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Dissipative structure of the coupled kinetic-fluid 
models 

Renjun Duan, Shuichi Kawashima and Yoshihiro Ueda 

Abstract. 

We present a study of dissipative structures for a class of the cou­
pled kinetic-fluid models with partial relaxations at the linearized level. 
It is a generalization of several known results in the decoupled case that 
is either for the kinetic model or for the symmetric hyperbolic system. 
Precisely, a partially dissipative linearized system is of the type (p, q) 
if the real parts of all eigenvalues in terms of the frequency variable k 
admit an upper bound -lki 2P /(1 + lkl 2 )q up to a common positive con­
stant. It is well known that a symmetric hyperbolic system with partial 
relaxation is of the type (1, 1) if the so-called Shizuta-Kawashima con­
ditions are satisfied. In the current study of the coupled kinetic-fluid 
models, we postulate more general conditions together with some con­
crete examples to include the case (1, 2) investigated also in [14] and 
the new case (2, 3). Thus, the coupled kinetic-fluid models may exhibit 
more complex dissipative structures. 

§1. Model and problem 

Consider 

(1) 

(2) 

Ut + e . '\7 xU+ LU + B[ e. v = 0, 
n 

Vt + LAJvxi + Lv + B2e[u] = 0. 
j=l 

The unknowns are u = u(t, x, e) E JR. for the kinetic part and v = 
v(t,x) E JR.m 1 for the fluid part, where t 2:0, X E JR.n, e E JR.n and n 2: 1, 
m 1 ;::: 1 are integers. In the kinetic equation, £ is a linear, nonnegative 
definite, self-adjoint operator from L2 (JR.~) to itself which only acts on 
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the velocity variable. In the fluid part, Aj (j = 1, 2, .. · , n) are real, 
symmetric, m1 x m 1 matrices, and L is a real, nonnegative definite, 
m1 x m1 matrix. In both coupling terms, e = ( e1, e2, · · · , em2 ) T for a 
integer m2 ~ 1 is a column vector function of the only variable ~ with 
each ee = ee(~) E L2 (1R~) (£ = 1, 2, .. · , m2), e[f] for a given function 
f = f(~) of the velocity variable denotes 

e[f] = ( e1 [/], e2[f], .. · , em2 [/]) T, 

eR[f] = ln ee(~)f(~) dl,, £ = 1, 2, · · · , m2, 

and B1, B2 are real m2 x m1 and m1 x m2 matrices, respectively. 
Specifically, as will be pointed out later on through some concrete 

examples, the linearized collision operator .C in the kinetic equation could 
be either the relaxation operator, Fokker-Planck operator, Boltzmann­
type operator, cf. [5], while the linearized fluid equation could correspond 
to either the Maxwell system or the compressible Euler system, cf. [3], [6] 
and [2]. 

The goal of the paper is to determine the dissipative structure of 
the above coupled kinetic-fluid models under some conditions, which 
can induce the explicit time decay rate of solutions in the energy space, 
as studied in [4], [13] and [3]. 

§2. Basic assumption 

We now postulate the first assumption on .C and the velocity vector­
valued function e in the kinetic equation. 

(Al): .C is a linear, nonnegative-definite, self-adjoint operator from 
L2 (1R~) to itself, with ker .C -=1- {0}. The set 

is orthonormal such that the subset { e1, · · · , em0 } of the first m 0 ele­
ments is an orthonormal basis of ker .C and 

There is a constant >...c > 0 such that 
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for any f = f(~) E L2 (JR.n), where I is the identity, and Pc is the orthog­
onal projection from L2 (JR.n) to ker£ with respect to {e1>e2,·· · ,em0 }, 

explicitly given by 
mo 

P.cf = Z:et(f)e£. 
£=1 

Remark 1. One can replace~ in the free transport operator Ot +~ · 
'\7 x of (1) by V(~) : JR.n-+ JR.n. In the case of Ot + V(~) · '\7 x, the identity 
(3) should be replaced by 

span{e£, 1::::: e::::: m2} = span{e.e, Vj(~)e.e, 1::::: e::::: mo, 1::::: j::::: n}. 

This kind of extension can include both classical and relativistic cases; 
for the latter, V(~) = ~/ vf1 + 1~1 2 . 

The second assumption is postulated on matrices Aj and L in the 
fluid equation. 

(A2): Aj (j = 1, 2, · · · , n) are constant real symmetric m 1 x m 1 matri­
ces, and L is a constant real m 1 x m 1 matrix, not necessarily symmetric. 

§3. Moment equation and partially dissipative assumption 

By applying the Fourier transform with respect to the space variable 
x, we write (1), (2) as 

where 

itt+ ilk I~· ,..,ii, + £u + Bf e · v = 0, 

fit+ ilkiA~v + Lv + B2e[u] = o, 

n 

L '""' . A"' = ~ A1 "'j· 
j=l 

Set w = e[u]. One can derive the evolution equation of w = w(t, x) as 

Wt + ilkiA;w + L.cw + B1v = R(u). 

Here, the notations are explained as follows. A; is a real symmetric 
matrix, given by, for 1::::: j, e::::: m2, 

{ 

ej(,.., · ~et) = ln,.., · ~eje£ d~ if either 1::::; j::::; m0 , 

(A;)j£ = 1 ::::; e::::; m2, or m 0 + 1 ::::; j ::::; m2, 1 ::::; e::::; mo; 

0 otherwise. 
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L.c is a constant real symmetric matrix, given by, for 1 :"::: j, £ :"::: m2, 

otherwise, 

and hence L.c satisfies 

m2 

wT · L.cw 2: A..c L lwel 2 , 

£=mo+l 

for any wE 1Rm2 • R(u) = (R1 (u),··· ,Rm2 (u))T is a column vector­
valued function, given by, for 1 :"::: £ :"::: m 2 , 

where Pm2 is an orthonormal projection from L2 (1Rn) to span{ee, 1 :"::: 
f :"::: m2}. 

Therefore, by setting U = (w,v)r, we arrive at 

(4) 

with 

A =(A~ o ) £ = (L.c B1) R(A) = (R(u)) 
"' 0 AL ' B L ' u 0 . 

"' 2 

Notice that A is a real symmetric matrix, the real matrix L is not nec­
essarily symmetric, and R( u) is the moment function of elements in 
(ker .C).L. 

In order to achieve the desired goal, the key problem is reduced to 
analyze the finite-dimensional symmetric hyperbolic system with relax­
ations (4) by postulating some additional conditions as in [14]. Beside 
two assumptions (Al) and (A2), we also require the assumption 

(A3): Lis nonnegative definite, i.e., 

ur. LU 2:0, \:/U E 1Rm2 +m1 • 

Proposition 1. The coupled linear system (1)-(2) is partially dis­
sipative under the assumptions (Al), (A2) and (A3). 

It is straightforward to prove the above proposition, cf. [7]. 
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§4. Modeling 

Before discussing ( 4), we list several coupled kinetic-fluid models 
whose dissipative structures have been well established individually. Re­
call as in [14] the following 

Definition 1. A linearized homogeneous system (1)-(2) is partially 
dissipative of the type (p, q) with q :2:: p > 0 if there are constants A. > 0, 
C such that 

where §(t) is the linear solution operator, (u0 , v0 ) is initial data and 
II· IIY is a properly chosen norm. 

Recall also for the fluid equations in the decoupled situation: 

• Type (1, 1): This is a standard type, e.g., the Euler system 
with damping [10] and the electro-magneto-fluid system [15]. 
A general theory was established in [12]. 

• Type (1, 2): This is a new type, e.g., the Euler-Maxwell system 
with damping [4], [13] and the Timoshenko system [8], [9]. A 
general theory has been recently given in [14]. 

It can be seen from the following examples that some of either kinetic 
or coupled kinetic-fluid models which are partially dissipative expose the 
above similar property. 

Model 0. Boltzmann equation, cf. [11]: Type (1, 1). The linearized 
version takes the form of 

(5) Ut + e . V' xU+ Cu = 0. 

It is the first equation of the decoupled system (1)-(2) when the coupling 
matrices B 1 and B 2 vanishes; see also [5] for a general choice of £. 

Model 1. Vlasov-Euler-Fokker-Planck system, cf. [2]: Type (1, 1). 
For the model studied in [2], £ takes the linearized self-adjoint Fokker­
Planck operator, the fluid part consists of the incompressible Euler sys­
tem, and the kinetic and fluid equations are coupled through the fric­
tional forcing. Notice that the result in [2] is easily extent to the case 
when the Euler system is compressible. 

Model 2. Vlasov-Maxwell-Boltzmann system of two-species, cf. [6]: 
Type (1, 2). The linearized system take the form of the kinetic equations 

(6) 
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coupled with the Maxwell equations. Here M is a normalized global 
Maxwellian and the kinetic unknown u = (u+,u_)T is a vector-valued 
function; refer to [6] for more notations and the complete analysis of the 
system structure. 

Model 3. Vlasov-Maxwell-Boltzmann system of one-species, cf. [3]: 
Type (2, 3). It is a model simplified from (6) to describe the motion of 
only one species of electrons with the other species of ions fixed as a 
background profile; see [3] for more details. 

Model 4. Vlasov-Maxwell-Fokker-Planck system of one-species: Type 
(1, 2). The system has the same form as in Model 3 with£ replaced 
by the linearized self-adjoint Fokker-Planck operator. 

In the decoupled case when B 1 = 0, B2 = 0, let us discuss a little 
about the kinetic equation (5). A sufficient condition to assure that the 
equation (5) is partially dissipative of type (1, 1) was given in [11] by 
using thirteen moments as well as the compensating function method. 
Inspired by [1] and [5], one can postulate a rank-type condition to achieve 
the same goal. We point out that this kind of the rank-type condition, 
on one hand, is indeed a sufficient condition to assure the existence of 
the compensation function and on the other hand, provides a convenient 
way of constructing the compensation function as explicitly given in [5]. 

Theorem 1. Under the assumption (Al) and the rank condition 
(Rl)o: 

[ ~~A~ l rank . = m2, 

gc(A~)m2-l 

where E.c is a diagonal m2 x m2 matrix diag {0, · · · , 0, 1, · · · , 1} with the 
first mo entries of the diagonal vanishing, the equation (5) is partially 
dissipative of type (1, 1). 

§5. Main result: a sufficient condition for type (2, 3) 

Since the system structure of (1)-(2) is equivalent with that of (4), 
let us start with the general system 

(7) 

where U = U(t, k) is the Fourier transform of U = U(t, x) E !Rm with 
t ~ 0, x E !Rn and k E !Rn, and for brevity of presentation, we have used 
the same notations A"' and L as before. Suppose the following condition 
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(A): Let A" be defined by A 110 = "L7=l ~jAj, where for each j = 
1,2, · · · ,n, ~j = kj/lkl when k #- 0 and AJ is a real symmetric m x m 
matrix; L is a real, nonnegative definite m x m matrix, not necessarily 
symmetric, with the nontrivial kernel. 

In what follows, associated with a real m x m matrix L, we use 

Lsy = L+LT 
2 ' 

to denote the symmetric part and anti-symmetric part, respectively and 
use P L to denote the projection from JRm to the linear subspace ker L. 
Suppose further the conditions 

(S-K1): There are a real symmetric m x m matrix S and a real anti­
symmetric m x m matrix K 1 such that 

L8 Y + (SL) 8 Y + (K1A110 ) 8Y?: 0, 

ker (Lsy + (SL) 8 Y + (K1 A110 ) 8 Y) <;;; ker L, 

i(SA110 )asy?: 0 on ker L8 Y, 

PLsYKlLasy = 0. 

(K2 ): There is a real anti-symmetric m x m matrix K 2 such that 

Then, one has 

Theorem 2. Under the conditions (A), (SKI) and (K2 ), system 
(7) is partially dissipative of the type (2, 3). 

Refer to [7] for the complete proof of the above theorem, and an 
example can be given by Model 3 mentioned before, for which S, K 1 

and K 2 can be explicitly constructed in terms of [3] so as to satisfy all 
the conditions. Finally, we point out that whenever K 1 is identical to 
zero, type (2, 3) can be improved to be type (1, 2) as studied in [14]. 
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