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Divisors on Burniat surfaces

Valery Alexeev

Abstract.

In this short note, we extend the results of [Alexeev-Orlov, 2012]
about Picard groups of Burniat surfaces with K2 = 6 to the cases of
2 ≤ K2 ≤ 5. We also compute the semigroup of effective divisors on
Burniat surfaces with K2 = 6. Finally, we construct an exceptional
collection on a nonnormal semistable degeneration of a 1-parameter
family of Burniat surfaces with K2 = 6.
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§ Introduction

This note strengthens and extends several geometric results of the
paper [AO12], joint with Dmitri Orlov, in which we constructed ex-
ceptional sequences of maximal possible length on Burniat surfaces with
K2 = 6. The construction was based on certain results about the Picard
group and effective divisors on Burniat surfaces.

Here, we extend the results about Picard group to Burniat surfaces
with 2 ≤ K2 ≤ 5. We also establish a complete description of the
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semigroup of effective Z-divisors on Burniat surfaces with K2
X = 6. (For

the construction of exceptional sequences in [AO12] only a small portion
of this description was needed.)

Finally, we construct an exceptional collection on a nonnormal semi-
stable degeneration of a 1-parameter family of Burniat surfaces with
K2 = 6.

§1. Definition of Burniat surfaces

In this paper, Burniat surfaces will be certain smooth surfaces of
general type with q = pg = 0 and 2 ≤ K2 ≤ 6 with big and nef canonical
class K which were defined by Peters in [Pet77] following Burniat. They
are Galois Z2

2-covers of (weak) del Pezzo surfaces with 2 ≤ K2 ≤ 6
ramified in certain special configurations of curves.

Recall from [Par91] that a Z2
2-cover π : X → Y with smooth and

projective X and Y is determined by three branch divisors Ā, B̄, C̄ and
three invertible sheaves L1, L2, L3 on the base Y satisfying fundamental
relations L2 ⊗ L3 � L1(Ā), L3 ⊗ L1 � L2(B̄), L1 ⊗ L2 � L3(C̄). These
relations imply that L2

1 � OY (B̄ + C̄), L2
2 � OY (C̄ + Ā), L2

3 � OY (Ā+
B̄).

One has X = SpecY A, where the OY -algebra A is OY ⊕⊕3
i=1L

−1
i .

The multiplication is determined by three sections in

Hom(L−1
i ⊗ L−1

j , L−1
k ) = H0(Li ⊗ Lj ⊗ L−1

i ),

where {i, j, k} is a permutation of {1, 2, 3}, i.e. by sections of the sheaves
OY (Ā), OY (B̄), OY (C̄) vanishing on Ā, B̄, C̄.

Burniat surfaces with K2 = 6 are defined by taking Y to be the
del Pezzo surface of degree 6, i.e. the blowup of P2 in three noncollinear
points, and the divisors Ā =

∑3
i=0 Āi, B̄ =

∑3
i=0 B̄i, C̄ =

∑3
i=0 C̄i to be

the ones shown in red, blue, and black in the central picture of Figure 1
below.

The divisors Āi, B̄i, C̄i for i = 0, 3 are the (−1)-curves, and those for
i = 1, 2 are 0-curves, fibers of rulings Bl3 P

2 → P1. The del Pezzo surface
also has two contractions to P2 related by a quadratic transformation,
and the images of the divisors form a special line configuration on either
P2. We denote the fibers of the three rulings f1, f2, f3 and the preimages
of the hyperplanes from P2’s by h1, h2.

Burniat surfaces with K2 = 6 − k, 1 ≤ k ≤ 4 are obtained by
considering a special configuration in Figure 1 for which some k triples
of curves, one from each group {Ā1, Ā2}, {B̄1, B̄2}, {C̄1, C̄2}, meet at
common points Ps. The corresponding Burniat surface is the Z2

2-cover
of the blowup of Bl3 P

2 at these points.
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Fig. 1. Burniat configuration on Bl3 P
2

Up to symmetry, there are the following cases, see [BC11]:

(1) K2 = 5: P1 = Ā1B̄1C̄1 (our shortcut notation for Ā1∩B̄1∩C̄1).
(2) K2 = 4, nodal case: P1 = Ā1B̄1C̄1, P2 = Ā1B̄2C̄2.
(3) K2 = 4, non-nodal case: P1 = Ā1B̄1C̄1, P2 = Ā2B̄2C̄2.
(4) K2 = 3: P1 = Ā1B̄1C̄2, P2 = Ā1B̄2C̄1, P3 = Ā2B̄1C̄1.
(5) K2 = 2: P1 = Ā1B̄1C̄1, P2 = Ā1B̄2C̄2, P3 = Ā2B̄1C̄2, P4 =

Ā2B̄2C̄1.

Notation 1.1. We generally denote the divisors upstairs by D and
the divisors downstairs by D̄ for the reasons which will become clear
from Lemmas 2.1, 3.1. We denote Y = Bl3 P

2 and ε : Y ′ → Y is the
blowup map at the points Ps. The exceptional divisors are denoted by
Ēs.

The curves Āi, B̄i, C̄i are the curves on Y , the curves Ā′
i, B̄

′
i, C̄

′
i are

their strict preimages under ε. (So that ε∗(Ā1) = Ā′
1+E1 in the case (1),

etc.) The divisors A′
i, B

′
i, C

′
i, Es are the curves (with reduced structure)

which are the preimages of the latter curves and Ēs under π′ : X ′ → Y ′.
The surface X ′ is the Burniat surface with K2 = 6− k.

The building data for the Z2
2-cover π′ : X ′ → Y ′ consists of three

divisors A′ =
∑

Ā′
i, B

′ =
∑

B̄′
i, C

′ =
∑

C̄ ′
i. It does not include the

exceptional divisors Ēs, they are not in the ramification locus.
One has π′∗(Ā′

i) = 2A′
i, π′∗(B̄′

i) = 2B′
i, π′∗(C̄ ′

i) = 2C ′
i, and

π′∗(Ēs) = Es.

For the canonical class, one has 2KX′ = π∗(−KY ′). Indeed, from
Hurwitz formula 2KX′ = π∗(2KY ′ + R′), where R′ = A′ + B′ + C ′.
Therefore, the above identity is equivalent to R′ = −3KY ′ . This holds
on Y = Bl3 P

2, and

R′ = ε∗R− 3
∑

Ēs = ε∗(−3KY )− 3
∑

Ēs = −3KY ′ .
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For the surfaces with K2 = 6, 5 and 4 (non-nodal case), −KY and
KX are ample. For the remaining cases, includingK2 = 2, 3, the divisors
−KY and KX are big, nef, but not ample. Each of the curves L̄j (among
Āi, B̄i, C̄i) through two of the points Ps is a (−2)-curve (a P1 with square
−2) on the surface Y . (For example, for the nodal case with K2 = 4
L̄1 = Ā1 is such a line). Its preimage, a curve Lj on X, is also a (−2)-
curve. One has −KY L̄j = KXLj = 0, and the curve Lj is contracted to
a node on the canonical model of X.

Note that both of the cases with K2 = 2 and 3 are nodal.

§2. Picard group of Burniat surfaces with K2 = 6

In this section, we recall two results of [AO12].

Lemma 2.1 ([AO12], Lemma 1). The homomorphism D̄ �→ 1
2π

∗(D̄)

defines an isomorphism of integral lattices 1
2π

∗ : PicY → PicX/Tors.

Under this isomorphism, one has 1
2π

∗(−KY ) = KX .

This lemma allows one to identify Z-divisors D̄ on the del Pezzo
surface Y with classes of Z-divisorsD onX up to torsion, equivalently up
to numerical equivalence. This identification preserves the intersection
form.

The curves A0, B0, C0 are elliptic curves (and so are the curves A3 �
A0, etc.). Moreover, each of them comes with a canonical choice of an
origin, denoted P00, which is the point of intersection with the other
curves which has a distinct color, different from the other three points.
(For example, for A0 one has P00 = A0 ∩B3.)

On the elliptic curve A0 one also defines P10 = A0 ∩ C3, P01 =
A0 ∩ C1, P11 = A0 ∩ C2. This gives the 4 points in the 2-torsion group
A0[2]. We do the same for B0, C0 cyclically.

Theorem 2.2. [[AO12], Theorem 1] One has the following:

(1) The homomorphism

φ : PicX → Z× PicA0 × PicB0 × PicC0

L �→ (d(L) = L ·KX , L|A0 , L|B0 , L|C0)

is injective, and the image is the subgroup of index 3 of

Z× (Z.P00 +A0[2])× (Z.P00 +B0[2])× (Z.P00 + C0[2]) � Z4 × Z6
2.

consisting of the elements with d + a00 + b00 + c00 divisible by
3. Here, we denote an element of the group Z.P00 + A0[2] by
(a00 a10a

2
0), etc., where a00 = degL|A0 , etc.
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(2) φ induces an isomorphism Tors(PicX) → A0[2]×B0[2]×C0[2].
(3) The curves Ai, Bi, Ci, 0 ≤ i ≤ 3, generate PicX.

This theorem provides one with explicit coordinates for the Picard
group of a Burniat surface X, convenient for making computations.

§3. Picard group of Burniat surfaces with 2 ≤ K2 ≤ 5

In this section, we extend the results of the previous section to the
cases 2 ≤ K2 ≤ 5. First, we show that Lemma 2.1 holds verbatim if
3 ≤ K2 ≤ 5.

Lemma 3.1. Assume 3 ≤ K2 ≤ 5. Then the homomorphism
D̄ �→ 1

2π
′∗(D̄) defines an isomorphism of integral lattices 1

2π
′∗ : PicY ′ →

PicX ′/Tors, and the inverse map is 1
2π

′
∗. Under this isomorphism, one

has 1
2π

′∗(−KY ′) = KX′ .

Proof. The proof is similar to that of Lemma 2.1. The map 1
2π

∗ es-
tablishes an isomorphism ofQ-vector spaces (PicY ′)⊗Q and (PicX ′)⊗Q

together with the intersection product because:

(1) Since hi(OX′) = hi(OY ′) = 0 for i = 1, 2 and K2
X′ = K2

Y ′ , by
Noether’s formula the two vector spaces have the same dimen-
sion.

(2) 1
2π

′∗D̄1 · 1
2π

′∗D̄2 = 1
4π

′∗(D̄1 · D̄2) = D̄1D̄2.

A crucial observation is that 1
2π

′∗ sends PicY ′ to integral classes. To

see this, it is sufficient to observe that PicY ′ is generated by divisors D̄
which are in the ramification locus and thus for which D = 1

2π
′∗(D̄) is

integral.
Consider for example the case of K2 = 5. One has PicY ′ =

ε∗(PicY )⊕ZE. The group ε∗(PicY ) is generated by Ā′
0, B̄

′
0, C̄

′
0, Ā

′
3, B̄

′
3,

C̄ ′
3. Since ε∗(Ā1) = Ā′

1 + Ē1, the divisor class Ē1 lies in group spanned
by Ā′

1 and ε∗(PicY ). So we are done.
In the nodal case K2 = 4, Ē1 is spanned by B̄′

1 and ε∗(PicY ), Ē2 by
B̄′

2 and ε∗(PicY ); exactly the same for the non-nodal case. In the case
K2 = 3, Ē1 is spanned by C̄ ′

2 and ε∗(PicY ), Ē2 by B̄′
2 and ε∗(PicY ),

Ē3 by Ā′
2 and ε∗(PicY ).

Therefore, 1
2π

′∗(PicY ′) is a sublattice of finite index in PicX ′/Tors.
Since the former lattice is unimodular, they must be equal.

One has 1
2π

′
∗ ◦ 1

2π
′∗(D̄) = D̄, so the inverse map is 1

2π
′
∗. Q.E.D.

Remark 3.2. I thank Stephen Coughlan for pointing out that the
above proof that PicY ′ is generated by the divisors in the ramification
locus does not work in the K2 = 2 case. In this case, each of the
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lines Āi, B̄i, C̄i, i = 1, 2 contains exactly two of the points P1, P2, P3.
What we can see easily is the following: there exists a free abelian group
H � Z8 which can be identified with a subgroup of index 2 in PicY ′

and a subgroup of index 2 in PicX ′/Tors.

Consider a Z-divisor (not a divisor class) on Y ′

D̄ = a0Ā
′
0 + . . .+ c3C̄

′
3 +

∑

s

esĒs

such that the coefficients es of Ēs are even. Then we can define a
canonical lift

D = a0A0 + . . .+ c3C3 +
∑

s

1

2
esEs,

which is a divisor on X ′, and numerically one has D = 1
2π

′∗(D̄). Note

that D̄ is linearly equivalent to 0 iff D is a torsion.

By Theorem 2.2, for a Burniat surface with K2 = 6, we have an
identification

V := Tors PicX = A0[2]×B0[2]× C0[2] = Z2
2 × Z2

2 × Z2
2.

It is known (see [BC11]) that for Burniat surfaces with 2 ≤ K2 ≤ 6

one has Tors PicX � ZK2

2 with the exception of the case K2 = 2 where
Tors PicX � Z3

2. We would like to establish a convenient presentation
for the Picard group and its torsion for these cases which would be
similar to the above.

For the above definiiton, recall the standard coordinates on V given
at the beginning of Section 2.

Definition 3.3. We define the following vectors, forming a basis in

the Z2-vector space V : �A1 = 00 10 00, �A2 = 00 11 00, �B1 = 00 00 10,
�B2 = 00 00 11, �C1 = 10 00 00, �C2 = 11 00 00.

Further, for each point Ps = AiBjCk we define a vector �Ps = �Ai +
�Bj + �Ck.

Definition 3.4. We also define the standard bilinear form V ×V →
Z2: (x1, . . . , x6) · (y1, . . . , y6) =

∑6
i=1 xiyi.

Lemma 3.5. The restriction map ρ : Tors Pic(X ′) → A0[2]×B0[2]×
C0[2] is injective, and the image is identified with the orthogonal com-

plement of the subspace generated by the vectors �Ps.
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Proof. The restrictions of the following divisors to V give the subset
B0[2]:

0, A1−A2 = 00 10 00, A1−A3−C0 = 00 11 00, A2−A3−C0 = 00 01 00.

Among these, the divisors containing A1 are precisely those for which the

vector v ∈ B0[2] ⊂ V satisfies v · �A1 = 1. Repeating this verbatim, one

has the same results for the divisors A2, . . . , C2 and vectors �A2, . . . , �C2.
Let D̄ be a linear combination of the divisors Ā1−Ā2, Ā1−Ā3−C̄0,

Ā2−Ā3−C̄0, and the corresponding divisors for C0[2], A0[2]. Define the
vector v(D) ∈ V to be the sum of the corresponding vectors A1−A2 ∈ V ,
etc.

Now assume that the vector v(D) satisfies the condition v(D)· �Ps = 0
for all the points Ps. Then the coefficients of the exceptional divisors Ēs

in the divisor ε∗(D̄) on Y ′ are even (and one can also easily arrange them
to be zero since the important part is working modulo 2). Therefore, a
lift of ε∗(D̄) to X ′ is well defined and is a torsion in Pic(X ′).

This shows that the image of the homomorphism ρ : Tors PicX ′ →
V contains the space 〈�Ps〉⊥. But this space already has the correct

dimension. Indeed, for 3 ≤ K2 ≤ 5 the vectors �Ps are linearly indepen-

dent, and for K2 = 2 the vectors �P1 = �A1+ �B1+ �C1, �P2 = �A1+ �B2+ �C2,
�P3 = �A2+ �B1+ �C2, �P4 = �A2+ �B2+ �C1 are linearly dependent (their sum
is zero) and span a subspace of dimension 3; thus the orthogonal comple-
ment has dimension 3 as well. Therefore, ρ is a bijection of Tors Pic(X ′)
onto 〈�Ps〉⊥. Q.E.D.

Theorem 3.6. Let 3 ≤ K2 ≤ 5. Then one has the following:

(1) The homomorphism

φ : PicX ′ → Z1+k × PicA′
0 × PicB′

0 × PicC ′
0

L �→ (d(L) = L ·KX′ , L · 1
2
Es, L|A′

0
, L|B′

0
, L|C′

0
)

is injective, and the image is the subgroup of index 3 · 2n in
Z4+k×A′

0[2]×B′
0[2]×C ′

0[2], where n = 6−K2 for 3 ≤ K2 ≤ 6
and n = 3 for K2 = 2.

(2) φ induces an isomorphism Tors(PicX ′) ∼−→〈�Ps〉⊥ ⊂ A′
0[2] ×

B′
0[2]× C ′

0[2].
(3) The curves A′

i, B
′
i, C

′
i, 0 ≤ i ≤ 3, generate PicX ′.

Proof. (2) is (3.5) and (1) follows from it. For (3), note that
PicX ′/Tors = PicY ′ is generated by the divisors A′

i, B
′
i, C

′
i and that

the proof of the previous theorem shows that Tors PicX ′ is generated
by certain linear combinations of these divisors. Q.E.D.
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§4. Effective divisors on Burniat surfaces with K2 = 6

Since 1
2π

∗ and 1
2π∗ provide isomorphisms between the Q-vector

spaces (PicY ) ⊗ Q and (PicX) ⊗ Q, it is obvious that the cones of
effective Q- or R-divisors on X and Y are naturally identified. In this
section, we would like to prove the following description of the semigroup
of effective Z-divisors:

Theorem 4.1. The curves Ai, Bi, Ci, 0 ≤ i ≤ 3, generate the semi-
group of effective Z-divisors on Burniat surface X.

We start with several preparatory lemmas.

Lemma 4.2. The semigroup of effective Z-divisors on Y is gener-
ated by the (−1)-curves Ā0, B̄0, C̄0, Ā3, B̄3, C̄3.

Proof. Since −KY is ample, the Mori-Kleiman cone NE1(Y ) of
effective curves in (PicY ) ⊗ Q is generated by extremal rays, i.e. the
(−1)-curves Ā0, B̄0, C̄0, Ā3, B̄3, C̄3. We claim that moreover the semi-
group of integral points in NE1(Y ) is generated by these points, i.e.
the polytope Q = NE1(Y ) ∩ {C | −KY C = 1} is totally generating.
The vertices of this polytope in R3 are (−1, 0, 0), (0,−1, 0), (0, 0,−1),
(0, 1, 1), (1, 0, 1), (1, 1, 0), and the lattice PicY = Z4 is generated by
them. It is a prism over a triangular base, and it is totally generating
because it can be split into 3 elementary simplices. Q.E.D.

Lemma 4.3. The semigroup of nef Z-divisors on Y is generated by
f1, f2, f3, h1, and h2.

Proof. Again, for the Q-divisors this is obvious by MMP: a divisor
D̄ is nef iff D̄F̄ ≥ 0 for F̄ ∈ {Ā0, B̄0, C̄0, Ā3, B̄3, C̄3}, and the extremal
nef D̄ divisors correspond to contractions Y → Y ′ with rkPicY ′ = 1.
Another proof: the extremal nef divisors correspond to the faces of the
triangular prism from the proof of Lemma 4.2, and there are 5 of them:
3 sides, top, and the bottom.

Now let D̄ ∈ PicY be a nonnegative linear combination D̄ =∑
aifi + bjhj with ai, bj ∈ Q and let us assume that a1 > 0 (resp.

b1 > 0). Since the intersections of f1 (resp. h1) with the curves F above
are 0 or 1, it follows that D̄ − f1 (resp. D̄ − h1) is also nef. We finish
by induction on deg D̄ = −KY D̄.

Q.E.D.

We write the divisors D̄ in PicY using the symmetric coordinates

(d; a00, b
0
0, c

0
0; a

0
3, b

0
3, c

0
3), where d = D̄(−KY ), a00 = D̄Ā0, . . . , c

0
3 = D̄C̄3.
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Note that, as in Theorem 2.2, PicY and can be described either
as the subgroup of Z4 with coordinates (d; a00, b

0
0, c

0
0) satisfying the con-

gruence 3|(d+ a00 + b00 + c00), or as the subgroup of Z4 with coordinates
(d; a03, b

0
3, c

0
3) satisfying the congruence 3|(d+ a03 + b03 + c03).

Lemma 4.4. The function pa(D̄) =
D̄(D̄ +KY )

2
+ 1 on the set of

nef Z-divisors on Y is strictly positive, with the exception of the following
divisors, up to symmetry:

(1) (2n;n, 0, 0;n, 0, 0) for n ≥ 1, one has pa = −(n− 1)
(2) (2n;n− 1, 1, 0;n− 1, 1, 0) for n ≥ 1, one has pa = 0.
(3) (2n + 1;n, 1, 1;n − 1, 0, 0) and (2n + 1;n − 1, 0, 0;n, 1, 1) for

n ≥ 1, pa = 0.
(4) (6; 2, 2, 2; 0, 0, 0) and (6; 0, 0, 0; 2, 2, 2), pa = 0.

The divisors in (1) are in the linear system |nfi|, where fi is a fiber of
one of the three rulings Y → P1. The divisors in (2) and (3) are obtained
from these by adding a section. The divisors in (4) belong to the linear
systems |2h1| and |2h2|.

Proof. Let D̄ be a nef Z-divisor. By Lemma 4.3, we can write
D̄ =

∑
nifi +mjhj with ni,mj ∈ Z≥0. Let us say n1 > 0. If D̄ = n1f1

then pa(D̄) = −(n1 − 1). Otherwise, n1f1 + g ≤ D̄, where g = fj ,
j �= 1, or g = hj . Then using the elementary formula pa(D̄1 + D̄2) =
pa(D̄1) + pa(D̄2) + D̄1D̄2 − 1, we see that pa(n1f1 + g) = 0. Continuing
this by induction and adding more fj ’s and hj ’s, one easily obtains that
pa(D̄) > 0 with the only exceptions listed above. Starting with m1h1

instead of n1f1 works the same. Q.E.D.

Corollary 4.5. The function χ(D) =
D(D −KX)

2
+ 1 on the set

of nef Z-divisors on Y is strictly positive, with the same exceptions as
above.

Proof. Indeed, since χ(OX) = 1, one has χ(D) = pa(D̄). Q.E.D.

Lemma 4.6. Assume that D̄ �= 0 is a nef divisor on X with pa(D̄) >
0. Then the divisor D̄ +KY is effective.

Proof. One has χ(D̄+KY ) =
(D̄ +KY )D̄

2
+1 = pa(D̄) > 0. Since

h2(D̄ +KY ) = h0(−D̄) = 0, this implies that h0(D̄) > 0. Q.E.D.

Definition 4.7. We say that an effective divisor D on X is in mini-
mal form if DF ≥ 0 for the elliptic curves F ∈ {A0, B0, C0, A3, B3, C3},
and for the curves among those that satisfy DF = 0, one has D|F = 0
in F [2].
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If either of these conditions fails then D − F must also be effective
since F is then in the base locus of |D|. A minimal form is obtained
by repeating this procedure until it stops or one obtains a divisor of
negative degree, in which case D obviously was not effective. We do not
claim that a minimal form is unique.

Proof of Thm. 4.1. Let D be an effective divisor on X. We have
to show that it belongs to the semigroup S = 〈Ai, Bi, Ci, 0 ≤ i ≤ 3〉.

Step 1: One can assume that D is in minimal form. Obviously.

Step 2.: The statement is true for d ≤ 6. There are finitely many
cases here to check. We checked them using a computer script. For
each of the divisors, putting it in minimal form makes it obvious that
it is either in S or it is not effective because it has negative degree,
with the exception of the following three divisors, in the notations of
Theorem 2.2: (3; 1 10 1 10 1 10), (3; 0 00 0 00 0 00), (3; 1 00 1 00 1 00).
The first two divisors are not effective by [AO12, Lemma 5]. The third
one is not effective because it is KX and h0(KX) = pg(X) = 0.

Step 3: The statement is true for nef divisors of degree d ≥ 7 which
are not the exceptions listed in Lemma 4.4.

One has KX(KX −D) < 0, so h0(KX −D) = 0 and the condition
χ(D) > 0 implies that D is effective. We are going to show that D is in
the semigroup S.

Consider the divisor D−KX which modulo torsion is identified with
the divisor D̄+KY on Y . By Lemmas 4.6 and 4.2, D̄+KY is a positive
Z-combination of Ā0, B̄0, C̄0, Ā3, B̄3, C̄3. This means that

D=KX+(a positive combination of A0, B0, C0, A3, B3, C3)+(torsion ν)

A direct computer check shows that for any torsion ν the divisor KX +
F + ν is in S for a single curve F ∈ {A0, B0, C0, A3, B3, C3}. (In fact,
for any ν �= 0 the divisor KX + ν is already in S.) Thus,

D − (a nonnegative combination of A0, B0, C0, A3, B3, C3) ∈ S
=⇒ D ∈ S.

Step 4: The statement is true for nef divisors in minimal form of
degree d ≥ 7 which are the exceptions listed in Lemma 4.4.

We claim that any such divisor is in S, and in particular is effective.
For d = 7, 8 this is again a direct computer check. For d ≥ 9, the claim
is true by induction, as follows: If D is of exceptional type (1,2, or 3)
of Lemma 4.4 then D − C1 has degree d′ = d − 2 and is of the same
exceptional type. This concludes the proof. Q.E.D.
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Remark 4.8. Note that we proved a little more than what Theo-
rem 4.1 says. We also proved that every divisor D in minimal form and
of degree ≥ 7 is effective and is in the semigroup S.

Remark 4.9. For Burniat surfaces with 2 ≤ K2 ≤ 5, a natural
question to ask is whether the semigroup of effective Z-divisors is gen-
erated by the preimages of the (−1)- and (−2) curves on Y ′. These
include the divisors A′

i, B
′
i, C

′
i and Es but in some cases there are other

curves, too.

§5. Exceptional collections on degenerate Burniat surfaces

Degenerations of Burniat surfaces with K2
X = 6 were described in

[AP09]. Here, we will concentrate on one particularly nice degeneration
depicted in Figure 2.

Fig. 2. One-parameter degeneration of Burniat surfaces

It is described as follows. One begins with a one-parameter family
f : (Y ×A1,

∑3
i=0 Āi+ B̄i+ C̄i) → A1 of del Pezzo surfaces, in which the

curves degenerate in the central fiber f−1(0) to a configuration shown
in the left panel. The surface Y is obtained from Y ×A1 by two blowups
in the central fiber, along the smooth centers Ā0 and then (the strict
preimage of) C̄3. The resulting 3-fold Y is smooth, the central fiber
Y0 = Bl3 P

2 ∪ Bl2 P
2 ∪ (P1 × P1) is reduced and has normal crossings.

This central fiber is shown in the third panel.
The log canonical divisor KY+ 1

2

∑3
i=0(Āi+B̄i+C̄i) is relatively big

and nef over A1. It is a relatively minimal model. The relative canonical
model Ycan is obtained from Y by contracting three curves. The 3-fold
Ycan is singular at three points and not Q-factorial. Its central fiber
Ycan
0 is shown in the last, fourth panel.
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The 3-folds π : X → Y and πcan : X can → Ycan are the corresponding
Z2
2-Galois covers. The 3-fold X is smooth, and its central fiber X0 is

reduced and has normal crossings. It is a relatively minimal model: KX
is relatively big and nef.

The 3-fold X can is obtained from X by contracting three curves. Its
canonical divisor KX can is relatively ample. It is a relative canonical
model. We note that X is one of the 6 relative minimal models X (k),
k = 1, . . . , 6, that are related by flops.

Let U ⊂ A1 be the open subset containing 0 and all t �= 0 for which
the fiber Xt is smooth, and let XU = X ×A1 U . The aim of this section
is to prove the following:

Theorem 5.1. Then there exists a sequence of line bundles L1, . . . ,
L6 on XU whose restrictions to any fiber (including the nonnormal semi-
stable fiber X0) form an exceptional collection of line bundles.

Remark 5.2. It seems to be considerably harder to construct an
exceptional collection on the surface X can

0 , the special fiber in a singular
3-fold X can. And perhaps looking for one is not the right thing to do. A
well-known result is that different smooth minimal models X (k) related
by flops have equivalent derived categories. In the same vein, in our

situation the central fibers X (k)
0 , which are reduced reducible semistable

varieties, should have the same derived categories. The collection we
construct works the same way for any of them.

Notation 5.3. On the surface X0, we have 12 Cartier divisors
Ai, Bi, Ci, i = 0, 1, 2, 3. The “internal” divisors Ai, Bi, Ci, i = 1, 2
have two irreducible components each. Of the 6 “boundary” divisors,
A0, A3, C0 are irreducible, and B0 = B′

0 + B′′
0 , B3 = B′

3 + B′′
3 , C3 =

C ′
3 + C ′′

3 are reducible.
Our notation for the latter divisors is as follows: the curve C ′

3 is
a smooth elliptic curve (on the bottom surface (Y)0 the corresponding
curve has 4 ramification points), and the curve C ′′

3 is isomorphic to
P1 (on the bottom surface the corresponding curve has 2 ramification
points).

For consistency of notation, we also set A′
0 = A0, A

′
3 = A3, C

′
0 = C0.

Definition 5.4. Let ψ = ψC3 : C3 → C ′
3 be the projection which is

an isomorphism on the component C ′
3 and collapses the component C ′′

3

to a point.
We have natural norm map ψ∗ = (ψC3)∗ : PicC3 → PicC ′

3. Indeed,
every line bundle on the reducible curve C3 can be represented as a
Cartier divisor OC3(

∑
niPi), where Pi are nonsingular points. Then we
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define
ψ∗

(OC3(
∑

niPi)
)
= OC′

3
(
∑

niψ(Pi)).

Since the dual graph of the curve C3 is a tree, one has Pic0 C3 = Pic0 C ′
3

and PicC3 = Pic0 C ′
3 ⊕ Z2.

We also have similar morphisms ψB0 , ψB3 and norm maps for the
other two reducible curves.

Definition 5.5. We define a map φC3 : PicX0 → PicC ′
3 as the

composition of the restriction to C3 and the norm map ψ∗ : C3 → C ′
3.

We also have similar morphisms φB0 , φB3 for the other two reducible
curves. For the irreducible curves A0, A3, C0 the corresponding maps
are simply the restriction maps on Picard groups.

For the following Lemma, compare Theorem 2.2 above.

Lemma 5.6. Consider the map

φ0 : PicX0 → Z⊕ PicA′
0 ⊕ PicB′

0 ⊕ PicC ′
0

defined as D �→ D ·KX0 in the first component and the maps φA0 , φB0 ,
φC0 in the other components. Then the images of the Cartier divisors
Ai, Bi, Ci, i = 0, 1, 2, 3 are exactly the same as for a smooth Burniat
surface Xt, t �= 0.

Proof. Immediate check. Q.E.D.

Definition 5.7. We will denote this image by imφ0. One has
imφ0 � Z4 ⊕ Z6

2. We emphasize that imφ0 = imφt = PicXt, where
Xt is a smooth Burniat surface.

Lemma 5.8. Let D be an effective Cartier divisor D on the surface
X0. Suppose that D ·Ai < 0 for i = 0 or i = 3. Then the Cartier divisor
D −Ai is also effective. (Similarly for Bi, Ci.)

Proof. For an irreducible divisor this is immediate, so let us do it for
the divisor C3 = C ′

3 + C ′′
3 which spans two irreducible components, say

X ′,X ′′ of the surface X0 = X ′ ∪X ′′ ∪X ′′′. Let D′ = D|X′ , D′′ = D|X′′ ,
D′′′ = D|X′′′ . Then

D · C3 = (D′ · C ′
3)X′ + (D′′ · C ′′

3 )X′′ ,

where the right-hand intersections are computed on the smooth irre-
ducible surfaces. One has (C ′

3)
2
X′ = 0 and (C ′′

3 )
2
X′′ = −1. Therefore,

(D′ · C ′
3)X′ ≥ 0. Thus, D · C3 < 0 implies that (D′′ · C ′′

3 )X′′ < 0. Then
C ′′

3 must be in the base locus of the linear system |D′′| on the smooth
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surface X ′′. Let n > 0 be the multiplicity of C ′′
3 in D′′. Then the divisor

D′′ − nC ′′
3 is effective and does not contain C ′′

3 .
By what we just proved, D must contain nC ′′

3 . Thus, it passes
through the point P = C ′

3 ∩C ′′
3 and the multiplicity of the curve (D′)X′

at P is ≥ n, since D is a Cartier divisor. Suppose that D does not
contain the curve C ′

3. Then (D′ · C ′
3)X′ ≥ n, and

D · C3 = (D′ · C ′
3)X′ + (D′′ · C ′′

3 )X′′ ≥ n+ (−n) = 0,

which provides a contradiction. We conclude that D contains C ′
3 as well,

and so D − C3 is effective. Q.E.D.

Lemma 5.9. Let D be an effective Cartier divisor D on the surface
X0. Suppose that D ·Ai = 0 for i = 0, 3 but φAi(D) �= 0 in PicAi. Then
the Cartier divisor D −Ai is also effective. (Similarly for Bi, Ci.)

Proof. We use the same notations as in the proof of the previous
lemma. Since D′ is effective, one has (D′ · C ′

3)X′ ≥ 0.
If (D′′ · C ′′

3 )X′′ < 0 then, as in the above proof let n > 0 be the
multiplicity of C ′′

3 in D′′. Then either D′ contains C ′
3 (and so D contains

C3 as claimed) or: (D′′ · C ′′
3 )X′′ = −n, (D′ · C ′

3)X′ = n, D′′ − nC ′′
3 is

disjoint from C ′′
3 and D′ intersects C ′

3 only at the unique point P =
C ′

3 ∩ C ′′
3 . But then φC3(D) = 0 in PicC ′

3, a contradiction.
If (D′′ · C ′′

3 )X′′ = 0 but D′′ − nC ′′
3 is effective for some n > 0, the

same argument gives DC3 > 0, so we get an even easier contradiction.
Finally, assume that (D′ · C ′

3)X′ = (D′′ · C ′′
3 )X′′ = 0 and D′′ does

not contain C ′′
3 . By assumption, we have D′ · C ′

3 = 0 but D′|C′
3
�= 0 in

PicC ′
3. This implies that D′ − C ′

3 is effective and that D contains the
point P = C ′

3 ∩C ′′
3 . But then (D′′ ·C ′′

3 )X′′ > 0. Contradiction. Q.E.D.

The following lemma is the precise analogue of [AO12, Lemma 5]
(Lemma 4.5 in the arXiv version).

Lemma 5.10. Let F ∈ PicX0 be an invertible sheaf such that

imφ0(F ) = (3; 1 10, 1 10, 1 10) ∈ Z⊕ PicA0 ⊕ PicB0 ⊕ C0

Then h0(X0, F ) = 0.

Proof. The proof of [AO12, Lemma 5], used verbatim together with
the above Lemmas 5.8, 5.9 works. Crucially, the three “corners” A0∩C3,
B0 ∩A3, C0 ∩B3 are smooth points on X0. Q.E.D.

Proof of Thm. 5.1. We define the sheaves L1, . . . ,L6 by the same
linear combinations of the Cartier divisors Ai,Bi, Ci as in the smooth
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case [AO12, Rem.2] (Remark 4.4 in the arXiv version), namely:

L1 = OX (A3 + B0 + C0 +A1 −A2),

L2 = OX (A0 + B3 + C3 +A2 −A1),

L3 = OX (C2 +A2 − C0 −A3),

L4 = OX (B2 + C2 − B0 − C3),
L5 = OX (A2 + B2 −A0 − B3),

L6 = OX .

By [AO12], for every t �= 0 they restrict to the invertible sheaves
L1, . . . , L6 ∈ imφt = PicXt on a smooth Burniat surface which form
an exceptional sequence. By Lemma 5.6, the images of Li|X0 ∈ PicX0

under the map

φ0 : PicX0 � imφ0 = imφt = PicXt, t �= 0.

are also L1, . . . , L6. We claim that Li|X0 also form an exceptional col-
lection.

Indeed, the proof in [AO12] of the fact that L1, . . . , L6 is an ex-
ceptional collection on a smooth Burniat surface Xt (t �= 0) consists of
showing that for i < j one has

(1) χ(Li ⊗ L−1
j ) = 0,

(2) h0(Li ⊗ L−1
j ) = 0, and

(3) h0(KXt ⊗ L−1
i ⊗ Lj) = 0.

The properties (2) and (3) are checked by repeatedly applying (the ana-
logues of) Lemmas 5.8, 5.9, 5.10 until D ·KXt < 0 (in which case D is
obviously not effective).

In our case, one has χ(X0,Li|X0 ⊗Lj |−1
X0

) = χ(Xt,Li|Xt ⊗Lj |−1
Xt

) = 0
by flatness. Since we proved that Lemmas 5.8, 5.9, 5.10 hold for the
surface X0, and since the Cartier divisor KX0 is nef, the same exact
proof for vanishing of h0 goes through unchanged. Q.E.D.

Remark 5.11. The semiorthogonal complement At of the full tri-
angulated category generated by the sheaves 〈L1, . . . ,L6〉|Xt is the quite
mysterious “quasiphantom”. A viable way to understand it could be to
understand the degenerate quasiphantom A0 = 〈L1, . . . ,L6〉|⊥Xt

on the
semistable degeneration X0 first. The irreducible components of X0 are
three bielliptic surfaces and they are glued nicely. Then one could try
to understand At as a deformation of A0.
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