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On classes in the classification of curves on rational 
surfaces with respect to logarithmic plurigenera 

Abstract. 

Hirotaka Ishida 

Dedicated to Professor Shigeru Iitaka 
on his seventieth birthday 

Let C be a nonsingular curve on a rational surface S. In the case 
when the logarithmic 2 genus of C is equal to two, Iitaka proved that 
the geometric genus of C is either zero or one and classified such pairs 
(S, C). In this article, we prove the existence of these classes with geo­
metric genus one in Iitaka's classification. The curve in the class is a 
singular curve on lP'2 or the Hirzebruch surface ~d and its singularities 
are not in general position. For this purpose, we provide the arrange­
ment of singular points by considering invariant curves under a certain 
automorphism of ~d· 

§1. Introduction 

In this article, we study the existence of curves on rational surfaces 
which appear in the classification of curves with respect to logarithmic 
plurigenera. Here, we use the word curves and surfaces to mean irre­
ducible varieties of dimension one and two, respectively. First, we recall 
basic notions of birational geometry of plane curves (see [5], [6] and [7]). 

Let S be a complex surface and C a curve on S. A pair (S, C) is 
birationally equivalent to another pair (W, D) if there exists a birational 
map h: S --:r W such that the proper image of C by h coincides with D. 
A pair (S, C) is called a nonsingular pair if S and C are nonsingular. 
Let Ks be the canonical divisor of S. For a nonsingular pair (S, C) and 
a positive integer m, we denote the dimension of H 0 (S, Os(m(Ks +C))) 
by Pm[C] and call it the logarithmic m genus of (S, C). It is easy to see 
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that Pm[C] is birational invariant of a pair (S, C). Given a pair (W, D), 
there exists a nonsingular pair (S, C) which is birationally equivalent to 
(W, D). We define Pm[D] to be Pm[C]. If we assume that Sis rational, 
then Pl[C] coincides with the geometric genus g(C) of C. 

By using the value of Pl[C] = g(C), we obtain the classification 
of curves with respect to the topological type of C. We infer that the 
invariant Pm[C] is useful to characterize algebraic curves on rational 
surfaces. For example, we know the following: 

Theorem 1. (Coolidge [1] (cf. Iitaka [7, Theorem 1])) LetS be a 
complex rational surface and C a curve on S. If P2[C] = 0, then (S, C) 
is birationally equivalent to (lP'2 , L), where L is a projective line. 

A singular point of multiplicity m is called a m-ple point. 

Theorem 2. (Coolidge [1] (cf. Iitaka [7, Theorem 1])) LetS be a 
complex rational surface and C a curve on S. If P2[C] = 1, then (S, C) 
is birationally equivalent to one of the following pairs: 
(i) (lP'2 , C1), and 
(ii) (lP'2 ' c:,.) (m ~ 2), 
where C1 is an elliptic curve and c:,. is a plane curve of degree 3m with 
nine m-ple points and one double point. (These points may be infinitely 
near points.) 

From the above theorems, we see that pairs (S, C) with P2 [C] :::; 1 
are classified into three types. 

Let prd: ~d -t lP'1 be the d-th Hirzebruch surface,~= the minimal 
section of ~d and F a fiber of prd. The symbol '"" means the linear 
equivalence between divisors. 

Iitaka classified pairs (S, C) with P 2 [C] = 2 into ten classes. 

Theorem 3. (Iitaka [8, Theorems 4 and 10], [7, pp. 290-291]) Let 
S be a complex rational surface and C a curve on S. If P2 [C] = 2, then 
g(C) is either 0 or 1. Moreover, 
(a) if g(C) = 1, then C is birationally equivalent to one of the following 
curves: 
(i) a plane curve Cm (m ~ 2) of degree 3m with nine m-ple points, 
(ii) Ds rv 8~= + (8 + 4d)F (d = 0, 1, 2) on ~d, where D8 has seven 
quadruple points and two triple points, 
(iii) D6 rv 6~= + (6 + 3d)F (d = 0, 1, 2) on ~d, where D6 has seven 
triple points and three double points, and 
(iv) D4 rv 4~= + (5 + 2d)F (d = 0, 1, 2) on ~d, where D 4 has eleven 
double points, 
(b) if g(C) = 0, C is birationally equivalent to one of the following 
curves: 
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(i) E12 "' 12.6.00 + (12 + 6d)F (d = 0, 1, 2) on :Ed, where E12 has seven 
sextuple points, a quintuple point and a quadruple point, 
(ii) E 10 ,...., 10.6.00 + (11 + 5d)F (d = 0, 1, 2) on :Ed, where E 10 has nine 
quintuple points, 
(iii) D~ "' 8.6.00 + (8 + 4d)F (d = 0, 1, 2) on :Ed, where D~ has seven 
quadruple points, two triple points and a double point, 
(iv) E6 "'6.6.00 + (7 + 3d)F (d = 0, 1, 2) on :Ed, where E6 has ten triple 
points, 
(v) D~ "' 6.6.00 + (6 + 3d)F (d = 0, 1, 2) on :Ed, where D~ has seven 
triple points and four double points, and 
(vi) D~ "' 4.6.00 + (5 + 2d)F (d = 0, 1, 2) on :Ed, where D~ has twelve 
double points, 
where these singular points may be infinitely near singular points. 

By [2, Proposition 1], a plane curve of degree 3m with nine m-ple 
points for integer m ;:::: 2 is realized as a general member of a Halphen 
pencil (see also [3, Theorem 2.1, Remark 2.6]). On the other hand, it is 
unknown that there exist the other pairs in Theorem 3. The aim of this 
article is to prove the existence of classes in the case that the geometric 
genus of C is equal to one, i.e., we show the following: 

Theorem 4. Under the same notation as in Theorem 3, there exist 
curves D 8 , D 6 and D 4 , i.e., there exist all classes in Iitaka 's classification 
of pairs (S, C) with P2 [C] = 2 and g(C) = 1. 

It may be well-known that there exists a plane curve of degree 3m 
with nine m-ple points and one double point. However, for lack of a 
suitable reference, we prove its existence. 

Theorem 5. Under the same notation as in Theorem 2, there ex­
ists a curve c:.r, for m ;:::: 2, i.e., there exist all classes in Coolidge's 
classification of pairs (S, C) with P2 [C] = 0, 1. 

For simplicity, we use the notation of types of curves. Let C be a 
curve on JID2 or :Ed and v a succession of r blowing-ups which resolves 
the singularity of C. Let mi be the the multiplicity of i-th center of the 
blowing-up appeared in v. We can assume that m1 ;:::: m2 ;:::: · · · ;:::: mr 
by rearranging in a suitable order of these blowing-ups. 

Definition 1.1. (Iitaka [7, p. 291]) For an above plane curve C, if 
the degree of C is equal to a, then we say C is of type [a ; m 1, m 2 , ... , mr ]. 

In the case that C is nonsingular, we put r = 1 and mr = 1. 

Definition 1.2. (Iitaka [7, p. 294]) For an above curve C on :Ed, 
if C is linearly equivalent to ab.00 + (3F, then we say C is of type 
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[a* ,8, d; m1, m2, ... , mr]· In the case that C is nonsingular, we put 
r = 1 and mr = 1. 

Whenever mi = mi+1 = · · · = mi+k-1, for simplicity, we denote 
[a, d; m1, m2, ... , mr] by [a, d; m1, ... , mi-l, m~, mi+k ... , mr] and de­
note [a*,B, d; ml,m2, ... ,mr] by [a*,B, d; ml, ... ,mi-l,m~,mi+k···, 
mr]· With this notation, C1, Cm, c:,, Ds, D6 and D4 are of types [3; 1], 
[3m; m 9], [3m; m 9 ,2], [8*(8+4d), d; 47 ,32], [6*(6+3d), d; 37 ,23] and 
[4 * (5 + 2d), d; 211], respectively. 

Curves as in Theorem 3 have many singular points. In order to 
construct desired curves, we provide the arrangement of singularities. 

In Section 2, we recall Iitaka's classification of nonsingular pairs 
(8, C) with P2[C] = 2. 

In Sections 3 and 4, we give a curve of type [6 * (6 +3d), d; 37 , 23] 

for d = 0, 1, 2. Let f: ~d -+ ~2d be the double cover branched along 
.6.00 + .6., where .6. is a section of ~2a such that .6.00 • .6. = 0. We construct 
desired curves C which are inverse images of certain curves on ~2d by f. 
In other words, our curves are invariant under the automorphism with 
order two induced by f, which implies that singular points are in special 
position. To complete the proof, we shall give the defining polynomials 
of these quotient curves. 

The similar technique used in this section is applied in [11, Propo­
sition 3.1] and [9, Section 2]. This method is also applied in the later 
section. 

In Sections 5 and 6, we show the existence of curves of types [8 * 
(8 + 4d), d; 47 ,32] and [4 * (5 + 2d), d; 211] ford= 0, 1,2. 

In Section 7, we show that there exists a curve of type [3m; m 9 , 2], 
which may be well-known. We choose nine points a1, a2 , .•. , a8 and a9 

on JP>2 such that m( a1 + a2 + · · · + a9 ) = 0 E, where 0 E is the zero element 
with respect to the group operation+ on an elliptic curve E. Then the 
surface obtained by the succession of blowing ups at all the ai 's has the 
structure of an elliptic surface with one multiple fiber of multiplicity m 
(see [3, Theorem 2.1]). By imposing another condition for a/s, we shall 
prove the existence of a plane curve with degree 3m which has m-ple 
points at ai's and a double point. 

§2. Classification of pairs with logarithmic 2 genus two 

In this section, we recall the classification of pairs with logarithmic 
2 genus two due to Iitaka. 

Let ( 8, C) be a pair of a complex rational surface 8 and a curve 
Con 8. Denote the degree of the Hilberto polynomial of EBm~o H 0 (8, 
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Os(m(Ks +C))) by ~£[C] and call it the Kodaira dimension of (S, C). 
If Pm[C] = 0 for any m > 0, then we put ~£[C] = -oo. 

In the case that ~£[C] = 0, 1, then a pair (S, C) is classified as in the 
following: 

Proposition 6. (Iitaka [7, pp. 290-291]) LetS be a complex rational 
surface and C a curve on S with g( C) > 0. 
(i) If ~£[C] = 0, then (S, C) is birationally equivalent to (lP'2, Cl), where 
c1 is of type [3; 1]. 
(ii) If ~£[C] = 1, then (S, C) is birationally equivalent to one of the 
following pairs: 
(a) (lP'2, Bm) (m?::: 2), and 
(b) (lP'2, Cm) (m?::: 4), 
where Bm is of type [m; m- 2] and Cm is of type [3m; m9]. 

Proposition 7. (Iitaka [6, Proposition 2]) Let S be a complex ra­
tional surface and C a curve on S with g(C) = 0. 
(i) If ~£[C] = 0, then (S, C) is birationally equivalent to (lP'2 , C~), where 
q is of type [6; 210]. 

(ii) If ~£[C] = 1, then (S, C) is birationally equivalent to (lP'2, c:r,) (m?::: 
3), where c:r, is of type [3m; m 9 ,2]. 

By an easy calculation, we obtain P2[C1] = 1, P2[Bm] = 2m-
5, P2[Cm] = 2 and P2[C:r,] = 1. Thus, if P2[C] = 2 and ~£[C] :<:::: 1 then 
(S, C) is birationally equivalent to (lP'2, Cm)· In particular, we obtain 
g(C) = 1. 

Next; we consider the case that ~£[C] = 2. Then, we have P2[C] = 
(C + Ks) 2 + 2g(C) -1 (see [8, Proposition 2]). By [7, Proposition 3], if 
g(C) ?::: 2, then we obtain P2[C] ?::: 3. In particular, g(C) is either 0 or 
1. In the case that P2[C] = 2 and g(C) = 0, 1, by [8, Theorems 4 and 
10], pairs (S, C) are classified into nine types. By the above argument, 
we obtain Theorem 3. 

§3. Construction of a curve of type [6 * 6, 0; 37 , 23] 

Let prd: Ed --+ lP'1 be the d-th Hirzebruch surface, b.00 the minimal 
section of Ed and Fa fiber of prd. Now we recall the elementary trans­
formation. Let p be a point on Ed. By blowing up at p, we obtain the 
birational morphism a: S1 --+ Ed. Then the self-intersection number of 
the proper transform of the fiber contained p is equal to -1. By con­
tracting this ( -1)-curve into nonsingular point, we obtain the birational 
morphism a': S1 --+ S2. We call a o a'-1 the elementary transformation 
centered at p. If p E b.00 , then S2 = Ed+1 and we denote a o a'-1 by 
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I+(p). If p rf- ~00 , then Sz = ~d-1 and we denote a o a'- 1 by L(p). 
We denote the intersection multiplicity of divisors D1 and Dz at p by 
mp(D1, Dz). 

In this section, we construct a curve of type [6 * 6, 0; 37 , 23]. By 
considering elementary transformations and a certain double cover of 
~0 , we show the following: 

Lemma 8. Let a 1 , a 2 , ... , a4 and a5 be points on ~o such that 
pr0 (al) = pr0 (a3). If there exist three curves D, Q and R on ~0 satis­
fying the following conditions: 
(i) D ""'3~00 + F, Q""' ~oo + F and R""' ~oo + 2F, 
(ii) ma1 (D, Q) = 1 and ma2 (D, Q) = 2, 
(iii) ma3 (D, R) = 1 and ma4 (D, R) = ma5 (D, R) = 2, 
(iv) D meets Q and R transversally except for a 1 , a 2 , ... , a4 and a5, and 
(v) D n Q n R = 0, 
then there exist a curve of type [6 * 6, 0; 37 , 23]. 

Proof. From Q · R = 3, we assume that Q meets R at b1 , b2 and 
b3 . Note that these points may be infinitely near points. By abuse of 
notations ai and bj, we use the same notations to describe the images 
of points by birational maps. Let v = L(a3 ) o h(b3 ) o L(b2 ) o h(bl). 
Note that vis the birational map from ~0 to ~0 . Let D 1, Q1 and R 1 be 
the proper transforms of D, Q and R by v, respectively. 

Since bi rf- D, it follows that D 1 has three triple points, which may be 
infinitely near points. Furthermore, since a 3 E D, there exists a node on 
D1, say c. Then, frompro(al) = pro(a3), we obtain mc(D1, Ql) = 3. By 
hypothesis Q 2 = 2 and R2 = 4, we derive Q 1 2 = R 1 2 = 0, which implies 
that Q1 ""' R1 ""' ~00 • From D1 · Q1 = 6, we obtain D1 ""' 3~oo + 6F 
(see Fig. 1). 

In Fig. 1, thin curves denote Q, R, Q1 and R 1 . Broken lines denote 
fibers of pr d and thick curves denote D and D 1 . (In Figs. 3, 5 and 9, 
curves are represented in a similar manner as Fig. 1.) 

Let f: ~o ---+ ~o be the double cover of ~o branched along Q1 + R 1 
and C the inverse image of D by f. Since one of analytic branches of D 1 

at c meets Q1 tangentially, the singular point of C induced by c is an 
ordinary triple point. Therefore, C has seven triple points, which may 
be infinitely near points. Moreover, D 1 meets Q1 + R 1 tangentially at 
az, a4 and a5, which implies that singular point of C induced by these 
points are nodes (see Fig. 2). In Fig. 2, thin curves denote Q 1 , R 1 and 
these inverse image by f. Broken lines denote fibers of prd and thick 
curves denote D 1 and C. (In Figs. 4, 7 and 10, curves are represented 
in a similar manner as Fig. 2. ) 
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_____ ,.. 
l/ 

-Jt";;-------;-~~---;--+---!---!-+--Q ~ floo + F 

R ~ Lloo +2F 

Fig. 1. The arrangement of D 1 , Q1 and R 1 

Fig. 2. Singular points of C 

Since D is irreducible and there exist points at which D 1 meets 
Q1 + R1 transversally, C is irreducible. Thus, C is of type [6*6, 0; 37 , 23]. 

Q.E.D. 

By the above lemma, it suffices to construct curves D, Q and R on 
Eo satisfying conditions (i), (ii), (iii), (iv) and (v). Let (x, y) be the 
affine coordinate of lP'1 \ { oo} x 1P'1 \ { oo} C E0 . By giving the defining 
equations in x andy, we show the following: 

Proposition 9. Ford = 0, 1, there exist a curve of type [6 * 6 + 
3d, d; 37 , 23]. 

Proof. We give divisors D, Q and R by the following equations: 

D: x3 - x 2 y - x - 2y = 0, 

Q: 8xy + 75x - 122y = 0, 

R: 8xy2 + 35xy- 50y2 + 20x- 56y- 20 = 0. 
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It is clear that D, Q and R satisfy the condition (i) in Lemma 8. Put 
a1 = (0,0), a2 = (4,10/3), a3 = (1,0), a4 = (2,1) and as= (-2,-1). 
Then, by calculating of partial derivatives of variables x and y of these 
defining polynomials, we can verify that conditions (ii), (iii), (iv) and 
(v) in Lemma 8 are satisfied. 

Suppose that D is not irreducible. Since D ""' 3.6.00 + F, one of 
irreducible components of D is linearly equivalent to F or .6.00 • But 
the defining polynomial of D can not be divided by a polynomial in a 
variable x or y. Therefore, we see that D is irreducible. By the similar 
argument, Q and R are irreducible. Hence, there exists a curve C of 
type [6 * 6, 0; 37 , 23 ]. 

Let p be one of triple points of C. Then the proper transform of C 
by I+(P) is of type [6 * 9, 1; 37 , 23 ]. Q.E.D. 

Remark 10. Let Q and R be curves as in the proof of Proposition 9. 
Then, Q meets R transversally. 

§4. Construction of a curve of type [6 * 12, 2; 37 , 23 ] 

In the previous section, we construct curves of types [ 6 * ( 6 + 3d), d ; 
37 , 23] (d = 0, 1). In this section, we construct a curve of type [6 * 
12, 2; 37 , 23] by a similar method as in the previous section. 

Lemma 11. Let a 1 , a 2 , ... , a4 and as be points on ~0 such that 
pr0 (al) = pr0 (a2 ). If there exist three curves D, Q and R on ~0 satisfy­
ing the following conditions: 
(i) D ""'3.6.00 + F, Q ""' .6.00 and R""' .6.00 + 3F, 
(ii) ma1 (D, Q) = 1, 
(iii) ma2 (D, R) = 1 and ma3 (D, R) = ma4 (D, R) = ma5 (D, R) = 2, 
(iv) D meets R transversally except for a3, a4 and as, and 
(v) D n Q n R = 0, 
then there exists a curve of type [6 * 12, 2; 37 , 23]. 

Proof. From Q · R = 3, we assume that Q meets R at b1 , b2 and b3 , 

which may be infinitely near points. To simplify the notation, we use 
the same notations to describe the images of points by birational maps. 

Since a1, b1, b2, b3 E Q and Q""' .6.00 , the self-intersection number of 
the proper transform of Q by a succession of elementary transformations 
centered at some points of a 1 , b1 , b2 and b3 is negative. Hence, this proper 
transform of Q coincides with .6.00 • This implies that the succession of 
elementary transformations centered at a 1 , b1 , b2 and b3 is the birational 
map from ~4 to ~o- Let v = I+(al) oi+(b3) oh(b2) oh(bl)· Let D1, Q1 
and R 1 be the proper transforms of D, Q and R by v, respectively. 
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Since bi rf_ D, it follows that D 1 has three triple points, which may be 
infinitely near points. Furthermore, since a 1 ED and pr0 (ai) = pr0 (a2 ), 

we see that D 1 has a node c with mc(D1 , Q1 ) = 3. From Q2 = 0 and 
R 2 = 6, we derive Q1 2 = -4 and R 1 2 = 4, which imply that Q1 = ~= 
and R 1 rv ~= + 4F. Since D1 · Q1 = 12, we have D 1 rv 3~= + 12F 
(see Fig. 3). 

I ..I.. ..I.. ..1...~~ 
--1- I I I -----.-

T T T ~ v 

I I 

fibers of pr4 

E4 ::J D1 ~ 3Aoo + 12F 

I ..1-
--1- I I I 

T T T 
I I I 

~'=---;--r----,--+--+--+--Q ~ /::,.00 
lal I I 

fibers of pr0 R ~ t:.oo + 3F 

Eo ::J D ~ 3A00 + F 

Fig. 3. The arrangement of D 1 , Q1 and R 1 

I I I I I I 
fibers of pr2 fibers of pr4 

E2 ::J C ~ 6t:."" + 12F E4 ::J D ~ 3Aoo + 12F 

Fig. 4. Singular points of C 

Let f: ~2 -+ ~4 be the double cover of ~4 branched along Q1 + R1 

and C the inverse image of D by f. 
By the same argument as in the proof of Lemma 8, C is of type 

[6 * 12, 2; 37 , 23 ] (see Fig. 4). Q.E.D. 

By the above lemma, it suffices to construct curves D, Q and R 
on ~0 satisfying conditions (i), (ii), (iii), (iv) and (v). We construct 
required curves by giving the defining equations. 

Proposition 12. There exists a curve of type [6 * 12, 2; 37 , 23]. 

Proof. Let ( be a real number satisfying 5v'21(2 + 91( - 210 
0. Put a 1 = ((, 2 + v'2I/15), a 2 = (2 + v'2I/15, 2 + v'2I/15), a3 
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(0, 0), a4 (2, 3) and a5 = (3, 2). For these points, it is easy to see 
that the divisors defined by the following equations satisfy conditions in 
Lemma 11: 

D: - 210x + 384x2 - 150x3 + (210 - 91x - 150x2 + 75x3 )y = 0, 

Q: x=(, 

R: - 210y + 384y2 - 150y3 + (210- 91y- 150y2 + 75y3 )x = 0. 

Since the defining polynomial of D can not be divided by a poly­
nomial in a variable x or y, we see that D is irreducible. Furthermore, 
since the defining polynomial of R translate into the defining polynomial 
of D by transposing variables x and y, R is also irreducible. Thus, we 
have a curve C of type [6 * 12, 2; 37 , 23]. Q.E.D. 

Remark 13. Let Q and R be curves as in the proof of Proposi­
tion 12. Then, Q meets R transversally. 

§5. Construction of a curve of type [8 * (8 + 4d), d; 47 , 32 ] 

In this section, we construct a curve of type [8*8, 0; 47 , 32 ] similarly 
as in Section 3. We call a point p E C a 2-fold m-ple point if it turns 
into an ordinary m-ple point after blowing up at p. 

Lemma 14. Let a 1 , a 2 , ... , a6 and a7 be points on ~o such that 
pro(ai) = pro(ai+3) (i = 1, 2, 3). If there exist three curves D, Q and R 
on ~0 satisfying the following conditions: 
(i) D "'4~oo + 3F, Q"' ~oo + F and R"' ~oo + 2F, 
(ii) a 1 , ... , a5 and a6 are nodes of D, 
(iii) ma2 (D, Q) = ma3 (D, Q) = ma4 (D, Q) = 2 and ma7 (D, Q) = 1, 
(iv) ma 1 (D,R) = ma5 (D,R) = ma6 (D,R) = 2 and ma7 (D,R) = 1, 
(v) D meets R transversally except for a1, a5 and a5, and 
(vi) D n Q n R = { a7}, 
then there exists a curve of type [8 * 8, 0; 47 , 32]. 

Proof. Under the assumption, since Q · R = 3, we assume that Q 
meets R at b1 and b2 except for a7 . Note that b2 may be an infinitely 
near point of b1 . To simplify the notation, we use the same notations 
to describe the images of points by birational maps. First, we consider 
v = h(a7 ) o L (b2 ) o I+(bl). Note that vis the birational map from ~1 
to ~0 . Let D 1, Q1 and R 1 be the proper transforms of D, Q and R by 
v, respectively. 

Since a7 E D and b1, b2 (j. D, it follows that D 1 has a triple point 
and two quadruple points, which may be infinitely near points. By 
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hypothesis Q2 = 2 and R2 = 4, we obtain Q1 2 = -1 and R1 2 = 1. 
Therefore, Q1 = 6.00 and R1 ""'6.00 +F. From Ql · R1 = 10, we obtain 
D1 ""'46.00 + lOF (see Fig. 5). 

I Ut I as I a6 

X X X II II Rt ~ .6.oo + F 
I I I 

-----~ 
v 

--)~--"*:-~----+-+-+-Q ~ .6.oo + F 

fibers of pr1 fibers of pr0 
R~.6.oo+2F 

E1 :J D 1 ~ 4aoo + lOF Eo :J D ~ 4a00 + 3F 

Fig. 5. The arrangement of D1 , Q1 and R 1 

Next, we consider fJ, = L(a4) oh(a5 ) oL(a6 ), which is a birational 
map from :E0 to :E1 . Let D 2 , Q2 and R2 be the proper transforms of 
D1, Q1 and R1 by f.J,, respectively. 

For i = 1, 2, 3, since ai and ai+3 are double points of D 1 with 
pr1 ( ai) = pr1 ( ai+3), the elementary transformation centered at ai+3 

gives a 2-fold double point Ci of D2 such that me; (D2, Q2 + R2) = 4. 
Moreover, Q1 2 = -1 and R 12 = 1 imply that Ql = 0 and Rl = 0, 

i.e., Q2 ""'R2 ""'6.00 • Hence, we obtain D2 ""'46.00 + 8F (see Fig. 6). 
In Fig. 6, thin curves denote Qi and Ri· Broken lines denote fibers 

of prd and thick curves denote Di. 

lei I 1 a1 1 as 1 a6 

~ I 1111 R2 ~ .6.oo ¥¥¥ II II R1 ~ .6.oo + F 
I I 

I T 

~~xx 
I I 

~xx -+- -+- -----· I I 

...!.. I fJ, I I 
I 

>k>k * * * I Q2 ~ .6.00 Q! = .6.00 
I lc2 I C3 I a4 I a2 1 a3 

fibers of pr0 fibers of pr1 

E0 :J D 2 ~ 4aoo + SF E1 :J D 1 ~ 4aoo + lOF 

Fig. 6. The arrangement of D 2 , Q2 and R2 

Let f: :E0 ---+ :E0 be the double cover of :Eo branched along Q2 + R2 
and C the inverse image of D 2 by f. Since the analytic branches of D2 
at Ci is tangent to the branch divisor of f for each i, there exist three 
ordinary quadruple points on C. Moreover, since D 2 has two quadruple 
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points and a triple point which are not contained in Q2 + R 2 , it follows 
that C has seven quadruple points and two triple points (see Fig. 7). 

I C1 I 

_,w~---1----l----llf+l HI I- ~ ~ b.oo 
fl\ I I 

~ ~ +~xx 

fibers of P""1 fibers of P""1 

2;0 :J C rv saoo + SF I;o :::l D2 rv 4aoo + SF 

Fig. 7. Singular points of C 

Since D is irreducible and there exist points at which D meets Q2 + 
R 2 transversally, C is irreducible. Thus, C is of type [8 * 8, 0; 47 , 32]. 

Q.E.D. 

To prove the existence of a curve of type [8 * 8, 0; 4 7 , 32], it suffices 
to construct curves on ~0 satisfying conditions (i), (ii), (iii), (iv), (v) 
and (vi) in Lemma 14. By giving these defining polynomials, we show 
the following: 

Proposition 15. There exists a curve oftype [8*(8+4d), d; 47 ,32]. 

Proof. Required curves D, Q and Rare given by the following equa­
tions: 

D: { -76 + 12v'2)x2 + (186 - 50v'2)y2 + (300 - 68v'2)x2y + ( -38 + 6v'2)y3 

+ ( -393 + 93v'2)x2 y2 + (21 + 7v'2)x2 y3 + ( -36 + 16v'2)x4 y2 

+ (73- 27v'2)x4 y3 = 0, 

Q: - (2 + 2v'2)x + v'2y + (1 + 2v'2)xy = 0, 

R: 200- 6v'2 + ( -267 + 6v'2)y + ( -45 + 27v'2)xy + (31 + 30v'2)y2 

+ (75 - 45v'2)xy2 = 0. 

Put a1 = (oo,O), a2 = (J2,1), a3 = (-1,2), a4 = (0,0), a 5 = 
( -J2, 1), a6 = (1, 2) and a7 = ( -2/3, 2J2). For these points, it is easy 
to check that divisors defined by above equations satisfy conditions (i), 
(ii), (iii), (iv), (v) and (vi) in Lemma 14. Furthermore, since the defining 
polynomials of Q and R can not be divided by a polynomial in a variable 
x or y, we see that Q and Rare irreducible. 
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We shall verify that D is irreducible. Let ~0 = {0} x IP'1 c ~0 and 
suppose that ~00 = { oo} x IP'1 • Let g : ~0 -r ~0 be the double cover of 
~o branched along ~0 + ~00 • Then D coincides with g- 1 (D'), where 
D' is the divisor defined by the following: 

( -76 + 12.J2)x + (186 - 50.J2)y2 + (300 - 68.J2)xy + ( -38 + 6.J2)y3 

+ ( -393 + 93.J2)xy2 + (21 + 7.J2)xy3 + ( -36 + 16.J2)x2 y2 

+ (73- 27.J2)x2 y3 = 0. 

We see that g(a2) and g(a3) are double points of D' and that mg(a,) (D', 
~oo) = mg(a4 )(D', ~o) = 2 (see Fig. 8). Note that g(a1) = (oo, 0), 
g(a2) = g(a5) = (2, 1), g(a3) = g(a6) = (1, 2), g(a4) = (0, 0) and 
g(a7) = (4/9,2v'2). 

In Fig. 8, thin curves denote ~0 and ~00 • Broken lines denote fibers 
of pro and thick curves denote D and D'. 

I I I 
xal I I I floo 

I W >K 
1 .1'1'-a5 a6 

I I I 

: ~a2)Ka3 
Xa I 1 I flo 

I 4 I I 

g 
I I 

r:'g(a4): I I flo 
fibers of pro fibers of pr0 

~o :) D rv 4.6.00 + 3F ~o :) D' rv 2.6.00 + 3F 

Fig. 8. The arrangement of fl 0 , fl00 and D' 

In order to complete the proof, it suffices to show that D' is ir­
reducible and that there exists a point at which D' meets ~0 + ~00 
transversally. 

Suppose that D' is not irreducible, i.e., there exist two divisors Di 
and D~ such that D' = Di + D~. Then one of the following case occurs: 
(1) Di "' ~oo, D~ "' ~oo + 3F, or (2) Di "' ~oo + F, D~ "' ~oo + 2F, 
or (3) Di "'F, D~ "'2~00 + 2F. 

In the cases (1) and (2), since we have Di · ~00 < 2, the divisor 
Di does not pass through g(al) and g(a4). Hence, it follows that D~ 
passes through both g(al) and g(a4). This contradicts to the fact that 
D~ · F = 1. In the case (3), by an easy calculation, the coefficients of the 
defining polynomial of D' with respect to 1, x and x 2 have no common 
divisor. Therefore, we see that D' is irreducible. 
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Moreover, D' meets ~0 transversally at (0, (33- 4v'2)/7). Thus, D 
is irreducible, i.e., there exists a curve C of type [8 * 8, 0; 47 , 32]. 

We use the same notation as in the proof of Lemma 14. The con­
structed curve C has two quadruple points on f-1(Q2), say Pl and P2· 
The proper transform of C by J+(pl) is of type [8 * 12, 1; 47 , 32] and 
the proper transform of C by J+(p2) oh(p1) is of type [8* 16, 2; 47 , 32]. 

Q.E.D. 

Remark 16. Let Q and R be curves as in the proof of Proposi­
tion 15. Then, Q meets R transversally. 

§6. Construction of a curve of type [4 * (5 + 2d), d; 211 ] 

In this section, we construct a curve of type [ 4 * ( 5 + 2d), d ; 211 ] by 
a similar method in Section 3. 

Lemma 17. Let a 1 , a2 and a3 be points on Eo. If there exist three 
curves D, Q and R on Eo satisfying the following conditions: 
(i) D"' 2~00 + F and Q"' R"' ~oo + 2F, 
(ii) ma1 (D, Q) = 2 and ma2 (D, Q) = 3, 
(iii) ma3 (D, R) = 2, 
(iv) D meets R transversally except for a3, and 
(v) D n Q n R = 0, 
then there exists a curve of type [4 * 5, 0; 211]. 

Proof. From Q · R = 4, we assume that Q meets Rat b1, b2, b3 and 
b4 , which may be infinitely near points. To simplify the notation, we 
use the same notations to describe the images by birational maps. Let 
v = L(b4 ) o I+(b3) o L(b2 ) o I+(b1 ). Note that vis the birational map 
from Eo to E 0 . Let D 1, Q1 and R1 be the proper transforms of D, Q 
and R by v, respectively. 

Since bi rf. D, it follows that D1 has four double points, which may 
be infinitely near points. From Q2 = 4 and R2 = 4, we derive Q1 2 = 
Ri = 0, which imply that Q1 "'R1 "'~00 • By D1 · Q1 = 5, we see that 
D1 "'2~00 + 5F (see Fig. 9). 

Let f: Eo --+ E 0 be the double cover of Eo branched along Q1 + Rt 
and C the inverse image of D 1 by f. The singularities induced by a1, a3 
and a2 are nodes and a cusp, respectively. Moreover, since D 1 has four 
double points which are not contained in Q1 + R1, it follows that C has 
eleven double points (see Fig. 10). 

Since D is irreducible and there exist points at which D 1 meets 
Q1 + R1 transversally, C is irreducible. Thus, C is of type [4 * 5, 0; 211]. 

Q.E.D. 
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1
'-----HIIf+I--R, ~ .:1"" 

..L. ..L.X X 
: T : X X 

\1) I y 
-----~ 

11 

----"r; ~a,-----r:-----or,...,"f=~a2----Q, ~ .:1oo! 

fibers of pr0 

Eo ::J D, ~ 2aoo + 5F Eo ::J D ~ 2.:100 + F 

Fig. 9. The arrangement of D 1, Q1 and R1 

I I I I ~:1a3: I ~ I Ill f-1(Rl) ~ ~oo I 
I I I I I 

T I T xxxx ...L I ..J.. 
+ + + I I I 

I ...L :~xxxx f I T I 

x I ~~1 ~ I f-1(Ql) ~ ~00 Ia 0i2 I I I I 1 I 
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fibers of PTo fibers of PTo 

Ill 
X 

X 

I:o :::) D rv 4~oo + 5F I:o :::) D1 rv 2~00 + 5F 

Fig. 10. Singular points of C 
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In order to prove the existence of a curve of type [4 * 5, 0; 211], it 
suffices to construct curves on ~o satisfying conditions (i), (ii), (iii), (iv) 
and (v) in Lemma 17. We also obtain desired curves by giving defining 
polynomials as in the following: 

Proposition 18. Ford = 0, 1, 2, there exists a curve of type [4 * 
(5 + 2d), d; 211]. 

Proof. Put a 1 = (0, 0), a2 = (1, 1) and a3 = (3, -1). For these 
points, we see that the divisors defined by the following equations satisfy 
conditions (i), (ii), (iii), (iv) and (v) in Lemma 17: 

D: 3x - 2x2 - 3y + 4xy - 2x2y = 0, 

Q: 3y - 2y2 - 3x + 4xy - 2xy2 = o, 
R: 2 + 4x + y + 3xy - 7y2 + xy2 = 0. 

Since D rv 2L\00 + F and Q rv R rv L\00 + 2F, the irreducibilities 
of D, Q and R are verified by the similar argument as in the proof of 
Proposition 9. Note that the defining polynomial of Q translate into the 
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defining polynomial of D by transposing variables x andy. Therefore, 
we have a curve C of type [4 * 5, 0; 211]. 

We use the same notation as in the proof of Lemma 17. The con­
structed curve C has two quadruple points on f-1(Ql), say P1 and P2· 
The proper transform of C by J+(p1) is of type [4 * 7, 1; 211 ] and the 
proper transform of C by I+(p2 )oi+(p1 ) is of type [4*9, 2; 211]. Q.E.D. 

Remark 19. Let Q and R be curves as in the proof of Proposi­
tion 18. Then, Q meets R transversally. 

§7. Construction of a curve of type [3m; m 9 , 2] 

In this section, we shall show that there exists a curve of type 
[3m; m 9 , 2]. Let E be an elliptic curve and OE the zero element with 
respect to a group law of E. Let ~: E ---+ lP'2 be the embedding by 13 0 E I· 

First, we determine the arrangement of singular points of a re­
quired curve. It is well-known that E is isomorphic to (IR/Z)2 as a 
group. When points on E are regarded as elements on (IR/Z)2, we 
take a1, a2, , ... , a8 E E which are linearly independent over Q. Let ag 
be a point of E such that the order of the sum of a 1, a2, ... , ag with 
respect to the group law of E is equal to m. Then it is clear that 
m(a1 + a 2 + · · · + a9 ) is linearly equivalent to 9m0E. Suppose that 
we have L:j mjaj rv L:j mj OE such that L:j mjaj is not multiples of 
m(a1 + a2 + · · · + ag). Since we have m(a1 + a2 + · · · + ag) rv 9mOE, 
we can eliminate the term of a9 • This contradicts to the choice of a/s. 
Therefore, all divisors of E supported in { a 1, a 2, ... , a 9 } except for mul­
tiples of m(a1 + a2 + · · · + a9 ) are not linearly equivalent to multiples of 
0 E. In particular, a 1, a2, ... , a9 satisfy the following properties: 

(i) m(a1 + a2 + · · · + ag) rv 9mOE, and 

( ii) there exist no plane curves such that E n C C { a1, a2, ... , a 9 } 

except for curves whose degrees are multiples of 3m. 

Remark 20. The condition (i) is necessary for the existence of a 
plane curve of degree 3m which has m-ple points at a/s. In the later ar­
gument, we use the condition (ii) to prove the irreducibility of a required 
curve. 

We prove the existence of a plane curve of degree 3m which has 
m-ple points at ai's and a double point. 

Proposition 21. For integer m :::: 2, there exist a curves of type 
[3m; m 9 ,2]. 
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Proof. Take distinct points a1, a2, ... , as and a9 on E as above. 
Let v: S-+ JP2 be the succession of blowing-ups at ai's and Ei the pull­
bak to S of ai. Let H be the projective line. The proper transform of E 
by vis linearly equivalent to -K8 and we denote it by E. We consider 
the cohomology long exact sequence for 

0-+ 08( -mK3- E)-+ 08( -mK3)-+ Oe( -mK3)-+ 0. 

By the condition (ii) and (m- 1)E E I - (m- 1)K81, we see that 
h0 (S, 0 8( -mK8 - E))= h0 (S, 0 8( -(m -1)K8)) = 1. Since the nega­
tive divisor - E is linearly equivalent to K 8, we have h 2 ( S, 0 8 ( -mK 8 -
E)) = h0 (S, 03(mK3)) = 0. Thus, the Riemann-Roch theorem gives 
us h1(S, 08( -mK3- E)) = 0, i.e., we obtain 

Moreover, h0 (E, Oe( -mK3)) = h0 (E, Oe) = 1. Therefore, we obtain 
h0 (S, 08( -mK3)) = 2 (see also [2, Proposition 1.(1)]). From K~ = 0, 
the complete linear system l-mK81 = l3mv* H- 2::;=1 mEil is base point 
free, i.e., the anti-pluricanonical map <1>1-mKsl gives the structure of an 
elliptic surface over JP1 with multiple fiber mE (see [3, Theorem 2.1]). 

Let D be a fiber of <1>1-mKsl which is not mE. We shall show that 
D are irreducible. It suffices to show that v(D) is irreducible. Since 
D is a member of l3mv* H- 2::;=1 mEil, v(D) is a divisor of degree 
3m such that ai's are m-ple points of v(D). In particular, we have 
t*v(D) = L;=l mai. Suppose that v(D) = D1 + D2, where D1 and D2 
are divisors in JP2. Then t*(D1 ) rv 3(degD1) OE and Supp(t*(D1)) c 
{all a2, ... , a9 }, which contradicts to the condition (ii). 

The Euler characteristic of S is equal to 12. The sum of the Euler 
characteristics of singular fibers is equal to the Euler characteristic of 
an elliptic surface. Since the unique multiple fiber is equal to mE, its 
Euler characteristic is equal to zero. It implies that there exist other 
singular fibers which are not multiple fibers. Since all fibers of <1>1-mKsl 
are irreducible, the image of a singular fiber of <1>1-mKsl by v is of type 
I1 or II (see [10, Theorem 6.2]). Hence, this image has nine m-ple poitns 
a1, a2, ... , a9 and one double point, i.e., it follows that there exists a 
curve of type [3m; m 9 , 2]. Q.E.D. 

From Propositions 9, 12, 15, 18 and 21, we obtain Theorem 4. From 
Proposition 21, we obtain Theorem 5. 
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