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Three dimensional divisorial contractions 

J ungkai Alfred Chen 

Abstract. 

We give a brief survey of three dimensional divisorial contractions 
and provide many explicit examples. 

§1. Introduction 

In algebraic geometry, it is of fundamental importance to classify 
birational equivalent classes of algebraic varieties, find a good repre
sentative in each birational equivalent class, and investigate the maps 
between them. The minimal model program plays the central role in 
these goals. The purpose of minimal model program is to find the min
imal model with mild singularities inside a birational equivalent class 
and to investigate those maps appeared in the process. This program is 
classical for dimension ::; 2. However, a better understanding for higher 
dimensions in general appeared in only about 25 years ago, mainly due 
to Kawamata, Kollar, Mori, Reid, Shokurov, and some others. 

We give a short tour of minimal model program. Given an algebraic 
variety X, we say that X is minimal if Kx is nef (whenever it makes 
sense). To obtain a minimal model, one can try to eliminate those non
nef curves by contracting them. In practice, one picks a curve class 
[ C] in an edge of the cone of numerically equivalent classes of curves of 
X. By using the Kawamata-Viehweg vanishing theorem, there is a base 
point free linear system IHI producing a contraction map t.p : X --+ W 
contracting the curve class [C]. If dim W < dim X, then t.p is called a 
Mori fibered space and we stop. If dim W = dim X then t.p is birational. 
The case that the exceptional set is a divisor (resp. of smaller dimension) 
is called a divisorial contraction (resp. small contraction). The small 
contraction t.p gives rise to wild singularities on W. It is conjectured that 
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there exist a birational surgery X --~ x+ called a flip so that x+ has 
only mild singularities. The minimal model conjecture predicts that one 
can have a finite sequence of divisorial contractions and flips that ends 
up with a minimal model or Mori fibered space. 

Mori completes the minimal model program for threefolds in [24]. 
In his subsequent work with Kollar (cf. [20]), extremal neighborhood 
are classified and flips are studied in detail. However, since the proof 
of minimal model program does not rely on the understanding of divi
sorial contractions, the explicit studies of three dimensional divisorial 
contractions are available only quite recently. 

The purpose of this note is to give an elementary introduction to 
the recent studies of divisorial contractions in dimension three. We feel 
that these kind of explicit studies will be helpful for various geometric 
problems in dimension three and higher. The detailed studies of flops 
and flips are not included in this note. For readers who are interesting in 
flops, we refer to Kollar's article [19]. There are many other interesting 
topics, especially the recent highlight of [1], are not covered in this note. 

We work in the complex analytic category. 

§2. Preliminaries 

2.1. Classification of terminal singularities 

One needs to allow mild singularities in minimal model program 
in dimension three or higher. In this note, all varieties are normal Q
factorial and terminal, unless otherwise specified. In fact, the develop
ment of minimal model program in dimension three was built on the 
understanding of three dimensional terminal singularities. This can be 
dated back to 30 years ago (cf. [25], [26], [27]). Given a germ of three 
dimensional terminal singularity (P E X), there is a canonical cover 
J-l: (Q E Y) --+ (P EX) so that Q E Y is Gorenstein and terminal and 
(P E X) is the quotient by a cyclic group of order deg(J.L). The degree 
of J.L is the index of (P E X). It is known that a Gorenstein terminal 
singularity is an isolated cDV hypersurface singularity, i.e. a singularity 
with local equation of the form 

f(x, y, x) + ug(x, y, z, u) = 0, 

for some f(x, y, z) defining a DuVal (equivalently rational double point) 
singularity. If (P E X) is Gorenstein, then according to the type of 
f(x, y, z), we have that (P E X) ~ (o E (cp = 0) C C4 ) for some cp 
belongs to one of the following: 

(1) type cA: (xy + g(z,u) = 0) c C4 and g(z,u) E m2 . 



Three dimensional divisorial contractions 3 

(2) type cD: (x2 + y2z + 9(y, z, u) = 0) c C4 and 9(y, z, u) E m3 . 

(3) type cE: (x2 + y3 + y9(z, u) + h(z, u) = 0) c C4 and 9(z, u) E 

m3,h(z,u) E m4 , 

where m denotes the maximal ideal of o E C4 . In the cE case, it is of type 
cE6 (resp. cE7, cEs) if h4 -=/= 0 (resp. 93 -=/= 0, h5 -=/= 0), where 93, h4, h5 
denotes of homogeneous part of 9, h of degree 3, 4, 5 respectively. 

A three-dimensional terminal singularity (P EX) is therefore of the 
form of a cyclic quotient of isolated cDV singularity cDV I J.lr· Mori clas
sified three dimensional terminal singularities with index r > 1 explicitly 
(cf. [23]). 

(1) type cAir: (xy+ 9(z, u) = 0) C C4 I ~(a, -a, 1, 0) and 9(z, u) E 

m. 
(2) type cAxl2: (x2 + y2 + 9(z, u) ='= 0) C C4 I ~(0, 1, 1, 1) and 

9(z,u) E m3 . 

(3) type cAxl4: (x2 + y2 + 9(z,u) = 0) C C41~(1,3, 1,2) ar;td 
, 9(z,u) E m3 . 

(4) typecDI3: (cp=O) cC41~(0,2,1,1),wherecpisinoneofthe 
following forms: 
(a) x2+y3+z3+u3. 
(b) x 2 + y3 + z2u + y9(z,u) + h(z, u) with 9 E m4 , hE m6 . 

(c) x 2 + y3 + z3 + y9(z, u) + h(z, u) with 9 E m4 , hE m6 . 

(5) type cD 12: (cp = 0) C C4 I ~(1, 0, 1, 1), where cp is in one of the 
following forms: 
(a) x 2 + y3 + yzu + 9(z,u) with 9 E m4 . 

(b) x2 + yzu + yn + 9(z, u) with n ~ 4, 9 E m4 . 

(c) x2 + yz2 + yn + 9(z, u) with n ~ 3, 9 E m4 . 

(6) type cEI2: (x2 +y3 +y9(z,u) +h(z,u) = 0) C C41~(1,0, 1, 1) 
and 9, hE m4 , h4-=!= 0. 

2.2. Weighted blowups 

Most of the examples are illustrated by weighted blowups. We recall 
the construction of weighted blowups by using the toric language. 

Let N = 7li be a free abelian group of rank d with standard basis 
{e1, ... , ed}· Let v = ~(a1 , ... , ad) E Qd be a vector. We may assume that 
9cd(a1 , ... , ad)= 1. We consider N := N + Zv. Clearly, N C N. Let M 
(resp. M) be the dual lattice of N (resp. N). 

Let o- be the cone generated by the standard basis e1 , ... , ed and ~ 
be the fan consists of o- and all the subcones of o-. We consider 

XN,E := SpecC[o-v nM] =Cd, 
XN E := SpecC[o-v n M]. , 
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Notice that Xo := XN E is a quotient variety of cd by the cyclic group 

Z/r'll, which we denot~ it as Cd/vo or Cdj~(a1, ... ,ad). 
Let v1 = *(b1, ... ,bd) be a primitive vector inN. We assume that 

bi E Z>o and gcd(b1, ... , bd) = 1. We are interested in the weighted 
blowup -over o E X0 with weights v1 = r11 (b1, ... , bd) which we describe 
now. 

Let ~ be the fan obtained by subdivision of E along v1. One 
thus have a toric variety XN "E together with the natural map XN "E -+ 
XN E· More concretely, for ~ny bi > 0, let ai be the cone generat~d by 
{e1; ... , ei-1, v1, ei+1, ... , ed}, then 

Let ui = XN cr· = SpecC[a£ nM] S:! cd I -t(b1, 0 0 0 'bi-1, -r, bi+1, 0 0 ° 'bd)· 
We always de~ote the origin of Ui as Q;. In each affine chart Ui, the 
natural map Ui -+ X0 is given by 

We denote the exceptional divisor£ S:! IP'(b1, b2, ... , bd) by IP'(v1) 
Suppose that there is a primitive vector v2 = ~(c1 , ... , cd) EN such 

that v2 is contained in the cone ai. We can consider the second weighted 
blowup over Ui with vector v2. To this purpose, we can write 

v2 = /2 (c1e1 + ... + cded) 
= ~(q1e1 + ... + Qi-1ei-1 + QiV1 + Qi+1ei+l + ... + Qded), 

for some p E Z>o and Qi E Z>o· We say that w2 = .!(q1, ... , Qd) is the - p 
weights corresponding to the vector v2 in the cone ai, or simply the 
weights corresponding to v2 (in ai) and vice versa if no confusion is 
likely. 

Indeed, let Tij be the cone generated by 

{ { e1, ... , ej-1, v2, ej+1, ... , ei-1, v1, ei+1, ... , ed}, 
{ e1, ... , ei-1, v2, ei+1, .. , ed}, 

if j i= i, 
if j = i. 

The map Uqi>oSpecC[<; n M] -+ Ui is the weighted blowups of Ui of 

weights w2 (or with vector v2). Let~ be the fan obtained by subdivision 
along v2 of all the cones containing v2. One thus have a toric variety 
X2 := XN 'E and we say that the natural map X2 -+ X1 is the weighted 
blowup with vector v2. 
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Given a tower of weighted blowups X2 ---+ X1 ---+ X0 with vectors 
v1 and then v2 , we may reverse the order of vectors and then obtain a 
tower of weighted blowups X~ ---+ X{ ---+ X0 with vectors v2 and then v1 . 

We have the following diagram 

- - - - - - - - -~ X~ 

X' 1 

It is clear that X2 and X~ are isomorphic in codimension one. 
Given a semi-invariant cp = 2: ai1 , ... ,idxf1 ••• x~d on the quotient vari-

1 -
ety X0 and a vector v = -,:(b1 , b2 , ... , bd) EN, we define 

Let X E X0 be a complete intersection defined by semi-invariants 
cp1 = ... = 'Pc = 0. Let Y be its proper transform of X in X1 . By abuse 
the notation, we also call the induced map f : Y ---+ X the weighted 
blowups of X of weights v. 

Notice that the local chart Ui of Y is defined by (/!1 = ... = (/!c = 0 
with 

for each i, j. We fix the notation that E := £ n Y c lP'( v) denotes the 
exceptional divisor and Ui := Ui n Y. The adjunction formula yields 
that 

Ky = f*Kx +a(v,X)E, 

whenever E is irreducible and reduced. Where a( v, X) can be computed 
as 

a(v,X) = L:wtv(xi)- L:wtv('Pj) -1. 
j 

For simplicity, we will use the notation 

f = wBlv: Y = wBlv(X)---+ X 
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(resp. wBlwt=w) to denote the weighted blowup of X with vector v 
(resp. weights w). By construction, wBlv is a divisorial contraction if 
the exceptional divisor E is reduced and irreducible, a(v, X) > 0 andY 
is terminal. 

§3. Classification of divisorial contractions to points 

Among birational maps in minimal model program, divisorial con
tractions to points are most studied. Mori classified contractions f : 
Y -+ X 3 P when Y is nonsingular [22] and then Cutkosky extended 
it to the situation that Y allows Gorenstein singularities [7]. On the 
other hand, Kawamata classified the situation that P E X is a terminal 
quotient singularity [18] and Corti [6] studied the case that P E X is of 
cA1 type. Markushevich [21] and Kawamata [17] showed the existence 
of divisorial contractions with discrepancy ~ over a singular point of 
index r = 1 and r > 1 respectively. All their examples are weighted 
blowups. In [9], [10], Hayakawa classified all divisorial contractions to 
points of higher indices with minimal discrepancies. A recent highlight 
is Kawakita's series of work in which all divisorial contractions to points 
are classified in some sense. 

3.1. Mori and Cutkosky's work 

In [22], Mori studies extremal contractions from a nonsingular three
fold. In [7], Cutkosky notices that the same proof is still valid if Y has 
only Gorenstein terminal singularities. We summarize their results. 

Theorem 3.1. Let Y be a Gorenstein threefold and f: Y-+ X be a 
divisorial contraction to a point P E X. Then f is one of the following: 

(1) P EX is nonsingular, f = Blp(X) the blowup over P. 
(2) P E X is of type cA1 with cp = x 2 + y2 + z 2 + un, for some 

n 2: 2, f = Blp(X) the blowup over P. 
(3) P E X is a quotient singularity ~(1, 1, 1), f = wBlv(X) the 

weighted blowup with weight v = ~(1, 1, 1). 

We would like to remark that in the above cases, Y is singular if 
and only if it is in case (2) with n 2: 4. Even though it is not stated 
explicitly in [22], [7], it is not difficult to see that f is either a blowup 
or a weighted blowup. 

Sketch of the proof. We will give a brief sketch of the proof, which 
is more or less a reproduction of Cutkosky's argument. 

Let E be the exceptional divisor of f, which is Gorenstein. We 
may write Ky = f* Kx + aE for some a > 0 E Q. Note that -Ky 
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is !-ample and hence both -KE = -(a+ l)EIE and -EIE are am
ple. It follows from the Kawamata-Viehweg vanishing theorem that 
hi(E, OE) = 0, hi(E, OE( -E))= 0 and hi(E, OE( -Ky )) = 0 fori> 0. 
In particular, x(OE) = 1. 

Consider next the ~-genus ( cf. [8]) of the polarized variety (E, 
OE(-Ky)), which is defined as 

~(E, OE( -Ky )) :=dimE+ d(E, OE( -Ky )) - h0 (E, OE( -Ky )). 

In our situation, we have d(E, OE( -Ky )) = ( -Ky )2 • E and hence 

1 2 
~(E,OE(-Ky)) = 1- 2Ky · E 

by Riemann-Roch formula. 
Since ~(E, OE( -Ky )) :::0: 0 (cf. [8, Theorem 1.9]), one thus has 

~(E, OE( -Ky )) = 0 and Ky · E 2 = aE3 = 2. 
It follows that 

4 = a 2 (E3 ) 2 = (K~ ·E)· E 3 . 

Therefore, either ( K~ ·E) :::; 2 or E 3 :::; 2. In the first case that ( K~ ·E) :::; 
2 then E is isomorphic to JP'2 or a quadric in JP'3 according to Fujita's 
work ( cf. [8, Section 2]). In the latter case that E 3 :::; 2, we may consider 
the polarized variety (E, OE( -E)) and show that ~(E, OE( -E)) = 0, 
d(E, OE( -E)) = E 3 :::; 2. We thus conclude that in any case, E is 
isomorphic to JP'2 or a quadric in JP'3 . 

Next, one can compute direct images of Oy( -jE) and obtained that 

Lemma 3.2. Keep the notation as above, one has 

(1) Ri f*Oy( -jE) = 0 for all i > 0 and j :::0: 0, 
(2) f*Oy( -jE) = mJ and mJOx = 0( -jD) for all j :::0: 0, 
(3) gr( Ox,P) := EBn;::omn /mn+l ~ EBn;::oH0 (E, 0( -nE)) as C

algebra. 

Proof of the Lemma. The first statement follows from the relative 
version of Kawamata-Viehweg vanishing theorem. 

Set Ij := f*Oy( -jE). By pushing forward the exact sequence 

0---+ Oy( -(j + l)E) ---+ Oy( -jE) ---+ OE( -jE)---+ 0, 

there is an induced exact sequence 

for j :::0: 0. 
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Hence Io/h ~ H0 (0E) ~C. It follows that h ~ m, the maximal 
ideal of P, and there is an isomorphism of graded C-algebra 

Since ffinH0 (E, OE( -nE)) is generated by H 0 (E, OE( -E)), one has 

for all n 2: 0. Inductively, 

for all n 2: 0, m > 0. 
On the other hand, since Oy (-E) is f -ample, one has that the 

graded Ox-algebra ffiin is finitely generated. Hence there exists m 0 » 0 
so that for all n 2: 0, 

By t 1 and t2 , we have for all n 2: 0, 

Therefore, In= If= mn for any n 2: 0. 
Finally, one can verify that mOy = Oy (-D). Q.E.D. 

With this Lemma, one can determine gr (Ox;) ~ gr ( 0 x ,P). By the 

classification of terminal singularities, one can thus determine Ox;, 
which is one of C[[x, y, z, u]]j(x2 + y2 + z2 + un) for some n 2: 2 or 
C[[x, y, z]](2), the invariant subring under the ::Z2 action (x, y, z) I-t ( -x, 
-y, -z). 

Let f' : Y' -+ X 3 P be the blowup (resp. weighted blowup with 

weight ~(1,1,1)) if Ox;~ C[[x,y,z,u]]j(x2 + y2 + z2 + un) (resp. 
C[[x,y,z]](2l) with exceptional divisor E'. It is easy to verify that 
Rj~Qy,(-nE') = Rf*Oy(-nE). By [14, Lemma 3.4], we have that 
f is isomorphic to J', which is a blowup or a weighted blowup. Q.E.D. 

Since Y is Gorenstein and hence all the intersection numbers in
volved in the above computation are integers. If there are singularities 
of index> 1 onE C Y, the above computation of~ does not work any 
more. 

Example 3.3. Let (P E X) be a cA1 singularity given by (tp : 
xy + z2 + un = 0) c C4 and n 2: 2. Let f = Blp : Y -+ X be the 
blowup over P. Then Sing(Y) = {Q4 } with local equation in U4 given 
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by (rp: xy + z 2 + un-2 = 0) c C 4 , which is Gorenstein terminal of type 
cA1. 

We would like to remark that there exist some other divisorial con
tractions over P E X in this situation. For example, take wBlv' : Y' ---+ 
X of weights v' = (1,2n' -1,n', 1), where n' = l~J. It is straightfor
ward to check that Y' ---+ X is a divisorial contraction with discrepancy 
1 and Sing(Y') = {Q2 } which is a terminal quotient singularity of type 
2n;-l (-1,n', 1). 

3.2. Contractions with minimal discrepancies 

Given a terminal singularity P E X of index r > 1, there is at least 
one divisor which has discrepancy ~ over X by [18]. Similarly, if X is a 
terminal singularity of index 1, then there is at least one divisorial con
traction with discrepancy one by [21]. One notices that above results are 
obtained by constructing weighted blowups with minimal discrepancy~· 

By using similar construction, Hayakawa classified divisorial con
tractions Y ---+ X 3 P to a point of index r > 1 with discrepancy ~ 
in [9], [10]. In his recent work [12], [13], he tries to classify divisorial 
contractions Y ---+ X 3 P to a point of index r = 1 with discrepancy 
1. We briefly explain his method and give various examples for possible 
phenomena. 

1. First, one starts with an explicit divisorial contraction Y ---+ X 
to a point P E X of index r > 1 with minimal discrepancy ~ which is a 
weighted blowup. Let E be its exceptional divisor. 

2. Determine the number of valuations with minimal discrepancies. 
For a given valuation v with center in P E X, one can consider a reso
lution tL : Z---+ Y so that v = vp for some prime divisor F c Z. 

Claim. If a(F, X) S: 1, then tL(F) is a point of index > 1 in Y. 

Proof. For any tL-exceptional divisor F with center in P E X, one 
has that tL(F) c E. It follows that 

a(F, X) = a(F, Y) + vp(E)a(E, X) > a(F, Y). 

If tL(F) is a curve, then a(F, Y) = 1. If tL(F) = Q E Y is a point 
of index 1, then a(F, Y) ?: 1 E Z. Hence tL(F) must be a point of index 
> 1. The Claim now follows. Q.E.D. 

Therefore, it suffices to search for points Q E Y of index r' > r and 
valuations centered at Q satisfying t. 

3. Find as many divisorial contractions as valuations with discrep
ancy ~. Therefore, the divisorial contractions with minimal discrepan
cies are classified completely. 
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For any given explicit weighted blowup, it is easy to determine higher 
index points. Together with the explicit description of local equations, 
one can determine the number of valuations with minimal discrepan
cies ~· Usually, these valuations corresponds to some other weighted 
blowups. In some rare situations, one needs to change the embedding 
and modify the weights. Hayakawa managed to determine the number 
of valuations with minimal discrepancy and to find as many divisorial 
contractions as valuations with discrepancy ~. All of them are weighted 
blowups. 

Example 3.4. Let P E X be a terminal singularity of cAjr type 
given by 

9 3 4 1 
( tp : xy + z + u = 0) c IC / 3 ( 2, 1, 1, 0). 

Let f(z, u) = z 9 + u3 . Since wt~( 1 , 3)j(z, u) = 3, following Hayakawa, 

we may consider f = wBlv : Y-+ X of weights v = !(2, 7, 1, 3). It is 
straightforward to check that this is a divisorial contraction with dis
crepancy i· 

The higher index points on Y consists of Q1 and Q2 . We have 

{ 
- 9 3 - 4 1 '/!:; 3 1 -· U1- (y+z +u -0) ciC i-2·(1,1,1,1) = IC /:2(1,1,1) -. V1, 

- 9 3 - 4 1 '/:3 3 1 -· Uz-(x+z +u -O)c1Cf7(2,4,1,3)=1Cf7(4,1,3)-.Vz. 

Let g: Z-+ Y be the economic resolution over Q1 and Q2 . Hence 

1 6 . 

Kz = g*Ky + 2,F' + L ~Fi, 
i=1 

for some exceptional divisors F1, ... , F6 and F'. 
More explicitly, the economic resolution over Q1 is isomorphic to 

the weighted blowup at o E V1 with weight ~(1, 1, 1). Therefore, it is a 
weighted blowup over Q1 of weights w' := ~(1, 3, 1, 1). The weight w' 
corresponds to the vector 

111 1 1 1 -
v := -v + -ez + -e3 + -e4 = -(1 8 2 3) EN. 

2 2 2 2 3''' 

The economic resolution over o E V2 is obtained by weighted blowup 
of weights ~ ( 4i, i, 3i), where 4i, 3i denotes the residue modulo 7. Hence 
the economic resolution over Q2 is obtained by weighted blowups with 
weight ~(ci, 4i, i, 3i), where ci = min{9i, 3 · 3i} = 3 · 3i. Therefore, the 
corresponding vectors vi E N is given by 

1 - - - -
Vi= 21 (2 · 4i + 9 · 3i, 7 · 4i, 3i + 4i, 21). 
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In total, one sees that there are three valuations v, v1 , v2 with dis
crepancy ~- In fact, the weighted blowup with weights v, v1 or v2 are 
divisorial contractions with discrepancy ~. Hence we have identified all 
divisorial contractions with discrepancy ~. 

The above discussion also shows that there are exactly three valua
tion with discrepancy 1 and each valuation corresponds to a divisorial 
contractions which is a weighted blowup with weight v3 , v4 or v'. 

Example 3.5. Let P EX be a terminal singularity of cAx/2 type 
given by 

It is easy to see that there are only two vectors v1 = ~ (2, 1, 1, 1, ), v2 = 
~(2, 3, 1, 1) with a(v1 , X)= a(v2 ,X) = ~- However, the exceptional di
visor of the weighted blowup of weights v1 (resp. v2 ) is non-reduced 
(resp. reducible). Hence none of these weighted blowups is a divisorial 
contraction. 

One needs some modification in order to get divisorial contractions. 
We consider a coordinate change such as x+ := x+ (z2 +u2 ), then P E X 
is given by 

One can check that the weighted blowup 

4 1 
f+: Y+---+ X c C{x Y z u}f-(0, 1, 1, 1) 

+' ' ' 2 

with weight ~(4, 3, 1, 1) is a divisorial contraction. Let E+ be its excep
tional divisor. Higher index point in Y consists Q1 , which is terminal 
quotient of type ~ (3, 1, 1). Take the economic resolution 9+ : Z ---+ Y+ 
over Q1, one sees that 

where E+,Z denotes the proper transform of E+ in Z. We thus conclude 
that there are two valuations with discrepancy ~. 

Indeed, if we consider x_ := x- (z2 + u 2 ) instead, then P E X is 
given by 
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The weighted blowup 

4 1 f-: Y_-+ X c CC{x Y z u}/-(0, 1, 1, 1) _, ' ' 2 

of weights ~ ( 4, 3, 1, 1) is a divisorial contraction. 
We claim that f+ '¥- f _. To see this, consider the Weil divisor 

D := div(x+)· It is clear that J+(D) = Dx+ + ~E+ but f'*_(D) = 

Dx_ + ~E_. Therefore, f+ and f- can not be isomorphic. Therefore, 
there are exactly two divisorial contractions with discrepancy ~ in this 
situation. 

With similar technique as in above examples, Hayakawa classified 
divisorial contractions to higher index points with minimal discrepancy 
~. Any one of such divisorial contractions can be realized as a weighted 
blowup in suitable embedding. However, there are several cases that 
one needs to embed into a 5-dimensional space as a quotient of complete 
intersection of hypersurfaces of degree 1 and 2. 

Example 3.6. Let P E X be a terminal singularity of cD /2 type 
given by 

One can consider the weighted blowup f : Y -+ X with weight v = 

~(3, 1, 3, 2). It is straightforward to see that f is a divisorial contractions 
with discrepancy ~ and there are two valuations with discrepancy ~. The 
other valuation corresponds to the vector v2 = ~(3, 1, 1, 2). However, 
the weighted blowup with weight v2 is not a divisorial contraction for 
its exceptional divisor is reducible. 

One can consider 

(p E X) ~ X' : { x2 + zt + y6 + u3 = 0 s; 1 ( ) t = yu + 23 C CC 2 1, 1, 1, 0, 1 . 

Under this embedding, the weighted blowup Y' -+ X' with weight 
~(3, 1, 1, 2, 5) is a divisorial contraction. 

3.3. Kawakita's classification 

In [14], Kawakita proved the following results characterizing diviso
rial contractions to smooth points. 

Theorem 3. 7. Let Y -+ X 3 P be a divisorial contraction to a 
smooth point P EX. Then f is a weighted blowup of weights (1,m,n) 
with m, n E Z>o and (m, n) = 1. 
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To illustrate his work, we start by considering the weighted blowup 
of weights (1, m, n). 

Example 3.8. Let f : Y --+ X = C3 be the weighted blowup of 
weight v = (1, 2, 3) over o E C3 . Let E be the exceptional divisor. Y' is 
nothing but the toric variety obtained by subdivision along the vector 
(1, 2, 3). 

The vector v = (1, 2, 3) defines a valuation. One can try to find 
a resolution p, : Z --+ X so that v = v F for some exceptional divisor 
F start by usual blowups. To this end, we may start by considering 
h = Bl : Y1 --+ X the usual blowup by subdivision along the vector 
V1 = (1, 1, 1). In the cone 0"3 = (v1, e2, e3), we consider h = BlQ1 : 

Y2 --+ Y1 the blowup over Q1 , which is obtained by the subdivision 
along v2 = (1, 2, 2). Next, we consider !J : Y3 --+ Y2 obtained by the 
subdivision along v3 = (1, 2, 3). This can be seen to be a blowup along 
a smooth curve. Let E3 be the exceptional divisor of !J. In total, we 
have a sequence 

p, : Z := Y3 --+ Y2 --+ Y1 --+ X, 

so that the valuation VE is realized by the p,-exceptional divisor E3. 
Indeed VE = VE3 • 

On the other hand, we may consider a sequence of toric maps that 

Z' = Y~ --+ Y£ --+ Y; --+ Y{ = Y --+ X, ~I 

by subdivision along vi = v = (1, 2, 3), v~ = (1, 1, 2), v~ - (1, 1, 1) 
and v~ = (1, 2, 2) successively. Notice that Y/ --+ Yi'-1 are Kawamata 
blowups fori = 2, 3, 4. Indeed, Z' is smooth and Z' --+ Y{ is the economic 
resolution of Y{. 

We compare ~' with ~· Let Z --+ Z be the blowup along a smooth 
curve obtained by subdivision along (1, 1, 2). It follows that Z' ---t Z 
is a simple flop. This can easily be seen as replacing the edge connect
ing (1, 0, 0), (1, 2, 3) by an edge connecting (1, 1, 1), (1, 1, 2) in the toric 
language. 

Sketch of the proof of Theorem 3. 'l. Given a divisorial contraction 
f : Y--+ X 3 P to a smooth point P with exceptional divisor E. One 
can construct a similar sequence 

Z=Yn--+ ... --+Y1--+X 

as in ~ as following: 

(1) Let Z0 = P and let Y1 --+X is the blowup over P = Zo. 
(2) Fori ?: 1, let Zi be the center of E in }i. Let Yi+l --+ Yi be a 

resolution of the blowup of Yi along zi if zi is not a divisor. 
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(3) The construction stops at Yn when Zn is a divisor. Let m be 
the largest integer so that Zm-1 is a point. 

A key observation is that E = Zn equals, as valuations, to an ex
ceptional divisor of a weighted blowup of weights (1, m, n) if and only 
if f*Oy(-2E) =f. m and f*Oy(-nE) ct. m2 (cf. [14, Proposition 3.6]). 
Therefore, it is essential to study f*Oy( -jE). 

Let 
D(i) :=dime Ox/ f*Oy( -iE), 

for i 2:: 0. By using the singular Riemann-Roch formula, Kawakita 
obtains numerical constraint on D(i) and also on type of singularities on 
Y. The classification can be found in [14, Theorem 4.5] and details can 
be found in [14, Section 4]. Then one can verity that f*Oy(-2E) =f. m 
and f*Oy( -nE) ct. m2 are satisfied. Q.E.D. 

In [15], Kawakita made great progress along the line. With a lot of 
elaborated studies, he classified all divisorial contractions to points in 
some sense. We summarize his result. A divisorial contraction f : Y -+ 
X is said to be of ordinary type or exceptional type depending on the 
singularities of Y. For its precise definition, please see [15, p.59]. 

Theorem 3.9 ([15], Theorem 1.2). Suppose that f is of ordinary 
type. 

(1) 

(2) 

If P EX is of type cA or cAjr, then there exists an identifica
tion realizing f as a weighted blowup with weight ~(r1 ,r2 ,a,1) 
for some r1, r2. The discrepancy off is ~. 
If P E X is not of type cA nor cA/r and the discrepancy is 
~ > ~, then P E X is of type cD or cD /2 and f can be realized 
as a weighted blowup explicitly. 

Theorem 3.10 ([15], Theorem 1.3). Suppose that f is of exceptional 
type. Then P EX is not of type cA nor cAjr. The discrepancy off is 
~, except for the cases listed in [15, Table 3]. 

Notice also that by Hayakawa's work [9], [10], [11], together with 
Kawakita's work [16], the following cases are known to be weighted 
blowups. 

( 1) P E x is a point of index r > 1 and discrepancy of f is ~ ( cf. 
[9], [10]). 

(2) P E x is a point of index r > 1 and discrepancy off is ~ (cf. 
[11]). 

(3) P E xis a point of type cD/2 and discrepancy off is ~ (cf. 
[16]). 

As a consequence, one has the following: 
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Theorem 3.11 ([16]). Any divisorial contraction f : Y--+ X to a 
point P EX of index r > 1 is a weighted blowup. 

We say that f "is" a weighted blowup means that there exists an 
embedding of the germ of P E X so that f is isomorphic to a weighted 
blowup of certain weights. Hayakawa started to work on a project to 
classify divisorial contractions to points of type cD, cE in [12], [13]. It 
is expected that such divisorial contractions are weighted blowups. In 
[14, Section 8], Kawakita gives some more examples of type e1, e2, e3, 
e9, which are weighted blowups. It is thus natural to ask the following 

Question 3.12. Is every divisorial contraction a weighted blowup? 

We give some more examples which are not known previously. 

Example 3.13. Let P EX be defined as 

where b ~ 8d + 3. Let f : Y --+ X be the weighted blowup of weights 
v = (4d + 2, 4d + 1, 4, 1, 8d + 3). One can check that Pis terminal and 
f is a divisorial contraction with discrepancy 4 of type el. 

Example 3.14. Let p E X be defined as 

{ 'Pl: xi +x4X5 +xzx~+l +x~ = 0 } C ((:5, 
c.pz : x~ + x~d+l + x~-l- X5 = 0 

where a ~ 2d + 2, b ~ 8d + 5. Let Y --+ X be the weighted blowup of 
weights v = (4d+3, 4d+2, 4, 1, 8d+5). One can check that Pis terminal 
and f is a divisorial contraction with discrepancy 4 of type e1. 

§4. Resolution of terminal singularities 

Given a germ of three-dimensional terminal singularity P E X, it is 
expected that one can have a resolution by successive divisorial contrac
tions. In [10], Hayakawa proved the following 

Theorem 4.1. For a terminal singularity P E X of index r > 1, 
there exists a partial resolution 

Xn --+ ... --+ X1 --+X 3 P 

such that Xn is Gorenstein and each fi : Xi+l --+ Xi is a divisorial 
contraction to a point Pi E Xi of index ri > 1 with minimal discrepancy 
1/ri. All these maps fi are weighted blowups. 
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It is natural to ask whether one can resolve Gorenstein terminal 
singularities in a similar manner. 

Definition 4.1. Given a three-dimensional terminal singularity P E 

X. We say that there exists a feasible resolution for P E X if there is a 
sequence 

Xn --+ Xn-1 --+ ... --+ X1 --+ Xo =X 3 P, 

such that Xn is non-singular and each Xi+1 --+Xi is a divisorial contrac
tion to a point with minimal discrepancy, i.e. a contraction to a point 
Pi E Xi of index ri with discrepancy 1/ri. 

In [3], we prove the existence of feasible resolution for any terminal 
singularity. 

Theorem 4.2. Given a three-dimensional terminal singularity P E 

X. There exists a feasible resolution for P E X. 

The proof is a straightforward but complicated inductive argument. 
The order of induction is as following: 1. quotient terminal singularities; 
2. cA points; 3. cA/r points; 4. cD and cAx/2 poitns; 5. cAx/4, cD/2, 
and cD /3 points; 6. cE6 points; 7. cE /2 points; 8. cE1 points; 9. cEs 
points. For each singularity with given explicit local equation, we pick 
a convenient weighted blowup Y --+ X which is a divisorial contraction 
with minimal discrepancy. Keep track of singularities on Y, one finds 
that singularities upstairs are of milder type or of the same type but of 
smaller invariants. For details, please see [3]. 

§5. Divisorial contraction to a curve 

In this section, we consider divisorial contraction f : Y --+ X con
tracting the exceptional divisor E to a curve r c X. 

We first recall some well-known results of Mori, Cutkosky and Tzi
olas. 

(1) If Y is smooth, then X is smooth (in the neighborhood of r) 
and f is the blowup along the smooth curve r (cf. [22]). 

(2) If Y is Gorenstein, then X is smooth and f is the blowup along 
a locally complete intersection curve r ( cf. [7]). 

(3) Let PEr c X be a germ of Gorenstein threefold singularity 
and r a smooth curve. The general hyperplane section S con
taining r is DuVal of type An, Dn, E6 , E1 . Then such maps 
are classified. ( cf. [28], [29], [30], [31]). 

One of Tziolas approaches has the similar flavor as the 2-ray game. 
Let r c X be a smooth curve that there is a singular point P of X lying 
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on r. Take f' : Y' -+ X be the blowup over r. It produces singularities 
which is not Q-factorial. Notice also that f'- 1 (r) = E 1 +mE2 for some 
m ~ 2, where f'(E1 ) = r and f'(E2 ) = P. Let Z' -+ Y' be the Q
factorialization of Y. Under certain conditions, one has a contraction 
g : Z' -+ Y contracting the proper transform of E 2 in Z and f : Y -+ X 
is a divisorial contraction to the curve r. 

Another interesting result is a factorization of divisorial contractions 
into simpler birational maps (cf. [4]). The starting point is the following: 

Theorem 5.1. [4, Theorem 3.1] Let g : Y :J C -+ X 3 R be a 
flipping contraction or a divisorial contraction contracting an irreducible 
curve C to a point R E X. If Y is not Gorenstein, then there exists a 
divisorial contraction g : Z -+ Y to a point Q E Y of index r with 
minimal discrepancy ~' such that Cz · Kz :::; 0, where Cz denotes the 
proper transform of C in Z. 

Therefore, one can play the 2-ray game and the run the minimal 
model program over X. 

Theorem 5.2. [4, Theorem 3.3] Let f : Y -+ X be a divisorial 
contraction to a curve r (resp. flipping map). If Y is not Gorenstein, 
then there is a diagram 

y2 - - - - - - - - - -~ y~ 

h 1 lf~ 
y Y' 

where Y2 ---t Y~ consists of flips and flops over X, h is a divisorial 
contraction to a point Q E Y of index r > 1 with discrepancy ~, f~ is 
a divisorial contraction to a curve and f' is divisorial contraction to a 
point (resp. f~ is a divisorial contraction andY'= y+). 

Recall from Theorem 4.1 that there is a partial resolution for ter
minal singularity of index r > 1 by a successive divisorial contractions 
over points of higher index with minimal discrepancies. In [4], the no
tion depth of Y, denoted dep(Y), is introduced as the minimal length 
of such partial resolution. 

Proposition 5.3. [4, Proposition 2.15] Let f: Y-+ X be a diviso
rial contraction to a point. Then dep(X) :::; dep(Y) + 1. 
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By induction on dep(Y), one can prove the following facts on depth 
together with the factorization of flipping contractions divisorial con
tractions to curves. 

Proposition 5.4. [4, Proposition 3.5, 3.6] Iff : Y --+ X is a divi
sorial contraction to a curve, then dep(X) ~ dep(Y). Iff :X --+ x+ 
is a flip, then dep(X+) < dep(Y). 

Theorem 5.5. [4, Theorem 1.1] Let g : X --+ W be a !Q-factorial 
flipping contraction and ¢ : X --+X+ be the corresponding flip, then ¢ 
can be factored as 

k ~ + X = Xo --+ X1 --+ ... --+ Xn --+ X , 

such that each fi is a flop, a blow-down to a LCI curve, a divisorial 
contraction to a point or the inverse of a divisorial contraction to a 
point od index r > 1 with minimal discrepancy ~. 

Let g : X --+ W be a !Q-factorial divisorial contraction to a curve, 
then g can be factored as 

fo fn 
X = Xo --+ X1 --+ ... --+Xn --+ W, 

such that each fi is a flop, a blow-down to a LCI curve, a divisorial 
contraction to a point or the inverse of a divisorial contraction to a 
point od index r > 1 with minimal discrepancy ~. 

Example 5.6. Let r = (z = g(x, y) = 0) c C3 =X be a complete 
intersection curve which is singular at the origin. Let f : Y --+ X be 
blowup along r and letT= wt(l,l)g(x, y) ~ 2. It is easy to easy that Y 
has only one singular point, which is given by zu- g(x, y) = 0 in local 
chart. This is a singularity of cA type. 

In fact, we may consider an embedding X '-+ X 0 C C4 that X 0 = 
(u-g(x,y)) = 0 and r = X 0 nZ, where Z = (z = u = 0). Let Y1 --+ X 0 

be the weighted blowup with weights (0, 0, 1, 1) and Y2 --+ Y1 be the 
weighted blowup with vector (1, 1, 1, T), i.e of weights (1, 1, 1, T -1) over 
Q3 . One sees that Y1 --+ X 0 is isomorphic to f, the blowup along r 
and Y2 --+ Y1 is the weighted blowup over a singularity Q3 of cA type of 
vector (1, 1, 1, T). 

On the other hand, we may consider Y; --+ Y{ --+ X 0 by weighted 
blowup with vector (1, 1, 1, T) and then (0, 0, 1, 1). Then Y{ --+ X 0 is 
isomorphic to Bl(X) --+ X = C3 , and Y; --+ Y{ is the blowup along 
a curve r~ which is the proper transform of r. The equation of r~ is 
given by Z = g(x, xy)x-T = 0 and Z = g(xy, y)y-T in the Chart U1, U2 
respectively. It is clear that r~ has milder singularities than that of r. 
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Moreover, one sees that Y2 --~ Y~ is isomorphic in codimension 
1. Indeed, by the same trick as in [4], this fits into the diagram as in 
Theorem 5.2 and one has that Y2 ---t Y~ consists of a sequence of flips 
and flops. 

Example 5. 7. Let P EX be a germ of terminal quotient singularity 
of index r ~ 2. Let CCX be any curve passing through P. Kawamata 
[18] shows that there is no divisorial contraction f : Y --+ X such that 
f (E) = C. Therefore, there are more restriction on the existence of 
divisorial contractions to a given curve. 

Example 5.8. Let P EX be a cD singularity given by 

( t.p : x 2 + y 2 z + yz 2 + u 3 = 0) c CC4 

and f = (X = y = U = 0). 
By Tziolas's construction, we may start with a blowup f = Blr 

Y = Blr(X) --+ X. The exceptional set consists of E 1 and E 2 such 
that f(El) = r and f(E2 ) = P. In the chart U4, the exceptional set 
E 1 = (y = u = 0) and E 2 = (z = u = 0). 

Notice that Y can be realized as the proper transform of X in the 
weighted blowup X1 --+ X0 of weights v1 = (1, 1, 0, 1). 

Let g : Z --+ Y be the blowup of Y along E 1 , which can be realized 
as weighted blowup of U4 of weights w2 = (0, 1, 0, 1), which corresponds 
to the vector v2 = (1, 2, 0, 1). Therefore, these maps fit into the following 
diagram. 

Z - - - - - - - - - -~ Z' 

g 1 lg' 
Y' ::::> u~ 

X 
Where f' : Y'--+ X is the weighted blowup with weight v2 = (1, 2, 0, 1) 
and g': Z'--+ Y' is the weighted blowup with weight ~(1, 1, 0, 1) (with 
vector v1 = (1, 1, 0, 1)) over U~. One can check that Y' --+ X is a 
divisorial contraction to a curve r. Notice that there is a singularity of 
index 2 which is Q2 of type cAx /2 in Y' with the local equation 

1 
(x2 + y2 z + z2 + u3 y = 0) C CC4 / 2(1, 1, 0, 1). 

Notice also that g' is the weighted blowup of weights w2 = ~(1,1,0,1) 
over u~. 
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Another way to realized this contraction is to follow the diagram 
in Theorem 5.2. Take a weighted blowup Z* -+ Y' of weights w3 = 

~(3, 1, 2, 1) over U£ C Y', which is a divisorial contraction with minimal 
discrepancy ~- This weights correspond to the vector v3 = (2, 1, 1, 1). 
Let Y"-+ X be the weighted blowup of weights v3 . One can check that 
the weighted blowup Y" -+ X is a divisorial contraction with discrep
ancy 1. These maps fit into the following diagram. 

Z* 

g* 1 wt=~(3,1,2,1) 
U£ c Y' 

f' 1 wt=(1,2,0,1) 

X 

Z" 

g 11 1 wt=(1,2,0,1) 

Y" ::) U£' 

f" 1 wt=(2,1,1,1) 

X 

One can check that U£' is given by (x2 z + y2 + y + u3 = 0) c C4 and 
g" : Z" -+ U£' is isomorphic to wBlv(C3 ) -+ C 3 with v = (1, 0, 1). In 
other words, g" is isomorphic to the blowup along a smooth curve. 

§6. Factoring divisorial contractions with non-minimal dis
crepancy 

As we have seen in the previous section, divisorial contractions with 
minimal discrepancies play a very interesting role. First of all, for any 
terminal singularity P E X of index r > 1, there exists a partial resolu
tion Xn -+ ... -+ X 0 :=X such that Xn has only terminal Gorenstein 
singularities and each xi+i -+ xi is a divisorial contraction to a point 
with minimal discrepancy (cf. [10]). In fact, for any terminal singular
ity P E X, there exists a feasible resolution by a sequence of divisorial 
contractions with minimal discrepancies. 

Moreover, for any flipping contraction or divisorial contraction to 
a curve, by taking a divisorial extraction over the highest index point 
with minimal discrepancy, one gets a factorization into simpler birational 
maps. It is thus natural to ask whether one can factorize divisorial 
contractions to points with non-minimal discrepancies into simpler ones. 
In [2], we work on the factorization of divisorial contraction to a point 
of index r > 1 with discrepancy £ > l. 

r r 

Theorem 6.1. Let f : Y-+ X be a divisorial contraction to a point 
P E X of index r > 1 with discrepancy £ > l. Let E c Y be the 

r r 

exceptional divisor and and g : Z -+ Y be a divisorial contraction over a 
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point of highest index p in E C Y with discrepancy l. Then the relative 
p 

canonical divisor -Kz;x is nej. 

Notice that the relative Picard number p(Z/X) = 2. Therefore, we 
are able to play the so called 2-ray game. As a consequence, there is 
a flip or flop Z --+ z+. By running the minimal model program of 

f !' z+ /X, we have Z --+ Z' ~ Y' -=-+ X, where Z --+ Z' consists of a 
sequence of flips and flops, Z' -+ Y' is a divisorial contraction. This can 
be summarize into the following diagram. 

Z - - - - - - - - - -~ Z' 

g 1 lg' 
y Y' 

We have the following more precise description. 

Theorem 6.2. Let f : Y -+ X 3 P be a divisorial contraction to 
a point P E X of index r with discrepancy ~ > ~. Keep the notation 
as in the above diagram. We have that J' is a divisorial contraction to 
P E X with discrepancy ~ < ~. Moreover, g' is a divisorial contraction 
to a singular point Q' E Y' and exactly one of the following holds. 

( 1) If P E X is of type other than cE /2, then Q' is a point of index 
r, and g' has discrepancy a;' with a'+ a"= a. 

(2) If P E X is of type cE /2, then Q' is a point of index 3, and g' 
has minimal discrepancy ~. 

As an immediate corollary by induction on discrepancy a, we have: 

Corollary 6.3. For any divisorial contraction Y -+ X to a point 
P E X of index r > 1 with discrepancy ~ > ~. There exists a sequence 
of birational maps 

Y =: Xn --+ ... --+ Xo =: X 

such that each map xi+l --+ xi is one of the following: 

(1) a divisorial extraction over a point of index ri > 1 with minimal 
discrepancy f. or its inverse; 

(2) a flip or a flop. 
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Example 6.4. We consider a divisorial contraction over a cAjr 
point with discrepancy ~ > ~. This case is described in [15, Theorem 
l.l.i], and its local equation is given by 

lp : XIX2 + g(x;, X4) = 0 C ((:4 jv, 

where v = ~(1, -1, b, 0). 
The map f is given by weighted blowup with weight VI = ~ ( ri, r 2, a, r). 

We may write ri + r 2 =dar for some d > 0 with the term x~r E c.p. We 
also have that BI := a-;r1 is relatively prime to ri and s2 := a+;r2 is 
relatively prime to r 2 (cf. [15, Lemma 6.6]). We thus have the following: 

{ 
~: ~~I+;;i~I, 
a= -br2 + rs2, 
1 = q2r2 + s2s2, 

for some 0 S si < ri and some qi. 
We set 

1h := -nqi + bsr, 1h := -nq2 - bs~. 

One sees easily that 

{ 1h ri + r = asi, 
chr2 + r = as2. 

It is easy to see that a > 8i =f. 0 for i = 1, 2 and 8i > 0 for some 
i. One can also check that if both 8I, 82 > 0 and (a, rl) = 1, then 
8I + 82 =a. 
Case 1. Suppose that 8I > 0. 
Since QI which is a quotient singularity of type ; 1 (ri - si, 1, si). Let 
g = wBlwt=w2 : Z --+ Y be Kawamata blowup over QI with w2 = 

; 1 (ri - si, dr, 1, si). 
The diagram :j: is as following. 

z 

Where 

WI = ~(ri, r2, a, r), 
w2 = ; 1 (ri - sj', dr, 1, si), 

Z' 

Y'3Q~ 

a-0] 1 t- I n W -Wl 

X 

wi = ~(ri- sj', r2- 8Idr + sj', a- 8I, r); 
w~ = ~ ( si, 8I dr - si, 8I, r). 
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Note that 0 <a':= a-1h <a and both J',g' are extremal contrac
tions with discrepancies < ; . 
Case 2. Suppose that bz > 0. 
Since Qz is a quotient singularity of type f,-(r2 - s2, 1, s2), we take 
g = wBlwt=w2 : Z ---+ Y the Kawamata blowup over Q2 with w2 = 
f,-(dr, r2- s2, 1, s2). 

The diagram :j: is as following. 

Where 

w1 = .l(r1,r2,a,r), 
wz = ~ (dr, r2 - s2, 1, s2), 

Z' 

~ 1 wt=w~ 
Y' 3Q~ 

a-;.li2l wt=w~ 

X 

w~ = l(r1 + s2- 62dr, r2- s2, a- 62, r); 
w~ = ~(62dr- s2, s2, 62, r). 

It is easy to see that if r 1 2': r 2, then 61 > 0. Hence extracting 
over Q1 provides the desired factorization. Similar argument holds if 
r 2 2': r 1 . Therefore, one obtain a factorization by extracting over the 
point of highest index. 

§7. Further remarks 

It is interesting and useful to find a set of simple and explicit bira
tional maps so that each birational maps can be factored into a compo
sition of these simple maps. According to our discussion above, one can 
expected that a divisorial contraction to a point, to a curve, or a flip 
can be factored into a sequence of birational maps such that each map 
is one of the following: 

(1) a divisorial contraction to a point with minimal discrepancies 
(or its inverse); 

(2) a divisorial contraction to a curve which is the blowup over a 
smooth curve in a smooth threefold; 

(3) a flop. 

The reader might also find that the technique and results of factor
izations are very similar to that of Sarkisov's program (cf. [5]). It would 
be very interesting if there exists a unified program which realizes the 
factorization of birational maps together with Sarkisov's program. 
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