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Orbitally stable standing-wave solutions to a 
coupled non-linear Klein-Gordon equation 

Daniele Garrisi 

Abstract. 

We outline some results on the existence of standing-wave solutions 
to a coupled non-linear Klein-Gordon equation. Standing-waves are 
obtained as minimizers of the energy under a two-charges constraint. 
The ground state is stable. The standing-waves are stable provided a 
non-degeneracy condition is satisfied. 

§1. Introduction 

Let (X, d) be a metric space and let {UtI t > 0} be a family of 
operators on X such that 

We define some dynamical properties of the pair (X, U): a subsetS C X 
is said invariant if for every t 2: 0 and <I> E S, there holds 

A subset S c X is said stable if for every E: > 0, there exists 15 > 0 such 
that 

<I> E B(S, 15) =? Ut (<I>) E B(S, s) for every t 2: 0, 

where 
B(S,15) :={<I> EX 1 dist(<I>,S) < 15}. 
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Finally, a state <I> E X is said orbitally stable if there. exists a finite­
dimensional manifold S C X stable and invariant such that <I> E S. In 
evolution equations, X plays the role of a space of initial data where the 
Cauchy problem is locally well-posed; Ut(<I>) is defined as the solution of 
the evolution equation with initial datum <I>, at the timet. 

A well-known example of orbitally stable state is provided as standing­
wave solution to the non-linear Schrodinger equation 

4 
(NLS) i8tv(t, x) + tl.xv(t, x) + fv(t, x)fP-2v(t, x) = 0, 2 < p < 2 + N 

by H. Cazenave and P. L. Lions in [9]. Therein X= Ht(IR.N) and <I> is 
the initial value of a standing-wave solution to (NLS) 

(1) v(t,x) = e-iwtu(x) 

where w E IR., u E H 1 (IR.N) and 

tl.u + wu + fufP- 2u = 0. 

It is easy to check that v solves (NLS) if and only if u solves the elliptic 
equation above. 

In [9], they prove that the manifold 

(2) 

is invariant and stable, where 

S 1 := {-\ E c fl-\1 = 1}. 

In fact, it can be shown that the homeomorphism relation 

also holds. Thus, <I> = v(O, ·) = u is orbitally stable. Since then, 
their results have been extended to more general non-linearities and 
other evolution equations, as in [4] (NLS, N ~ 3), [26] (NLS, N ~ 1), 
[20], [21], [23] (NLS + NLS, N = 1), [15], [22] (multiple NLS, 1 ::::; N::::; 
3), [1], [2], [10] (coupled NLS and Korteweg-de Vries equation, N = 1). 
In the above references, the stable manifold S is defined according to the 
non-linearity-scalar equations or coupled equations. Moreover, having 
a family of operators defined for every t ~ 0 requires the equations 
above to be globally well-posed-this is not always the case, starting 
from (NLS), when p ~ 2 + 4/N. 
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In higher order evolution equations, as the non-linear Klein-Gordon 

(NLKG) 
2N 

olv- llxv + v- lvlp-Zv = 0, 2 < p < -­
N+2 

the first derivative must be taken into account. Then, the most suitable 
candidate to be a stable manifold is 

(3) r := { ,\(u(· + y), -iwu(· + y)) I(,\, y) E 8 1 X lRN}. 

Among the references on the orbital stability of standing-wave solutions 
to (NLKG) we include the joint works of M. Grillakis, J. Shatah and 
W. Strauss, [13], [14]. For coupled non-linear Klein-Gordon equations, 
we note [28] along with some counterexamples in [24], [27]. In our work 
[11], we address standing-wave solutions to the coupled non-linear Klein­
Gordon equation 

(CNLKG) 
afu1 -llxu1 + miu1- l't-tlu1!7 - 2 luzl 7 u1 + Oz1 G(u) = 0 

aluz -llxUz + m~Uz- l't-tluzl 7 - 2 lu11 7 uz + Oz2G(u) = 0 

where m1 > 0 for j = 1, 2. We discuss stability results of the manifold 
r and the stability of the ground state. 

§2. Hypotheses on the non-linearity 

Let G be a continuously differentiable non-negative, real-valued func­
tion on <C x <C such that there are two powers 

* * 2N 2<p~q<2' 2 =--
N-2 

and a constant c ~ 0 such that 

(4) IDG(z)l ~ c(lziP-1 + lzlq-1), G(O) = 0. 

In other words, IDGI is a combined power-type. Moreover, let/' be such 
that 

(5) 
4 

2 < 2')' < 2 + N, 21' < p. 

We define 
F(z) = -t-tlz1zzl 7 + G(z). 

From assumptions (4) and (5) it follows that 
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for some d ~ 0; thus, for every u E H 1(1R.N;IR.2), F(u) is in L1(JR.N). 
From the sub-critical growth assumption, (NLKG) is locally well-posed 
in H 1 x L2 , [12]. We suppose that (CNLKG) is locally well-posed in 

X:= Hl(IR.N;<C2) X L2(1R.N;<C2), 

even if we expect that it follows from the same techniques used in [12]. 
From the additional assumption 

(6) 

local solutions extend to [0, +oo). We require G to satisfy the symmetry 

(7) 

That gives arise to conserved quantities on solutions to (CNLKG), namely, 
the energy, charges and momenta [3, §2]. We define below the energy 
and the charges (momenta are zero on standing-waves) as functions on 
the space X. When we write a state <I> EX component-wise, we use the 
notation <I>:= (¢, cPt)i 

for j = 1, 2. Finally, we assume that 

(8) 

for every Uj ~ 0. In the inequality above, uj is the Steiner symmetriza­
tion taken with respect to any linear subspace of JR.N. We refer to 
§3. 7 in [17] for definitions and properties of the Steiner symmetriza­
tion. In the scalar case, such inequality holds for every G: JR.+ -+ JR. and 
u ~ 0. In higher dimensions, a counterexample can be produced by tak­
ing u1 E L~ (!R.N) symmetrically decreasing and with compact support, 
and y E IR.N such that u2 := u1 ( · + y) and u1 have supports disjoint from 
each other. Thus 

ui = u1, u; = u1. 

Hence, the function Go(z) = lz1z2 1 fails to satisfy inequality (8). In 
our assumptions, the coupling term has negative sign. Thus, from [17, 
Theorem 3.4] and [17, (v)p.81], it follows that F fulfills (8) as G does. 
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We conclude this section with an example of non-linearity G in 
C1 ((C2, JR+) and a pair (m1, m2) in (0, +oo )2 satisfying assumptions ( 4), 
(6), (7) and (8) 

G(z) = lzlr- clz1z2l 8 + lzlt, 2 < t < 2s < r < 2* 

where c > 0 is chosen in such a way that G ~ 0. From these assumptions 
it follows that there exists a pair (m1, m2) such that V ~ 0. 

§3. The variational characterisation 

If Vj := e-iwjtuj is a solution to ( CNLKG), then ( u, w) is a solution 
to the non-linear elliptic system 

-~ul + (mi- wi)ul + Oz 1 F(u) = 0 

-~u2 + (m~- wDu2 + Oz2 F(u) = 0. 
(9) 

We define the energy functional 

and 

E: Hl(JRN;JR2) X JR2--+ lR 

2 

(v,a) r-+ ~ L (11Dvjlli2 +m]llvjlli2 +a]llvjlli2) + r F(v) 
j=l JRN 

cj: H 1 (JRN;JR2 ) x JR2 --+ JR 

(v,a) r-+ ajllvjlli2, 1 ~ j ~ 2. 

Given C E JR2, we define the following closed and differentiable sub­
manifold 

of co-dimension two. There are several benefits in searching for minima 
of E over Me: firstly if vis a standing-wave solution to (CNLKG), then 

E(v(t, ·), Otv(t, ·)) = E(u,w), Cj(v(t, ·), Otv(t, ·)) = Cj(u,w) 

for j = 1, 2. Secondly, one can check with small effort that critical 
points of E over Me are classic solutions to (9), for example as in [3, 
Theorem 2.6] in the scalar case, or [11, Proposition 2.2] in the coupled 
case. We seek solutions to 

(10) E(u,w) = inf E =:me 
Me 
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for every C such that C1 C2 =f 0 and Cj > 0 for every 1 ::::; j ::::; 2. We 
note 

Ke := {(u,w) I E(u,w) =me}. 

The assumption Cj > 0 is just a technical restriction which can be 
removed by observing that 

and that Cj(·,w) is an odd function of w. We do not consider the semi­
trivial and the completely trivial case cl = 0, c2 > 0 and cl = c2 = 0, 
even if both are interesting from the point of view of the orbital stability. 
The semi-trivial case is interesting from the point of view of the existence 
of minima as well, while in the completely trivial case the minima are 
(0, WI, 0, w2) for any choice of w1 and w2. 

§4. Main results 

In [11, Theorem 1.1], we prove that minimising sequences of E over 
Me exhibit a concentration behaviour. One of the consequences is the 
stability of some subsets of X. 

Theorem 1. Given a minimising sequence (un,wn)n~l forE over 
Me, there exists a minimum (u,w) and (Yn)n>l C JRN such that, up to 
extract a subsequence, 

u~ = Uj(· + Yn) + o(1) in H 1(JRN), Wn---+ w in JR2 

for 1::::; j::::; 2. 

The proof of the theorem above is carried out as in the scalar case 
[3]: we define the functional and constraint 

H 1(JRN) 3 u f-t J(u) := ~ { 1Dul2 + { F(u) 
2 JJRN J"]RN 

Np := {u E H 1 (1RN;lR2 ) llluilli2 =Pi} 

and show in [11, Theorem 4.1] that a concentration result holds: 

Theorem 2. Let (un)n~l be a minimising sequence for J over Np. 
Then, there exists u E Np and a sequence (Yn)n~l such that 

Un = u(· + Yn) + o(1) in H 1(JRN) 

J(u) = inf J. 
Np 



Orbitally stable coupled standing-waves 393 

The two previous statements can be regarded as consequences of the 
concentration-compactness Theorem of P. L. Lions [18], [19]. However, 
we prefer to consider the following alternative classification, provided in 
[7], using the same terminology (concentration, dichotomy, vanishing) 
as in [18]: Given a bounded sequence (9nk2:1 in L2(JR.N), we say that 
there is a concentration if there exists a sequence (Yn)n:;:: 1 and g E £ 2 

such that 

(C) 

a dichotomy, if 

(D) 

and 
0 < 11911£2 < liminf ll9nll£2· n-++oo 

If neither of (C) or (D) holds, (gn)n>l is said to vanish. In this case, for 
every sequence (zn)n:;::l -

(V) 

The proof of the theorem above is carried out as follows: we show that 
if (un)n:;:: 1 is a minimising sequence for J over Np, then there exists 
(Yn)n:;::l C JR.N and u1, u2 -1- 0 such that 

u~(· + Yn)--' u1, u~(· + Yn)-' u2 in L2(JR.N). 

The sequence (Yn)n:;:: 1 is the same for each component. This is due to 
the fact that 

liminf r lu~u~l"1 > 0 
n-+oo }ff?.N 

and [19, Lemma 1.1]. Thus, (V) does not occur for any of the sequences 
(u~)n:;:: 1 . Then, in order to prove that (C) holds for each j = 1, 2, we 
need to rule out the case 

for some j = 1, 2. Up to a normalization, the sequences 

V j ·- u1 - u · u · n .- n J' J 

lie in two constraints, namely N 7 and Np-r- By applying techniques 
already set up in [4], [5], [6], we can show that 

J(un) = J(u) + J(vn) + o(1). 
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We define 
I(p) :=infJ 

Np 

and prove that I satisfies the strictly sub-additivity property, that is 

(11) I(p) < I(T) + I(p- T), 0 < Tj :::; pj, T f. p 

and obtain a contradiction. In literature, the inequality above is achieved 
either by direct computation [1], [21) of I (non-linearities are provided 
explicitly), or by showing the existence of a minimiser and obtaining 
a strict inequality using rescaling arguments as in [4). In our case, we 
use the following argument based on the properties of the Steiner sym­
metrization (to this purpose we need assumption (8)): suppose that we 
are given a pair 

(u, v) EN,. x Np-r 

of functions such that Uj and Vj have supports disjoint from each other 
and u and v are a suitably good approximation of I(T) and I(p- T), 
respectively. Then there exists a constant D depending only on p and T 

such that 

(12) 

where 
Wj := Uj +vj 

and wj is the symmetrically decreasing rearrangement of Wj. In dimen­
sion N = 1 (check also [2), [8)) the equality is 

IIDwj 1112 :::; IIDuj 1112 + IIDvj 1112 - ~min { IIDuj 1112, IIDvj 1112}. 

When N 2::: 3, (12) is obtained with a contradiction argument which 
envolves the one-dimensional inequality and several rearrangements. We 
show that the correction term D is the bounded away from zero, [11, 
Proposition 3.1). 

In order to state the stability results of [11), preliminary notation is 
required. Given two complex vectors z, w E C2 , we define 

((:2 3 (z · w)j := ZjWj 

the component-wise product. Given (u,w) E Kc, we define the following 
subsets of X: 

{ 
.X· (u(· + y), -iw · u(· + y)) } 

r(u w) ·-
' .- (.X, y) E ']['2 X JRN 
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and 
rc := u r(u,w), 

(u,w)EKc 

where 1!'2 = 8 1 X 8 1 . The manifold r c is called ground state. 

Theorem 3 (Theorem 1.2 of [11)). Given a sequence 

(<I>n)n~l C X 

then dist(<I>n,rc)-+ 0 if and only if 

E(<I>n)-+ me, Cj(<I>n)-+ Cj· 

for 1 ~ j ~ 2. 

In other words, the theorem states that the function 

V: X-+~, 
2 

<I> 1-t (E(<I>)- mc)2 + ~)Cj(<I>)- Cj)2 

j=l 

is a Lyapunov function for r c, that is, 

395 

A definition of Lyapunov function for a subset r c X is in [3, Defini­
tion 2.4]. A proof of the theorem above in the scalar case can be found in 
[3, §3.1]. We give an alternative proof to this fact, based on the following 
property: let 

¢ E Hf(~N) 

be such that essinfnl¢1 > 0 for every bounded subset 0 c ~N, and 

Then there exists >. E 8 1 such that 

¢(x) = >.i¢(x)l 

for every x in ~N (in a similar result, known as Convex Inequality for 
Gradients [17, Theorem 7.8], it is supposed that IIm(¢)1 > 0 every­
where). We show this in [11, Lemma 6.1] for ¢in H1 (~N,~m) and 
m~l. 

Given ( u, w) E K c, we define the subset 

S(u,w) = {(u(· + y),w) I y E ~N} c H1 (~N;~2 ) x ~2 . 
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Theorem 4 (Theorem 1.3 of [11]). The ground state is stable. If 
(u,w) E Kc and there exists 8 > 0 such that 

B(S(u,w), 8) n S(v, a)= 0 

for every (v,a) such thatr(u,w) =f.r(u,a), thenr(u,w) is stable. 

The problem of the stability of r( u, w) is more challenging than 
the stability of r 0 , even in scalar non-linear Schrodinger equation. In 
the work of H. Cazenave and P. L. Lions, [9], the non-linearity is a pure 
power: in this special case, positive solutions are unique up a translation, 
from a well-known result of [16]. Moreover, pure powers enjoy special 
rescalings with the result that r is equal to the ground state. So, r is 
stable because the ground state is stable. 

In our case, as in [4], [3], the choice of the non-linear term is very 
general, so it is not easy to conclude that r( u, w) is stable from the 
stability of the ground state. This explains the non-degeneracy condition 
stated in the theorem above. 

We wish to account a recent work of Masataka Shibata, [25], on 
the scalar non-linear Schrodinger equation, where (12) is replaced by 
a simple strict inequality. This is combined to a careful study of the 
function I in order to obtain (11). To achieve this purpose he defines an 
ad hoc rearrangement for a two-bumps function. 

Acknowledgements. I wish to thank Vieri Benci and Jaeyoung Byeon 
for their continuous aid and suggestions, and other people who con­
tributed to the improvement of the presentation of the work through 
inspiring discussions as John Albert (after his presentation on the work 
about the NLS-KdV equation), Norihisa Ikoma, who shared with me his 
comments on rearrangement techniques, and Masataka Shibata. 
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