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Deformations of product-quotient surfaces and
reconstruction of Todorov surfaces via Q-Gorenstein
smoothing

Yongnam Lee and Francesco Polizzi

Abstract.

We consider the deformation spaces of some singular product-
quotient surfaces X = (Cy x C2)/G, where the curves C; have genus 3
and the group G is isomorphic to Z4. As a by-product, we give a new
construction of Todorov surfaces with p, = 1, ¢ =0 and 2 < K? <8
by using (Q-Gorenstein smoothings.

§0. Introduction

In {To81], Todorov constructed some surfaces of general type with
pg=1,¢g=0and 2< K 2 < 8 in order to give counterexamples of the
global Torelli theorem. Todorov surfaces with K2 = 8 — k are double
covers of a Kummer surface in P3 branched over a curve D, which is
a complete intersection of the Kummer surface with a smooth quadric
surface containing k of its nodes, and over the remaining 16 — k nodes.
Surfaces with K = 2, and p, = 1 have been completely classified by
Catanese and Debarre [CD89], while some examples were constructed
by Todorov. C. Rito [Rito09] gave a detailed study of Todorov surfaces
with an involution.

Recently, H. Park, J. Park and D. Shin constructed simply con-
nected surfaces of general type with p; =1, ¢ = 0 and 2 < K? < 8 by
considering Q-Gorenstein smoothings of singular K3 surfaces with spe-
cial configurations of cyclic quotient singularities, see [PPS1], [PPS2].
Their construction follows the method used by Lee and Park in the
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paper [LP07], where a simply connected surface of general type with
pg =g =0 and K? = 2 is constructed via the Q-Gorenstein smoothing
of a singular rational surface. For more details about these kind of tech-
niques, over a field of any characteristic, we refer the reader to the work
of Lee and Nakayama [LN11].

Moreover, Bauer, Catanese, Grunewald and Pignatelli constructed
many interesting examples of surfaces of general type with p, = 0 by
considering the minimal desingularization of singular product-quotient
surfaces, see [BC04], [BCGO8], [BCGP], [BP]. Similar methods are ap-
plied to surfaces of general type with p; = ¢ = 1 by Polizzi and oth-
ers, see [Pol08], [Pol09], [CP09], [MP10]. These results motivated us to
start the investigation of Q-Gorenstein smoothings of singular product-
quotient surfaces.

Let us recall that a projective surface S is called a product-quotient
surface if there exists a finite group G, acting faithfully on two smooth
curves C7 and Cy and diagonally on their product, so that S is isomor-
phic to the minimal desingularization of X = (C} x C2)/G. The surface
X is called a singular model of a product-quotient surface, or simply a
singular product-quotient surface.

This paper focuses on the case g(C1) = ¢g(C2) = 3 and G = Zy.
More precisely, we agsume that there exist two simple Z4-covers g;: C; —
P!, both branched in four points. Then the singular product-quotient
surface

X = (Cl X CQ)/Z4

contains precisely 16 cyclic quotient singularities; any of them is either
of type (1, 1) or of type (1, 3). Note that (1, 3) is a rational double
point, whereas i(l, 1) is a singularity of class T, so both admit a local
Q-Gorenstein smoothing, see [KSB88] or [Man08, Sections 2-4]. The
problem is to understand whether these local smoothings can be glued
together in order to have a global Q-Gorenstein smoothing of X. We
will show that in some cases this is actually possible.

This paper is organized as follows.

In Section 1 we present some preliminaries and we set up notation
and terminology. In particular, we recall the definitions of simple cyclic
cover of a curve and of singular product-quotient surface and we explain
how to compute their basic invariants.

In Section 2 we introduce the main objects that we want to study,
namely the singular product quotient surfaces of the form X = (C; x
Cy)/G, where g(C1) = g(Cs) = 3, G = Z4 and C; — C;/G is a simple
cyclic cover for ¢ =1, 2.
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Section 3 deals with the study of the singular product-quotient sur-
face Y = (Cy x C3)/H, where H is the unique subgroup of G isomorphic
to Zo. By construction, Y contains exactly 16 ordinary double points as
singularities. By using the infinitesimal techniques introduced in [Pin81]
and [Cat89], we prove that Def(Y) is smooth at Y, of dimension 18 and
ESDef(Y") is smooth at [Y7], of dimension 8 (Proposition 3.6). Moreover,
if 41 V = Y is the minimal desingularization of Y, we have

dimy) Def(V) = 18, h'(Oy) = 24,

hence Def(V) is singular at [V]; by [BW74] this implies that the sixteen
(—2) curves of V do not have independent behavior in deformations.

In Section 4 we discuss three examples of singular product-quotient
surface X = (Cy x C3)/G with different G-action.

e In the first example we have Sing(X) = 16 x £(1, 3), so X
contains only rational double points as singularities. We prove
that Def(X) and ESDef(X) are both smooth at [X], of dimen-
sion 44 and 2, respectively (Propositions 4.4 and 4.2).

The surface X satisfies h°(wx) = 5 and K% = 8; moreover
it is not difficult to see that the canonical map ¢x: X — P* is
a birational morphism onto its image; by [Cat97, Proposition
6.2] it follows that the general deformation of X is isomorphic
to a smooth complete intersection of bidegree (2, 4) in P*.

Moreover we have

dimg) Def(S) = 44, h'(Os) =50,

hence Def(S) is singular at S. This means that the sixteen As-

cycles of S do not have independent behavior in deformations.
e In the second example we have Sing(X) = 16 x 1(1, 1). We

show that there exist a Q-Gorenstein smoothing 7: X = T of

X, whose base T has dimension 12, such that the general fibre

X; of 7w is a minimal surface of general type whose invariants

are

pe(Xs) =1, q(X¢) =0, K%, =8.

Moreover X; is isomorphic to a Todorov surface with K2 = 8
(Theorem 4.6). By a slight modification of the construction, it
is possible to obtain all Todorov surfaces with 2 < K2 < 8.
This is related to the existence of complex structures on
rational blow-downs of algebraic surfaces. More precisely, one
can consider the rational blow-down S(¢) of ¢ of the (—4)-curves
in S, where 1 <t < 16. This means that one considers the nor-
mal connected sum of S with ¢ copies of P2, identifying a conic
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in each P? with a (—4)-curve in S; then S(t) is a symplectic
4-manifold. On can therefore raise the following:

Question. Is it possible to give a complex structure on S(t)
for 1 <t < 16, and to describe S(t) when such a complex
structure exists?

Our results answer affirmatively this question when 10 <
t < 16; in these cases, indeed, one can give a complex structure
to the rational blow-down S(¢), which make it isomorphic to a
Todorov surface with K? =¢ — 8.

e In the third example, we have Sing(X) =8 x %(1,1) + 8 x
%(1, 3). Rasdeaconu and Suvaina give an explicit construction
of the minimal desingularization S of X, see [RS06, Section
3]; in fact, they prove that S is a simply connected, minimal
elliptic surface with no multiple fibres.

‘We show that there exists a Q-Gorenstein smoothing of X,
although H?(©x) # 0 and all the natural deformations of the
G-cover u: X — @ preserve the 8 singularities of type 1(1, 1),
see Proposition 4.8. Indeed we prove that a general surface X
in the subfamily of natural deformations of the G-cover of X
can be deformed to a bidouble cover of P* x P! branched over
three smooth divisors of bidegree (2, 2). By taking a general
deformation of these three divisors we obtain a Q-Gorenstein
smoothing of X which smoothes all the singularities. More
generally, by using the same method one can construct surfaces
of general type with p, =3, ¢ =0and K? =k (2 <k <38)
by first taking a Q-Gorenstein smoothing of k singular points
of type +(1, 1) of X and then the minimal resolution of the

4
remaining 8 — k singular points of the same type.

Notation and conventions.

We work over the field C of complex numbers.

By “surface” we mean a projective, non-singular surface S, and
for such a surface ws = Og(Ks) denotes the canonical class, py(S) =
RO(S, wg) is the geometric genus, q(S) = h'(S, wg) is the irreqularity
and x(Og) =1 —q(S) + py(S) is the Fuler—Poincaré characteristic.

If X is any (possibly singular) projective scheme, we denote by
Def(X) the base of the Kuranishi family of deformations of X and by
ESDef(X) the base of the equisingular deformations of X. The tangent
spaces to Def(X) and ESDef(X) at the point [X] corresponding to X
are given by Extl(Q%,, Oy) and H'(®y), respectively.

If L is a line bundle L on X, we use the notation L™ instead of L&
if no confusion can arise.
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If G is any finite abelian group, we denote by G its dual group,
namely the group of irreducible characters of G.

§1. Preliminaries

1.1. Simple cyclic covers of curves

Let I" be a smooth, projective curve and B C I' an effective divisor
such that Op(B) = L™ for some £ € Pic(I"). Therefore there exists a
Zn-cover g: C — T', totally branched over B, which is called a simple
cyclic cover. We identify Z, with the group of n-th roots of unity,
namely Z,, = (¢), where ( is a primitive n-th root. The dual group 2,1 is
isomorphic to Z,, and it is generated by the character x1: Z, — C such
that x1(¢) = ¢~'. We will write x; instead of xJ; then x;(¢) = ¢ .
The group Z,, acts naturally on ¢g.O¢, so there is a canonical splitting

@ 9:0c=0r& L @ oL D)

where the summand £77 is the eigensheaf (g.Oc)X/ corresponding to
the character ;.

Similarly, Z, acts naturally on g,wc and g.w2, giving the following
decompositions (see [Pa91] and [Cat89, Section 2]):

(2) gwe =wr ®(Wr L) ®...d (wr ® L),
gt = (WE(B)® L H@Wi(B)®...® (WA(B)® L"2).

In the equations (2), the eigensheaves corresponding to x; are wr ® £7
and wi(B) ® L7, respectively.

1.2. Cyclic quotient singularities, Hirzebruch Jung reso-
lutions and singular product-quotient surfaces

Let n and ¢ be natural numbers with 0 < ¢ < n, (n,q) = 1 and let
¢ be a primitive n-th root of unity. Let us consider the action of the
cyclic group Z, = (¢) on C? defined by ¢ - (z, y) = ({x, (%y). Then
the analytic space X, , = C2?/Z, has a cyclic quotient singularity of
type 1(1,q), and X, 4 = Xy o if and only if n = n’ and either ¢ = ¢ or
qq’ =1 (mod n). The exceptional divisor on the minimal resolution X, ,
of X, 4 is a Hirzebruch-Jung string, that is to say, a connected union
E= Ule Z; of smooth rational curves Z1, ..., Zy with self-intersection
< —2, and ordered linearly so that Z; 7,1 =1 for all ¢, and Z;Z; =0 if
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|i — j| > 2. More precisely, given the continued fraction

n 1
— =1[by,...,bg] = b1 —

the dual graph of F is

(cf. [Lau71, Chapter II]). Notice that a rational double point of type A,
corresponds to the cyclic quotient singularity — +1 ——(1,n).

Definition 1.1. Let x be a cyclic quotient singularity of type %(1, q).
Then we set

b =2 — 2+q—l—q Z(b _9),

1
x:k+1_—a
n

k
By =2, — by = (Q+Q)+Zbiy

i=1
where 1 < ¢ <n —1 is such that g¢’ =1 (mod n).

Definition 1.2. [BP] We say that a projective surface S is a product-
quotient surface if there exists a finite group G acting faithfully on
two smooth projective curves Cy and Cy and diagonally on their prod-
uct, so that S is isomorphic to the minimal desingularization of X =
(C1 x C3)/G. The surface X is called a singular model of a product-
quotient surface, or simply a singular product-quotient surface.

From this definition it follows that a singular product quotient sur-
face contains a finite number of cyclic quotient singularities.

Proposition 1.3 (cf. [MP10], Section 3). Let S be a product quo-
tient surface, minimal desingularization of X = (C1 x C3)/G. Then the
invariants of S are

(4) Kg _ 8(g(C1)— 1)(9(02) 1 + Y b
TESing X

(’I,Z) e(S) 4(g(C1)— 1)(9(02) 1) + E es.
z€Sing X
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(2i2) q(S) = g(C1/G) + g(C2/G).
Set I'; := C;/G and let ¢;: C; — I';. The group G acts naturally on

the sheaves ¢;,0¢,, ¢;.wc,, gi*wa. Assuming that G is abelian, we can
write the following generalizations of (1) and (2):

gi*OCi = @(gi*OCi)Xa

Xeé
g’i*wci = @(gl*wcq_)x7
xe@
2 2
gixWe, = @(Qi*wci)x,
x€G

where (%)X is the eigensheaf corresponding to the character x € G.

§2. The main construction

Let us consider two smooth curves C7, Cy of genus 3, such that there
are two simple Zs-covers g;: C; — P!, both branched in 4 points. In the
rest of the paper we write G := Zy = (C| ¢* = 1), where ( is a primitive
fourth root of unity; we also denote by H the subgroup of G defined by
H = ((?) 2 Z,.

Now set Z := (Cy x C5 and consider the singular product-quotient
surface

(3) X = 7/G,

which has exactly 16 isolated singular points, corresponding to the fixed
points of the G-action on Z. Let A: S — X be the minimal resolution
of singularities of X.

The G-cover g; factors through the double cover h;: C; — E;, where
E; := C;/H. Note that E; is an elliptic curve and that the singular
product-quotient surface

(4) Y :=Z/H

contains sixteen cyclic quotient singularities of type %(1, 1), i.e. ordinary
double points, as only singularities. Let us denote by p: V — Y the
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minimal desingularization of Y. We have a commutative diagram

(5) vV v E1 X Eg s

\/
/\

P! x P!

where:

p:Z — X and r: Z — Y are the natural projections, so

5: Y — X is a double cover (more precisely, a G/H-cover)

branched over the singular points of X;

e g:=g1 xXgo: Z — P'xP!is a G x G-cover branched on a

divisor B C P! x P! of product type and of bidegree (4, 4);

h:=hy X hy: Z — E1 X Ey is a H x H-cover branched on a

divisor A C Ey x Es of product type and of bidegree (4, 4);

o u: X — P! x P! is a G-cover, whose branch locus coincides
with B;

e v:Y — FE; X Ey is a H-cover, whose branch locus coincides

with A;

t: By x By — P! x P! is a G/H x G/H-cover whose branch

locus is B and whose ramification locus is A.

Let us denote by B; the branch locus of g;: C; — P! and by A; the
branch locus of h;: C; — E;. Both B; and A; consist of four points;
clearly B = By x By and A = Ay X As. From the results of Section 1
we infer that

o there is a natural action of G on the sheaves ¢;,O¢,, ¢i.we;,
gi*wa, which gives decompositions:

9i.0c, = Opr & M7t @ M2 @ M3,
Ginwe, = wp @ (wpr ® M) B (wpr @ M?) & (wpr @ M3);
95w, = wir (Bi) @ (win (Bi) @ Mi) @ (i (Bi) © M3)

@ (win (Bi) @ M),

where M; = Op1(1). Left to right, the direct summands are
the four eigensheaves corresponding to the four characters g,

X1, X2, X3 of G7
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e there is a natural action of H on the sheaves h;,Oc;,, h; wc;,
hi*w%i, which gives decompositions:

hi*OC,- = OEz @ £;17
(7 hizwe;, = wg, ® (Wg, ® L),
hi*w%’i = w%'i (Al) D (w%, (A,) ® Li_l)v
where £; is a line bundle of degree 2 on C; such that £2 =
Og,(4;). Left to right, the direct summands correspond to

the invariant and anti-invariant eigensheaves for the H-action,
respectively.

83. Deformations of the singular product-quotient surface Y =
Z/H

Let us consider again the surface Y = Z/H defined in Section 2,
together with its minimal desingularization p: V' — Y. As we remarked
in the previous section, we have '

Sing(Y) = 16 x %(1, 1).

Proposition 3.1. V is a minimal surface of general type whose
nvariants are

pe(V)=5, q(V)=2, K¢ =16,
h'(©v) =24, h*(Oy)=16.

Proof. The invariants p,(V), ¢(V), K2 can be computed by using
Proposition 1.3. Since p,(V) > 0 and K2 > 0, it follows that V is a
surface of general type. Let us denote by H°(x)* and H(x)~ the spaces
of invariant and anti-invariant sections for the H-action and by h?(x)*

and h°(*)~ their dimensions. Since Y has only rational double points,
Kiinneth formula and the third equality in (7) give

HO(w}) = H(w}) = HO(w})" = H(wg, MuwE,)™
= (H(h.w3,)" © HO(hauw,)") @ (H ()™ ® HO (houwis,) ™)
> %,

This shows that h%(w?) = K2 + x(Oy), hence V is a minimal model.

Since Y is a normal surface, [BW74, Proposition 1.2] gives p.0y =
©y. Therefore the argument in [BW74, Section 1] or [Cat89, p. 299]
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shows that there are two isomorphisms
(8) H'(©v) = H'(6y) ® Hp(Ov), H*(6y)= H*(Oy),

where H}(©y) denotes the local cohomology with support on the ex-
ceptional divisor £ C V.
By the second isomorphism in (8), we have

(9) H*Ov) =H*Oy) =H'Qz00) ' =TieheTel,

where
= H(h1.wd, )t @ H(hauwo,)t = HO (W, (A1) © H(wk, ),
:Ho(hl*wcl) ® HO(ho,we,)t = HO(wp,) @ H(wE, (A2)),
(10) = HO(h1.wi,)” ® H(houwey)™
= H%(w3, (A ® LT Yo H(wg, ® L£2),
Ty = H%(hiwe,)” @ HO(hg,w,)™
= Hwg, ® L£1) ® H(w}, (A2) ® L31).

Since dim T; = 4 for all i € {1, 2, 3, 4}, we infer h2(©y) = h?(Oy) = 16.
By Riemann-Roch we have h!(0y) — h2(0Oy) = 10x(Oy) — 2K¢ =8,
so it follows h!(Oy) = 24. Q.E.D.

Corollary 3.2. We have
hl(Oy) =8, h*(Oy)=16.

Proof. Since h?(Oy) = h%(Oy), the first equality follows from
Proposition 3.1. Furthermore, F is the disjoint union of sixteen (—2)-
curves, hence [BW74, Section 1] implies H}(0Oy) = C6. Using h!(0Oy) =
24 and the first isomorphism in (8) we obtain h'(©y) = 8, which com-
pletes the proof. Q.E.D.

By using the local-to-global spectral sequence of £xt-sheaves we ob-
tain an exact sequence

(11)  0— HYOy) — Ext'(QL, Oy) — T2 225 H2(0y),

where T3 = H(Ext} (0, Oy)). Notice that 7y is a skyscraper sheaf
supported on the sixteen nodes of Y, hence oby is a linear map

oby : C*¢ — C16,

Thus its kernel and its cokernel have the same dimension.
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Remark 3.3. The branch locus A of v: Y — E; x Ey is a po-
larization of type (4, 4) on the abelian surface E; X Es, in particular
hY(A) = 16. Since polarized abelian surfaces form a 3-dimensional fam-
ily, it follows that the deformation space Def(Y") has dimension at least
18. Therefore we have

dimExt"(Q}, Oy) = dim Tjy)Def(Y") > dimpy Def(Y) > 18.
Proposition 3.4. We have
dim ker oby = dim coker oby = 10.

Proof. Notice that Remark 3.3 only gives dim(keroby) > 10. In
order to prove equality, we apply an argument used in [Cat89, Section
2].

Let us consider the dual map ob} : H2(Oy)* — (T3)*. We set

Ay =di +dy+d5+dy
Ny =di +dy +d3 + dj

and we choose local coordinates (z, y) in Z vanishing at (d}, d}). Then
the action of H with respect to these coordinates is given by (z, y) —
(—z, —y).

By [Cat89] we have an isomorphism (73})* = (r.Q}) T /Q} | therefore
ob} can be seen as a map

oby: H(QL @ Q)" — (r.05) 7 /05

Near any of the ordinary double points of Y, the sheaf (r.Q3,)" is
locally generated by zdz, zdy, ydz, ydy, whereas 3, is locally generated
by d(z?), d(zy), d(y?); then (r.Q})T/QL is locally generated by zdy —
ydz, cf. [Cat89, Lemma 2.11].

Looking at (10) and making straightforward computations, one checks
that

e the summand T; contributes expressions of type aif1ydr ®
(dz A dy);

e the summand 75 contributes expressions of type asfBezdy ®
(dz A dy);

e the summand 73 contributes expressions of type agfzzdr &
(dz A dy);

e the summand Ty contributes expressions of type asf4ydy ®
(dz A dy),
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where o; = a;(2?) and B; = B;(y?) are pullbacks of local functions on
E;.
Since in the Oy-module (r.Q%)¥ /), we have the relations

1/2(zdy — ydz) = zdy = —ydz and zdx = ydy =0,

it follows that the restriction of obj  to the subspace T3 & Ty is zero,
whereas the restriction of obj, to the subspace Ty @ T, can be identified,
up to a multiplicative constant, with the map

4
¢: HO(wF, (A1) @ HO(wE, (A2)) = €D Cy,

4,j=1
4
¢(0. D 7—) — @ (Va,ldg (0) b Vald_'j' (T))
i,j=1

Here the valuation maps valy, and vald;/ are defined, as usual, by
the short exact sequences

GBvald/_
0= H'(w%,) = HO(w}, (A1) —' H'(Na,) =2 &} ,C,,
®val 41/

0 — H°(wk,) = HO(w,(A2)) — H°(Na,) = @j_,C;.

(12)

Therefore we obtain
ker¢p = {od 7| valy (o) = valy, (o) = valg, (o) = valg, (o)

=valgy (7) = valgy (1) = valgy (1) = valay (7)}.

(13)

As Ej; is an elliptic curve, we have w}, = wp, and so (12) are the
standard residue sequences for meromorphic 1-forms. By the Residue
Theorem we get

4 4
> valy (o) = Y valay (1) =0,
=1 j=1

hence (13) implies that c®7 € ker ¢ if and only if valy (o) = valg: (1) =0

for all pairs (7, j). This yields ker ¢ = H®(w%,) @ H'(wg,) = Ca@ C.
Then keroby = ker¢ @ T3 @ Ty = C'9) hence dim coker oby = 10

and we are done. Q.E.D.

Corollary 3.5. We have

dim Ext*(Q,, Oy) = 18.
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Proof. Immediate from Corollary 3.2, Proposition 3.4 and exact
sequence (11). Q.E.D.

Proposition 3.6. The following holds:
(2) Def(Y) is smooth at [Y], of dimension 18;
(it) ESDef(Y) is smooth at [Y], of dimension 8.

Proof. By Remark 3.3 and Corollary 3.5 we have
18 = dim Ext' (5, Oy) = dim T}y Def(Y") > dimpy Def(Y) > 18,

which proves ().

On the other hand, if we move the branch loci B; C FE; the curve
A C E; x E5 remains of product type, so in this way we obtain a
8-dimensional family of equisingular deformations of Y'; therefore the
equisingular deformation space ESDef(Y) has dimension at least 8, and
by Corollary 3.2 we have

8 = dim H*(Oy) = dim T}y ESDef(Y) > dimy ESDef(Y) > 8.
Y] Y]

This proves (42). Q.E.D.

Summing up, Proposition 3.6 shows that the deformations of Y
are unobstructed and that they are all obtained by deforming the pair
(A, A), where A is an abelian surface and A a polarization of type (4, 4).
In particular, all the deformations preserve the action of H. Moreover,
the equisingular deformations of Y are also unobstructed and are ob-
tained by taking as A the product of two elliptic curves and by choosing
the polarization A of product type.

Remark 3.7. Since Y has only rational double points, by [BW74]
the dimension of Def(Y') equals the dimension of Def(V). Then

24 = h}(Oy) = dim Ty Def (V) > dimyy Def (V) = 18,
\4 4

that is Def(V') is singular at [V]. By [BW74, Theorem 3.7], this means
that the sixteen (—2)-curves of V' do not have independent behavior in
deformations.

84. Deformations of the singular product-quotient surface X =
Z/G

Let us consider now the surface X = Z/G defined in Section 2 and its
minimal resolution of singularities A: S — X. We must analyze several
cases, according to the type of quotient singularities that X contains.
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Throughout this section we set @ := P! x P! and we denote by
O¢q(a, b) the line bundle of bidegree (a, b) on Q.
The following exact sequence is the analogue of (11):

(14) 00— HYOx) — Ext'(Qk, Ox) — T &5 H*(Ox).

4.1. Example where Sing(X) =16 x 1(1, 3)

Assume that, locally around each of the fixed points, the action of
G = {¢|¢* = 1) is given by (- (z, y) = (Cz, ("'y). Therefore,

Sing(X) = 16 x 2(1,3).

In this case X contains only rational double points and we obtain

Proposition 4.1. S is a minimal surface of general type.

Proof. S is of general type because p,(S) > 0 and K% > 0. Since
the action of G is twisted on the second factor and X has only rational
double points, the Kiinneth formula and the third equality in (6) give

HO(w§) = HO(w}) = H(w)® = HO(wg, Bwg,)®

= P (H (91,02, ) © H(g2.w,)%) = C™.
xe@

This shows that h%(w?%) = K% + x(Os), hence S is a minimal surface.
QED.

Proposition 4.2. The following holds:

(¢) obx is surjective;
(i1) R'(Ox) =2, h%(Ox)=6, h'(Os5)=50, h?(Og)=6.
(#93) ESDef(X) is smooth at | X], of dimension 2.

Proof. (i) Let us consider the dual map ob% : H%(Ox)* — (T%)*.
By Grothendieck duality (see [AK70, Chapter I]) and Kiinneth formula
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we obtain
H*(©x)* = H°(Q} ® 03)°

= @ [(H (9100, © H(g2.%,)")
x€G

(15) & (H°(91,w8, )X ® H®(g2.we, )Y
= Uy ® Us, where
Uy = H®(wpr © M) © H%(wpi (Ba) ® M3),
U = H®(wi (B1) @ M) @ HO(wpr ® M3).

This yields h?(©x) = 6 and so h%(O5) = 6. Now we set

By = by + by + b + b

By = b + by + by + by
and we choose local coordinates (z, y) in Z vanishing at (b}, b7). As in
Section 3, we can interpret ob% as a map

obk: HO(Qz ® Q%)¢ = (p.927)¢ /0%,

where (p.Q})¢/QL is a skyscraper sheaf supported on the singular
points of X and locally generated by z*y*tldz —yiz*+ldy, for i = 0,1, 2,
see [Cat89].

A straightforward local computation shows that the summand U; in
(15) contributes expressions of the form oy 812dy ® (dx Ady) whereas the
summand Us contributes expressions of the form asBoydz & (dx A dy),
where a; = o;(2?) and 3; = B;(y?) are pullbacks of local functions on

P!. Therefore the map ob% can be identified, up to a multiplicative
constant, with

¢: HO(wn%l (B1) ® MZ) @ H(wg: (By) ® M3)

ﬁ@cljc@céﬁ?wm

4,5=1 4,5=1
4
$lo & 1) = P (valy (o) - valy: (7)),
i,j=1
where the valuation maps are defined as in Section 3. Hence we obtain
ker ¢ = {0 @ 7| valy (o) = valy, (0) = valy, (o) = valy, (o)

=valyy (1) = valyy (1) = valyy (1) = valyy (1) }.

(16)
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On the other hand, the valuation map H(w3,(B;) ® M?) — H°(Np,)
can be identified with the residue map H°(wp:(B;)) — H°(Np,) via
the isomorphism H(w? (B;) ® M?) = H°(wp:(B;)). By the Residue
Theorem we have

4 4
Z valy (o) = Zvalby (1) =0,
i=1 j=1

so (16) implies that o ® 7 € ker ¢ if and only if valy, (o) = valy (1) =0
for all pairs (¢, j). But there are no non-zero holomorphic 1-forms on
P!, so ker¢ = 0 and ob% is injective. Therefore the obstruction map
obx is surjective.

(it) Let us denote by F' C S the exceptional divisor of A: § — X.
Since S has only rational double points, we have

H'(05) = H'(Ox) ® Hp(0s), H?*(0s) = H*(Ox).
By Riemann-Roch theorem we obtain
hY(©s) — h?(Os) = 10x(Og) — 2K3 = 44,

then h'(©g) = 50 since we have shown that h?(©g) = 6, see part (z).
Being F the union of sixteen disjoint As-cycles, we have H:(Og) =2
C'63 = C*8. Therefore h'(Ox) = 2.

(¢4¢) The cover u: X — @ is a simple G-cover branched on the divi-
sor B = By x Bz, which has bidegree (4, 4). By varying the branch loci
B; C P! we obtain a 2-dimensional family of equisingular deformations
of X. Then

2 = dim H' (6 x) = dim T{x)ESDef(X) > dim(x ESDef(X) > 2,
which implies the claim. Q.E.D.

Proposition 4.3. The general deformation of the surface X is a
canonically embedded, smooth complete intersection Sa 4 of type (2, 4)
in P4,

Proof. By [Cat97, Proposition 6.2] it is sufficient to check that the
canonical map ¢x: X — P* is a birational morphism onto its image.
Since X has only Rational Double Points and w: X — Q is a simple
G-cover, Hurwitz formula yields Kx = u*Og(1, 1); but |Og(1, 1)| is
base-point free, so |K x| is also base-point free and ¢k is a morphism.

It remains to show that ¢x separates two general points z, y on X.
The decomposition of u,wx with respect to the G-action is

uwx =w ® (o ® L) ® (wq ® L?) @ (wo ® L?),
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where L = Og(1, 1) and wg ® L* is the eigensheaf corresponding to the
character ;. Therefore we obtain

H(uwwyx) = H(wg ® L?) @ H(wg ® L?).

Now let {7} be a basis of H(wo®L?) = H%(Og) and let {71, 02, 03, 04}
be a basis of H(wg ® L%) = H°(Og(1, 1)). The four sections {o;} pro-
vide an embedding @ < P3, hence ¢ separates pairs of points which
belong to the same fibre of u: X — Q. Now let z, y be two points in
the same (general) fibre of u. Then there exists 1 < a < 3 such that
y=(*-z. Then

oi(y) = (Poi(x), T(y) = (),
that is
¢ (y) = lo1(y): 02(y): 03(y): oa(y): 7(v)]

= [o1(z): o2(x): o3(x): o4(z): (*7(x)]

# [o1(x): o2(x): o3(x): oa(z): T(2)] = PK (2).

Therefore ¢ i also separates general pairs of points lying in the same
fibre of u: X — @ and we are done. Q.E.D.

Now we can prove the following
Proposition 4.4. Def(X) is smooth at [X], of dimension 44.

Proof. By using Proposition 4.2 and exact sequence (14) we obtain
(17) dim Tx;Def(X) = dim Ext' (Q, Ox) = 44.

On the other hand, by [Se06, Chapter 3] one knows that Def(S 4) is
smooth, of dimension

hY(Ns, ,/ps) — dim Aut(P*) = h(Os, ,(2)) + h°(Os, , (4)) — 24 = 44.

Equality (17) and Proposition 4.3 yield
(18)
44 = dim T[X]Def(X) > dim[x} Def(X) = dim[Su] Def(S5.4) = 44,

so we are done. Q.E.D.

Remark 4.5. Since X has only rational double points, by [BWT74]
the dimension of Def(X) equals the dimension of Def(S). So we infer

50 = h'(©g) = dim Tg)Def(S) > dimg) Def(S) = 44,
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that is Def(S) is singular at [S]. By [BW74, Theorem 3.7], this means
that the sixteen As-cycles of S do not have independent behavior in
deformations.

Proposition 4.3 in particular shows that the general deformation
of X does not preserve the G-action. Now we want to consider some
particular deformations that preserve the quadruple cover u: X — Q.
According to [Pa91] we call them natural deformations, and we freely
follow the notation of that paper everywhere. The building data of any
totally ramified G-cover u: X — @ are

4LX1 = 3DG,X3 + DG’,X1
(19) 2LX2 = DG;Xl + D xs
4Ly, = Da,xs +3D x5

see [Pa91, Proposition 2.1]. The G-cover u: X — @Q defines a natu-
ral embedding ¢ of X into the total space of the vector bundle W =
®x€@\{XO} V(Lg'). If wy is a local coordinate on V(L;') on an open
set U and og,y is a local equation for D¢, on U, then i(X) is defined
by the equations

G 1/,
(20) Wy Wy = ( H (0G,4)> )wxx'
E{x1,x3}

and the covering map is given by the composition woi, where 7: W — Q
is the projection. Moreover, the integers ef ¥ can be easily computed
by using [Pa91, p. 196]:

Gx1 — Cox1 = Gx1 — eGx1 = =0, G =
0,Xo — >X1 ) 0,X2 ’ 0,X3 1,X1 ?
X1 — X1 — X1 — X1 — X1 —
(2]) € 1,X2 0’ € »X3 » € »X2 1’ € 2,X3 1’ € ?:,Xa 1’
eGixa — X5 = €Gxs = (. €G:xs = GExs =
0,X0 4 éo 0,X2 ’ 0,X3 ? 1,X1 ’
»X3  — X3 — sX3  — X3 — X3 —
6Xl,xz 1’ X1,X3 1 e)(20(2 1’ €X2’,X3 O’ 6X3:7X3 0.

Let us consider now a collection of sections

{TGﬂ/J,X € HO(OQ(DGJJI) Y L;I)}zbE{thg},xESc;,w

where
SG,X1 = {X07 Xl,X2}, SG,X3 = {Xo, Xz,X3}-

Let hg,q,x be a local representative of rg 4, on the open set U and

define
Taw = Y hayxy.

ve{xi,xs}
x€Sc,y
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Then the natural deformation of the G-cover u: X — @, associated to
the collection of sections {rg 4.}, is the subvariety X’ of W locally

defined by
EQ%
Wy Wy = ( H (Ta,p) x> >wxx”

we{x1,x3}

together with the map v': X’ — @ obtained by restricting the projection
m: W = Q to X'.
Coming back to our particular case, we have

DG>X1 € |OQ(4’ 4)1’ DG,Xs =0,

LX1 = OQ(I) 1)7 LX2 = OQ(27 2)7 LX3 = OQ(3’ 3)’

and B = Dg,y,. Since Dg,y, = 0, the natural deformations of X are
parameterized by the vector space

(22) P H(Oq(Day) & L)

X€Sa,x,
= H°(0q(4, 4)) ® H°(0q(3, 3)) & H’(0q(2, 2)) = C*.

4.2. Example where Sing(X) =16 x £(1,1)

Assume that, locally around each of the fixed points, the action of
G = {(¢|¢* = 1) is given by ¢ - (z, y) = (Cz, Cy). In this case,

Sing(X) = 16 x i(l, 1).

By using Proposition 1.3, we obtain

hence S is not a minimal model.

Theorem 4.6. The following holds:
(1) h*(Ox) = 14;

(22) all natural deformations of u: X — @Q preserve the 16 points
of type (1, 1);

(i11) there exists o 12-dimensional family of Q-Gorenstein deforma-
tions of X, smoothing all the singularities. The general element
X, of this deformation is a smooth, minimal surface of general
type with py(Xy) =1, ¢(Xy) =0 and K%, = §;

(iv) X, is isomorphic to a Todorov surface with K% = 8.
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Proof. (i) By using Grothendieck duality and Kiinneth formula as
in Proposition 4.2 we obtain

H2(0x)" = HO(Q} © 93)°

= P [(H(g1.w6, )% ® H(g2,03,)% )
Xeé

1

® (H°(g1,0,)* ® H° (2,000, )]
= (H°(Op) ® H'(Op(2))) @ (H°(Op (1)) @ H*(Op1 (1))
@ (H°(Om (1)) @ H*(Op:(1))) @ (H*(Op2(2)) ® H*(Op)),

which yields h?(©x) = 14.
(i2) The G-cover u: X — @ is determined by the building data
(19), with
Dy, €10q(4,0)l,  Daxs €100, 4)],

Ly, = OQ(L 3), Ly, = OQ(27 2), Ly, = OQ(?” 1).

The natural deformations of u are parameterized by the vector space

QP ( %) HO(OQ(DG,¢>®L;I>)

(23) ve{x1,x3} “XxESaG,vp
= H°(0q(4, 0)) ® H(0Og(0, 4)).

Therefore they form a family of dimension 10, which is exactly the
one obtained by keeping the branch divisor B C @ of product type.
In particular, all the natural deformations preserve the sixteen singular
points of X.

(#21) For simplicity, set w; = w,, and 7q,, = hswy. Writing wg =
1, the local equations defining the family of natural deformations of
u: X — @ are the following:

2 _ _ _

wy = hgwz, wiws = hgws, wiws = hyhs,
(24) 2 2

wy = hlhg, waWg = hlwl, w3 = hl’wg.

Relations (24) can be written in determinantal form in two different
ways, namely

(a) rank( Z))Q ws wi M )<1
1

hs wy we
(b) rank | wy wy ws | <1.
w2 W3 h1
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In the sequel we will only consider the determinantal representation
(b). We can deform it by using the parameter s € H(L,,) = C, i.e.

h3 w1 Wa
(25) rank | wi wo+s w3z | <1.
wy w3 hy

It is no difficult to check that for general s # 0 one obtains a smooth
surface, hence (25) provides a smoothing 7: X — T of X. This is
actually a Q-Gorenstein smoothing of X, since it is the globalization of
the local Q-Gorenstein smoothing of the quotient singularity %(1, 1), see
[Man08, Chapter 4]. Therefore the general fibre X; of 7 is a surface of
general type whose invariants are

pe(Xy) =1, q(Xy)=0, K%, =8.

The canonical divisor Kx is big and nef (since 4Kx = u*Og(4, 4)), so
Kx, is big and nef too, as X; is obtained by a Q-Gorenstein smoothing
of X. This shows that X; is a minimal model.

In order to give a more concrete description of X;, let us look again
at the double cover v: Y — FE; X FEy constructed in Section 3. By
Proposition 3.6 we know that Def(Y) is smooth at [Y] of dimension 18;
moreover the general deformation Y; of Y is a double cover v;: Y; — Ay
of an abelian variety A;, branched on a smooth divisor = which is a
polarization of type (4, 4). Let us compute the dimension of the subspace
of Def(Y) consisting of surfaces for which it is possible to lift the natural
involution ¢;: Ay — A: to an involution iy: Y; — Y; such that Y;/7; is
smooth. By [BL04, Corollary 4.7.6], the divisor Z does not contain
any of the 16 fixed points of ;. If we write locally the equation of
the double cover v;: Y; — A; as 22 = f(z, y) so that ¢ is given by
(x, y) — (—z, —y), we see that i lifts to Y; if an only if the branch
locus f(x, y) = 0 is (;-invariant; moreover in this case there is a unique
lifting such that the quotient is smooth; it is locally given by (z, y, z) —
(—z, —y, —z). By [BL04, Corollary 4.6.6], the divisors in |Z| which are
invariant under ¢; form a family of dimension 2h%(O4(B))+2—-1=9
and so, taking into account the three moduli of abelian surfaces, we
obtain a 12-dimensional family {Y;} of deformations of ¥ which admit
a lifting of ¢;.

One can further check that the lifted involution 7 is fixed-point free
and that the family {X;} constructed before can be obtained as X; =
Y,/

(iv) Let us consider the Kummer surface Kum(A4;) := A:/i;. By
(441) a general fibre X; of the Q-Gorenstein smoothing of X is a double
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cover of Kum(A;) branched over the 16 nodes of Kum(A;) and the image
D of the curve E.

On the other hand, Kum(A4;) can be embedded in P? as a quartic
surface with 16 nodes and via this embedding the curve D is obtained
by intersecting Kum(A;) with a smooth quadric surface ® which does
not contain any of the nodes.

This shows that X; belongs precisely to the family of surfaces with
pg =1, ¢ =0 and K? = 8 constructed by Todorov in [To81]. ~ Q.E.D.

Remark 4.7. Let us fix the abelian surface A and the embedding
Kum(A) < P3. Then the choice of the deformation parameter s €
H°(L,,) corresponds to the choice of the quadric surface ® € |Ops(2)|.
By [To81, Lemma 2.1] there is a quadric surface ®; in P? which contains
exactly k (1 < k < 6) of the nodes of Kum(A) that are general position.
This means that the pullback in A of the curve Dy, := Kum(A) N @y, is
a polarization of type (4, 4) which contains exactly k of the fixed points
of L: A — A.

Therefore arguments similar to those used in the proof of Theorem
4.6, part (%) show that there exists a partial Q-Gorenstein smoothing of
X, whose general fibre X; is isomorphic to the double cover of Kum(A)
branched over the curve Dy and the remaining 16 — k nodes of Kum(A).
The surface X; is not smooth, since it contains exactly k singular points
of type i(l, 1). Its minimal resolution of singularities is a Todorov
surface with K2 =8 —k (1 < k < 6).

4.3. Example where Sing(X) =8 x 1(1,3) +8 x 3(1,1)
We can also twist the action of G on Z in such a way that
. 1 1
Sing(X) =8 x Z(l’ 1)+ 8 x 1(1,3).
By using Proposition 1.3, we obtain
pg(S) =3, ¢(S)=0, Ki=0.

Rasdeaconu and Suvaina give an explicit construction of S in [RS06,
Section 3], showing that it is a simply connected, minimal, elliptic surface
with no multiple fibers. One can also prove that H%(©x) # 0, see [LP11,
Section 3].

Proposition 4.8. The following holds:

(¢) all natural deformations of X preserve the 8 points of type
1
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(¢2) there exists a family of Q-Gorenstein deformations of X, smooth-
ing all the singularities. The general element of this family is
a smooth, minimal surface of general type with p, =3, ¢ =0
and K? = 8.

Proof. (i) The abelian G-cover u: X — @ is determined by the
building data (19), with

Dé x1s Da,xs, € [0q(2, 2)].

LXl’ LszLX3 = OQ(27 2)'

The same argument of Theorem 4.6, part (i2) shows that the natural
deformations of X are parameterized by the vector space

H(0g(2, 2)) & HY(On(2, 2))
SH(0q) ® H°(Oq) ® H°(0Oq) & H°(Og).
Writing w; := w,, we have
hi = g1+ crwy + cowa, hs = g3 + daws + d3ws,

where g; a local equations of D¢, , and ¢;, d; € C. Therefore the equa-
tions of the natural deformations of X are

w% = (93 + dows + dgwg)wQ,

wiwy = (g3 + dawy + dzwz)ws,
(26) w1wz = (g1 + crwr + cow2)(gs + dawa + dzws),
wy = (g1 + c1wy + cowz)(gs + daws + dzws),

waws = (g1 + crwi + cowg)wi,

wi = (g1 + crwr + cows)ws.

For a general choice of the parameters the morphism %: X — Q is not
a Galois cover and an easy computation shows that its branch locus is

of the form
DX:D1+...+D6

where the D; belong to the pencil generated by Dg, y, and Dg, y,. Then
the singular locus of Dx is given by the 8 points Dg, 4, N Dg,y, and
Sing(X) consists of the 8 points of type (1, 1) locally defined by setting

gi=gzs=wy =wy=w3 =0

in (26).
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(#1) We note that the set of natural deformations X of X which
keep the G-action is parameterized by the vector space H%(Og(2, 2)) &
H°(0g(2, 2)). In fact, the action of the generator i = v/—1 of G must
be given by

w1 > —lwy, W — —wWs, W3+ W3

and substituting in (26) we obtain ¢; = cg =dy =dz = 0.
The G-cover X — @ factors into two double covers

X>K5%0Q

where K is a K3 surface with 8 ordinary double points and p: K —
Q is a double cover branched over Dgy, + Dgy,- Let Dg,, be a
general member in the pencil induced by D¢, and D¢ y,. Let Dg y, =
p*Dgx, and 2D, = p*Dg,y, for i = 1,3. Since Dg,y, is linearly
equivalent to D¢y, for ¢ = 1,3 and a K3 surface is simply connected,
Dg .y, is linearly equivalent to Dg,y, + Dg.y,- Note that both these
curves have exactly 8 nodes. The double cover X of K branched over
Da,y, is deformation equivalent to X, and X can be realized as the
bidouble cover of @) branched over Dg,y,, Dg,y, and Dg y,. Therefore
if one deforms D¢ ,, to a general divisor of bidegree (2, 2) we have a Q-
Gorenstein smoothing of X which smoothes all the singularities. Since
X is a deformation of X and X is deformation equivalent to X, we have
a smooth projective surface in the deformation space of X which is a Q-
Gorenstein smoothing of X. Finally, we note that each deformation is a
Q-Gorenstein one. In fact, X and X are double covers of the K3 surface
K branched over Dg,y, and Dg y, + Dag,y,, Tespectively. Let X — A
be a family of double covers of K obtained deforming the branch locus
from DG,X1 + DG,X3 to DG,XQ. By using the canonical divisor formula
for a double cover, it is not hard to see that Ky is a Q-Cartier divisor.
Therefore the transitive property of Q-Gorenstein deformations implies
that X has a Q-Gorenstein smoothing. Q.E.D.

Remark 4.9. By applying arguments similar to those used in Re-
mark 4.7 and in [Leel0, Section 2], one can construct surfaces of general
type with p, = 3, ¢ = 0 and K? = k (2 < k < 8) by first taking a
Q-Gorenstein smoothing of k singular points of type %(1, 1) of X and
then the minimal resolution of the remaining 8 — k singular points of the
same type.
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