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index subgroup G C T, then g is also called the genus of G; this definition
is equivalent to the conventional one in terms of modular curves, see [8].

The skeleton Skg and genus of a finite index subgroup G C Bus (or
G C Bj) are defined as those of the image G  T'. Since an inclusion
of subgroups gives rise to a ramified covering of the minimal supporting
surfaces of their skeletons, one has

(2.3) genus(H) > genus(G) whenever H < G.

2.4, The type specification

Define the depth dp G of a subgroup G C Bug as the degree of the
minimal positive generator of the cyclic subgroup G' N Ker prp, or zero
if the latter intersection is trivial. Clearly, dpG = 0 mod 2 for any
subgroup G C Bus, and dpG = 0 mod 6 if G C Bs.

Our primary concern are subgroups of genus zero. Let G C Bug
be such a subgroup, and denote by S* := Supp’ G the punctured sur-
face obtained from the sphere Supp Skg by removing the center of each
region of Skg and each monovalent vertex of Skg. Then there is an
epimorphism

(2.4) m1(S% e) » G/(t"id), 2k:=dpG,
which is included into the commutative diagram

m(Ste) — G/(tFid)

1 I

9P (Skg,e) —— G,

As above, the basepoint for all fundamental groups is chosen inside the
distinguished edge e of Sk¢.

Since S* is a punctured sphere, the group 71 (S*, e), and hence also
the quotient G/(t*id), is generated by (the images of) a system of las-
soes in S* about the centers of the regions of Skg and its monovalent
vertices. It follows that the subgroup G/(t*id) C Bus/(t*id) can be
described by means of its type specification tp, which is a function on
the set of regions and monovalent vertices of Sk, taking values in Zgy, ¢
(with the convention that Zy = Z) and defined as follows: the value of
tp on a monovalent vertex or a region is the degree of the lift to G/(t* id)
of the corresponding lasso about the vertex or the center of the region,
respectively. This function is well defined and has the following proper-
ties.

Proposition 2.5 (see [4]). Letd =6 if G C B3 and d = 2 otherwise.
Then:
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—

dp G = 0 mod d;

tp(R) = wd R mod d for any region R;

3) tp(e) =2mod d and 3tp(e) = 0;

4) tp(o) =3 mod d and 2tp(o) = 0;

5) the sum of all values of tp equals zero.

Given a skeleton Sk, a pair (dp,tp) satisfying conditions (1)—(5) above
defines a unique subgroup G C Bus; one has G C Bs if and only if the
pair (dp,tp) satisfies conditions (1)—(4) with d = 6. >

[\
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§3. Trigonal curves

3.1. Trigonal curves in Hirzebruch surfaces
A Hirzebruch surface is a geometrically ruled rational surface

7 5y — B2 P!

with an exceptional section E of self-intersection —d < 0. If d > 0, such
a section is unique. A (generalized) trigonal curve is a reduced curve
C C X4, not containing E or a fiber of 7 as a component, and such that
the restriction #: C — B is a map of degree three. A trigonal curve
is genuine or proper if it is disjoint from the exceptional section E. A
singular fiber of a trigonal curve C' is a fiber of 7 intersecting C U E at
fewer that four points.

A positive (negative) Nagata transformation is a birational map
¥4 --+ X441 consisting in blowing up a point P in (respectively, not
in) the exceptional section E and blowing down the proper transform of
the fiber through P. A d-fold Nagata transformation is a sequence of
d Nagata transformations in the same fiber and of the same sign. Two
trigonal curves are Nagata equivalent (d-Nagata equivalent) if they can
be related by a sequence of Nagata transformations (respectively, d-fold
Nagata transformations).

By an appropriate sequence of positive Nagata transformations, any
trigonal curve C can be made proper; the result is called a proper model
of C.

In appropriate affine coordinates (x,y) such that F = {y = oo}, a
proper trigonal curve C can be given by its Weierstrafl equation

(3.1) y® + g2(z)y + gs(z) = 0,

where ¢, g3 are certain polynomials in z. The (functional) j-invariant
of C is the meromorphic function jo: B — P! = C U {oo} given by

. _ 4g3 A= 3 2
Jjolz) = A where = —4g; — 27g3
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is the discriminant of (3.1) with respect to y. (We use Kodaira’s normal-
ization, with respect to which the ‘special’ values of the j-invariant are
0, 1, and oo.) By definition, j¢ is preserved by Nagata transformations,
and the j-invariant of an improper trigonal curve is defined as that of
any of its proper models. A curve C is called isotrivial if jo = const.

3.2. The monodromy group

In this subsection, we outline the construction and basic properties
of the braid monodromy of a trigonal curve. For more details and all
proofs, which are omitted here, we refer to [6] and [7].

Let C C 34 — B be a proper trigonal curve. A monodromy do-
main is a closed topological disk 2 C B containing in its interior all
singular fibers of C. A continuous section s: @ — X4 of 7 is called
proper if its image is disjoint from both E and the fiberwise convex hull
of C (with respect to the canonical affine structure in the affine fibers
F? := n~1(b) \ E, b € B, which are affine spaces over C). Since (2 is
contractible, a proper section exists and is unique up to homotopy in
the class of such sections.

Fix a monodromy domain €2 and a proper section s over ). Let
bi,...,b, € Q be the singular fibers of C, and denote Qf = Q <
{b1,...,b-}. Then, s is a section of the restricted locally trivial fibration
7 7 H Q)N (CUE) — QF, and the monodromy of the associated bundle
with the discrete fibers Aut w1 (F \.C, 5(b)), b € QF, gives rise to an anti-
homomorphism m: 7;(Q¥,b) — Aut g, where mr := 71 (F2 \ C, s(b)),
b € Q) is the fundamental group of a fixed nonsingular affine fiber
punctured at C. The latter anti-homomorphism is called the braid mon-
odromy of C, and its image Jme := Imm C Aut 7p is called the mon-
odromy group of C.

The free group mr has a distinguished class of geometric bases; a
choice of one of these bases identifies 7p with §. (In fact, if jo(b) # 0, 1,
then 7p has a canonical basis {oq,as, a3}, which is well defined up
to conjugation by p := ajasas.) Under this identification, the mon-
odromy m takes values in the braid group By C Aut § and, up to conju-
gation in Bs, the monodromy group Jm¢ is independent of the choices
made in the construction.

The following statement is crucial for Theorem 1.1.

Theorem 3.2 (see [5]). The monodromy group of ¢ non-isotrivial
proper trigonal curve is of genus zero. Conversely, given a subgroup
G C B3 of genus zero and depth 6d > 0, there is a unique, up to isomor-
phism and d-Nagata equivalence, proper trigonal curve Cg such that, for
another non-isotrivial proper trigonal curve C, one has Jmg < G if and
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only if C is d-Nagata equivalent to a curve induced from Cg. This curve
Cgq s called the universal curve corresponding to G. >

Now, let C' be an improper trigonal curve. Consider a proper
model ¢’ of C' and, after making the necessary choices, its braid mon-
odromy m’: 71(QF,b) — Aut mp. Let {y1,...,7-} be a geometric basis
for the free group m1(Q%,b). To each basis element 7; one can assign
the slope »; € mp, which depends on both curves C, C’ and the gener-
ator ;. In this notation, the braid monodromy of C' is defined as the
anti-homomorphism m: v; —= my, j = 1,...,7, where m; is the automor-
phism o — %j'lm('yj)%j, a € . The image Jme := Imm is called the
monodromy group of C; under the identification 7 = § it is a subgroup
of B3 - InngF.

3.3. The Zariski—van Kampen theorem

The following theorem is the most well-known means of computing
the fundamental group of the complement of an algebraic curve. It
is essentially contained in [11]. There is a great deal of modifications
and generalizations of this theorem making use of various pencils; the
particular case of improper trigonal curves is treated in details in [7].

Theorem 3.3 (see [7]). Let C C X4 be a trigonal curve, and let
Jme C Bs - Inn§ be its monodromy group. Then one has a presentation

() =F/{a=p(a), a €F, B € Img}. >

A presentation of the group 7*¥(C) as in Theorem 3.3 is called
geometric.

3.4. The Alexander modules
Given a subgroup G C Bs - Inn 3, let

Vo= Im(B—-id)CA, Vo= D Afa)-a']CA

BeEG BEG, acF

and define the Alezander module Ag := A/V¢ and the extended Alexan-
der module Ag := A/Vg. As in the case of curves, pick an algebraic
number £ € k over kp, consider the specializations

AG(E) = (AG ® k;,)/@/)g, AG(&) = (AG ® kp)/wﬁv

and define the subspaces

Va(§) = Ker[A(§) » Ac(§)l,  Val(§) = Ker[A(§) » Ac(§)].
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Clearly,
Va(€) = Im(B(€) —id) C A(€),

BeG

where 8 — B(£) is the composition of the Burau representation and
specialization homomorphism GL(2,A) — GL(2,k). In particular, both
Ve and Vg(€) depend on the image of G in Bus only and thus can be
defined for subgroups of Bus.

Lemma 3.4 (see [4]). For any subgroup G C Bz-Inn§ and any alge-
braic number &, one has Vg (€) C Va(€); hence, there is an epimorphism
Ag(€) » Ag(€). If G CBy and 2 +£+1# 0, then Va(€§) = Va(§) and
Ra(e) = Aal6). >

According to Theorem 3.3, for a trigonal curve C and algebraic
number ¢ one has Ac(§) = Ag(€), where G := Jmc; the corresponding
epimorphism A(£) — Ac(§) is called a geometric presentation of the

" Alexander module of C. Hence, there is an epimorphism Ag(£) —»
Ac(€), and Theorem 1.1 is essentially a consequence of the following
restatement in terms of the monodromy groups.

Theorem 3.5. Let G C Bug be a subgroup of genus zero and let
¢ € k Dk, be an algebraic number such that Ag(€) # 0. Then N :=
ord(—¢§) < oo. Furthermore, one has N < 6 unless (p,¢) is one of
the pairs listed in Table 1. FEach pair listed in the table is realized by a
certain subgroup G C Bug of genus zero; the pairs marked with a * are
also realized by subgroups G C B3 of genus zero.

This theorem is proved in §4, see §4.6.

3.5. The universal subgroups

The existence part of Theorem 3.5 is based on the concept of uni-
versal subgroup. Fix an algebraic number £ and consider a subspace
V C A(€). Then the subset

Gy :={B € Bug| Im(B(£) —id) C V}

is a subgroup of Bus; it is called the universal subgroup corresponding

to V.

Remark 3.6. Clearly, one has Gy = Ker[§ — ()] and GA = Bus.
In all other cases, V = kv for a certain vector v = aje1+ages € A(¢) and
the universal subgroup Gy is given by linear equations: 8 € Gy if and
only if v13(€) = vt, where v := [a2, —a;] generates the annihilator
v+ C A

The following statements are obvious:
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(1) if G := Gy, then Vo CV;

(2) one has Vg <V if and only if G < Gy.
Here, in Statement (1), the inclusion may be proper; in fact, very few
subspaces of dimension one result in nontrivial universal subgroups, cf.
Corollary 4.5.

Lemma 3.7. Let N := ord(—¢), and assume that 2 < N < oo
and that G := Gy is the universal subgroup corresponding to a subspace
V C A(§). Then, the width of each region of the skeletons Skg and
Skarm, divides N.

Proof. Observe that

=[O )

T - 0 1 ’
where @y (t) = (¥ — 1)/(t — 1). Hence, o¥(¢) = id and (XY)V €
Gy N Bs. Q.E.D.

3.6. Digression: the case N <6

For completeness, we discuss a few extensions of the results of [4]
concerning the specializations of the Alexander modules at algebraic
numbers ¢ with N := ord(—¢) < 6.

Strictly speaking, only irreducible curves (equivalently, subgroups
of Buz with transitive image in S3) are considered in [4]. However, the
preliminary results of [4] hold in the general case. Thus, if 2 < N <5
and Gy is the universal subgroup corresponding to a submodule ¥V C
A/®pN(—t) (where @y is the cyclotomic polynomial of order N), then
Gy C T is a congruence subgroup of level N. (In fact, this statement is
contained in Lemma 3.7, as the principal congruence subgroup of level
N < 5 is of genus zero and is normally generated by 1¥.) The number of
such subgroups is finite and, using, e.g., the tables found in [3] and trying
various type specifications, one arrives at a finite list of submodules of
the form Vg C A/®y(—t). Details are left to the reader, and the final
result, in terms of the specializations Ag(€), is represented in Table 2.
Listed in the table are:

e the values of p, NV, and 1,

e the corresponding subspace Vg (£) C A(€) (see below),

e the projection G C T of the corresponding universal subgroup
G, in the notation of [3] and, whenever available, in the con-
ventional notation, and

e a list of dependencies, i.e., whether the non-vanishing of the
module Ag(€) implies the non-vanishing of another module
A (&) for the same group G.
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Table 2. Alexander modules A¢(§) with N :=ord(—€) < 5

# N ¢ €Tl Va Gcr Remarks
1 0 2 t-1 I 2B° =T4(2) =9

2 0 2C° =T'(2) <10

3 3 2-t+1 I 3B° =T4(3) <13
4 0 3D° =T(3) o 14

5 4 41 I 4B° =T((4) =1,9
6 0 4G° =T(4) =210
8 0 5HO = T'(5) =19

9 2 1 t+1 I 2B° =T4(2) =1

10 0 2C° =T(2) =2

11 3 2—t+1 11 3A° =13

12 5 Oy (—t) v 5E°

13 3 1 t+1 I 3B =T4(3) <3

14 0 3D° =T(3) =4

15 2 t—1 I 240 =12

16 4 2 +1 III 4D° =15

17 5 &5 (—t) 111 5F°

18 5 1 t+1 I 5D0 =T';(5)

19 0 5H° =T(5)

20 7 1 t+1 1 TE® =T'1(7)

The subspace Vg (£) C A(€) is either 0 or conjugate to kvy, where T
is the type I, I1, III, or IV listed in the table and vy = ar(£)e; + eq,
see (4.4). The implications in the last column are given by the inclusions
of the universal subgroups, see [3].

The case N = 1 (the maximal dihedral quotients of the fundamental
group) is settled in [5]: in this case, the universal subgroups are also
congruence subgroups of T' := SL(2,Z) (but not necessarily of level 1).

Finally, if N = 6, the Bs-action on the module A’ := A/(t?> + ¢+ 1)
has invariant vector v := —te; +e3. Hence, in the basis {v, ez}, the Bus-
action is given by upper triangular matrices and can easily be studied.
Assume that G C Bug is a subgroup of genus zero and the submodule
Ve C A/ is distinct from A’. If G C B3 (proper trigonal curves), then
Vo ~ Nu+ Jv, where A’ := A/(t? +t + 1), u is one of the following five
vectors

u; :=ey, Uug:=(t+2)eg, uz:=2ez, U,:=tejtey, U, :=ej—ey,

and J C A’ is an ideal of finite index. If G ¢ B3 (improper curves), then
Vg is conjugate to the submodule generated by one of the following
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seven (pairs of) vectors:

2es,v; v; (t—1ea,v; 2e9,(t—1)v; ey, (t—1)v;
(t—Deqg, (t—1)v; (t—1ex—v,(t—1)v.

For details, see [9].

§4. Proof of Theorems 1.1 and 3.5

4.1. The set-up

Fix a subgroup G C Bus of genus zero and let Sk := Skg = I'/G
be its skeleton, e := G/G the distinguished edge of Sk, and tp the
type specification of G. Fix, further, a value p, prime or zero, and
an algebraic number ¢ € k,. We assume that N := ord(—¢) > 7; in
particular, £ # 41 and €2 + £+ 1 # 0.

We will also make use of the multiplicative order M := ord €. One
obviously has M = e,(N) and N = e, (M), where e3(N) := N and

2N, if N =1mod 2,
ep(N) := ¢ +N, if N =2mod 4,
N, ifN=0mod4

for p # 2 prime or zero. The Bug-action on A(&) factors through
Bug/(t™ id). In particular, we can assume that dp G = 2M and pass to
the group G/ (t™ id).

We are interested in a subgroup G such that Ag(¢) # 0. Since
dimg A(¢) = 2, the latter condition is equivalent to dimg Vg(€) < 1
and, according to [4], one has N < oo. A region R of Sk is called
trivial (essential) if N | wd R (respectively, N { wd R). Since genus is
monotonous, see (2.3), we can assume that G is the universal subgroup
corresponding to the subspace Vg (¢) C A(¢). Then the width of each
region divides IV, see Lemma 3.7; hence, trivial are the regions R with
wd R = N, and essential are those with wd R < N.

Consider a copy of § and a geometric basis a1, ag, ag with respect
to which the action of Bj is given by (2.1). Given another edge €’ of Sk,
we fix a path (e, g), g € T, from e to €', lift g to an element § € Bs,
and consider a new geometric basis o] := G(a;), 1 = 1,2,3; it is called
a canonical basis over €. Using these canonical bases for §, we define
the (local) canonical bases e1,es (over e) and e},e} (over ¢') for the
universal Alexander module A, see §2.2.
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4.2. The local modules

Consider a region R or a monovalent vertex v of Sk and denote
V. (&) := Im(m, — id), where m, is the monodromy about the boundary
OR if x = R or the monodromy about v if * = v. (More precisely, m, is
the image under (2.4) of a lasso about the center of R or v, respectively.)
In view of (2.4), one has Vg (€) = Y Vi (€), where * runs over all regions
and monovalent vertices of Sk. Hence, a necessary condition for the non-
vanishing of Ag(€) is dimg V. (€) < 1 for each region and each monovalent
vertex.

The submodules V, (€) are easily computed in terms of a local canon-
ical basis over an edge €’ ‘close’ to the region or vertex in question. More
precisely, if *x = R is a region, we let ¢ := Ye”, where €” is any edge
contained in R; if * = v is a monovalent e-vertex, we take for e’ the
only edge incident to v; finally, if * = v is a monovalent o-vertex, we let
e’ = Xe”, where ¢ is the only edge incident to v.

The following two statements are contained in [4].

Lemma 4.1 (see [4]). In the notation introduced above, assume that
dimg V. (€) < 1, where * is a region R or a monovalent verter v. Let
M :=ord€ =ey(N).

(1) If R is a trivial region, tp(R) = wd R mod 2M and Vg(€£) = 0.

(2) Essential regions are subdivided into two types, 1 and 11, as

explained below.
(3) If R is a region of type I, then tp(R) = wd R mod 2M and
Vr(§) = kej.

(4) If R is a region of type Il and n := wd R, one has: if n is
even or p = 2, then tp(R) = —n mod 2M; otherwise, tp(R) =
M — nmod 2M and M 1is even; furthermore, in both cases
Va(€) = K€ (€ + 1)e} +eb).

(56) If v is a monovalent e-vertex, one has: if p # 3, then M =
0 mod 3 and tp(v) = +2M mod 2M; otherwise, M # 0 mod 3
and tp(v) = 0 mod 2M; in both cases, V,(§) = k(—&%e] + eb),
where s := S tp(v) — 1.

(6) Ifv is a monovalent o-vertez, then M is odd, tp(v) = M mod

2M, and V,(§) = k(&%€] + €}), where s := (M —1). >

Lemma 4.2 (see [4]). Assume, in addition, that Ag(€) # 0. Then:

(1)  at most one of the three regions incident to a trivalent e-vertex
18 essential;
(2) the region incident to a monovalent vertez is trivial;
(3) two monovalent vertices cannot be incident to a common edge.
>
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Note that in Lemma 4.2(1) we do not assume that the three regions
are pairwise distinct. In particular, it follows that a e-vertex may appear
at most once as a corner of an essential region.

4.3. The case Vg(¢) =0

If Vg(€) = 0, then, due to Lemma 4.1, Sk is a regular skeleton and
the widths of all regions of Sk are multiples of N. Hence, by Euler’s
formula (see, e.g., (4.7) below), one has N < 5. This case is settled
in [4], where it is shown that G = T'(N) is the principal congruence
subgroup of level N.

4.4. The case 0 C Vg(£) € A(¢)

From now on, we assume that dimg Vg (€) = 1, i.e., the skeleton Sk
has at least one essential region or monovalent vertex.

Consider an edge ¢’ of Sk. If ¢’ is the support of a canonical basis
used in the computation of a local module V,(¢), see the explanation
prior to Lemma 4.1, we assign to ¢’ a type T'(¢) as follows:

e if x = R is an essential region of type I or I, see Lemma 4.1(3)
and (4), then ¢’ is of type I or II, respectively;

e if x = v is a monovalent e-vertex and p # 3, then €’ is of type
I, where tp(v) = 2 M mod 2M, see Lemma 4.1(5);

e if ¥ = v is a monovalent e-vertex and p = 3, then ¢’ is of
type III;

e if ¥ = v is a monovalent o-vertex, then e’ is of type IV, see
Lemma, 4.1(6);

e otherwise (e’ is not related to a ‘special’ fragment of Sk), ¢’ is
of type 0.

An edge of type T" # 0 is called special. According to Lemmas 4.1
and 4.2, the type is well defined, i.e., an edge cannot be related to
two distinct ‘special’ fragments. (Indeed, otherwise the subspace Vg(€)
would contain a pair of linearly independent vectors and one would have
Ag(€) =0.) In other words, there is a well defined surjective map

(4.3) 1: S — {monovalent vertices} U {essential regions},

where S is the set of the special edges of Sk. It follows also that to each
special edge ¢’ one can assign the local subspace Ve (§) := ]_/,/,(e/) CA. If
¢/ = 7 'e, B € B3, Lemma 4.1 implies that Ve (§) = k(Bvr(er)), where
vr = ar(€)e; + eq and the Laurent polynomial ar(t), T # 0, is given
by

44)  a=0, an=t"'(t+1), am=—-t°, ay=tMD72
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Here, s := +(M/3) — 1 for T = llx (p # 3) and s := —1 for T = III
(p=3).

Corollary 4.5 (see [4]). If G C Bug is a subgroup of genus zero,
N :=ord(=¢£) 2 7, and V(§) C A is a subspace of dimension one, then

one has Vg(€) ~ kvy for some type T # 0 (in fact, for any type T # 0
present in the skeleton Sk¢). <

(According to [4], the conclusion of Corollary 4.5 holds for N < 5
as well; the only exception is the case N = 6, i.e., &2 +£+1=0.)

Let R be the set of the trivial regions of Sk. Let, further, ky :=
|—5/(N— 6)‘|, i.e.7 k7 = 5, ]{78 = 3, kg = klO = 2, and kN =1for N = 11.

Lemma 4.6. Assume that there is a map ¢: S — 28 with the
following properties:

o |p(e')| = kn for each special edge €' € S;
e p(e)Nple”) =@ whenever ¢ # ¢€”.

Then G is not a subgroup of genus zero.

Proof. Let ne and n, be the numbers of monovalent - and o-
vertices of Sk, and let n; be the number of its regions of width i > 1. As
a simple consequence of Euler’s formula, Sk is of genus zero if and only
if

N
(4.7) 3no + 4ne + (6 —i)n; =12,

=1

Recall that a region R is trivial if and only if wd R = N, i.e., |R| = ny.
Replacing in (4.7) all coefficients except (6 — N) with their maximum
5 = max;>1{3,4,6 — i}, in view of (4.3) we obtain the inequality 5|S| >
(N —6)|R|. On the other hand, under the hypotheses of the lemma, we
have |R| > ky|S| > 5[S|/(N — 6). QE.D.

4.5. Reduction to a finite number of cases

We still assume that G C Bug is the universal subgroup correspond-
ing to a subspace Vg(£) C A(€) of dimension 1.

In order to construct a ‘universal’ map ¢ as in Lemma 4.6, we fix a
value of N and consider a finite set B = {81,..., 8k} C Bus, k > ky,
with all projections f3; € I" pairwise distinct. For a type 17" # 0, denote
vr(t) := ar(t)e;1+ey € A, so that vy = vp(§), and consider the Laurent
polynomials

Dy (T, T")(t) = det [0} Bv () | Biven (t)] € A,
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where
T.T"#0, 4,j=1,...,k, 1=0,...,N—1,

4.8
(48) and T'#T" or i#j or |#0.

Note that excluded in (4.8) are precisely those sequences (T",T" 4, 4,1)
for which the determinant is identically zero.

Lemma 4.9. Let ¢/,e” € S be two special edges, not necessarily
distinct, and let B',8" € Bus. Then, if B'e’ = B"e"”, one must have
det[ﬂ/VT(er) ,BUVT(eu)] =0.

Proof. Replacing G with a conjugate subgroup, we can assume
that B'e/ = B"€” is the distinguished edge e. Then the vectors 3’ V(e
and B"vp(ery span Ve (§) and Ve (§), respectively, and, unless these
vectors are linearly dependent, we have dimg Vg (§) = 2, ie., Vg(€) =

A(6). Q.ED.

Lemma 4.10. Assume that G is a subgroup of genus zero and that
N > 7. Then, for any subset B C Bug of size k > kn, there is a sequence
(T, 7",1,3,1) as in (4.8) such that D;; i(T",T")(§) = 0. Furthermore,
for at least one of such sequences one has Vg (€) ~ kv ~ kvyr.

Proof. Assume that the conclusion does mot hold, i.e., that all
determinants are non-zero. Then, by Lemma 4.9, for any pair of special
edges e',e” € S one has &!3;¢’ # B;e” whenever ¢ # € or i # j or
I # 0mod N. In particular (from the special case ¢/ = ¢’ and ¢ = j),
each region ((8;¢’)) is trivial and, letting

(@) = {(Bie) |i=1,...,k},

we obtain a well defined map ¢: S — 2F satisfying the hypotheses of
Lemma 4.6. Hence, G is not of genus zero.

For the last statement, observe that, if D;;;(T",T")(§) # 0 for all
types T',T" present in Skg, then the map ¢ in this particular skeleton
is still well defined and satisfies the hypotheses of Lemma 4.6. Hence,
again, GG is not of genus zero. Q.E.D.

Fix a value N > 7, consider a subset B := {f1,...,8,} C Bus,
and compute the resultants R;;;(T",T") € Z of the above determi-
nants D;;;(T7",T")(t) and the cyclotomic polynomial ®y(—t), where
(T",T",4,5,1) is an index sequence as in (4.8). The set B is called in-
formative if k > ky and all R;;;(T",T") # 0 in Z. Due to Lemma 4.10,
the existence of an informative set, see below, rules out the case p = 0.
(In [4], this case was prohibited for irreducible curves only.) Further-
more, each informative set B gives rise to a finite collection £(B) of
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‘exceptional’ triples (p, ¥¢, T') such that there may exist a subgroup G C
Bugs of genus zero with Vg (€) ~ kvz(€). This list is obtained as follows:
for each resultant R;;;(T",T") # £1, we let T = T" and record all prime
divisors p of Ry;,;(T", T") (so that R;;;(T",T") = 0 mod p) and, for each
such divisor p, all irreducible common factors ¢¢ of D;; (1", T")(t) and
Dy (—t) over ky.

It is shown in [4] that N < 26 and, furthermore, N < 10 unless
(p, 1) is one of the pairs listed in Table 1. (Note that the latter state-
ment can also be proved using the approach outlined in this subsec-
tion: for most values N > 11 the subset B = {id} is informative.) Let
61 =toro] and g = toy 1o1. (We multiply the matrices by ¢ in order
to clear the denominators.) Using Maple, one can show that each of the
following subsets

N=7: {id, B2, B3, 1 B2, P21} and {id, B2, B1Ba, (B152)2, B2 };
N =8: {id, 8%, B1 B2} and {id, B2, B1 521 };
N =9,10:  {id, B2}, {id, B1B2}, and {id, 251 }

is informative and, for each subset B, compile the list £(B) of exceptional
triples. (To shorten the further computation, for each N we consider sev-
eral subsets B; and take the intersection [, £(B;) of the corresponding
lists.) As a result, we obtain a finite list (too long to be reproduced
here) of exceptional triples (p, ¢, T) that might appear in the extended
Alexander module of a subgroup of genus zero.

4.6. End of the proof of Theorem 3.5

The rest of the proof proceeds as in [4]: for each exceptional triple
(p, e, T) found in the previous subsection, we use Maple to compute
the universal subgroup G of Bus or B3 corresponding to the subspace
kvr(¢) C A(€) and select those triples for which this subgroup is of
genus zero. The result is Table 1.

For the computation, we specialize the Burau representation at ¢ = £
and map B3 C Bus to the finite group GL(2,k). (Recall that p # 0 and
k is a finite field. In fact, in most cases deg ¢ = 1 and hence k = kp.
In the few exceptional cases, we are working with (2 x 2)-matrices over
kp[t] considering them modulo 1¢.) Denote the resulting specialization
homomorphism by x: Buz — GL(2,k). Then G O Ker k and the set of
edges of the skeleton Sk¢ is the quotient of Im k/k(G) (or x(B3)/k(G) if
the universal subgroup of B3 is to be found) by the further identification
m ~ £*m, where s € Z (respectively, s = 0 mod 3). The e- and o-
vertices of Sk are the orbits of k(0201) and k(020?), respectively, and
its regions are the orbits of k(o7).
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Technically, since the image Im k is not known a priori, the coset
enumeration proceeds as follows. We start with m = id and keep multi-
plying matrices by x(c201) and k(o20?), comparing each matrix against
those already recorded. Each new matrix m is added to the list to-
gether with all products £*m, s = 0,...,M — 1, where M := e,(N).
(If M = 0 mod 3 and a subgroup G C B3 is to be found, only the val-
ues s = 0 mod 3 are used.) Note that the equivalence relation is, in
fact, linear, cf. Remark 3.6: for two matrices m, ms € GL(2,k) one has

mimy ' € k(G) if and only if v (my —mg) = 0, where vz = [—1,ar(£)]
generates the annihilator of the subspace kvr C A(£). This observation
simplifies the coset enumeration. Q.E.D.

4.7. End of the proof of Theorem 1.1

In view of the epimorphism Ag(§) — Ac(€), G := Jmg, the re-
strictions on the pairs (p, 1¢) that may result in a nontrivial Alexander
module follow from Theorem 3.2 (the monodromy group is a subgroup
of genus zero) and Theorem 3.5. If a pair (p,1)¢) can be realized by a
subgroup G C B3 of genus zero (the lines marked with a * in Table 1),
then Ag(€) = Ag(€) # 0, see Lemma 3.4, and, due to Theorem 3.2
again, G is the monodromy group of a certain proper trigonal curve C,
so that one has Ac(§) = Ag(€) #0. Q.E.D.

4.8. Proof of Addendum 1.4

The first statement follows from the computation in §4.6: in each
case resulting in a universal subgroup G of genus zero, we either start
with a triple (p,v¢,T) with T = I (and hence Vg = key) or, using
the coset enumeration, can show that the subspaces Vg = kv and
ke, = kvy are conjugate.

The second statement is also proved by a computer aided computa-
tion. One needs to show that, given two universal subgroups G1,Gs C
Bus corresponding to two distinct pairs (p, ¢¢) and (g, %y,), the intersec-
tion G1 N GY, where G4 ~ G2, cannot be of genus zero. The skeletons
Sk; := Skg;,, i = 1,2, have already been computed and, using the double
coset formula, one can see that the skeletons of the intersections of the
form G; N G, G} ~ G, are the connected components of the fibered
product Sk Xe o Sky, where & is the skeleton of T itself. Consid-
ering all products/components one by one, one concludes that they all
have positive genus. Details will appear elsewhere. Q.E.D.
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