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index subgroup G c r, then g is also called the genus of G; this definition 
is equivalent to the conventional one in terms of modular curves, see [8]. 

The skeleton Ska and genus of a finite index subgroup G C Bu3 (or 
G c lll\3) are defined as those of the image G c r. Since an inclusion 
of subgroups gives rise to a ramified covering of the minimal supporting 
surfaces of their skeletons, one has 

(2.3) genus(H) ;? genus(G) whenever H--< G. 

2.4. The type specification 
Define the depth dp G of a subgroup G C Bu3 as the degree of the 

minimal positive generator of the cyclic subgroup G n Kerprr, or zero 
if the latter intersection is trivial. Clearly, dp G = 0 mod 2 for any 
subgroup G C Bu3, and dp G = 0 mod 6 if G C lll\3. 

Our primary concern are subgroups of genus zero. Let G c Bu3 
be such a subgroup, and denote by S~ := Supp~ G the punctured sur­
face obtained from the sphere Supp Ska by removing the center of each 
region of Ska and each monovalent vertex of Sk0 . Then there is an 
epimorphism 

(2.4) 

which is included into the commutative diagram 

1r1 (S~, e) ----+ Gl(tkid) 

1 ~ lprr 
"" G. --=------t n~>rh(Ska, e) 

As above, the basepoint for all fundamental groups is chosen inside the 
distinguished edge e of Ska. 

Since S~ is a punctured sphere, the group n1 ( S~, e), and hence also 
the quotient G I (tk id), is generated by (the images of) a system of las­
soes in S~ about the centers of the regions of Ska and its monovalent 
vertices. It follows that the subgroup G I ( tk id) C Bu3 I ( tk id) can be 
described by means of its type specification tp, which is a function on 
the set of regions and monovalent vertices of Ska, taking values in Zdp a 
(with the convention that Z0 = Z) and defined as follows: the value of 
tp on a monovalent vertex or a region is the degree of the lift toG I (tk id) 
of the corresponding lasso about the vertex or the center of the region, 
respectively. This function is well defined and has the following proper­
ties. 

Proposition 2.5 (see [4]). Let d = 6 ifG c lll\3 and d = 2 otherwise. 
Then: 
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(1) dpG = 0 mod d; 
(2) tp(R) = wd R mod d for any region R; 
(3) tp(•) = 2 mod d and 3tp(•) = 0; 
(4) tp(o) = 3 mod d and 2tp(o) = 0; 
(5) the sum of all values of tp equals zero. 

Given a skeleton Sk, a pair (dp, tp) satisfying conditions (1)-(5) above 
defines a unique subgroup G C Bu3; one has G C llll3 if and only if the 
pair (dp, tp) satisfies conditions (1)-(4) with d = 6. ~ 

§3. Trigonal curves 

3.1. Trigonal curves in Hirzebruch surfaces 
A Hirzebruch surface is a geometrically ruled rational surface 

1r: ~d-+ B ~ 1P'1 

with an exceptional section E of self-intersection -d ~ 0. If d > 0, such 
a section is unique. A (generalized) trigonal curve is a reduced curve 
C C ~d, not containing E or a fiber of 1r as a component, and such that 
the restriction 1r: C -+ B is a map of degree three. A trigonal curve 
is genuine or proper if it is disjoint from the exceptional section E. A 
singular fiber of a trigonal curve C is a fiber of 1r intersecting C U E at 
fewer that four points. 

A positive (negative) Nagata transformation is a birational map 
~d --+ ~d±l consisting in blowing up a point P in (respectively, not 
in) the exceptional section E and blowing down the proper transform of 
the fiber through P. A d-fold Nagata transformation is a sequence of 
d Nagata transformations in the same fiber and of the same sign. Two 
trigonal curves are Nagata equivalent (d-Nagata equivalent) if they can 
be related by a sequence of Nagata transformations (respectively, d-fold 
Nagata transformations). 

By an appropriate sequence of positive Nagata transformations, any 
trigonal curve C can be made proper; the result is called a proper model 
of C. 

In appropriate affine coordinates (x,y) such that E = {y = oo}, a 
proper trigonal curve C can be given by its W eierstrafl equation 

(3.1) 

where g2 ,g3 are certain polynomials in x. The (functional) j-invariant 
of C is the meromorphic function jc: B -+ IP'1 = C U { oo} given by 

. ( ) 4g~ 
]C X=-~, where .0. := -4g~- 27g~ 



The Alexander module of a trigonal curve. II 57 

is the discriminant of (3.1) with respect toy. (We use Kodaira's normal­
ization, with respect to which the 'special' values of the j-invariant are 
0, 1, and oo.) By definition, jc is preserved by Nagata transformations, 
and the j-invariant of an improper trigonal curve is defined as that of 
any of its proper models. A curve Cis called isotrivial if j 0 = const. 

3.2. The monodromy group 

In this subsection, we outline the construction and basic properties 
of the braid monodromy of a trigonal curve. For more details and all 
proofs, which are omitted here, we refer to [6] and [7]. 

Let C C ~d -+ B be a proper trigonal curve. A monodromy do­
main is a closed topological disk n c B containing in its interior all 
singular fibers of C. A continuous section s: n -+ ~d of 1r is called 
proper if its image is disjoint from both E and the fiberwise convex hull 
of C (with respect to the canonical affine structure in the affine fibers 
Ff: := 1r-1 (b)-...._ E, bE B, which are affine spaces over <C). Since n is 
contractible, a proper section exists and is unique up to homotopy in 
the class of such sections. 

Fix a monodromy domain n and a proper section s over D. Let 
b1, ... , br E f2 be the singular fibers of C, and denote 0~ := f2 -...._ 
{b1, ... , br }. Then, s is a section of the restricted locally trivial fibration 
1r: 1r-1 (D~)-...._ (CUE) -+ n~, and the monodromy of the associated bundle 
with the discrete fibers Aut 1r1 (Ff:-...._ C, s(b) ), b E D~, gives rise to an anti­
homomorphism m: 1r1 (D~,b)-+ Aut1rp, where 7rp := 1r1 (Ff:-...._ C,s(b)), 
b E 0~, is the fundamental group of a fixed nonsingular affine fiber 
punctured at C. The latter anti-homomorphism is called the braid mon­
odromy of C, and its image Jmc := Imm C Aut1rp is called the mon­
odromy group of C. 

The free group 7rF has a distinguished class of geometric bases; a 
choice of one of these bases identifies 7rF with~- (In fact, if jc(b) f 0, 1, 
then 7rF has a canonical basis {all a2, a3}, which is well defined up 
to conjugation by p := a 1a 2a 3.) Under this identification, the mon­
odromy m takes values in the braid group lffi3 C Aut~ and, up to conju­
gation in lffi3 , the monodromy group Jmc is independent of the choices 
made in the construction. 

The following statement is crucial for Theorem 1.1. 

Theorem 3.2 (see [5]). The monodromy group of a non-isotrivial 
proper trigonal curve is of genus zero. Conversely, given a subgroup 
G C lffi3 of genus zero and depth 6d > 0, there is a unique, up to isomor­
phism and d-Nagata equivalence, proper trigonal curve Ca such that, for 
another non-isotrivial proper trigonal curve C, one has Jmc --< G if and 
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only ifC is d-Nagata equivalent to a curve induced from Ca. This curve 
Ca is called the universal curve corresponding to G. C> 

Now, let C be an improper trigonal curve. Consider a proper 
model C' of C and, after making the necessary choices, its braid mon­
odromy m': w1 (!1~,b)--+ AutwF. Let {·y1 , ... ,-yr} be a geometric basis 
for the free group w1 (!1~, b). To each basis element 'Yj one can assign 
the slope Xj E 7rF, which depends on both curves C, C' and the gener­
ator 'Yj. In this notation, the braid monodromy of C is defined as the 
anti-homomorphism m: 'Yj t-+ mj, j = 1, ... , r, where ffij is the automor­
phism at-+ xj1m('Yj)Xj, a E 7rF· The image :Jmc := Imm is called the 
monodromy group of C; under the identification 7rF =·~it is a subgroup 
of l!ll3 · Inn~. 

3.3. The Zariski-van Kampen theorem 

The following theorem is the most well-known means of computing 
the fundamental group of the complement of an algebraic curve. It 
is essentially contained in [11]. There is a great deal of modifications 
and generalizations of this theorem making use of various pencils; the 
particular case of improper trigonal curves is treated in details in [7]. 

Theorem 3.3 (see [7]). Let C C L:d be a trigonal curve, and let 
:Jmc C llll3 ·Inn~ be its monodromy group. Then one has a presentation 

waff(C) =~/{a= f3(a), a E ~' (3 E :Jmc}. [> 

A presentation of the group waff (C) as in Theorem 3.3 is called 
geometric. 

3.4. The Alexander modules 

Given a subgroup G c l!ll3 ·Inn~, let 

Va := L Im(/3 - id) c A, 
/3EG 

Va := L A[f3(a) · a-1] c A 
/3EG, <>E~ 

and define the Alexander module Aa := A/Va and the extended Alexan­
der module Aa := A/Va. As in the case of curves, pick an algebraic 
number~ Elk over lkp, consider the specializations 

and define the subspaces 

Va(~) := Ker[A(~)----» Aa(~)], Va(~) := Ker[A(~) ----» Aa(~)]. 
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Clearly, 

Vc(O = L Im(,B(~)- id) C A(O, 
(3EG 

where ,8 1--7 ,8(0 is the composition of the Burau representation and 
specialization homomorphism GL(2, A) --+ GL(2, lk). In particular, both 
Vc and Vc(~) depend on the image of G in Bu3 only and thus can be 
defined for subgroups of Bu3. 

Lemma 3.4 (see [4]). For any subgroup G c llll 3 ·Inn~ and any alge­
braic number~' one has Vc(~) C Vc(O; hence, there is an epimorphism 
Ac(~) --* Ac(~). If G c l!ll3 and e + ~ + 1 # 0, then Vc(~) = Vc(~) and 
Ac(~) = Ac(~). C> 

According to Theorem 3.3, for a trigonal curve C and algebraic 
number~ one has Ac(~) = Ac(~), where G := Jm0 ; the corresponding 
epimorphism A(~) --* Ac(~) is called a geometric presentation of the 

·Alexander module of C. Hence, there is an epimorphism Ac(~) --* 

Ac(~), and Theorem 1.1 is essentially a consequence of the following 
restatement in terms of the monodromy groups. 

Theorem 3.5. Let G c Bu3 be a subgroup of genus zero and let 
~ E ik => lkp be an algebraic number such that Ac(O # 0. Then N := 

ord( -~) < oo. Furthermore, one has N ~ 6 unless (p, 1/Jt:,) is one of 
the pairs listed in Table 1. Each pair listed in the table is realized by a 
certain subgroup G c Bu3 of genus zero; the pairs marked with a * are 
also realized by subgroups G c llll3 of genus zero. 

This theorem is proved in § 4, see § 4.6. 

3.5. The universal subgroups 

The existence part of Theorem 3.5 is based on the concept of uni­
versal subgroup. Fix an algebraic number ~ and consider a subspace 
V C A(O. Then the subset 

Gv := {,8 E Bu31 Im(,B(~) - id) c V} 

is a subgroup of Bu3; it is called the universal subgroup corresponding 
to V. 

Remark 3.6. Clearly, one has Go= Ker[,B 1--7 ,8(~)] and GA = Bu3. 
In all other cases, V = lkv for a certain vector v = a1 e1 +a2e2 E A(~) and 
the universal subgroup Gv is given by linear equations: ,8 E Gv if and 
only if v.l ,8 ( ~) = v.l, where v.l := [ a 2 , -a1] generates the annihilator 
v.l c A(~)*. 

The following statements are obvious: 
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(1) if G := Gv, then Va c V; 
(2) one has Va --< V if and only if G--< Gv. 

Here, in Statement (1), the inclusion may be proper; in fact, very few 
subspaces of dimension one result in nontrivial universal subgroups, cf. 
Corollary 4.5. 

Lemma 3.7. Let N := ord( -~), and assume that 2 :( N < oo 
and that G := Gv is the universal subgroup corresponding to a subspace 
V C A(~). Then, the width of each region of the skeletons Ska and 
SkaniB3 divides N. 

Proof. Observe that 

N- [(-Qt)N (Tl -
cf!N(-t)] 

1 , 

where cf!N(t) := (tN- 1)/(t- 1). Hence, CT["(~) 
Gv n JB\3. 

3.6. Digression: the case N :( 6 

id and (X1l")N E 

Q.E.D. 

For completeness, we discuss a few extensions of the results of [4] 
concerning the specializations of the Alexander modules at algebraic 
numbers ~ with N := ord( -~) :( 6. 

Strictly speaking, only irreducible curves (equivalently, subgroups 
of Bu3 with transitive image in § 3 ) are considered in [4]. However, the 
preliminary results of [4] hold in the general case. Thus, if 2 :( N :( 5 
and Gv is the universal subgroup corresponding to a submodule V C 

A/il!N(-t) (where il!N is the cyclotomic polynomial of order N), then 
Gv c r is a congruence subgroup of level N. (In fact, this statement is 
contained in Lemma 3. 7, as the principal congruence subgroup of level 
N :( 5 is of genus zero and is normally generated by a[".) The number of 
such subgroups is finite and, using, e.g., the tables found in [3] and trying 
various type specifications, one arrives at a finite list of submodules of 
the form V a C A/ fP N (-t). Details are left to the reader, and the final 
result, in terms of the specializations Aa(~), is represented in Table 2. 
Listed in the table are: 

• the values of p, N, and '1/Jt;, 
• the corresponding subspace Va(~) C A(~) (see below), 
• the projection G c r of the corresponding universal subgroup 

G, in the notation of [3] and, whenever available, in the con­
ventional notation, and 

• a list of dependencies, i.e., whether the non-vanishing of the 
module Aa(~) implies the non-vanishing of another module 
Aa(e) for the same group G. 
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Table 2. Alexander modules Ac(~) with N := ord( -~) :( 5 

# p N 'lj;~ E 1Fp[t] Va Gcr Remarks 

1 0 2 t-1 I 2B0 = r1(2) ~9 

2 0 2C0 = r(2) ~10 

3 3 t2 -t+1 I 3B0 = r1(3) ~ 13 
4 0 3D0 = r(3) ~ 14 
5 4 t 2 + 1 I 4B0 = r 1(4) => 1, 9 
6 0 4G0 = r(4) => 2, 10 
7 5 <1>5( -t) I 5D0 = r1(5) => 18 
8 0 5H0 = r(5) => 19 
9 2 1 t+1 I 2B0 = r1(2) ~1 

10 0 2C0 = r(2) ~2 

11 3 t2 -t+1 II 3A0 = r 3 

12 5 <1>5( -t) IV 5E0 

13 3 1 t+1 I 3B0 =r1(3) ~3 

14 0 3D0 = r(3) ~4 

15 2 t-1 II 2A0 = r 2 

16 4 t2 + 1 III 4D0 => 15 
17 5 <1>5(-t) III 5F0 

18 5 1 t+1 I 5D0 = r1(5) 
19 0 5H0 = r(5) 
20 7 1 t+1 I 7E0 = r1(1) 

The subspace Vc(~) C A(~) is either 0 or conjugate to lkvr, where T 
is the type I, II, III, or IV listed in the table and vr := ar(~)e1 + e 2 , 

see (4.4). The implications in the last column are given by the inclusions 
of the universal subgroups, see [3]. 

The case N = 1 (the maximal dihedral quotients of the fundamental 
group) is settled in [5]: in this case, the universal subgroups are also 
congruence subgroups off' := SL(2, Z) (but not necessarily of level1). 

Finally, if N = 6, the JB\3-action on the module A' := A/(t2 + t + 1) 
has invariant vector v := -te1 +e2 . Hence, in the basis { v, e2 }, the Bu3 -

action is given by upper triangular matrices and can easily be studied. 
Assume that G C Bu3 is a subgroup of genus zero and the submodule 
Vc C A' is distinct from A'. If G C JB\3 (proper trigonal curves), then 
Vc "'A'u+ Jv, where A':= A/(t2 +t+ 1), u is one of the following five 
vectors 

and J C A' is an ideal of finite index. If G ¢.. JB\3 (improper curves), then 
Vc is conjugate to the submodule generated by one of the following 
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seven (pairs of) vectors: 

2e2, v; v; (t- 1)e2, v; 

(t- 1)e2, (t- 1)v; 

For details, see [9]. 

2e2, (t- 1)v; e2, (t- 1)v; 

(t- 1)e2 - v, (t- 1)v. 

§4. Proof of Theorems 1.1 and 3.5 

4.1. The set-up 

Fix a subgroup G c Bu3 of genus zero and let Sk := Ska = r /G 
be its skeleton, e := G/G the distinguished edge of Sk, and tp the 
type specification of G. Fix, further, a value p, prime or zero, and 
an algebraic number ~ E lkp· We assume that N := ord( -~) ~ 7; in 
particular,~ -=1- ±1 and e + ~ + 1 -=1- 0. 

We will also make use of the multiplicative order M := ord~. One 
obviously has M = ep(N) and N = ep(M), where e2(N) :=Nand 

{
2N, 

ep(N) := ~N, 

N, 

if N = 1 mod 2, 

if N = 2 mod 4, 

if N = 0 mod 4 

for p -=/:- 2 prime or zero. The Bu3-action on A(~) factors through 
Bu3/(tM id). In particular, we can assume that dpG =2M and pass to 
the group G / (tM id). 

We are interested in a subgroup G such that Aa(~) -=1- 0. Since 
dimik A(~) = 2, the latter condition is equivalent to dimt Va(~) ~ 1 
and, according to [4], one has N < oo. A region R of Sk is called 
trivial (essential) if N I wdR (respectively, N f wdR). Since genus is 
monotonous, see (2.3), we can assume that G is the universal subgroup 
corresponding to the subspace Va(~) C A(~). Then the width of each 
region divides N, see Lemma 3.7; hence, trivial are the regions R with 
wdR = N, and essential are those with wdR < N. 

Consider a copy of ~ and a geometric basis a 1 , a 2, a 3 with respect 
to which the action of JB3 is given by (2.1). Given another edge e' of Sk, 
we fix a path (e,g), g E r, from e toe', lift g to an element g E JB3 , 

and consider a new geometric basis a~ := g(ai), i = 1, 2, 3; it is called 
a canonical basis over e'. Using these canonical bases for~' we define 
the (local) canonical bases e 1 , e2 (over e) and ei, e~ (over e') for the 
universal Alexander module A, see § 2.2. 
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4.2. The local modules 

Consider a region R or a monovalent vertex v of Sk and denote 
V*(~) := Im(m*- id), where m* is the monodromy about the boundary 
8R if*= R or the monodromy about v if*= v. (More precisely, m* is 
the image under (2.4) of a lasso about the center of R or v, respectively.) 
In view of (2.4), one has Vc(~) =I: V*(~), where* runs over all regions 
and monovalent vertices of Sk. Hence, a necessary condition for the non­
vanishing of Ac ( ~) is dimt V * ( ~) :::; 1 for each region and each monovalent 
vertex. 

The submodules V*(~) are easily computed in terms of a local canon­
ical basis over an edge e' 'close' to the region or vertex in question. More 
precisely, if * = R is a region, we let e' := Y e", where e" is any edge 
contained in R; if * = v is a monovalent •-vertex, we take for e' the 
only edge incident to v; finally, if* = v is a monovalent o-vertex, we let 
e' = X.e", where e" is the only edge incident to v. 

The following two statements are contained in [4]. 

Lemma 4.1 (see [4]). In the notation introduced above, assume that 
dimt V* ( ~) :::; 1, where * is a region R or a monovalent vertex v. Let 
M := ord~ = ep(N). 

(1) If R is a trivial region, tp(R) = wdR mod 2M and VR(~) = 0. 
(2) Essential regions are subdivided into two types, I and II, as 

explained below. 
(3) If R is a region of type I, then tp(R) = wd R mod 2M and 

VR(~) =Ike~. 
(4) If R is a region of type II and n := wdR, one has: if n is 

even or p = 2, then tp(R) = -n mod 2M; otherwise, tp(R) = 
M - n mod 2M and M is even; furthermore, in both cases 
VR(~) = lk(~- 1 (~ + 1)ei + e~). 

(5) If v is a monovalent •-vertex, one has: if p =f. 3, then M = 
0 mod 3 and tp(v) = ±~M mod 2M; otherwise, M =f. 0 mod 3 
and tp(v) = 0 mod 2M; in both cases, Vv(~) = lk( -eei + e~), 
where s := ~ tp(v)- 1. 

(6) If v is a monovalent o-vertex, then M is odd, tp(v) = M mod 
2M, and Vv(~) = !k(eei + e~), where s := ~(M- 1). C> 

Lemma 4.2 (see [4]). Assume, in addition, that Ac(~) =f. 0. Then: 

(1) 

(2) 
(3) 

at most one of the three regions incident to a trivalent •-vertex 
is essential; 
the region incident to a monovalent vertex is trivial; 
two monovalent vertices cannot be incident to a common edge. 

[> 
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Note that in Lemma 4.2(1) we do not assume that the three regions 
are pairwise distinct. In particular, it follows that a •-vertex may appear 
at most once as a corner of an essential region. 

4.3. The case Vc(~) = 0 

If Vc(~) = 0, then, due to Lemma 4.1, Skis a regular skeleton and 
the widths of all regions of Sk are multiples of N. Hence, by Euler's 
formula (see, e.g., (4.7) below), one has N ~ 5. This case is settled 
in [4], where it is shown that G = r(N) is the principal congruence 
subgroup of level N. 

4.4. The case 0 £; Vc(~) £;A(~) 

From now on, we assume that dimik Vc(~) = 1, i.e., the skeleton Sk 
has at least one essential region or monovalent vertex. 

Consider an edge e' of Sk. If e' is the support of a canonical basis 
used in the computation of a local module V*(~), see the explanation 
prior to Lemma 4.1, we assign toe' a type T(e') as follows: 

• if* = R is an essential region of type I or II, see Lemma 4.1(3) 
and (4), then e' is of type I or II, respectively; 

• if * = v is a monovalent •-vertex and p =f. 3, then e' is of type 
III±, where tp(v) = ±~M mod 2M, see Lemma 4.1(5); 

• if * = v is a monovalent •-vertex and p = 3, then e' is of 
type III; 

• if * = v is a monovalent o-vertex, then e' is of type IV, see 
Lemma 4.1(6); 

• otherwise (e' is not related to a 'special' fragment of Sk), e' is 
of type 0. 

An edge of type T =f. 0 is called special. According to Lemmas 4.1 
and 4.2, the type is well defined, i.e., an edge cannot be related to 
two distinct 'special' fragments. (Indeed, otherwise the subspace Vc(~) 
would contain a pair of linearly independent vectors and one would have 
Ac(~) = 0.) In other words, there is a well defined surjective map 

(4.3) 'lj;: S-» {monovalent vertices} U {essential regions}, 

where S is the set of the special edges of Sk. It follows also that to each 
special edge e' one can assign the local subspace Vet(~) := V,p(et) cA. If 
e' = /3- 1e, j3 E IB13 , Lemma 4.1 implies that Vet(~)= lk:(f3vr(et)), where 
vr := ar(~)el + e2 and the Laurent polynomial ar(t), T =f. 0, is given 
by 

(4.4) ar = 0, an= C 1(t + 1), am= -t8 , arv = t(M-l)/2. 
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Here, s := ±(M/3) - 1 for T = III± (p =J 3) and s := -1 for T = III 
(p = 3). 

Corollary 4.5 (see [4]). If G C Bu3 is a subgroup of genus zero, 
N := ord( -~) ?': 7, and Vc(~) C A is a subspace of dimension one, then 
one has Vc(~) "' lkvr for some type T =J 0 (in fact, for any type T =J 0 
present in the skeleton Skc). <l 

(According to [4], the conclusion of Corollary 4.5 holds for N ~ 5 
as well; the only exception is the case N = 6, i.e., ~2 + ~ + 1 = 0.) 

Let R be the set of the trivial regions of Sk. Let, further, kN := 

f5/(N- 6)l, i.e., k7 = 5, ks = 3, kg= k10 = 2, and kN = 1 for N ?': 11. 

Lemma 4.6. Assume that there is a map rp: S --+ 2R with the 
following properties: 

• lrp(e')l ?': kN for each special edge e' E S; 
• rp( e') n rp( e") = 0 whenever e' =J e". 

Then G is not a subgroup of genus zero. 

Proof. Let n. and no be the numbers of monovalent •- and a­

vertices of Sk, and let ni be the number of its regions of width i ?': 1. As 
a simple consequence of Euler's formula, Sk is of genus zero if and only 
if 

N 

(4.7) 3no + 4n. + ~)6- i)ni = 12. 
i=l 

Recall that a region R is trivial if and only if wdR = N, i.e., IRI = nN. 
Replacing in ( 4. 7) all coefficients except ( 6 - N) with their maximum 
5 = maxi)l {3, 4, 6- i}, in view of ( 4.3) we obtain the inequality 5ISI > 
(N- 6) IRI. On the other hand, under the hypotheses of the lemma, we 
have IRI ?': kNISI ?': 5ISI/(N- 6). Q.E.D. 

4.5. Reduction to a finite number of cases 

We still assume that G C Bu3 is the universal subgroup correspond­
ing to a subspace Vc(~) c A(~) of dimension 1. 

In order to construct a 'universal' map rp as in Lemma 4.6, we fix a 
value of Nand consider a finite set B = {,61, ... ,,6k} C Bu3, k ?': kN, 
with all projections j3i E f pairwise distinct. For a type T =J 0, denote 
vr(t) := ar(t)e1 +e2 E A, so that vr = vr(~), and consider the Laurent 
polynomials 
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T',T"#-0, i,j=1, ... ,k, l=O, ... ,N-1, 

and T' #- T" or i #- j or l #- 0. 

Note that excluded in ( 4.8) are precisely those sequences (T', T", i, j, l) 
for which the determinant is identically zero. 

Lemma 4.9. Let e', e" E S be two special edges, not necessarily 
distinct, and let (3', (3" E Bu3 . Then, if /3' e' = /3" e", one must have 

det [f3'vr(e') I (3"vr(e")] = 0. 

Proof. Replacing G with a conjugate subgroup, we can assume 
that /3' e' = /3" e" is the distinguished edge e. Then the vectors (3'vr(e') 
and (3"vr(e") span Ve'(~) and Ve"(~), respectively, and, unless these 
vectors are linearly dependent, we have dimik Vo(~) ;? 2, i.e., Va(~) = 

A(~). Q.E.D. 

Lemma 4.10. Assume that G is a subgroup of genus zero and that 
N ;? 7. Then, for any subset B C Bu3 of size k ;? kN, there is a sequence 
(T', T", i,j, l) as in (4.8) such that Dij,l(T', T")(~) = 0. Furthermore, 
for at least one of such sequences one has Va(~) "'lkvr' "'lkvr". 

Proof. Assume that the conclusion does not hold, i.e., that all 
determinants are non-zero. Then, by Lemma 4.9, for any pair of special 
edges e', e" E S one has O't/3ie' #- /3je 11 whenever e' #- e" or i #- j or 
l #- 0 mod N. In particular (from the special case e' = e11 and i = j), 
each region ((/3ie')) is trivial and, letting 

cp(e') := { ((/3ie')) I i = 1, ... , k }, 

we obtain a well defined map cp: S ---+ 2R satisfying the hypotheses of 
Lemma 4.6. Hence, G is not of genus zero. 

For the last statement, observe that, if Dij,l (T', T") ( 0 #- 0 for all 
types T', T" present in Ska, then the map cp in this particular skeleton 
is still well defined and satisfies the hypotheses of Lemma 4.6. Hence, 
again, G is not of genus zero. Q.E.D. 

Fix a value N;? 7, consider a subset B := {(31, ... ,f3k} C Bu3 , 

and compute the resultants Rij,z(T', T") E Z of the above determi­
nants Dij,z(T',T")(t) and the cyclotomic polynomial <I>N(-t), where 
(T', T", i, j, l) is an index sequence as in ( 4.8). The set B is called in­
formative if k;? kN and all Rij,z(T',T") #- 0 in Z. Due to Lemma 4.10, 
the existence of an informative set, see below, rules out the case p = 0. 
(In [4], this case was prohibited for irreducible curves only.) Further­
more, each informative set B gives rise to a finite collection t:(B) of 
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'exceptional' triples (p, 1/Jt;, T) such that there may exist a subgroup G c 
Bu3 of genus zero with Vc(~) "'Ikvr(~). This list is obtained as follows: 
for each resultant Rij,l (T', T") =f. ±1, we let T = T' and record all prime 
divisors p of Rij,l (T', T") (so that Rij,l (T', T") = 0 mod p) and, for each 
such divisor p, all irreducible common factors 1/Jt; of Dij,z(T', T")(t) and 
<(> N ( -t) over Ikp. 

It is shown in [4] that N ~ 26 and, furthermore, N ~ 10 unless 
(p, 1/Jt;) is one of the pairs listed in Table 1. (Note that the latter state­
ment can also be proved using the approach outlined in this subsec­
tion: for most values N ;? 11 the subset B = {id} is informative.) Let 
/31 = tO"w11 and /32 = t0"210"l· (We multiply the matrices by tin order 
to clear the denominators.) Using Maple, one can show that each of the 
following subsets 

N = 7: {id,/3i,/3r,f31f32,f32f31} and {id,/3i,f3If32, (f3If32)2,/32f3I}; 

N = 8: {id, f3i, f3If32} and {id, f3i, f3If32/3I}; 

N = 9,10: {id,/32}, {id,/31/32}, and {id,/32/31} 

is informative and, for each subset B, compile the list £(B) of exceptional 
triples. (To shorten the further computation, for each N we consider sev­
eral subsets Bi and take the intersection ni £(Bi) of the corresponding 
lists.) As a result, we obtain a finite list (too long to be reproduced 
here) of exceptional triples (p, 1/Jt;, T) that might appear in the extended 
Alexander module of a subgroup of genus zero. 

4.6. End of the proof of Theorem 3.5 

The rest of the proof proceeds as in [4]: for each exceptional triple 
(p, 1/Jt;, T) found in the previous subsection, we use Maple to compute 
the universal subgroup G of Bu3 or JE3 corresponding to the subspace 
Ikvr(~) C A(O and select those triples for which this subgroup is of 
genus zero. The result is Table 1. 

For the computation, we specialize the Burau representation at t = ~ 

and map JE3 c Bu3 to the finite group GL(2, Ik). (Recall that p =f. 0 and 
Ik is a finite field. In fact, in most cases deg 1/Jt; = 1 and hence Ik = Ikp. 
In the few exceptional cases, we are working with (2 x 2)-matrices over 
Ikp[t] considering them modulo 1/Jt;.) Denote the resulting specialization 
homomorphism by "': Bu3 -+ GL(2, Ik). Then G :J Ker"' and the set of 
edges of the skeleton Skc is the quotient oflm"'/"'(G) (or "'(JE3)/"'(G) if 
the universal subgroup of JE3 is to be found) by the further identification 
m "' em, where s E Z (respectively, s = 0 mod 3). The •- and a­
vertices of Skc are the orbits of "'(0"20"1) and K,(0"20"i), respectively, and 
its regions are the orbits of "'( O"I). 
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Technically, since the image Im /'i, is not known a priori, the coset 
enumeration proceeds as follows. We start with m = id and keep multi­
plying matrices by /'i,(a2al) and /'i,(a2ai), comparing each matrix against 
those already recorded. Each new matrix m is added to the list to­
gether with all products em, s = 0, ... , M - 1, where M := ep(N). 
(If M = 0 mod 3 and a subgroup G C lffi3 is to be found, only the val­
ues s = 0 mod 3 are used.) Note that the equivalence relation is, in 
fact, linear, cf. Remark 3.6: for two matrices m 1 , m 2 E GL(2, Jk) one has 
m 1m21 E /'i,(G) if and only if v~(m1 -m2 ) = 0, where v~ := [-1, ar(~)] 
generates the annihilator of the subspace lkvr C A(~). This observation 
simplifies the coset enumeration. Q.E.D. 

4. 7. End of the proof of Theorem 1.1 

In view of the epimorphism Ao(~) ----* Ac(~), G := :Jmc, the re­
strictions on the pairs (p, 'l/Jt;) that may result in a nontrivial Alexander 
module follow from Theorem 3.2 (the monodromy group is a subgroup 
of genus zero) and Theorem 3.5. If a pair (p, 'l/Jt;) can be realized by a 
subgroup G C Jffi3 of genus zero (the lines marked with a* in Table 1), 
then Ao(~) = Ao(~) =f. 0, see Lemma 3.4, and, due to Theorem 3.2 
again, G is the monodromy group of a certain proper trigonal curve C, 
so that one has Ac(~) = Ao(~) =f. 0. Q.E.D. 

4.8. Proof of Addendum 1.4 

The first statement follows from the computation in § 4.6: in each 
case resulting in a universal subgroup G of genus zero, we either start 
with a triple (p, 'l/Jt;, T) with T = I (and hence Vo = Jke2 ) or, using 
the coset enumeration, can show that the subspaces Vo = lkvr and 
Jke2 = Jkv1 are conjugate. 

The second statement is also proved by a computer aided computa­
tion. One needs to show that, given two universal subgroups G1 , G2 C 

Bu3 corresponding to two distinct pairs (p, 'l/Jt;) and (q, 'tj;'1), the intersec­
tion G1 n G~, where G~ ,...., G 2, cannot be of genus zero. The skeletons 
Ski := Sko., i = 1, 2, have already been computed and, using the double 
coset formula, one can see that the skeletons of the intersections of the 
form G1 n G~, G~ ,...., G 2, are the connected components of the fibered 
product Skl X--.-o Sk2, where --.0 is the skeleton of r itself. Consid­
ering all products/components one by one, one concludes that they all 
have positive genus. Details will appear elsewhere. Q.E.D. 
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