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On the bifurcation structure of radially symmetric 
positive stationary solutions for a 

competition-diffusion system 

Yukio Kan-on 

Abstract. 

In this paper, we consider radially symmetric positive stationary 
solutions for the competition-diffusion system which describes the dy
namics of population for a two-competing-species community, and dis
cuss the bifurcation structure of solution by employing the comparison 
principle and the bifurcation theory. 

§1. Introduction 

In this paper, we consider the bifurcation structure of positive sta
tionary solution for the competition-diffusion system 

(1.1) {
Ut = c: D D.u + f(u), 

tv U = 0, X E 80., 

XED., 

t>O 

t > 0, 

which describes the dynamics of population for a two-competing-species 
community, where c: > 0, du > 0, dv > 0, D = diag(du,dv), u = (u,v), 

f(u) = (f,g)(u), f(u) = ufo(u), g(u) = v go(u), 

f0 (u) = (!0 , g0 )(u) is a smooth function in u, and we call u(x) positive if 
u( x) is in the first quadrant for any x E Cl D.. For the sake of simplicity, 
we take D. as a ball with center origin and radius 1r, and we restrict our 
discussion to the radially symmetric positive solution for the stationary 
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problem of the system (1.1). It turns out that the solution u(r) satisfies 

(1.2) {
c D JC(u; C)= f(u), r E (0, 1r), 

u'(O) = 0, u 1(1r) = 0, 

where r = I xI, and JC( u; C) = -r1-£ [r£-l u']' is a linear operator from 
X= { u E C2 ([0,7r]) I u'(O) = 0 = u1 (7r)} to C0 ([0,7r]). Moreover, al
though Cis a positive integer, we treat Cas a real-valued parameter with 
c ~ 1. 

§2. Assumption 

To mention assumptions and results, we define the order relations 
:::Ss and ::So on JR2 in the following manner: 

(u, v) :::Ss (u, v) 

(u, v) ::So (u, v) 

u:.:::: u, v:.:::: v, 
u:.:::: u, v ~ v. 

We denote by -<s and -<a the relations obtained from the above definition 
by replacing:<:::: with<, and we set JR.+= (0, +oo). From the competitive 
interaction, we assume that 

(A.1) f 0 (0) > 0 and g0 (0) > 0 hold, and there exists 6 > 0 such that 

max (fou (u), fov(u), 9ou(u), 9ov (u)) < -6 

is satisfied for any u E JR.~, 
(A.2) there exist the zeros e_, e and e+ off(u) on CllR~ \ {0} such 

that 

det fu(e) < 0 

hold and the equation f(u) = 0 with the condition 

u E v = { u E lR2 I e_ -<o u -<o e+ } 

has no solution other than e, and 
(A.3) there exists a solution ¢(r) of 

{
DJC(u;C) = f(u), r E JR.+, 

(2.1) u(r) E V, u'(r) -<o 0, r E JR.+, 

u'(O) = 0, u(+oo) = e_ 

for the case where C = 1. 
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The assumption ( A.l) and the comparison principle say that the problem 
(1.2) falls into a class of weakly coupled elliptic systems with respect to 
the order relation ~0 , and the assumption (A.2) implies that e_ and e+ 
are stable equilibrium points of the ODE Ut = f(u) and e is an unstable 
one. 

Let us consider the nonlinear term f(u) with 

(2.2) fo(u) = 1- u- cv, go(u) =a- bu- v 

for the case where 0 < 1/c <a< b. We set 

e_ = (O,a), ( l-ac a-b) 
e= 1-bc'l-bc ' e+ = (1, 0). 

Proposition 2.1 ([1 ]). Under the condition£ = 1 and the nonlinear 
term (2.2), there exist a constant a0 E (1/c, b) and a continuous function 
¢(·,a) defined on (1/c, ao) such that ¢(r, a) is a positive solution of the 
problem (2.1) for each a. Furthermore, ifu(r) is an arbitrary noncon
stant positive solution of the problem (2.1) for£= 1 and a E (1/c, a0 ), 

then there exists T E JR. such that u(r) = ¢(r + T, a) holds for any r E R 

The above proposition means that for each a E (1/c, a0 ), the nonlin
ear term (2.2) is most simple example satisfying the assumptions (A.l), 
(A.2) and (A.3). Moreover we remark here that for our nonlinear term 
f(u), we can prove the uniqueness result as shown in the latter part of 
Proposition 2.1, by employing the argument in [1]. 

§3. Local Structure 

We denote by N0 the set of nonnegative integers. Let { Ak(£) hENo 

be the set of eigenvalues of JC(·; £) satisfying 

for each kEN, 

and let ¢k(r, £) (k E N0 ) be an eigenfunction of JC(·; £) corresponding to 
the eigenvalue Ak(£). Here we may assume ¢k(O, £) = 1 for each kENo 
without loss of generality. It is well-known that the following property 
holds for any e 2:: 1: 

(i) limk-+oo Ak(£) = +oo is satisfied, 
(ii) ¢i(r,£) < 0 holds for any r E (0,1r), and 

(iii) ¢k(r, £) (k EN) is represented as 

(£ = 1)' 

(£ > 1)' 
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where Jv(z) is the Bessel function of the first kind, and C is a 
suitable positive constant. 

Setting 

cf!(C, k, n) = 11f (!Jk(r, C)n re-1 dr, 

we can easily obtain cf!(C, k, 2) > 0 for any C 2 1 and k E N0 , and 
cf!(l, k, 3) = 0 for any k E N. 

Lemma 3.1 ([2]). cf!(C, k, 3) > 0 holds for any C > 1 and kEN. 

Let C 2 1 be arbitrarily fixed. From the assumption (A.2), it follows 
that the equation det (c D- fu(e)) = 0 has a unique positive solution 
E = E. Let v and v* be nontrivial solutions of 

(tD-fu(e))v=O and 

respectively, where AT is the transposed matrix of the matrix A. After 
simple calculations, we can check that v >- o 0, v* >- o 0 and ( D v, v*) > 0 
are satisfied, and that for each k E N, 

(i) the linearized operator ,Ck of the problem (1.2) around u = e 
for 

E = Sk(C) = Ak~.e) 
has the simple eigenvalue 0 with the corresponding eigenfunc
tion ¢k(r, C) v, and 

(ii) ¢k(r,C)v* is an eigenfunction for the adjoint operator of ,Ck 

corresponding to the eigenvalue 0. 

Setting 

E = Ek(C,J.L) = tk(C) + f.LEk,1(C) + J.L2 Ek,z(C, J.L), 

U= uk(r,C,J.L) =u+J.L¢k(r,C)v+J.L2 Uk,2(r,C,J.L) 

and employing usual bifurcation theory, we have 

(3.1) 
_ (~) _ (f2 (v, v), v*) cf!(C, k, 3) 
Ek 1 t- -

' >.k(C) (Dv,v*) cf?(C,k,2) 

for each k E N, where f2 (u1 , u2 ) is a bilinear map obtained from the 
second derivative of f(u). Moreover the above expansion says that either 
u~(r,C,J.L) -<o 0 on (0,1r) or u~(r,C,J.L) >-o 0 on (0,1r) holds for small 
IJ.LI =f. 0, because v >-o 0 and ¢'(r) < 0 on (0, 1r) are satisfied. We 
should remark that when C = 1 and/or (f2(v, v), v*) = 0 holds, we need 
to study the property of Ek, 2 (C, J.L) to determine the local structure of 
solution for the problem (1.2) in a neighborhood of (c, u) = (sk(C), e). 



Radially symmetric positive stationary solutions 413 

Let£;::: 1 be arbitrary, and let u(r) be an arbitrary monotone posi
tive solution of the problem (1.2) for c: > 0 satisfying u(r) E 1J on [0,1r], 
where we call u( r) = ( u, v) ( r) monotone if u' ( r) v' ( r) < 0 is satisfied for 
each r E (0, 1r). From 

£-1 1 
0 =K(u';£)(r) + - 2-u'(r)- (c:D)- fu(u(r))u'(r), 

r 

0 =K(¢~;£)(r) + £ ~ 1 ¢~(r)- >.1(£) ¢~(r), r E (0,1r), 
r 

we have 

where 

h(r) = (fu(u(r)) _ gu(u(r)) _ >.1 (£)) u'(x) 
cdu cdv 

+ (>.1(£) + fv(u(r)) _ gv(u(r))) v'(x). 
cdu cdv 

We set 

M _ 2 maxuEC11J (I fu(u) I, I fv(u) I, I gu(u) I, I gv(u) I) 
- min(du, dv) . 

Since 

u'(r) h(r) ~ ( ~- >.1(£)) (u'(r) 2 - u'(r) v'(r)) < 0 

holds for any r E [0, 1r] when c: > M I >.1 (£) is satisfied, it follows that 
c: ~ M I >.1 ( £) must be satisfied. The comparison principle and the as
sumptions (A.1) and (A.2) give us the following for any positive solution 
u(r) = (u,v)(r) of (1.2): 

(i) If u'(T) v'(T) = 0 for some T E (0, 1r) and either u'(r) !::o 0 on 
[0, 1r] or u'(r) :5o 0 on [0, 1r] hold, then u(r) must be a constant 
function on [0, 1r]; 

(ii) If u(T) E fJD for some T E [0,1r] and u(r) E Cl'D for any 
r E [0, 1r] hold, then either u( ·) = e_ or u( ·) = e+ is satisfied. 

Combining the above facts and Theorem 1.3 in Rabinowitz [3], we have 
the following: 

Lemma 3.2. Let£ ;::: 1 be arbitrary. Then there exists a maxi
mal connected continuum C(£) C JR.+ x X 2 such that {i) C(£) contains 
(€1 (£),e) and meets { 0} xX2 , and {ii) for each (c:, u(·)) E C(£)\ { (€, e)}, 
u(r) is a monotone positive solution of the problem (1.2) for c: and sat
isfies u(r) E 1J for any r E [0,1r]. 
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§4. Global Structure 

Let C 2: 1 be arbitrarily fixed, and let u1 (r) (j = 1, 2) be an arbitrary 
monotone positive solution of the problem (1.2) for E = Ej > 0. We 
denote by [u]1 the jth element of the vector u. Here we consider the 
case where [u1(0)] 1 = [u2(0)] 1. With j E { 1, 2 }, setting 

7r 

/j = ~P;' 
yEj 

we see that w1(r) is a monotone positive solution of 

( 4.1) DK(w;C) = f(w) 

in (0, /j) with the conditions w'(O) = 0 and w'(r1) = 0. 
We assume z1 (0) > z2 (0), and set /o = min(/1 ,12 ). Since 

holds due to the assumption (A.l), it follows that there exists T E 

(0,/o] such that w 1 (r) >-s w 2 (r) is satisfied for any r E [O,T). Since 
fo(w1(r)) --<s f0 (w2(r)) holds for any r E [O,T) because of the assump
tion (A.1), the problem (4.1) gives us the estimates 

( 4.2) w2(r)2 ( :: )' (r) = w~ (r) w2(r) - w1 (r) w~(r) 
r1-C r =---;r: Jo (fo(w2(s))- fo(w1(s))) w1(s) w2(s) s"-1 ds > 0, 

(4.3) z2(r) 2 (;:)' (r) = z~(r) z2(r)- z1(r) z~(r) 
r1-C {r C-1 =--;;;: Jo (go(w2(s))- go(w1(s))) z1(s) z2(s) s ds > 0 

for any r E [0, T], which imply that w1(r)/w2(r) and z1(r)/z2(r) are 
both increasing on [0, T]. Since 

or 

holds for the case where T < /o, it turns out that T = ro must be 
satisfied. From the estimates (4.2) and (4.3), we have w~(r1 ) --<s 0 for 
the case where 11 ~ /2, and w~ ( 12) >- s 0 for the case where 11 2: 12. 
These contradict that w 1 (r) and w 2 (r) are both monotone on (0,10 ). 

Hence we obtain z1 (0) ~ z2 (0). Since we can derive a contradiction when 
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we assume z1(0) < z2 (0), we have w 1(0) = w 2 (0). By the uniqueness 
of solutions for the problem (4.1), we obtain w 1 (r) = w 2 (r) for any 
r E JR:.+. 

Lemma 4.1. Let f 2: 1 be arbitrarily fixed, and let uj(r) (j = 1, 2) 
be an arbitrary monotone positive solution of the problem (1.2) for c: = 
Ej > 0. If [u1(0)] 1 = [u2(0)] 1 is satisfied, then c:1 = c2 and u1(·) = u 2 (·) 

hold. 

Let f 2: 1 be arbitrarily fixed. Setting 

P(f) = { [u(0)] 1 1 (c:, u(·)) E C(f)}, 

p_(f) = infP(f), P+(f) = supP(f), 

we have 

for any f 2: 1. 

It follows from Lemma 4.1 that there exist continuous functions t(p, f) 
and u(·,p, f) defined on P(f) such that (i) [u(O,p, f)] 1 = p holds for each 
p E P(f) and (ii) C(f) is represented as 

C(f) = { (t(p, f), u(·,p, f)) 1 P E P(f) } , 

which implies that the secondary bifurcation of monotone positive solu
tion for the problem (1.2) is of saddle-node type even if it occurs. By 
Lemma 3.2, we have 

lim t(p, f) = 0 
p-+p± (£) 

for any f 2: 1. 

From the assumption (A.2) and the comparison principle, we obtain 

u(O,p,f) -<a e -<a u(1r,p,f) 

u(O,p,f) >--a e >--a u(1r,p,f) 

for p < [e] 1 , 

for p > [e] 1 . 

From the above estimate, we can taker_ (p, f) E (0, 1r] as satisfying 

['( ( ) )] [e] 1 +P-(f) (-, ) u r _ p, f , p, f 1 = 2 = u_ 

for any pin a neighborhood of p = P- (f). Setting 

C( f)=r_(p,f) 
<., p, Jt(p,f)' 

w(y,p) = (w,z)(y,p) = u ( Jt(p,f)y,p,f), 

we see that w(y, p) is a solution of ( 4.1) in JR:.+ satisfying w' (0, p) = 0 and 
w(~(p,f),p) = u_. From the Ascoli-Arzela theorem, it follows that for 
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any compact subset of JR+, there exists a decreasing sequence { Pn } nEN 

such that the limits 

lim Pn = p_(C), 
n-+oo 

w(·) = (w, z)(·) = lim w(-,pn) 
n-+oo 

exist and w(y) is a positive solution of (4.1) in JR+ satisfying 

e_ ::So w(y) ::So e+' w(y)::::: iL, w'(y) to 0, 

Since the limit w + = limy-++oo w (y) exists, we have 

Cw'(y) = _!_ r D-1 f(w(s)) s"-1 ds--+ -D- 1 f(w+) 
Y Y" Jo 

as y--+ +oo. By the boundedness of w(y), we obtain f(w+) = 0. From 
[w+] 1 :::; u_ < [e] 1 and the assumption (A.2), we have w+ = e_, and 
then we obtain p_ (C) = [e_] 1 . In a similar manner with the above 
argument, we can show that for each C 2:: 1, if P+(C) < [e+] 1 holds, then 
there exists a monotone solution of (4.1) in JR+ such that u(O) = P+(C), 
u'(O) = 0 and u(+oo) = e_ are satisfied. Moreover we employ the 
comparison principle and Lemma 4.1, we can prove that P+(C) is a lower 
semi-continuous function in C 2:: 1. 

Theorem 4.2. p_(C) = [e_] 1 holds for any C 2:: 1, and P+(C) is a 
lower semi-continuous function in C 2:: 1. 

From the above theorem, it follows that when P+(C) has a jump 
discontinuity at C = C0 2:: 1, there exists a monotone positive solution, 
which satisfies u(r) E V for any r E [0, 1r] and does not belong to C(C0), 

of the problem (1.2) for C = C0 . Since the study of P+(C) is important 
for determining the bifurcation structure of monotone positive solution, 
we shall discuss the property of P+ (C) in the near future. 
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