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Abstract. 

In this paper, we consider a class of second order hyperbolic sys
tems of viscoelasticity in the whole space and show the global existence 
and sharp decay estimates of solutions under the smallness condition 
on the initial data. The tools that we use here are the time-weighted 
energy method and the semigroup argument. 

§1. Introduction 

We study the initial value problem for the nonlinear hyperbolic sys
tem of equations which decribes a motion of viscoelastic materials. It 
is known that the global existence of the solutions is shown by com
bining the a priori estimate of solutions and the local existence result. 
Here, the key result, a priori estimate of solutions is obtained with use 
of the time-weighted energy method introduced by Matsumura [10] and 
the semigroup argument. As a corollary of the a priori estimates of 
solutions, we obtain the sharp decay estimates of solutions. 

We consider the following nonlinear hyperbolic systems with dissi
pation: 

j j,k 

with initial data 

(1.2) u(x, 0) = uo(x), Ut(x,O) = u1(x). 
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Here u is an unknown m-vector function of x = (x1 , · · · , xn) E JRn 
Here 1Ji ( v) are smooth m-vector functions of v = ( v1 , · · · , vn) E JRmn, 
where Vj E JRm corresponds to Uxj; K]k(t) are smooth m x m real 
matrix functions oft :::0: 0 satisfying Kjk(t)T = Kkj (t) for each j, k and 
t :::0: 0; and L is an m x m real symmetric constant matrix; the symbol 
"*" denotes the convolution with respect to t, and the superscript "T" 
denotes the transposed. The elastic term, IJi ( v), is given by the following 
assumption. We assume that there exists a smooth scalar function (the 
free energy) ¢( v) such that 

(1.3) 

where Dvj¢(v) denotes the Frechet derivative of ¢(v) with respect to 
Vj E lRmand put 

(1.4) 

It then follows that B]k(v) is an m x m real matrix function satisfying 
Bjk(v)T = Bkj(v) for each j, k and v E JRmn. 

We note that the system (1.1) can be rewritten in the following 
quasi-linear form 

j,k j,k 

We introduce the following symbols of the differential operators associ
ated with (1.5): 

(1.6) Bw(v) := L Bjk(v)wjwk, 
j,k 

Kw(t) := L Kjk(t)wjWk 
j,k 

for w = (w1, · · · ,wn) E sn~l. We see that Bw(v) and Kw(t) are real 
symmetric matrices. As in [1, 2, 3, 4], we impose the following structural 
conditions on the system (1.1). 

[Al] Bw(O) is positive definite for each w E sn~l, while Kw(t) is 
nonnegative definite for each w E sn~l and t :::0: 0, and L is 
real symmetric and nonnegative definite. 

[A2] Bw(O)- Kw(t) is positive definite for each wE sn~l uniformly 

in t :::0: 0, where Kw(t) := J; Kw(s) ds. 

[A3] Kw(O) + L is (real symmetric and) positive definite for each 
wE sn~l. 
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[A4] Kw(t) is smooth in t ~ 0 and decays exponentially as t ---+ oo. 
Precisely, there are positive constants eo, c1 and Co such that 
-c1Kw(t) :::; Kw(t) :::; -coKw(t) and -CoKw(t) :::; Kw(t) :::; 
CoKw(t) for wE sn-1 and t ~ 0, where Kw(t) := OtKw(t) and 
Kw(t) := OfKw(t). 

Notations. For a nonnegative integer s, H 8 = H 8 (JR.n) denotes the 
Sobolev space of L 2 functions on JR.n, equipped with the norm II · IIH•. 
For a nonnegative integer l, &;, denotes the totality of all the l-th order 
derivatives with respect to x E JR.n. Also, for an interval I and a Banach 
space X, C1(I; X) denotes the space of l-times continuously differential 
functions on I with values in X. 

Now we introduce the quantities Q K, Q~ and Q~ which will be used 
to describe the dissipation induced by the memory term Ej,k Kik *Uxjxk 
in (1.1): 

(1.7) QK[&xu] := Q~[&xu] + Q~[&xu], 

Q~[&xu] := L 1 Kjk[uxi,uxJdx, 
j,k ]Rn 

Here A[1/;, (](t) =lot (A(t- T)(1/;(t) -1/;(T)), ((t)- ((T)) dT for 1/;, ( E 

em, where ( , ) denotes the standard inner product in em. This was 
previously introduced by J. E. Munoz Rivera ([10], [11]) in the study of 
equations of viscoelasticity with memory (see also [1], [2], [3], [4]). 

Throughout the paper, C and c denote various generic positive con
stants. 

§2. Main theorems 

This section is devoted to giving the main theorems of our paper. 
First, we give the main result, the global existence and the sharp decay 
of solutions to the problem (1.1),(1.2). 

To this end, we introduce the time-weighted energy norm E(t) and 
the corresponding dissipation norm D(t) by 

8 8 8-1 

(2.1) E(t)2 := L Em(t)2 , D(t)2 := L Dm(t)2 + L Dm(t)2 , 

m=O m=O m=O 
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where 

s 

= sup (1+T)m(11(8;'ut,8;'+ 1 u)(T)II~s-= + LQK[a;+1u](T)), 
O:ST:St l=m 

Dm(t)2 

= 1t (1 + T)m (II(I- P)a;'ut(T)II~s-= + t QK[a;+1u](T)) dT, 
0 l=m 

Dm~l(t) 2 

= 1t (1 + T)m~l (11(8;'ut, a;,"+ 1 u)(T)II~s-= + t QK[a;+lu](T)) dT. 
0 l=m 

Here QK is defined in (1.7), I is the identity matrix, and P denotes 
the orthogonal projection matrix onto ker(L ). We also makes use of the 
following L 00 norm: 

(2.2) 

Theorem 2.1 (Global existence and sharp decay estimates). Sup
pose that all the conditions [ A1] ~[A 4] are satisfied. Let n 2: 1 and 
s 2: so + 2 with so = [n/2] + 1. Suppose that ( Ul, Oxuo) E H 8 n £ 1 

and put E1 := ll(ul, Oxuo)IIHs + ll(ul, Oxuo)ll£1· Then there is a positive 
constant 51 such that if E 1 :::; 51 , then the problem (1.1), (1.2) has a 
unique global solution u with (ut, 8xu) E C0 ([0, oo); H 8 ). The solution 
satisfies 

(2.3) E(t) + D(t) + M(t) :::; CE1 

fort 2: 0. In particular, we have the following optimal decay estimate: 

fort 2: 0, where 0 :::; m :::; s- 1. 

We can prove the existence of the global solution by combining the 
local existence result and the corresponding a priori estimates of solu
tions. Here, we omit the proof of the local existence result and readers 
are kindly requested to refer [4] for outline of the proof. 

Now we lay a foundation to prove the a priori estimates of solutions. 
We start it developing the time-weighted energy method for the system 



Nonlinear viscoelastic systems 381 

(1.1), which is based on the energy method employed in our previous pa
per [2]. We list some related works for reference (see [5], [6], [7], [8], [12]). 

Our time-weighted energy method, which is based on the previous 
energy method in [2], can yield the following energy inequality for the 
problem (1.1), (1.2). 

Proposition 2.2 ([3], [4]). Suppose that all the conditions [A1]-[A4] 
are satisfied. Let n 2: 1 and s 2: [n/2] + 2. Assume that ( u 1 , axuo) E H 8 

and put Eo= [[(ul,axuo)[[Hs· Let u be a solution to the problem (1.1), 
(1.2) satisfying (ut,axu) E C 0 ([0,T];Hs) forT> 0 such that N 0 (T) = 

sup0< 7 <r [[(axu,axut,a;u)(T)[[Loo is suitably small. Then we have the 
following time-weighted energy estimate fort E [0, T]: 

(2.5) E(t) 2 + D(t) 2 :'::: CE6 + CN(t)D(t) 2 . 

Proof. We divide our proof into several steps. First, we apply a;, 
to (1.5) to obtain 

(2.6) a;utt- L B 1k(axu)a;uXjXk + L Kjk * a;uXjXk + La;ut = jCll) 
j,k j,k 

where f(l) = Lj,k[a;,, B1k(axu)]uxjxk and [ ·, ·] denotes the commuta

tor; notice that f(o) = 0. Continuing the computation, we take the inner 
product of (2.6) with a; Ut and integrate in X over JR.n. Then we multiply 
the resulting equation by (1 + t)m, integrate with respect tot, and add 
for l with m :'::: l :<::: s. After tedious computations as in [2], we arrive at 
the basic energy estimate of the form 

where 0 :<::: m :<::: s. Note that the last term on the right-hand side of 
(2.7) is absent if m = 0. Accordingly, we have the result obtained from 
the energy method in physical space.(see [2]). 

The next step is to obtain the time-weighted dissipation norm for 
axut. For this purpose, we take the inner product of (2.6) with Lj,k(KJk* 

a;,uxjxk)t and integrate over JR.n. Moreover, we multiply the result by 
(1 + t)m, integrate with respect tot, and add for l with m :<::: l :<::: s- 1. 
Then the technical computations in [2] yield 

lot (1 + T)m[[a:+ 1 ut(7)[[~s-m-1 dT :'::: CE6 

(2.8) + CN(t)D(t) 2 +,\lot (1 + T)m[[a:+2u(T)[[~s-m-1 dT 

( 2 - 2) 2 + C>. Em(t) + Dm(t) + mCDm-1 (t) 
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for any>.> 0, where 0:::; m:::; s- 1 and C>.. is a constant depending on 
>.; the last term on the right-hand side of (2.8) is absent if m = 0. 

In the third step, we create the time-weighted dissipation norm 
which coressponds to a~u. For this purpose, first we rewrite the equation 
(1.1) as follows: 

j,k j,k j 

where gj (axu) := lJi (axu)- 'L,k Bjk(O)uxk = O(l8xul 2 ). Then we apply 
a;+l to (2.9), take the inner product with a;+1u, and integrate over JR.n. 
Moreover, we multiply the result by (1 + t)m, integrate with respect to 
t, and add for l with m :::; l :::; s- 1. Then the technical computations 
as in [2] give 

lot (1 + T)mlla~+2u(T)II~s-no-1 dT :S CE5 

(2.10) + CN(t)D(t) 2 +Clot (1 + T)mlla~+ 1 ut(T)II~s-no-t dT 

( 2 - 2) 2 + C Em(t) + Dm(t) + mCDm-l(t) , 

where 0 :::; m :::; s - 1; the last term on the right-hand side of (2.10) 
is absent if m = 0. Now we combine (2.8) and (2.10). Taking a > 0 
suitably small and using the definition of Dm(t), we have 

Dm(t) 2 :::; CE5 + CN(t)D(t) 2 

(2.11) 
( 2 - 2) 2 + C Em(t) + Dm(t) + mCDm-1 (t) , 

where 0 :::; m :::; s -1. Moreover, substituting (2. 7) into (2.11), we obtain 

(2.12) 

for 0 :::; m :::; s- 1, where the last term on the right-hand side of (2.12) 
is absent if m = 0. 

Finally, we apply to (2.12) the induction argument with respect to 
m and conclude that 

(2.13) 

for 0:::; m:::; s- 1. Moreover, substituting (2.13) into (2.7), we have 

(2.14) 
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for 0 :::; m :::; s. Now, summing up (2.14) and (2.13) form with 0 :::; m :::; s 
and 0 :::; m :::; s - 1, respectively, and then adding the resultant two 
inequalities, we arrive at the desired estimate (2.5). This completes the 
proof of Proposition 2.2 Q.E.D. 

Now we are at the last stage of obtaining the a priori estimates of 
solutions. Here, we close the time-weighted £= norm, N(t), defined 
in (2.5) suitably. In this case, we require a sharp decay estimates of 
solutions to the problem (1.1), (1.2). To measure the sharp decay of 
solutions, we introduce the time-weighted norm, M(t), by 

s-1 

(2.15) M(t) := 2: sup (1 + T)n/4+m/2 ll(8;'ut, 8;'+1u)(T)IIH•-rn-1. 
m=OOS,r:S,t 

By applying the Gagliardo-Nirenberg inequality, we can control this 
M(t) by N(t) as follows: 

(2.16) N(t):::; CM(t) 

for n ;::: 1 and s ;::: s0 + 2, where s0 = [n/2] + 1. In fact, we have 

(2.17) 

(2.18) 

ll8xu(t)lluxo :::; CM(t)(1 + t)-n/2 , 

ll(8xut, a;u)(T)IIL= :::; CM(t)(1 + t)-n/2- 112 , 

where s;::: s0 + 1 in (2.17) and s;::: s0 + 2 in (2.18). 
Applying the semigroup argument, we can derive the following in

equality for M(t). Our semigroup argument is based on the decay prop
erty for the linearized system studied in [1]. Readers are kindly requested 
to refer our paper [4] for more details. 

Proposition 2.3. Suppose that all the conditions [A1]-[A4] are sat
isfied. Let n ;::: 1 and s ;::: s0 + 1 with s0 = [n/2] + 1. Suppose that 
(ul,axuo) E Hs n L 1 and put E1 := ll(ul,8xuo)IIH• + ll(ul,8xuo)llu. 
Let u be a solution to the problem (1.1), (1.2) satisfying (ut, Oxu) E 

C 0 ([0, T]; H 8 ) for some T > 0 such that No(T) = SUPo<r<T ll(8xu, OxUt, 
8~u)(T)IIL= is suitably small. Then we have the follo;i;ing inequality for 
t E [0, T]: 

(2.19) M(t):::; CE1 + CE(t)M(t) + CM(t) 2 . 

Proof of Theorem 2.1. Substituting (2.16) in (2.5) and noting that 
Eo:::; E1, we get 

(2.20) 



384 P.M. N. Dharmawardane, T. Nakamura and S. Kawashima 

On the other hand, we multiply (2.19) by M(t). After a simple manip
ulation, we have 

(2.21) M(t) 2 :::; GEf + GE(t)M(t) 2 + GM(t) 3 . 

Let X(t) := E(t) + D(t) + M(t). Then (2.20) and (2.21) give X(t)2 :::; 

GE? +GX(t)3 • This inequality can be solved as X(t):::; GE1 , provided 
that E 1 is sufficiently small. This give the a priori estimates of solutions. 
In particular, we have M(t) :::; GE1, which implies the sharp decay 
estimates of solutions (2.4). This completes the proof of Theorem 2.1. 

Q.E.D. 
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