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A vector fields approach to smoothing and decaying 
estimates for equations in anisotropic media 

Mitsuru Sugimoto 

Abstract. 

It is well known that the vector fields 

commute with the Laplacian-~. Hence we have 

Pu = f ~ P(Ou) =Of, 

where P is a function of -~, and in this way we can control the 
growth/decaying order of solution u to the equation Pu = f. This 
fact was actually used to induce some decaying estimates for the wave 
equation ([3]) in a context of nonlinear analysis, and smoothing esti­
mates for the Scrodinger equation ([6]) in a critical case. In this article, 
we will discuss how to trace this idea for equations with the Laplacian 
-~ replaced by general elliptic (pseudo-)differential operators. 

§1. Introduction 

Let -D. be the Laplacian on Rn and let P = p( -D.), where pis a 
function (p(s) = s, .jS, etc.). As a general setting, let us consider the 
equation Pu =for its non-linear version Pu = F(u), or even its time 
revolution version 

{ 
(Dt- P) u(t, x) = F(u(t, x)) 

u(O,x) = cp(x). 
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Let us try to work with them on Sobolev spaces H 8 with the norm 

or weighted £ 2 spaces L~ with the norm 

Assume that the statement 

is true for example. Then, since [A 8 , P] = 0, we have automatically a 
general statement 

which is sometimes called lifting property, while in general we do not 
have the statement 

Pu = f E L~ ::::} u E L;,+k 

since [(x)k, P] =f. 0. 
On the other hand, rotational vector fields 

satisfies [~, nij] = 0 and we have the statement 

Pu = f ::::} P(Ou)(t, x) =Of 

for n = xi\D = (Oij)i<i' In this way we can control the growth/decaying 
order of solution u to the equation Pu = f. Even for the non-linear 
equation, we can apply this idea and have the statement 

Pu = F(u) ::::} P(Ou)(t,x) = F'(u)Ou, 

where we use the chain rule relation OF(u) = F'(u)Ou. Note that this 
relation is justified since n is a differential operator of order one. 

The idea of using vector fields 0 is actually applied to inducing 
decaying estimates for the wave equation Du = F with 0-initial data: 

lu(x, t)l:::; C(t + lxl)-(n-l)/2 sup (s)a L liZ"' F(·, s)ll£2, 
O:'Os:'Ot JaJ:'OM 
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where Z is nij or other type of relevant vector fields. We have a time 
global existence result for semi-linear wave equations (Klainerman [3]) by 
this type of estimate. Smoothing estimates for the Scri:idinger equation 
of the type 

suggested by Hoshiro [2], can be also given by the same idea ([6]), from 
which we obtain a time global existence result for Scri:idinger equations 
with derivative non-linearity ([5]). 

Let us use the idea of vector fields to more general elliptic operators: 

a( D) = F- 1a(t;,)F; a( I;,) E C00 (Rn \ 0), 

a(!;,) > 0, a(.XI;,) = .X2a(l;,) (.X > 0). 

Note that a(D) = -.6. when a(!;,) = 11;1 2 . Such generalized situation 
naturally arises in many important equations of physics. For example the 
equation Dt- ..;arJ5) = f is reduced from Maxwell system in anisotropic 
media ( 6 x 6 system) 

(Dt- A(Dx)) U = 0, 

where 

A(D) = ~ ( O 
x i -f..L-l curl 

or elastic wave equations in anisotropic media (3 x 3 system) 

(Dt- A(Dx)) U = 0, 

where 

3 

A(Dx) = (Aij(Dx)); Aij(Dx) = L CijpqDxpDXq> 
p,q=l 

assuming that the system is hyperbolic in the time direction and Cijpq = 
Cjipq = Cijqp = Cpqij. But then we come across a natural question: 

Question. Does a vector fields corresponding to a( D) exists like x 1\ D 
to -.6.? If not, what should be the substitution? 
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This short article is a trial to answer this question, and after stating 
some useful theorems (Theorems 1 and 2), an answer will be given which 
says the existence of a vector field which does not commute with a(D) 
but can control the growth/decaying order. 

§2. Canonical transform 

As a first step to answer our question, we introduce an idea of using 
canonical transform. 

For the homogeneous diffeomorphism 'ljJ: Rn \0-+ Rn \0, we set 

( x E R n). Then we have the relation 

a(D) =I. a( D). r 1 , a(~)= (a o '1/J)(~). 

In particular, if we take 

r::f7:\ V' a ( ~) 
'1/J(~) = V a(~) IV'a(~)l' 

then we have a(~)= (a o '1/J)(~), hence 

a( D) = I. ( -~) . I-1 

under the assumption that the Gaussian curvature of 

Ea ={~;a(~)= 1} 

never vanishes. (Note that the Gauss map V'a/IV'al : Ea -+ sn-1 is a 
global diffeomorphism by the curvature assumption, and the existence 
of the inverse '1/J- 1 is guaranteed.) 

Then the transformed operator 

fl = I. (x 1\ D) . r 1 

is expected to be a candidate of the solution to our question. By com­
putation, we have 

fl = x'l/J'(D)- 1 1\ '1/J(D) 

and it surely satisfies 

(1) [a(D), fl] = 0. 
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But this n is not a family of vector fields, and unfortunately we cannot 
have the chain rule relation 

(2) !1F(u) = F'(u)nu 

which is needed for the nonlinear analysis. 

§3. Set of classical orbits 

(3) 

We investigate more properties of the operator 

n = x'l/J'(D)- 1 1\ '1/J(D), 
\i'a(~) 

'1/J(~) = vramiV'a(~)l 
to find a vector field as a good substitution of it. 

Let {(x(t),~(t)): t E R} be the classical orbit associated to a(D), 
that is, the solution of the ordinary differential equation 

{ 
±(t) = (V'a)(~(t)), ~(t) = o, 

x(O) = 0, ~(0) = k, 

and consider the set of the path of all classical orbits 

ra = {(x(t),~(t)): t E R, kERn\ 0} 

= {(>.V'a(~),~): >. E R, ~ERn\ 0} 

= {(x,~) E T*Rn \0: x 1\ \i'a(~) = 0}. 

For example, in the Laplacian case a(~) = 1~1 2 , we have 

We know the following result established in [4]. 

Theorem 1. Let k E R. Suppose that a(x, ~) satisfies 

ia~a[a(x,~)~ ~ Cal(x)1-l<>l(~)1-h'l, 

for all a, "( and vanishes outside 1~1 ~ C > 0. Assume the structural 
condition 

Then we have 

where n is the operator given by (3). 



324 M. Sugimoto 

Note that 

with the symbol n(x, ~) of the operator n, hence n(x, ~) is an example 
of a(x, ~) in Theorem 1 which satisfies the structural condition. 

§4. Geometric structure 

Another straightforward example of a(x, ~)which satisfies the struc­
tural condition in Theorem 1 is 

a(x, ~) = x 1\ V'a(~), 

which also commutes with a(D) but is not a vector field. We will con­
struct a vector field which satisfy the structural condition in Theorem 1 
by considering a geometric structure of r a. 

For a(~), the dual function a*(~) E c=(Rn \ 0) is uniquely deter­
mined, which satisfies the same property as a(~) and 

Here we have used the notation 

Moreover, 
1 
2V'a: ~a--+ ~a* 

is a c=-diffeomorphism and 

1'("7 * ~ ~ 2 va : L..Ja• --+ L..Ja 

is its inverse. Hence we have 

Then we have 

(x,~)Era ==? xi\V'a(~)=O 

==? V'a*(x) 1\ ~ = 0. 

ra = {(>.V'a(~),~): ~ERn\ 0, >. E R} 
= {(>.x, V'a*(x)) : x ERn\ 0, >. E R}, 

and the operator with the symbol 

a(x,~) = V'a*(x) /\~ 
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also satisfies the structural conditions of Theorem 1. Note that 

a-(X, D) = Va*(x) 1\ D 

is a vector field! 
In the case a(e) = leAI 2 , where A is a positive definite symmetric 

matrix, we have a*(e) = leA-1 1
2 . We remark that the operator with 

the symbol 
a*(x) 

T(x, e)= 21Va*(x) 1\ el2 

IVa*(x)l 
is the homogeneous extension of the Laplace-Beltrami operator of the 
surface :E~. That means, Va*(x) 1\ Dis a vector field along the surface 
:E~ in other word. 

§5. Replacement argument 

Now we are in a position to give a complete answer to our question. 
Let X be the vector field whose symbol is 

~ Va*(x) 
(4) X(x,e) = ~i:(x) 1\ e~i:'(x)-1, ~i:(x) = v u· ~X) IVa*(x)l" 

Note that X(x, e) satisfy 

ra = {(x,e) ERn x (Rn \ 0): X(x,e) = 0}, 

and X(x, e) is an example of a(x, e) in Theorem 1 which satisfies the 
structural condition. Then we have the following result if we change the 
role of X and e in the proof of Theorem 1. 

Theorem 2. Let k E R. Suppose that a(x, e) satisfies 

for all a, 'Y and vanishes outside lxl ?: C > 0. Assume the structural 
condition 

(x,e) Era =? a(x,e) = 0. 

Then we have 

where X is the vector field given by ( 4). 
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Roughly speaking, we have the following equivalence: 

as a corollary of Theorems 1 and 2. In this way, we can anytime replace 
the operator D in (3) by the vector field X in (4) at an estimate level, 
and vice versa. We useD for the commutativity (1), and X for the chain 
rule (2). Theorems 1 and 2 guarantee such replacement argument. 

§6. Works to be done 

Further applications of the idea explained here will be expected. We 
end this article by listing our ongoing/future works: 

• Application to non-linear problems: We expect to establish 
decaying estimates and some time global existence result for 
semi-linear Maxwell system and elastic wave equations in an 
anisotropic media (cf. Georgiev~Lucent~Ziliotti [1]). 

• Generalization to the case of variable coefficients: We need 
more serious consideration of canonical transform and geomet­
ric structure. 
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