Advanced Studies in Pure Mathematics 64, 2015 Nonlinear Dynamics in Partial Differential Equations pp. 327–335

Dissipative structure of the coupled kinetic-fluid models

Renjun Duan, Shuichi Kawashima and Yoshihiro Ueda

Abstract.

We present a study of dissipative structures for a class of the coupled kinetic-fluid models with partial relaxations at the linearized level. It is a generalization of several known results in the decoupled case that is either for the kinetic model or for the symmetric hyperbolic system. Precisely, a partially dissipative linearized system is of the type (p, q)if the real parts of all eigenvalues in terms of the frequency variable kadmit an upper bound $-|k|^{2p}/(1+|k|^2)^q$ up to a common positive constant. It is well known that a symmetric hyperbolic system with partial relaxation is of the type (1, 1) if the so-called Shizuta–Kawashima conditions are satisfied. In the current study of the coupled kinetic-fluid models, we postulate more general conditions together with some concrete examples to include the case (1, 2) investigated also in [14] and the new case (2, 3). Thus, the coupled kinetic-fluid models may exhibit more complex dissipative structures.

$\S1.$ Model and problem

Consider

(1)
$$u_t + \xi \cdot \nabla_x u + \mathcal{L}u + B_1^T \mathbf{e} \cdot v = 0,$$

(2)
$$v_t + \sum_{j=1}^n A^j v_{x_j} + Lv + B_2 \mathbf{e}[u] = 0.$$

The unknowns are $u = u(t, x, \xi) \in \mathbb{R}$ for the kinetic part and $v = v(t, x) \in \mathbb{R}^{m_1}$ for the fluid part, where $t \ge 0$, $x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n$ and $n \ge 1$, $m_1 \ge 1$ are integers. In the kinetic equation, \mathcal{L} is a linear, nonnegative definite, self-adjoint operator from $L^2(\mathbb{R}^n_{\mathcal{E}})$ to itself which only acts on

Received February 17, 2012.

²⁰¹⁰ Mathematics Subject Classification. 35B35, 35B40, 35L40.

Key words and phrases. Dissipative structure, kinetic equations, symmetric hyperbolic system, relaxation, energy method.

the velocity variable. In the fluid part, A^j $(j = 1, 2, \dots, n)$ are real, symmetric, $m_1 \times m_1$ matrices, and L is a real, nonnegative definite, $m_1 \times m_1$ matrix. In both coupling terms, $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{m_2})^T$ for a integer $m_2 \ge 1$ is a column vector function of the only variable ξ with each $\mathbf{e}_{\ell} = \mathbf{e}_{\ell}(\xi) \in L^2(\mathbb{R}^n_{\xi})$ $(\ell = 1, 2, \dots, m_2)$, $\mathbf{e}[f]$ for a given function $f = f(\xi)$ of the velocity variable denotes

$$\mathbf{e}[f] = \left(\mathbf{e}_1[f], \mathbf{e}_2[f], \cdots, \mathbf{e}_{m_2}[f]\right)^T,$$
$$\mathbf{e}_{\ell}[f] = \int_{\mathbb{R}^n} e_{\ell}(\xi) f(\xi) d\xi, \quad \ell = 1, 2, \cdots, m_2,$$

and B_1, B_2 are real $m_2 \times m_1$ and $m_1 \times m_2$ matrices, respectively.

Specifically, as will be pointed out later on through some concrete examples, the linearized collision operator \mathcal{L} in the kinetic equation could be either the relaxation operator, Fokker–Planck operator, Boltzmanntype operator, cf. [5], while the linearized fluid equation could correspond to either the Maxwell system or the compressible Euler system, cf. [3], [6] and [2].

The goal of the paper is to determine the dissipative structure of the above coupled kinetic-fluid models under some conditions, which can induce the explicit time decay rate of solutions in the energy space, as studied in [4], [13] and [3].

$\S 2.$ Basic assumption

We now postulate the first assumption on \mathcal{L} and the velocity vectorvalued function e in the kinetic equation.

(A1): \mathcal{L} is a linear, nonnegative-definite, self-adjoint operator from $L^2(\mathbb{R}^n_{\mathcal{E}})$ to itself, with ker $\mathcal{L} \neq \{0\}$. The set

$$\{\mathbf{e}_{\ell} = \mathbf{e}_{\ell}(\xi) \in L^2(\mathbb{R}^n), \, 1 \le \ell \le m_2\}$$

is orthonormal such that the subset $\{e_1, \cdots, e_{m_0}\}$ of the first m_0 elements is an orthonormal basis of ker \mathcal{L} and

(3)
$$\operatorname{span}\{e_{\ell}, 1 \le \ell \le m_2\} = \operatorname{span}\{e_{\ell}, \xi_j e_{\ell}, 1 \le \ell \le m_0, 1 \le j \le n\}.$$

There is a constant $\lambda_{\mathcal{L}} > 0$ such that

$$\int_{\mathbb{R}^n} f\mathcal{L}fd\xi \ge \lambda_{\mathcal{L}} \int_{\mathbb{R}^n} |\{\mathbf{I} - \mathbf{P}_{\mathcal{L}}\}f|^2 d\xi$$

for any $f = f(\xi) \in L^2(\mathbb{R}^n)$, where **I** is the identity, and $\mathbf{P}_{\mathcal{L}}$ is the orthogonal projection from $L^2(\mathbb{R}^n)$ to ker \mathcal{L} with respect to $\{e_1, e_2, \cdots, e_{m_0}\}$, explicitly given by

$$\mathbf{P}_{\mathcal{L}}f = \sum_{\ell=1}^{m_0} \mathbf{e}_{\ell}(f)\mathbf{e}_{\ell}.$$

Remark 1. One can replace ξ in the free transport operator $\partial_t + \xi \cdot \nabla_x$ of (1) by $V(\xi) : \mathbb{R}^n \to \mathbb{R}^n$. In the case of $\partial_t + V(\xi) \cdot \nabla_x$, the identity (3) should be replaced by

$$span\{e_{\ell}, 1 \le \ell \le m_2\} = span\{e_{\ell}, V_j(\xi)e_{\ell}, 1 \le \ell \le m_0, 1 \le j \le n\}.$$

This kind of extension can include both classical and relativistic cases; for the latter, $V(\xi) = \xi/\sqrt{1+|\xi|^2}$.

The second assumption is postulated on matrices A^{j} and L in the fluid equation.

(A2): A^j $(j = 1, 2, \dots, n)$ are constant real symmetric $m_1 \times m_1$ matrices, and L is a constant real $m_1 \times m_1$ matrix, not necessarily symmetric.

$\S3$. Moment equation and partially dissipative assumption

By applying the Fourier transform with respect to the space variable x, we write (1), (2) as

$$\begin{aligned} \hat{u}_t + i|k|\xi \cdot \kappa \hat{u} + \mathcal{L}\hat{u} + B_1^T \mathbf{e} \cdot \hat{v} &= 0, \\ \hat{v}_t + i|k|A_\kappa^L \hat{v} + L \hat{v} + B_2 \mathbf{e}[\hat{u}] &= 0, \end{aligned}$$

where

$$\kappa = (\kappa_1, \kappa_2, \cdots, \kappa_n) = \frac{k}{|k|} \text{ for } 0 \neq k \in \mathbb{R}^n, \quad A_{\kappa}^L = \sum_{j=1}^n A^j \kappa_j.$$

Set w = e[u]. One can derive the evolution equation of w = w(t, x) as

$$\hat{w}_t + i|k|A_{\kappa}^{\mathcal{L}}\hat{w} + L^{\mathcal{L}}\hat{w} + B_1\hat{v} = \widetilde{R}(\hat{u}).$$

Here, the notations are explained as follows. $A_{\kappa}^{\mathcal{L}}$ is a real symmetric matrix, given by, for $1 \leq j, \ell \leq m_2$,

$$(A_{\kappa}^{\mathcal{L}})_{j\ell} = \begin{cases} e_j(\kappa \cdot \xi e_\ell) = \int_{\mathbb{R}^n} \kappa \cdot \xi e_j e_\ell \, d\xi & \text{if either } 1 \le j \le m_0, \\ 1 \le \ell \le m_2, \text{ or } m_0 + 1 \le j \le m_2, 1 \le \ell \le m_0; \\ 0 & \text{otherwise.} \end{cases}$$

 $L^{\mathcal{L}}$ is a constant real symmetric matrix, given by, for $1 \leq j, \ell \leq m_2$,

$$(L^{\mathcal{L}})_{j\ell} = \begin{cases} \mathbf{e}_j(\mathcal{L}\mathbf{e}_\ell) = \int_{\mathbb{R}^n} \mathbf{e}_j \mathcal{L}\mathbf{e}_\ell \, d\xi & \text{if } m_0 + 1 \le j, \ell \le m_2; \\ 0 & \text{otherwise,} \end{cases}$$

and hence $L^{\mathcal{L}}$ satisfies

$$w^T \cdot L^{\mathcal{L}} w \ge \lambda_{\mathcal{L}} \sum_{\ell=m_0+1}^{m_2} |w_\ell|^2,$$

for any $w \in \mathbb{R}^{m_2}$. $R(\hat{u}) = (R_1(\hat{u}), \cdots, R_{m_2}(\hat{u}))^T$ is a column vectorvalued function, given by, for $1 \leq \ell \leq m_2$,

$$R_{\ell}(\hat{u}) = \begin{cases} 0 & \text{if } 1 \leq \ell \leq m_0; \\ -e_{\ell} \left(i|k|\kappa \cdot \xi \{\mathbf{I} - \mathbf{P}_{m_2}\} \hat{u} + \mathcal{L} \{\mathbf{I} - \mathbf{P}_{\mathcal{L}}\} \hat{u} \right) \\ & \text{if } m_0 + 1 \leq \ell \leq m_2, \end{cases}$$

where \mathbf{P}_{m_2} is an orthonormal projection from $L^2(\mathbb{R}^n)$ to span $\{\mathbf{e}_{\ell}, 1 \leq \ell \leq m_2\}$.

Therefore, by setting $U = (w, v)^T$, we arrive at

(4)
$$\hat{U}_t + i|k|A_{\kappa}\hat{U} + \widetilde{L}\hat{U} = \widetilde{R}(\hat{u})$$

with

$$A_{\kappa} = \begin{pmatrix} A_{\kappa}^{\mathcal{L}} & 0\\ 0 & A_{\kappa}^{L} \end{pmatrix}, \ \widetilde{L} = \begin{pmatrix} L^{\mathcal{L}} & B_{1}\\ B_{2} & L \end{pmatrix}, \ \widetilde{R}(\hat{u}) = \begin{pmatrix} R(\hat{u})\\ 0 \end{pmatrix}.$$

Notice that A is a real symmetric matrix, the real matrix \widetilde{L} is not necessarily symmetric, and $\widetilde{R}(\hat{u})$ is the moment function of elements in $(\ker \mathcal{L})^{\perp}$.

In order to achieve the desired goal, the key problem is reduced to analyze the finite-dimensional symmetric hyperbolic system with relaxations (4) by postulating some additional conditions as in [14]. Beside two assumptions (A1) and (A2), we also require the assumption

(A3): \widetilde{L} is nonnegative definite, i.e.,

$$U^T \cdot \widetilde{L}U \ge 0, \quad \forall U \in \mathbb{R}^{m_2 + m_1}.$$

Proposition 1. The coupled linear system (1)-(2) is partially dissipative under the assumptions (A1), (A2) and (A3).

It is straightforward to prove the above proposition, cf. [7].

330

§4. Modeling

Before discussing (4), we list several coupled kinetic-fluid models whose dissipative structures have been well established individually. Recall as in [14] the following

Definition 1. A linearized homogeneous system (1)–(2) is partially dissipative of the type (p,q) with $q \ge p > 0$ if there are constants $\lambda > 0$, C such that

$$\|\mathcal{F}\{\mathbb{S}(t)(u_0, v_0)\}\|_{Y} \le C e^{-\frac{\lambda |k|^{2p}}{(1+|k|^2)^q}t} \|\mathcal{F}\{(u_0, v_0)\}\|_{Y}, \quad \forall t \ge 0, k \in \mathbb{R}^n,$$

where $\mathbb{S}(t)$ is the linear solution operator, (u_0, v_0) is initial data and $\|\cdot\|_Y$ is a properly chosen norm.

Recall also for the fluid equations in the decoupled situation:

- Type (1,1): This is a standard type, e.g., the Euler system with damping [10] and the electro-magneto-fluid system [15]. A general theory was established in [12].
- Type (1, 2): This is a new type, e.g., the Euler-Maxwell system with damping [4], [13] and the Timoshenko system [8], [9]. A general theory has been recently given in [14].

It can be seen from the following examples that some of either kinetic or coupled kinetic-fluid models which are partially dissipative expose the above similar property.

Model 0. Boltzmann equation, cf. [11]: Type (1,1). The linearized version takes the form of

(5)
$$u_t + \xi \cdot \nabla_x u + \mathcal{L}u = 0.$$

It is the first equation of the decoupled system (1)–(2) when the coupling matrices B_1 and B_2 vanishes; see also [5] for a general choice of \mathcal{L} .

Model 1. Vlasov–Euler–Fokker–Planck system, cf. [2]: Type (1, 1). For the model studied in [2], \mathcal{L} takes the linearized self-adjoint Fokker– Planck operator, the fluid part consists of the incompressible Euler system, and the kinetic and fluid equations are coupled through the frictional forcing. Notice that the result in [2] is easily extent to the case when the Euler system is compressible.

Model 2. Vlasov–Maxwell–Boltzmann system of two-species, cf. [6]: Type (1, 2). The linearized system take the form of the kinetic equations

(6)
$$\partial_t u_{\pm} + \xi \cdot \nabla_x u_{\pm} \mp E \cdot \xi M^{1/2} = \mathcal{L}_{\pm} u,$$

coupled with the Maxwell equations. Here M is a normalized global Maxwellian and the kinetic unknown $u = (u_+, u_-)^T$ is a vector-valued function; refer to [6] for more notations and the complete analysis of the system structure.

Model 3. Vlasov–Maxwell–Boltzmann system of one-species, cf. [3]: Type (2,3). It is a model simplified from (6) to describe the motion of only one species of electrons with the other species of ions fixed as a background profile; see [3] for more details.

Model 4. Vlasov–Maxwell–Fokker–Planck system of one-species: Type (1,2). The system has the same form as in **Model 3** with \mathcal{L} replaced by the linearized self-adjoint Fokker–Planck operator.

In the decoupled case when $B_1 = 0, B_2 = 0$, let us discuss a little about the kinetic equation (5). A sufficient condition to assure that the equation (5) is partially dissipative of type (1, 1) was given in [11] by using thirteen moments as well as the compensating function method. Inspired by [1] and [5], one can postulate a rank-type condition to achieve the same goal. We point out that this kind of the rank-type condition, on one hand, is indeed a sufficient condition to assure the existence of the compensation function and on the other hand, provides a convenient way of constructing the compensation function as explicitly given in [5].

Theorem 1. Under the assumption (A1) and the rank condition $(R1)_0$:

$$\operatorname{rank} \begin{bmatrix} E^{\mathcal{L}} \\ E^{\mathcal{L}} A^{\mathcal{L}}_{\kappa} \\ \vdots \\ E^{\mathcal{L}} (A^{\mathcal{L}}_{\kappa})^{m_2 - 1} \end{bmatrix} = m_2,$$

where $E^{\mathcal{L}}$ is a diagonal $m_2 \times m_2$ matrix diag $\{0, \dots, 0, 1, \dots, 1\}$ with the first m_0 entries of the diagonal vanishing, the equation (5) is partially dissipative of type (1, 1).

§5. Main result: a sufficient condition for type (2,3)

Since the system structure of (1)-(2) is equivalent with that of (4), let us start with the general system

(7)
$$\hat{U}_t + i|k|A_\kappa \hat{U} + L\hat{U} = 0,$$

where $\hat{U} = \hat{U}(t,k)$ is the Fourier transform of $U = U(t,x) \in \mathbb{R}^m$ with $t \ge 0, x \in \mathbb{R}^n$ and $k \in \mathbb{R}^n$, and for brevity of presentation, we have used the same notations A_{κ} and L as before. Suppose the following condition

(A): Let A_{κ} be defined by $A_{\kappa} = \sum_{j=1}^{n} \kappa_j A^j$, where for each $j = 1, 2, \dots, n$, $\kappa_j = k_j/|k|$ when $k \neq 0$ and A^j is a real symmetric $m \times m$ matrix; L is a real, nonnegative definite $m \times m$ matrix, not necessarily symmetric, with the nontrivial kernel.

In what follows, associated with a real $m \times m$ matrix L, we use

$$L^{\rm sy} = \frac{L + L^T}{2}, \quad L^{\rm asy} = \frac{L - L^T}{2}$$

to denote the symmetric part and anti-symmetric part, respectively and use \mathbf{P}_L to denote the projection from \mathbb{R}^m to the linear subspace ker L. Suppose further the conditions

(S-K₁): There are a real symmetric $m \times m$ matrix S and a real antisymmetric $m \times m$ matrix K_1 such that

$$\begin{split} L^{\text{sy}} &+ (SL)^{\text{sy}} + (K_1 A_{\kappa})^{\text{sy}} \ge 0, \\ \ker \left(L^{\text{sy}} + (SL)^{\text{sy}} + (K_1 A_{\kappa})^{\text{sy}} \right) \subseteq \ker L, \\ i(SA_{\kappa})^{\text{asy}} \ge 0 \quad \text{on } \ker L^{\text{sy}}, \\ P_{L^{\text{sy}}} K_1 L^{\text{asy}} = 0. \end{split}$$

(K₂): There is a real anti-symmetric $m \times m$ matrix K_2 such that

$$L^{\rm sy} + (SL)^{\rm sy} + (K_1 A_\kappa)^{\rm sy} + (K_2 A_\kappa)^{\rm sy} > 0.$$

Then, one has

Theorem 2. Under the conditions (A), (SK₁) and (K₂), system (7) is partially dissipative of the type (2,3).

Refer to [7] for the complete proof of the above theorem, and an example can be given by Model 3 mentioned before, for which S, K_1 and K_2 can be explicitly constructed in terms of [3] so as to satisfy all the conditions. Finally, we point out that whenever K_1 is identical to zero, type (2,3) can be improved to be type (1,2) as studied in [14].

References

- K. Beauchard and E. Zuazua, Large time asymptotic for partially dissipative hyperbolic systems, Arch. Ration. Mech. Anal., 199 (2011), 177–227.
- [2] J. A. Carrillo, R.-J. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov–Euler–Fokker–Planck system, Kinet. Relat. Models, 4 (2011), 227–258.

- [3] R.-J. Duan, Dissipative property of the Vlasov–Maxwell–Boltzmann System with a uniform ionic background, SIAM J. Math. Anal., 43 (2011), 2732– 2757.
- [4] R.-J. Duan, Global smooth flows for the compressible Euler-Maxwell system: Relaxation case, J. Hyperbolic Differ. Equ., 8 (2011), 375–413.
- [5] R.-J. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, 24 (2011), 2165–2189.
- [6] R.-J. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Pure Appl. Math., 64 (2011), 1497–1546.
- [7] R.-J. Duan, S. Kawashima and Y. Ueda, A dissipative structure of the coupled kinetic-fluid models, in preparation.
- [8] K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system, Math. Models Methods Appl. Sci., 18 (2008), 647–667.
- [9] K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Methods Appl. Sci., 18 (2008), 1001–1025.
- [10] S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, thesis, Kyoto Univ., 1983.
- [11] S. Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301–320.
- [12] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249–275.
- [13] Y. Ueda and S. Kawashima, Decay property of regularity-loss type for the Euler-Maxwell system, Methods Appl. Anal., 18 (2011), 245–267.
- [14] Y. Ueda, R.-J. Duan and S. Kawashima, Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its application, Arch. Rat. Mech. Anal., 205 (2012), 239–266.
- [15] T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 435–457.

Renjun Duan Department of Mathematics The Chinese University of Hong Kong Shatin, Hong Kong

Shuichi Kawashima Faculty of Mathematics Kyushu University Fukuoka 819-0395 Japan

Yoshihiro Ueda Faculty of Maritime Sciences Kobe University Kobe 658-0022 Japan

E-mail address: rjduan@math.cuhk.edu.hk kawashim@math.kyushu-u.ac.jp ueda@maritime.kobe-u.ac.jp