Lemma 5.9. Let D be an effective Cartier divisor D on the surface \mathcal{X}_{0}. Suppose that $D \cdot A_{i}=0$ for $i=0,3$ but $\phi_{A_{i}}(D) \neq 0$ in Pic A_{i}. Then the Cartier divisor $D-A_{i}$ is also effective. (Similarly for B_{i}, C_{i}.)

Proof. We use the same notations as in the proof of the previous lemma. Since D^{\prime} is effective, one has $\left(D^{\prime} \cdot C_{3}^{\prime}\right)_{X^{\prime}} \geq 0$.

If $\left(D^{\prime \prime} \cdot C_{3}^{\prime \prime}\right)_{X^{\prime \prime}}<0$ then, as in the above proof let $n>0$ be the multiplicity of $C_{3}^{\prime \prime}$ in $D^{\prime \prime}$. Then either D^{\prime} contains C_{3}^{\prime} (and so D contains C_{3} as claimed) or: $\left(D^{\prime \prime} \cdot C_{3}^{\prime \prime}\right)_{X^{\prime \prime}}=-n,\left(D^{\prime} \cdot C_{3}^{\prime}\right)_{X^{\prime}}=n, D^{\prime \prime}-n C_{3}^{\prime \prime}$ is disjoint from $C_{3}^{\prime \prime}$ and D^{\prime} intersects C_{3}^{\prime} only at the unique point $P=$ $C_{3}^{\prime} \cap C_{3}^{\prime \prime}$. But then $\phi_{C_{3}}(D)=0$ in Pic C_{3}^{\prime}, a contradiction.

If $\left(D^{\prime \prime} \cdot C_{3}^{\prime \prime}\right)_{X^{\prime \prime}}=0$ but $D^{\prime \prime}-n C_{3}^{\prime \prime}$ is effective for some $n>0$, the same argument gives $D C_{3}>0$, so we get an even easier contradiction.

Finally, assume that $\left(D^{\prime} \cdot C_{3}^{\prime}\right)_{X^{\prime}}=\left(D^{\prime \prime} \cdot C_{3}^{\prime \prime}\right)_{X^{\prime \prime}}=0$ and $D^{\prime \prime}$ does not contain $C_{3}^{\prime \prime}$. By assumption, we have $D^{\prime} \cdot C_{3}^{\prime}=0$ but $\left.D^{\prime}\right|_{C_{3}^{\prime}} \neq 0$ in Pic C_{3}^{\prime}. This implies that $D^{\prime}-C_{3}^{\prime}$ is effective and that D contains the point $P=C_{3}^{\prime} \cap C_{3}^{\prime \prime}$. But then $\left(D^{\prime \prime} \cdot C_{3}^{\prime \prime}\right)_{X^{\prime \prime}}>0$. Contradiction. Q.E.D.

The following lemma is the precise analogue of [AO12, Lemma 5] (Lemma 4.5 in the arXiv version).

Lemma 5.10. Let $F \in \operatorname{Pic} \mathcal{X}_{0}$ be an invertible sheaf such that

$$
\operatorname{im} \phi_{0}(F)=(3 ; 110,110,110) \in \mathbb{Z} \oplus \operatorname{Pic} A_{0} \oplus \operatorname{Pic} B_{0} \oplus C_{0}
$$

Then $h^{0}\left(\mathcal{X}_{0}, F\right)=0$.
Proof. The proof of [AO12, Lemma 5], used verbatim together with the above Lemmas 5.8, 5.9 works. Crucially, the three "corners" $A_{0} \cap C_{3}$, $B_{0} \cap A_{3}, C_{0} \cap B_{3}$ are smooth points on \mathcal{X}_{0}.
Q.E.D.

Proof of Thm. 5.1. We define the sheaves $\mathcal{L}_{1}, \ldots, \mathcal{L}_{6}$ by the same linear combinations of the Cartier divisors $\mathcal{A}_{i}, \mathcal{B}_{i}, \mathcal{C}_{i}$ as in the smooth
case [AO12, Rem.2] (Remark 4.4 in the arXiv version), namely:

$$
\begin{aligned}
& \mathcal{L}_{1}=\mathcal{O}_{\mathcal{X}}\left(\mathcal{A}_{3}+\mathcal{B}_{0}+\mathcal{C}_{0}+\mathcal{A}_{1}-\mathcal{A}_{2}\right), \\
& \mathcal{L}_{2}=\mathcal{O}_{\mathcal{X}}\left(\mathcal{A}_{0}+\mathcal{B}_{3}+\mathcal{C}_{3}+\mathcal{A}_{2}-\mathcal{A}_{1}\right), \\
& \mathcal{L}_{3}=\mathcal{O}_{\mathcal{X}}\left(\mathcal{C}_{2}+\mathcal{A}_{2}-\mathcal{C}_{0}-\mathcal{A}_{3}\right), \\
& \mathcal{L}_{4}=\mathcal{O}_{\mathcal{X}}\left(\mathcal{B}_{2}+\mathcal{C}_{2}-\mathcal{B}_{0}-\mathcal{C}_{3}\right), \\
& \mathcal{L}_{5}=\mathcal{O}_{\mathcal{X}}\left(\mathcal{A}_{2}+\mathcal{B}_{2}-\mathcal{A}_{0}-\mathcal{B}_{3}\right), \\
& \mathcal{L}_{6}=\mathcal{O}_{\mathcal{X}} .
\end{aligned}
$$

By [AO12], for every $t \neq 0$ they restrict to the invertible sheaves $L_{1}, \ldots, L_{6} \in \operatorname{im} \phi_{t}=\operatorname{Pic} \mathcal{X}_{t}$ on a smooth Burniat surface which form an exceptional sequence. By Lemma 5.6, the images of $\mathcal{L}_{i} \mid \mathcal{X}_{0} \in \operatorname{Pic} \mathcal{X}_{0}$ under the map

$$
\phi_{0}: \operatorname{Pic} \mathcal{X}_{0} \rightarrow \operatorname{im} \phi_{0}=\operatorname{im} \phi_{t}=\operatorname{Pic} \mathcal{X}_{t}, \quad t \neq 0
$$

are also L_{1}, \ldots, L_{6}. We claim that $\mathcal{L}_{i} \mid \mathcal{X}_{0}$ also form an exceptional collection.

Indeed, the proof in [AO12] of the fact that L_{1}, \ldots, L_{6} is an exceptional collection on a smooth Burniat surface $\mathcal{X}_{t}(t \neq 0)$ consists of showing that for $i<j$ one has
(1) $\chi\left(L_{i} \otimes L_{j}^{-1}\right)=0$,
(2) $h^{0}\left(L_{i} \otimes L_{j}^{-1}\right)=0$, and
(3) $h^{0}\left(K_{\mathcal{X}_{t}} \otimes L_{i}^{-1} \otimes L_{j}\right)=0$.

The properties (2) and (3) are checked by repeatedly applying (the analogues of) Lemmas 5.8, 5.9, 5.10 until $D \cdot K_{\mathcal{X}_{t}}<0$ (in which case D is obviously not effective).

In our case, one has $\chi\left(\mathcal{X}_{0},\left.\left.\mathcal{L}_{i}\right|_{\mathcal{X}_{0}} \otimes \mathcal{L}_{j}\right|_{\mathcal{X}_{0}} ^{-1}\right)=\chi\left(\mathcal{X}_{t}, \mathcal{L}_{i}\left|\mathcal{X}_{t} \otimes \mathcal{L}_{j}\right|_{\mathcal{X}_{t}}^{-1}\right)=0$ by flatness. Since we proved that Lemmas 5.8, 5.9, 5.10 hold for the surface \mathcal{X}_{0}, and since the Cartier divisor $K_{\mathcal{X}_{0}}$ is nef, the same exact proof for vanishing of h^{0} goes through unchanged. Q.E.D.

Remark 5.11. The semiorthogonal complement \mathcal{A}_{t} of the full triangulated category generated by the sheaves $\left.\left\langle\mathcal{L}_{1}, \ldots, \mathcal{L}_{6}\right\rangle\right|_{\mathcal{X}_{t}}$ is the quite mysterious "quasiphantom". A viable way to understand it could be to understand the degenerate quasiphantom $\mathcal{A}_{0}=\left\langle\mathcal{L}_{1}, \ldots, \mathcal{L}_{6}\right\rangle \left\lvert\, \frac{1}{\mathcal{X}_{t}}\right.$ on the semistable degeneration \mathcal{X}_{0} first. The irreducible components of \mathcal{X}_{0} are three bielliptic surfaces and they are glued nicely. Then one could try to understand \mathcal{A}_{t} as a deformation of \mathcal{A}_{0}.

References

[AO12] Valery Alexeev and Dmitri Orlov, Derived categories of Burniat surfaces and exceptional collections, Math. Annalen, to appear (2012), arXiv:1208.4348.
[AP09] Valery Alexeev and Rita Pardini, Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint (2009), 26pp, arXiv:0901.4431.
[BC11] I. Bauer and F. Catanese, Burniat surfaces I: fundamental groups and moduli of primary Burniat surfaces, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 4976.
[Par91] Rita Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191-213.
[Pet77] C. A. M. Peters, On certain examples of surfaces with $p_{g}=0$ due to Burniat, Nagoya Math. J. 66 (1977), 109-119.

Department of Mathematics, University of Georgia, Athens, GA 30605, USA
E-mail address: valery@math.uga.edu

