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Deformations of product-quotient surfaces and 
reconstruction of Todorov surfaces via Q-Gorenstein 

smoothing 

Yongnam Lee and Francesco Polizzi 

Abstract. 

We consider the deformation spaces of some singular product­
quotient surfaces X= (C1 x C2 )/G, where the curves Ci have genus 3 
and the group G is isomorphic to Z4 . As a by-product, we give a new 
construction of Todorov surfaces with p9 = 1, q = 0 and 2 :::= K 2 :::= 8 
by using Q-Gorenstein smoothings. 

§0. Introduction 

In [To81], Todorov constructed some surfaces of general type with 
p9 = 1, q = 0 and 2 :S K 2 :S 8 in order to give counterexamples of the 
global Torelli theorem. Todorov surfaces with K 2 = 8 - k are double 
covers of a Kummer surface in lP'3 branched over a curve D, which is 
a complete intersection of the Kummer surface with a smooth quadric 
surface containing k of its nodes, and over the remaining 16- k nodes. 
Surfaces with K 2 = 2, and p9 = 1 have been completely classified by 
Catanese and Debarre [CD89], while some examples were constructed 
by Todorov. C. Rito [Rito09] gave a detailed study of Todorov surfaces 
with an involution. 

Recently, H. Park, J. Park and D. Shin constructed simply con­
nected surfaces of general type with p9 = 1, q = 0 and 2 :S K 2 :S 8 by 
considering Q-Gorenstein smoothings of singular K3 surfaces with spe­
cial configurations of cyclic quotient singularities, see [PPS1], [PPS2]. 
Their construction follows the method used by Lee and Park in the 
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paper [LP07], where a simply connected surface of general type with 
p9 = q = 0 and K 2 = 2 is constructed via the Q-Gorenstein smoothing 
of a singular rational surface. For more details about these kind of tech­
niques, over a field of any characteristic, we refer the reader to the work 
of Lee and Nakayama [LNll]. 

Moreover, Bauer, Catanese, Grunewald and Pignatelli constructed 
many interesting examples of surfaces of general type with p9 = 0 by 
considering the minimal desingularization of singular product-quotient 
surfaces, see [BC04], [BCG08], [BCGP], [BP]. Similar methods are ap­
plied to surfaces of general type with p9 = q = 1 by Polizzi and oth­
ers, see [Pol08], [Pol09], [CP09], [MPlO]. These results motivated us to 
start the investigation of Q-Gorenstein smoothings of singular product­
quotient surfaces. 

Let us recall that a projective surface S is called a product-quotient 
surface if there exists a finite group G, acting faithfully on two smooth 
curves cl and c2 and diagonally on their product, so that sis isomor­
phic to the minimal desingularization of X= (C1 x C2)/G. The surface 
X is called a singular model of a product-quotient surface, or simply a 
singular product-quotient surface. 

This paper focuses on the case g(C1) = g(C2) = 3 and G = Z4. 
More precisely, we assume that there exist two simple Z4-covers gi: Ci --+ 
IP'1 , both branched in four points. Then the singular product-quotient 
surface 

contains precisely 16 cyclic quotient singularities; any of them is either 
of type ~(1, 1) or of type ~(1, 3). Note that ~(1, 3) is a rational double 
point, whereas ~(1, 1) is a singularity of class T, so both admit a local 
Q-Gorenstein smoothing, see [KSB88] or [Man08, Sections 2-4]. The 
problem is to understand whether these local smoothings can be glued 
together in order to have a global Q-Gorenstein smoothing of X. We 
will show that in some cases this is actually possible. 

This paper is organized as follows. 
In Section 1 we present some preliminaries and we set up notation 

and terminology. In particular, we recall the definitions of simple cyclic 
cover of a curve and of singular product-quotient surface and we explain 
how to compute their basic invariants. 

In Section 2 we introduce the main objects that we want to study, 
namely the singular product quotient surfaces of the form X = ( cl X 

C2)/G, where g(C1) = g(C2) = 3, G = Z4 and Ci--+ Ci/G is a simple 
cyclic cover for i = 1, 2. 
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Section 3 deals with the study of the singular product-quotient sur­
face Y = (C1 x C2)/ H, where His the unique subgroup of G isomorphic 
to Z2. By construction, Y contains exactly 16 ordinary double points as 
singularities. By using the infinitesimal techniques introduced in [Pin81] 
and [Cat89], we prove that Def(Y) is smooth at Y, of dimension 18 and 
ESDef(Y) is smooth at [Y], of dimension 8 (Proposition 3.6). Moreover, 
if f1 : V --+ Y is the minimal desingularization of Y, we have 

dim [VI Def(V) = 18, h 1 ( 8v) = 24, 

hence Def(V) is singular at [V]; by [BW7 4] this implies that the sixteen 
( -2) curves of V do not have independent behavior in deformations. 

In Section 4 we discuss three examples of singular product-quotient 
surface X= (C1 x C2 )/G with different G-action. 

• In the first example we have Sing(X) = 16 x ~(1, 3), so X 
contains only rational double points as singularities. We prove 
that Def(X) and ESDef(X) are both smooth at [X], of dimen­
sion 44 and 2, respectively (Propositions 4.4 and 4.2). 

The surface X satisfies h0 (wx) = 5 and K'5c = 8; moreover 
it is not difficult to see that the canonical map ¢K: X --+ lP'4 is 
a birational morphism onto its image; by [Cat97, Proposition 
6.2] it follows that the general deformation of X is isomorphic 
to a smooth complete intersection of bidegree (2, 4) in lP'4 . 

Moreover we have 

dim[s] Def(S) = 44, h1 (8s) =50, 

hence Def(S) is singular at S. This means that the sixteen A3 -

cycles of S do not have independent behavior in deformations. 
• In the second example we have Sing(X) = 16 x ~(1, 1). We 

show that there exist a Q-Gorenstein smoothing 1r : X --+ T of 
X, whose base T has dimension 12, such that the general fibre 
Xt of 1r is a minimal surface of general type whose invariants 
are 

p9 (Xt) = 1, q(Xt) = 0, Kk, = 8. 

Moreover Xt is isomorphic to a Todorov surface with K 2 = 8 
(Theorem 4.6). By a slight modification of the construction, it 
is possible to obtain all Todorov surfaces with 2 ::; K 2 ::; 8. 

This is related to the existence of complex structures on 
rational blow-downs of algebraic surfaces. More precisely, one 
can consider the rational blow-down S(t) oft of the ( -4)-curves 
inS, where 1 ::; t ::; 16. This means that one considers the nor­
mal connected sum of S with t copies of lP'2 , identifying a conic 
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in each IP'2 with a ( -4)-curve in S; then S(t) is a symplectic 
4-manifold. On can therefore raise the following: 
Question. Is it possible to give a complex structure on S(t) 
for I ~ t ~ I6, and to describe S(t) when such a complex 
structure exists? 

Our results answer affirmatively this question when IO ~ 
t ~ I6; in these cases, indeed, one can give a complex structure 
to the rational blow-down S(t), which make it isomorphic to a 
Todorov surface with K 2 = t - 8. 

• In the third example, we have Sing(X) = 8 x HI, I) + 8 x 
~(I, 3). Rasdeaconu and Suvaina give an explicit construction 
of the minimal desingularization S of X, see [RS06, Section 
3]; in fact, they prove that S is a simply connected, minimal 
elliptic surface with no multiple fibres. 

We show that there exists a Ql-Gorenstein smoothing of X, 
although H 2 (eX) -I= 0 and all the natural deformations of the 
G-cover u: X-+ Q preserve the 8 singularities of type HI, I), 
see Proposition 4.8. Indeed we prove that a general surface X 
in the subfamily of natural deformations of the G-cover of X 
can be deformed to a bidouble cover of IP'1 x IP'1 branched over 
three smooth divisors of bidegree (2, 2). By taking a general 
deformation of these three divisors we obtain a Ql-Gorenstein 
smoothing of X which smoothes all the singularities. More 
generally, by using the same method one can construct surfaces 
of general type with p9 = 3, q = 0 and K 2 = k (2 ~ k ~ 8) 
by first taking a Ql-Gorenstein smoothing of k singular points 
of type i (I, I) of X and then the minimal resolution of the 
remaining 8- k singular points of the same type. 

Notation and conventions. 
We work over the field C of complex numbers. 
By "surface" we mean a projective, non-singular surface S, and 

for such a surface ws = Os(Ks) denotes the canonical class, p9 (S) = 
h0 (S, ws) is the geometric genus, q(S) = h 1(S, w8 ) is the irregularity 
and x(Os) =I- q(S) + p9 (S) is the Euler-Poincare characteristic. 

If X is any (possibly singular) projective scheme, we denote by 
Def(X) the base of the Kuranishi family of deformations of X and by 
ESDef(X) the base of the equisingular deformations of X. The tangent 
spaces to Def(X) and ESDef(X) at the point [X] corresponding to X 
are given by Ext1 (D}, Ov) and H 1 (8v), respectively. 

If L is a line bundle L on X, we use the notation Ln instead of £®n 
if no confusion can arise. 
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If G is any finite abelian group, we denote by G its dual group, 
namely the group of irreducible characters of G. 

§1. Preliminaries 

1.1. Simple cyclic covers of curves 

Let r be a smooth, projective curve and B c r an effective divisor 
such that Or(B) = _en for some .C E Pic(r). Therefore there exists a 
Zn-cover g: C-+ f, totally branched over B, which is called a simple 
cyclic cover. We identify Zn with the group of n-th roots of unity, 
namely Zn = ((),where (is a primitive n-th root. The dual group Zn is 
isomorphic to Zn, and it is generated by the character x1 : Zn -+ <C such 
that X1 ( () = (- 1 . We will write XJ instead of x{; then XJ ( () = (-1. 
The group Zn acts naturally on g*Oc, so there is a canonical splitting 

(1) 

where the summand _c-J is the eigensheaf (g*Oc )XJ corresponding to 
the character XJ. 

Similarly, Zn acts naturally on g*wc and g*w?_y, giving the following 
decompositions (see [Pa91] and [Cat89, Section 2]): 

(2) 
g*wc = wr EEl (wr ®.C) EEl •.• EEl (wr ® _cn- 1 ), 

g*w'?_; = (w~(B) ® .c-1 ) EEl w~(B) EEl ... EEl (w~(B) ® _cn- 2 ). 

In the equations (2), the eigensheaves corresponding to XJ are wr ® £1 
and w~(B) ® £1, respectively. 

1.2. Cyclic quotient singularities, Hirzebruch Jung reso­
lutions and singular product-quotient surfaces 

Let n and q be natural numbers with 0 < q < n, (n, q) = 1 and let 
( be a primitive n-th root of unity. Let us consider the action of the 
cyclic group Zn = (() on <C2 defined by ( · (x, y) = ((x, (qy). Then 
the analytic space Xn,q = <C 2 /Zn has a cyclic quotient singularity of 
type ~(1, q), and Xn,q ~ Xn',q' if and only if n = n' and either q = q' or 

qq' == 1 (mod n). The exceptional divisor on the minimal resolution Xn,q 
of Xn,q is a Hirzebruch-Jung string, that is to say, a connected union 

E = U7=1 Zi of smooth rational curves Z1, ... , Zk with self-intersection 
::; -2, and ordered linearly so that zizi+1 = 1 for all i, and zizj = 0 if 
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li- jl ~ 2. More precisely, given the continued fraction 

n 1 q = [bl, ... 'bk] = bl- ---1--

b2----
1 

the dual graph of E is 

-b, -b2 -bk-1 -bk . . --. . 
( cf. [Lau 71, Chapter II]). Notice that a rational double point of type An 
corresponds to the cyclic quotient singularity n~l (1, n). 

Definition 1.1. Let x be a cyclic quotient singularity of type ~(1, q). 
Then we set 

1 
Cx = k + 1- -, 

n 

where 1:::; q1 :::; n- 1 is such that qq' = 1 (mod n). 

Definition 1.2. [BP] We say that a projective surfaceS is a product­
quotient surface if there exists a finite group G acting faithfully on 
two smooth projective curves cl and c2 and diagonally on their prod­
uct, so that S is isomorphic to the minimal desingularization of X := 

(C1 x C2)/G. The surface X is called a singular model of a product­
quotient surface, or simply a singular product-quotient surface. 

From this definition it follows that a singular product quotient sur­
face contains a finite number of cyclic quotient singularities. 

Proposition 1.3 (cf. [MPlO], Section 3). LetS be a product quo­
tient surface, minimal desingularization 0 f X = ( c 1 X c2) I G. Then the 
invariants of S are 

(i) K~ = 8(g(C1 )-1lbJg(C2 )-1) + 2: ~x· 
xESing X 

(ii) (S) _ 4(g(C,)-l)(g(C2 )-1) + "' e - IGI ~ Cx. 
xESing X 
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(iii) q(S) = g(CI/G) + g(C2 jG). 

Set ri := Ci/G and let 9i: Ci ---+ ri. The group G acts naturally on 
the sheaves 9i*Oc, ghwc,, 9i*wb,. Assuming that G is abelian, we can 
write the following generalizations of (1) and (2): 

9i*Oci = ffi(gi*OcJx, 
xEG 

9i*wc, = E9 (ghwcJx, 
xEG 

9i*wb, = ffi(ghwbJx, 
xEG 

where (*)X is the eigensheaf corresponding to the character x E G. 

§2. The main construction 

Let us consider two smooth curves C1 , C2 of genus 3, such that there 
are two simple Z4-covers 9i: Ci ---+ lP'1 , both branched in 4 points. In the 
rest of the paper we write G := Z4 = ((I ( 4 = 1), where (is a primitive 
fourth root of unity; we also denote by H the subgroup of G defined by 
H := ((2 ) ~ z2. 

Now set z := cl X c2 and consider the singular product-quotient 
surface 

(3) X:= ZjG, 

which has exactly 16 isolated singular points, corresponding to the fixed 
points of the C-acti on on Z. Let ,\: S ---+ X be the minimal resolution 
of singularities of X. 

The G-cover gi factors through the double cover hi: Ci ---+ Ei, where 
Ei := Cd H. Note that Ei is an elliptic curve and that the singular 
product-quotient surface 

(4) Y := ZjH 

contains sixteen cyclic quotient singularities of type ~ (1, 1), i.e. ordinary 
double points, as only singularities. Let us denote by 11: V ---+ Y the 
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minimal desingularization of Y. We have a commutative diagram 

(5) 

where: 

• p: Z --+ X and r: Z --+ Y are the natural projections, so 
s : Y --+ X is a double cover (more precisely, a G I H -cover) 
branched over the singular points of X; 

• 9 := 91 x 92: Z --+ IP'1 x IP'1 is a G x G-cover branched on a 
divisor B C IP'1 x IP'1 of product type and of bidegree (4, 4); 

• h := h1 x h2 : Z--+ E 1 x E 2 is a H x H-cover branched on a 
divisor 6. C E 1 x E 2 of product type and of bidegree (4, 4); 

• u: X --+ IP'1 x IP'1 is a G-cover, whose branch locus coincides 
with B; 

• v : Y --+ E 1 x E 2 is a H -cover, whose branch locus coincides 
with 6.; 

• t: E1 x E2 --+ IP'1 x IP'1 is a G I H x G I H -cover whose branch 
locus is B and whose ramification locus is 6.. 

Let us denote by Bi the branch locus of 9i : Ci -t IP'1 and by 6.i the 
branch locus of hi: Ci --+ Ei. Both Bi and 6.i consist of four points; 
clearly B = B1 x B2 and 6. = 6.1 x 6.2. From the results of Section 1 
we infer that 

(6) 

• there is a natural action of G on the sheaves 9i*Oci) 9i*Wc;, 
9i*w~;, which gives decompositions: 

0 0 M -1 M-2 M-3 9i* C; = JP>l EB i EB i EB i ; 

9i*WC; = WJP>l EB (WJP>l Q9 Mi) EB (WJP>l Q9 M~) EB (WJP>l Q9 Mf); 

9i*w~; = w~1 (Bi) EB (w~1 (Bi) Q9 Mi) EB (w~1 (Bi) Q9 M~) 

EB (w~1 (Bi) Q9 Mi 1 ), 

where Mi = OJP>1(l). Left to right, the direct summands are 
the four eigensheaves corresponding to the four characters xo, 
X1, X2, X3 of G; 
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• there is a natural action of H on the sheaves hi*Oci, hi*wc, 
hi*w~i, which gives decompositions: 

hi*Oci = OEi EEl £-; 1 , 

hi*Wci =WEi EEl (wE; 0 J:i), 

hi*w~i = w~i (~i) EEl (w~i (~i) 0 £-; 1 ), 

where Li is a line bundle of degree 2 on Ci such that £7 
OEi (~i)· Left to right, the direct summands correspond to 
the invariant and anti-invariant eigensheaves for the H-action, 
respectively. 

§3. Deformations of the singular product-quotient surface Y = 

Z/H 

Let us consider again the surface Y = Z / H defined in Section 2, 
together with its minimal desingularization p,: V -t Y. As we remarked 
in the previous section, we have 

. 1 
Smg(Y) = 16 x 2(1, 1). 

Proposition 3.1. V is a minimal surface of general type whose 
invariants are 

p9 (V) = 5, 

h1(8v) = 24, 

q(V) = 2, K~ = 16, 

h2 (8v) = 16. 

Proof. The invariants p9 (V), q(V), K~ can be computed by using 
Proposition 1.3. Since p9 (V) > 0 and K~ > 0, it follows that V is a 
surface of general type. Let us denote by H 0 ( *) + and H 0 ( *)- the spaces 
of invariant and anti-invariant sections for the H -action and by h 0 ( *) + 
and h0 (*)- their dimensions. Since Y has only rational double points, 
Kunneth formula and the third equality in (7) give 

H0 (w~) = H0 (w~) = H0 (w~)+ = H0 (w~1 ~ w~J+ 
= (H0 (hhw~J+ 0 H0 (h2*w~J+) EEl (H0 (hhw~J- 0 H0 (h2*w~J-) 
~ c2o. 

This shows that h 0 ( w~) = K~ + x ( Ov), hence V is a minimal model. 
Since Y is a normal surface, [BW74, Proposition 1.2] gives J.L*8v = 

8y. Therefore the argument in [BW74, Section 1] or [Cat89, p. 299] 
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shows that there are two isomorphisms 

where H};(8v) denotes the local cohomology with support on the ex­
ceptional divisor E C V. 

By the second isomorphism in (8), we have 

where 

(10) 

T1 = H 0 (hhwbJ+ 181 H 0 (h2*Wc2 )+ = H0 (w~1 (~I)) 181 H 0 (WE2 ), 

T2 = H 0 (hhwcJ+ 181 H 0 (h2*wb2 )+ = H 0 (wEJ 181 H0 (w~2 (~2)), 
T3 = H 0 (hhwbJ- 181 H 0 (h2*Wc2 )-

= H0 (w~1 (~I) 181 £"[1) 181 H 0(WE2 181 £2), 

T4 = H 0 (hhwcJ- 181 H 0 (h2*wbJ-

= H 0(wE1 181 £1) 181 H0 (w~2 (~2) 181£21 ). 

Since dim Ti = 4 for all i E {1, 2, 3, 4}, we infer h2 (8v) = h2 (8y) = 16. 
By Riemann-Roch we have h1(8v)- h2 (8v) = 10x(Ov)- 2Kf, = 8, 
so it follows h1 (8v) = 24. Q.E.D. 

Corollary 3.2. We have 

h1 (8y) = 8, h2 (8y) = 16. 

Proof. Since h2 (8y) = h2 (8v ), the first equality follows from 
Proposition 3.1. Furthermore, E is the disjoint union of sixteen ( -2)­
curves, hence [BW74, Section 1] implies H};(8v) ~ C 16 . Using h1 (8v) = 

24 and the first isomorphism in (8) we obtain h1 (8y) = 8, which com­
pletes the proof. Q.E.D. 

By using the local-to-global spectral sequence of £xt-sheaves we ob­
tain an exact sequence 

(11) 0--+ H 1 (8y)---+ Ext 1 (0~, Oy)---+ T~ ~ H 2 (8y), 

where T~ := H0 (£xt1 (0~, Oy)). Notice that T~ is a skyscraper sheaf 
supported on the sixteen nodes of Y, hence oby is a linear map 

Thus its kernel and its cokernel have the same dimension. 



Deformations of product-quotient surfaces 169 

Remark 3.3. The branch locus ~ of v: Y -+ E 1 x E2 is a po­
larization of type (4, 4) on the abelian surface E 1 x E 2 , in particular 
h0 (~) = 16. Since polarized abelian surfaces form a 3-dimensional fam­
ily, it follows that the deformation space Def(Y) has dimension at least 
18. Therefore we have 

dimExt1 (0}, Oy) = dimT[YJDef(Y) :::=: dim[YJ Def(Y) :::=: 18. 

Proposition 3.4. We have 

dimkeroby = dimcokeroby = 10. 

Proof. Notice that Remark 3.3 only gives dim(ker oby) 2: 10. In 
order to prove equality, we apply an argument used in [Cat89, Section 
2]. 

Let us consider the dual map obi--: H 2 (8y)*-+ (T.J)*. We set 

~1 = d~ + d~ + d~ + d~ 
~2 = d~ + d~ + d~ + d~ 

and we choose local coordinates (x, y) in Z vanishing at (d~, d'j). Then 
the action of H with respect to these coordinates is given by (x, y) -+ 
(-x, -y). 

By [Cat89] we have an isomorphism (T.J )* = (r *01 )+ /0}, therefore 
obi-- can be seen as a map 

Near any of the ordinary double points of Y, the sheaf (r*01)+ is 
locally generated by xdx, xdy, ydx, ydy, whereas n} is locally generated 
by d(x2), d(xy), d(y2); then (r*01)+ /0} is locally generated by xdy­
ydx, cf. [Cat89, Lemma 2.11]. 

Looking at (10) and making straightforward computations, one checks 
that 

• the summand T1 contributes expressions of type a1(31 ydx Q9 

(dx 1\ dy); 
• the summand T2 contributes expressions of type a2f32xdy l8l 

(dx 1\ dy); 
• the summand T3 contributes expressions of type a 3 {33 xdx Q9 

(dx 1\ dy); 
• the summand T4 contributes expressions of type a4f34ydy l8l 

(dx 1\ dy), 
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where ai = ai(x2 ) and f3i = f3i(y 2 ) are pullbacks of local functions on 

Since in the Oy-module (r*01)+ /0~ we have the relations 

1/2(xdy- ydx) = xdy = -ydx and xdx = ydy = 0, 

it follows that the restriction of ob~ to the subspace T3 EB T4 is zero, 
whereas the restriction of ob~ to the subspace T1 EB T2 can be identified, 
up to a multiplicative constant, with the map 

4 

¢: H 0 (w'i;, (~!)) EB H0 (w'i;2 (~2)) -t E9 <Cij, 
i,j=l 

i,j=l 

Here the valuation maps vald; and valdj' are defined, as usual, by 
the short exact sequences 

(12) 

(13) 

Ejjvald" 

0 -t H 0 (w'i;J -t H0 (w'i;2 (~2)) ---:/ H 0 (Nt:. 2 ) S?.! EBJ=1<Cj. 

Therefore we obtain 

ker ¢ = {a- EB T I vald~ (a-) = vald; (a-) = vald; (a-) = vald~ (a-) 

=vald~ ( T) = vald;' ( T) = vald;t ( T) = vald~ ( T)}. 

As Ei is an elliptic curve, we have w'i;, = WE; and so (12) are the 
standard residue sequences for meromorphic 1-forms. By the Residue 
Theorem we get 

4 4 

L vald; (a-)= L valdj'(T) = 0, 
i=l j=l 

hence (13) implies that a-EBT E ker ¢if and only if vald~ (a-) = vald'.' ( T) = 0 
' J 

for all pairs (i, j). This yields ker¢ = H 0 (w'i;,) EB H 0 (w'i;2 ) S?.' <C EB <C. 
Then ker ob~ = ker ¢ EB T3 EB T4 S?.' <C 10 , hence dim coker oby = 10 

and we are done. Q.E.D. 

Corollary 3.5. We have 
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Proof. Immediate from Corollary 3.2, Proposition 3.4 and exact 
sequence (11). Q.E.D. 

Proposition 3.6. The following holds: 

(i) Def(Y) is smooth at [Y], of dimension 18; 
( ii) ESDef(Y) is smooth at [Y], of dimension 8. 

Proof. By Remark 3.3 and Corollary 3.5 we have 

18 = dimExt1 (D}, Oy) = dimT[YJDef(Y) :2: dim[YJ Def(Y) :2:18, 

which proves (i). 
On the other hand, if we move the branch loci Bi C Ei the curve 

.0. C E1 x E2 remains of product type, so in this way we obtain a 
8-dimensional family of equisingular deformations of Y; therefore the 
equisingular deformation space ESDef(Y) has dimension at least 8, and 
by Corollary 3.2 we have 

8 = dimH1(8y) = dimT[YJESDef(Y) :2: dim[YJ ESDef(Y) :2:8. 

This proves ( ii). Q.E.D. 

Summing up, Proposition 3.6 shows that the deformations of Y 
are unobstructed and that they are all obtained by deforming the pair 
(A, .0.), where A is an abelian surface and .0. a polarization of type (4, 4). 
In particular, all the deformations preserve the action of H. Moreover, 
the equisingular deformations of Y are also unobstructed and are ob­
tained by taking as A the product of two elliptic curves and by choosing 
the polarization .0. of product type. 

Remark 3.7. Since Y has only rational double points, by [BW74] 
the dimension of Def(Y) equals the dimension of Def(V). Then 

24 = h1 (8v) = dimT[VJDef(V) > dim[v] Def(V) = 18, 

that is Def(V) is singular at [V]. By [BW74, Theorem 3.7], this means 
that the sixteen ( -2)-curves of V do not have independent behavior in 
deformations. 

§4. Deformations of the singular product-quotient surface X= 
Z/G 

Let us consider now the surface X = Z / G defined in Section 2 and its 
minimal resolution of singularities >.: S --+ X. We must analyze several 
cases, according to the type of quotient singularities that X contains. 
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Throughout this section we set Q := IP'1 x IP'1 and we denote by 
OQ(a, b) the line bundle of bidegree (a, b) on Q. 

The following exact sequence is the analogue of (11): 

4.1. Example where Sing(X) = 16 x i(l, 3) 

Assume that, locally around each of the fixed points, the action of 
G = ((I ( 4 = 1) is given by ( · (x, y) = ((x, (-1y). Therefore, 

1 
Sing(X) = 16 x 4(1,3). 

In this case X contains only rational double points and we obtain 

p9 (S) = 5, q(S) = 0, K~ = 8. 

Proposition 4.1. S is a minimal surface of general type. 

Proof. Sis of general type because p9 (S) > 0 and K~ > 0. Since 
the action of G is twisted on the second factor and X has only rational 
double points, the Kiinneth formula and the third equality in (6) give 

Ho(w~) = Ho(w'5c) = Ho(w~)G = Ho(w'bl ~w'b2)G 

= EB<Ho(gl*wbJX ® Ho(g2*wb2)X) = c14. 

xEG 

This shows that h0 (w~) = K~ + x(Os), hence S is a minimal surface. 

Proposition 4.2. The following holds: 

( i) obx is surjective; 

Q.E.D. 

(ii) h1 (8x) = 2, h2 (8x) = 6, h1 (8s) =50, h2 (88 ) = 6. 
(iii) ESDef(X) is smooth at [X], of dimension 2. 

Proof. (i) Let us consider the dual map obi-: H 2 (8x)*-+ (Tl)*. 
By Grothendieck duality (see [AK70, Chapter I]) and Kiinneth formula 
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we obtain 

H 2 (8x)* = H 0 (Db 0 D~)0 

(15) 

= ffi [(H0(ghwcJX 0 H0 (g2*W~2 )X) 
xEG 

EB (H0 (g1*w~,)X 0 H 0(g2*Wc2 )X)] 
= U1 EB U2, where 

U1 = H 0 (wuD1 0 Mi) 0 H0 (w~, (B2) 0 M~), 

U2 = H0 (w~, (BI) 0 Mi) 0 H 0 (wl!'1 0 M~). 

This yields h2 (8x) = 6 and so h2 (85 ) = 6. Now we set 

B1 = b~ + b; + b~ + b~ 
B 2 = b~ + b~ + b~ + b~ 
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and we choose local coordinates (x, y) in Z vanishing at (b~, b'j). As in 
Section 3, we can interpret ob~ as a map 

where (p*Db) 0 /D1- is a skyscraper sheaf supported on the singular 
points of X and locally generated by xiyi+1dx- yixi+1dy, fori = 0, 1, 2, 
see [Cat89]. 

A straightforward local computation shows that the summand U1 in 
(15) contributes expressions of the form a1{31xdy0(dxl\dy) whereas the 
summand U2 contributes expressions of the form a 2 (32 ydx 0 (dx A dy), 
where ai = ai(x2 ) and f3i = f3i(y2 ) are pullbacks of local functions on 
lP'1 . Therefore the map ob~ can be identified, up to a multiplicative 
constant, with 

¢: H0 (w~, (BI) 0 Mi) EB H0 (w~, (B2) 0 M~) 
4 4 

-t EB cij c EB c~3 ~ (Tl )* 
i,j=l i,j=l 

i,j=l 

where the valuation maps are defined as in Section 3. Hence we obtain 

(16) 
ker ¢ = {a EB T I valbi (a) = valb; (a) = valb~ (a) = valb~ (a) 

=valb;' ( T) = valb;' ( T) = valb~ ( T) = valvt ( T)}. 
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On the other hand, the valuation map H0 (w~, (Bi) ® M;)-+ H 0 (NBJ 
can be identified with the residue map H 0 (wwo'(Bi)) -+ H 0 (NBJ via 
the isomorphism H0 (w~1 (Bi) ® M;) ~ H 0 (wwo,(Bi)). By the Residue 
Theorem we have 

4 4 

l.:valb;(a) = l.:valbj(T) = 0, 
i=l j=l 

so (16) implies that a EEl T E ker cjJ if and only if valb' (a) = valb" ( T) = 0 
' J 

for all pairs (i, j). But there are no non-zero holomorphic 1-forms on 
1P'1 , so ker cjJ = 0 and ob~ is injective. Therefore the obstruction map 
obx is surjective. 

( ii) Let us denote by F c S the exceptional divisor of ).. : S -+ X. 
Since S has only rational double points, we have 

By Riemann-Roch theorem we obtain 

h1 (88 )- h2 (8s) = 10x(Os)- 2K~ = 44, 

then h1 (88 ) =50 since we have shown that h2 (8s) = 6, see part (i). 
Being F the union of sixteen disjoint A3-cycles, we have H} ( 8 s) ~ 
C 16·3 = C48 . Therefore h1 (8x) = 2. 

(iii) The cover u: X -+ Q is a simple G-cover branched on the divi­
sor B = B1 x B2 , which has bidegree (4, 4). By varying the branch loci 
Bi c lP'1 we obtain a 2-dimensional family of equisingular deformations 
of X. Then 

2 = dimH1 (8x) = dimT[x]ESDef(X) ~ dim[x] ESDef(X) ~ 2, 

which implies the claim. Q.E.D. 

Proposition 4.3. The general deformation of the surface X is a 
canonically embedded, smooth complete intersection S2 ,4 of type (2, 4) 
in lP'4 . 

Proof. By [Cat97, Proposition 6.2] it is sufficient to check that the 
canonical map cjJ K: X -+ lP'4 is a birational morphism onto its image. 
Since X has only Rational Double Points and u: X -+ Q is a simple 
G-cover, Hurwitz formula yields Kx = u*OQ(1, 1); but IOQ(1, 1)1 is 
base-point free, so IKx I is also base-point free and cPK is a morphism. 

It remains to show that cPK separates two general points x, yon X. 
The decomposition of u*wx with respect to the G-action is 
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where L = OQ(l, 1) and WQ l8l Li is the eigensheaf corresponding to the 
character Xi· Therefore we obtain 

H 0 ( u*wx) = H 0 (wQ l8l L 2 ) ffi H 0 (wQ 18! L3 ). 

Now let { T} be a basis of H 0 (wQ@L2) = H 0 ( OQ) and let { cr1, cr2, cr3, cr4} 
be a basis of H 0 (wQ l8l L3) = H 0(0Q(1, 1)). The four sections {cri} pro­
vide an embedding Q '---+ J!D3 , hence ¢K separates pairs of points which 
belong to the same fibre of u: X-+ Q. Now let x, y be two points in 
the same (general) fibre of u. Then there exists 1 ::::; a ::::; 3 such that 
y = (a · x. Then 

that is 

¢K(Y) = [cr1(y): cr2(y): cr3(y): cr4(y): T(y)] 

= [cr1(x): cr2(x): cr3(x): cr4(x): (aT(x)] 

-=1- [cr1(x): cr2(x): cr3(x): cr4(x): T(x)] = ¢K(x). 

Therefore ¢K also separates general pairs of points lying in the same 
fibre of u: X-+ Q and we are done. Q.E.D. 

Now we can prove the following 

Proposition 4.4. Def(X) is smooth at [X], of dimension 44. 

Proof. By using Proposition 4.2 and exact sequence (14) we obtain 

(17) dimT[x]Def(X) = dimExt1 (0~, Ox)= 44. 

On the other hand, by [Se06, Chapter 3] one knows that Def(S2 ,4 ) is 
smooth, of dimension 

Equality (17) and Proposition 4.3 yield 
(18) 

44 = dimT[x]Def(X) 2:: dim[x] Def(X) = dim[s2 ,4 ] Def(S2,4) = 44, 

so we are done. Q.E.D. 

Remark 4.5. Since X has only rational double points, by [BW74] 
the dimension of Def(X) equals the dimension of Def(S). So we infer 

50= h1 (8s) = dimT[s]Def(S) > dim[s] Def(S) = 44, 
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that is Def(S) is singular at [S]. By [BW74, Theorem 3.7], this means 
that the sixteen A3-cycles of S do not have independent behavior in 
deformations. 

Proposition 4.3 in particular shows that the general deformation 
of X does not preserve the G-action. Now we want to consider some 
particular deformations that preserve the quadruple cover u: X -+ Q. 
According to [Pa91] we call them natural deformations, and we freely 
follow the notation of that paper everywhere. The building data of any 
totally ramified G-cover u: X -+ Q are 

(19) 

4Lx1 = 3Da,x3 + Da,Xl 

2Lx2 = Da,xl + Da,xa 

4Lx3 = Da,x3 + 3Da,x1, 

see [Pa91, Proposition 2.1]. The G-cover u: X -+ Q defines a natu­
ral embedding i of X into the total space of the vector bundle W = 

EBxEG\{xo} V(LX" 1 ). If wx is a local coordinate on V(LX" 1 ) on an open 
set U and aa,,p is a local equation for Da, ,p on U, then i(X) is defined 
by the equations 

(20) 

and the covering map is given by the composition noi, where 1r: W -+ Q 
is the projection. Moreover, the integers E~,';, can be easily computed 
by using [Pa91, p. 196]: 

(21) 

EG,Xl = 0 
xo,xo ' 

EG,Xl = 0 
Xl,X2 ' 

EG,xa = 0 
xo,xo ' 

EG,xa = 1 
Xl,X2 ' 

EG,xl = 0 
xo,Xl ' 

EG,x1 = 1 
Xl ,xs ' 

EG,xa = 0 
xo.x1 ' 

EG,xa = 1 
Xl,X3 ' 

EG,x1 = 0 
xo,xs ' 

EG,x1 = 1 
X2,X3 ' 

EG,xa = 0 
x.o,xs ' 

EG,xa = 0 
X2,X3 ' 

Let us consider now a collection of sections 

where 
Ba,x1 := {xo, Xl, X2}, Sa,xa := {xo, X2, X3}· 

Let ha,,P,x be a local representative of ra,,P,x on the open set U and 
define 

To,,p := L ha,,p,xwx. 
,PE{XloX3} 

xESa,,p 
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Then the natural deformation of the G-cover u: X ---+ Q, associated to 
the collection of sections {rc,,P,x}, is the subvariety X' of W locally 
defined by 

wxwx' = ( IT (Tc,wr~::')wxx', 
,PE{Xl,X3} 

together with the map u': X' ---+ Q obtained by restricting the projection 
1r: W---+ Q to X'. 

Coming back to our particular case, we have 

Dc,x1 E IOq(4, 4)1, Dc,x3 = 0, 

LX1 ~ Oq(1, 1), LX2 ~ Oq(2, 2), LX3 ~ Oq(3, 3), 

and B = Dc,x 1 . Since Dc,x3 = 0, the natural deformations of X are 
parameterized by the vector space 

(22) EB H 0 (0q(Dc,x 1 ) ® L;/) 
xESc,x 1 

= H 0 (0q(4, 4)) EB H 0 (0q(3, 3)) EB H 0 (0q(2, 2)) ~ CC50 . 

4.2. Example where Sing(X) = 16 x i(1, 1) 
Assume that, locally around each of the fixed points, the action of 

G = ((I ( 4 = 1) is given by ( · (x, y) = ((x, (y). In this case, 

. 1 
Smg(X) = 16 x 4(1, 1). 

By using Proposition 1.3, we obtain 

p9 (S) = 1, q(S) = 0, K~ = -8, 

hence S is not a minimal model. 

Theorem 4.6. The following holds: 

(i) h2 (8x) = 14; 
( ii) all natural deformations of u: X ---+ Q preserve the 16 points 

of type i(1, 1); 
(iii) there exists a 12-dimensional family of <Q-Gorenstein deforma­

tions of X, smoothing all the singularities. The general element 
Xt of this deformation is a smooth, minimal surface of general 
type with p9 (Xt) = 1, q(Xt) = 0 and K'J,;, = 8; 

( iv) Xt is isomorphic to a Todorov surface with K 2 = 8. 
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Proof. (i) By using Grothendieck duality and Kiinneth formula as 
in Proposition 4.2 we obtain 

H 2 (8x )* = H 0 (01 ® 0~)0 

= E9 [(H0 (gl*wcJx ® H 0(g2*wbJX- 1
) 

xEG 

EB (H0 (ghwbJX ® H 0 (g2*Wc2 )X- 1
)] 

= (H0 (0nn) ® H 0 (0nn(2))) EB (H0 (0p1(1)) ® H 0 (0p1(1))) 

EB (H0 ( Op1 (1)) ® H 0 ( Op1 (1))) EB (H0 ( Op1 (2)) ® H 0 ( Op1) ), 

which yields h2 (8x) = 14. 
( ii) The G-cover u: X -t Q is determined by the building data 

(19), with 
Da,x1 E IOQ(4, 0)1, Da,x3 E IOQ(O, 4)1, 

Lx1 ~ OQ(1, 3), LX2 ~ OQ(2, 2), Lx3 ~ OQ(3, 1). 

The natural deformations of u are parameterized by the vector space 

(23) 
E9 ( E9 H 0 (0Q(Da,.;,) ®£~1 )) 

1/JE{Xl,X3} xESa,.p 

= H 0 (0Q(4, 0)) EB H 0 (0Q(O, 4)). 

Therefore they form a family of dimension 10, which is exactly the 
one obtained by keeping the branch divisor B C Q of product type. 
In particular, all the natural deformations preserve the sixteen singular 
points of X. 

(iii) For simplicity, set Wi = wx, and ra,x, = hiwo. Writing wo = 
1, the local equations defining the family of natural deformations of 
u: X -t Q are the following: 

(24) Wt = h3W2, W1W2 = h3W3, W1W3 = h1h3, 
w~ = h1h3, w2w3 = h1w1, w§ = h1w2. 

Relations (24) can be written in determinantal form in two different 
ways, namely 

(a) ( W2 W3 W1 ~~ ) ~ 1, rank 
h3 W1 W2 

C' w1 w2 

) ~ L (b) rank w1 w2 W3 
W2 W3 hl 
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In the sequel we will only consider the determinantal representation 
(b) 0 We can deform it by using the parameter s E H0 ( LX2) = C9 ' i.e. 

(25) 

It is no difficult to check that for general s "1- 0 one obtains a smooth 
surface, hence (25) provides a smoothing n: X --+ T of X. This is 
actually a Q-Gorenstein smoothing of X, since it is the globalization of 
the local Q-Gorenstein smoothing ofthe quotient singularity ~(1, 1), see 
[Man08, Chapter 4]. Therefore the general fibre Xt of 1r is a surface of 
general type whose invariants are 

p9 (Xt) = 1, q(Xt) = 0, Kl. = 8. 

The canonical divisor Kx is big and nef (since 4Kx = u*OQ(4, 4)), so 
Kx. is big and nef too, as Xt is obtained by a Q-Gorenstein smoothing 
of X. This shows that Xt is a minimal model. 

In order to give a more concrete description of Xt, let us look again 
at the double cover v: Y --+ E 1 x E 2 constructed in Section 3. By 
Proposition 3.6 we know that Def(Y) is smooth at [Y] of dimension 18; 
moreover the general deformation yt of Y is a double cover Vt : yt --+ At 
of an abelian variety At, branched on a smooth divisor 3 which is a 
polarization of type ( 4, 4). Let us compute the dimension of the subspace 
of Def(Y) consisting of surfaces for which it is possible to lift the natural 
involution Lt: At --+ At to an involution Lt: yt --+ yt such that Yt/it is 
smooth. By [BL04, Corollary 4.7.6], the divisor 3 does not contain 
any of the 16 fixed points of Lt. If we write locally the equation of 
the double cover Vt: yt --+ At as z2 = f(x, y) so that Lt is given by 
(x, y) --+ ( -x, -y), we see that Lt lifts to yt if an only if the branch 
locus f(x, y) = 0 is Lrinvariant; moreover in this case there is a unique 
lifting such that the quotient is smooth; it is locally given by (x, y, z) --+ 
( -x, -y, -z). By [BL04, Corollary 4.6.6], the divisors in lSI which are 
invariant under Lt form a family of dimension ~h0 (0A(3)) + 2- 1 = 9 
and so, taking into account the three moduli of abelian surfaces, we 
obtain a 12-dimensional family {yt} of deformations of Y which admit 
a lifting of Lt. 

One can further check that the lifted involution 'i is fixed-point free 
and that the family {Xt} constructed before can be obtained as Xt = 

Yt/ft. 
(iv) Let us consider the Kummer surface Kum(At) := At/Lt. By 

(iii) a general fibre Xt of the Q-Gorenstein smoothing of X is a double 
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cover of Kum(At) branched over the 16 nodes of Kum(At) and the image 
D of the curve 3. 

On the other hand, Kum(At) can be embedded in IP'3 as a quartic 
surface with 16 nodes and via this embedding the curve D is obtained 
by intersecting Kum(At) with a smooth quadric surface <I> which does 
not contain any of the nodes. 

This shows that Xt belongs precisely to the family of surfaces with 
p 9 = 1, q = 0 and K 2 = 8 constructed by Todorov in [To81]. Q.E.D. 

Remark 4.7. Let us fix the abelian surface A and the embedding 
Kum(A) '-+ IP'3 . Then the choice of the deformation parameter s E 

H 0 (Lx 2 ) corresponds to the choice of the quadric surface <I> E IOJP'3(2)1. 
By [To81, Lemma 2.1] there is a quadric surface <I>k in IP'3 which contains 
exactly k (1 s; k s; 6) of the nodes of Kum(A) that are general position. 
This means that the pullback in A of the curve Dk := Kum(A) n <I>k is 
a polarization of type ( 4, 4) which contains exactly k of the fixed points 
oft: A--+ A. 

Therefore arguments similar to those used in the proof of Theorem 
4. 6, part ( ii) show that there exists a partial Q-Gorenstein smoothing of 
X, whose general fibre Xt is isomorphic to the double cover of Kum(A) 
branched over the curve Dk and the remaining 16- k nodes of Kum(A). 
The surface Xt is not smooth, since it contains exactly k singular points 
of type t(l, 1). Its minimal resolution of singularities is a Todorov 
surface with K 2 = 8- k (1 s; k s; 6). 

4.3. Example where Sing(X) = 8 x t(l, 3) + 8 x t(l, 1) 

We can also twist the action of G on Z in such a way that 

1 1 
Sing(X) = 8 x 4(1, 1) + 8 x 4(1, 3). 

By using Proposition 1.3, we obtain 

p9 (S) = 3, q(S) = 0, K~ = 0. 

Rasdeaconu and Suvaina give an explicit construction of S in [RS06, 
Section 3], showing that it is a simply connected, minimal, elliptic surface 
with no multiple fibers. One can also prove that H 2 (eX) # 0, see [LP11' 
Section 3]. 

Proposition 4.8. The following holds: 

( i) all natural deformations of X preserve the 8 points of type 
t(1, 1); 
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( ii) there exists a family of!Q-Gorenstein deformations of X, smooth­
ing all the singularities. The general element of this family is 
a smooth, minimal surface of general type with p9 = 3, q = 0 
and K 2 = 8. 

Proof. ( i) The abelian G-cover u: X -+ Q is determined by the 
building data (19), with 

De,x1, De,x3' E IOQ(2, 2)1. 

LX1' LX2,LX3 ~ OQ(2, 2). 

The same argument of Theorem 4.6, part ( ii) shows that the natural 
deformations of X are parameterized by the vector space 

H 0 (0Q(2, 2)) EB H 0 (0Q(2, 2)) 

EBH0 (0Q) EB H 0 (0Q) EB H 0 (0Q) EB H 0 (0Q)· 

Writing Wi := wXi we have 

where gi a local equations of De, Xi and ci, di E C. Therefore the equa­
tions of the natural deformations of X are 

(26) 

wi = (g3 + d2w2 + d3w3)w2, 

w1w2 = (g3 + d2w2 + d3w3)w3, 

w1w3 = (gl + c1w1 + c2w2)(g3 + d2w2 + d3w3), 

w~ = (g1 + c1w1 + c2w2)(g3 + d2w2 + d3w3), 

w2w3 = (g1 + c1w1 + c2w2)w1, 

w5 = (g1 + c1w1 + c2w2)w2. 

For a general choice of the parameters the morphism u: X -+ Q is not 
a Galois cover and an easy computation shows that its branch locus is 
of the form 

Dg=D1+ ... +D6 

where the Di belong to the pencil generated by De, x1 and De, x 3 • Then 
the singular locus of Dx is given by the 8 points De, Xl n De, X3 and 
Sing(X) consists of the 8 points of type ~(1, 1) locally defined by setting 

in (26). 
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( ii) We note that the set of natural deformations X of X which 
keep the G-action is parameterized by the vector space H 0 (0q(2, 2)) E8 
H 0 (0q(2, 2)). In fact, the action of the generator i =:A of G must 
be given by 

and substituting in (26) we obtain c1 = c2 = d1 = d3 = 0. 
The G-cover X ---+ Q factors into two double covers 

where K is a K3 surface with 8 ordinary double points and p: K ---+ 
Q is a double cover branched over Da,x1 + Da,x3 • Let Da,x2 be a 
general member in the pencil induced by Da,x1 and Da,x3 • Let Da,x2 = 
p* Da,x2 and 2Da,x, = p* Da,x, for i = 1, 3. Since Da,x2 is linearly 
equivalent to Da,x, for i = 1, 3 and a K3 surface is simply connected, 
Da,x2 is linearly equivalent to Da,x1 + Da,xa· Note that both these 
curves have exactly 8 nodes. The double cover X of K branched over 
Da,x2 is deformation equivalent to X, and X can be realized as the 
bidouble cover of Q branched over Da,x1 , Da,x3 and Da,x2 • Therefore 
if one deforms Da,x2 to a general divisor of bidegree (2, 2) we have a Q­
Gorenstein smoothing of X which smoothes all the singularities. Since 
X is a deformation of X and X is deformation equivalent to X, we have 
a smooth projective surface in the deformation space of X which is a Q­
Gorenstein smoothing of X. Finally, we note that each deformation is a 
Q-Gorenstein one. In fact, X and X are double covers of the K3 surface 
K branched over Da,x2 and Da,x1 + Da,x3 , respectively. Let X ---+ .6. 
be a family of double covers of K obtained deforming the branch locus 
from Da,x1 + Da,x3 to Da,x2 • By using the canonical divisor formula 
for a double cover, it is not hard to see that Kx is a Q-Cartier divisor. 
Therefore the transitive property of Q-Gorenstein deformations implies 
that X has a Q-Gorenstein smoothing. Q.E.D. 

Remark 4.9. By applying arguments similar to those used in Re­
mark 4. 7 and in [LeelO, Section 2], one can construct surfaces of general 
type with p9 = 3, q = 0 and K 2 = k (2 ::; k ::; 8) by first taking a 
Q-Gorenstein smoothing of k singular points of type H1, 1) of X and 
then the minimal resolution of the remaining 8- k singular points of the 
same type. 
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