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Analytic and algebraic conditions for bifurcations of 
homoclinic orbits in reversible systems 

Kazuyuki Yagasaki 

Abstract. 

We study bifurcations of homoclinic orbits to hyperbolic saddles 
and saddle-centers in reversible systems analytically by Melnikov-type 
methods and algebraically by differential Galois theory. 

§1. Introduction 

Differential Galois theory is an extended version of the classical Ga­
lois theory, which treats the solvability of algebraic equations, for dif­
ferential equations and deals with the problem of integrability by quad­
rature for them. It was also used to obtain necessary conditions for 
integrability (i.e., sufficient conditions for nonintegrability) of Hamilton­
ian systems in [1] and to discuss bifurcations of homoclinic orbits and 
an eigenvalue problem of Sturm-Liouville type on the infinite interval 
recently in [2], [3]. Especially, it was shown in [2] that variational equa­
tions around homoclinic orbits to hyperbolic equilibria are integrable 
in the meaning of the differential Galois theory if their saddle-node or 
pitchfork bifurcations occur in four-dimensional systems under some ad­
ditional conditions. These bifurcations are of codimension two in general 
but of codimension one in Hamiltonian systems, and can also be detected 
by an extended version of Melnikov's method [4]. 

In this paper we extend the result of [2] to symmetric homoclinic or­
bits to hyperbolic saddles and saddle-centers in reversible systems, using 
the differential Galois theory and generalizing a Melnikov-type method 
of [5]. Their saddle-node and pitchfork bifurcations, which are of codi­
mension one and two for the former and latter cases, respectively, are 
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Fig. 1. Assumption (A3) 

described. Homoclinic orbits in ordinary differential equations are fre­
quently related to pulses in partial differential equations, the dynamics 
of which have attracted much attention in the field of dynamical systems. 
Reversible systems often appear in applications including water waves, 
nonlinear optics and celestial mechanics. The details of the results will 
be reported elsewhere [6]. 

§2. Set-up 

We consider four-dimensional systems of the form 

(1) X= f(x;Jt), x E ~4 , Jt E ~m, 

where f : ~4 x ~m -+ ~4 is analytic, Jt represents a parameter vector 
and m = 1 or 2. Now we state our assumptions on (1). 

(A1) The system (1) is reversible, i.e., there exists a (linear) in­
volution R : ~4 -+ ~4 such that f(Rx; Jt) + Rf(x; Jt) = 0 
for all (x,Jt) E ~4 x ~2 . Moreover, dimFix(R) = 2, where 
Fix(R) = {x E ~4 1 Rx = x}. 

A fundamental characteristic of reversible systems is that if x(t) is a 
solution, then so is Rx( -t). We call a solution (and the corresponding 
orbit) symmetric if x(t) = Rx( -t). It is a well-known fact that an orbit 
is symmetric if and only if it intersects the space Fix(R). 

(A2) The origin 0 is an equilibrium in (1), i.e., f(O;Jt) = 0, for all 
Jt E ~2; 

(A3) When Jt = 0, there exists a two-dimensional analytic invariant 
manifold .4{ containing a symmetric homoclinic orbit xh(t) to 
x = 0. See Fig. 1. 

Finally, we assume one of the followings. 



or 
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(A4) Dxf(O; 0) has real eigenvalues ±.X1, ±.X2 such that 0 < .X1 ~ .X2 
(hyperbolic saddle); 

(A4') it has real eigenvalues ±.X and imaginary eigenvalues ±iw (saddle-
center). 

Assumption (A4) (resp. (A4')) means that the equilibrium 0 is a hy­
perbolic saddle (resp. saddle-center) and has two-dimensional (resp. 
one-dimensional) stable and unstable manifolds, which are denoted by 
W~(O) and w:(o), respectively, near p, = 0. The reversibility of the 
system implies that w:(o) = RW~(O) and W~(O) = RW:(o). 

The variational equation (VE) of (1) around x = xh(t) at p, = 0 is 
given by 

(2) 

We easily see that if ~(t) is a solution, then so are ±R~( -t) and that 
~ = xh(t) is a symmetric bounded solution with xh(t) = -Rxh( -t), i.e., 
xh(O) E Fix( -R). The adjoint variational equation (AVE) of (1) around 
x = xh(t) at p, = 0 is given by 

(3) 

where '*' represents the transpose operator. 

§3. Main results 

We begin with the case in which the origin 0 is a hyperbolic sad­
dle, i.e., assumptions (A1)-(A4) hold, and take m = 1. Consider the 
following condition. 

(C) The VE (2) has another symmetric bounded solution cp(t) in­
dependent of~= xh(t) with cp(O) E Fix( -R). 

Using some techniques similar to those of [2], we can prove the following 
result. 

Theorem 1. Suppose that condition (C) holds as well as assump­
tions (A1)-(A4). Then a saddle-node or pitchfork bifurcation of sym­
metric homoclinic orbits occurs under some nondegenerate conditions. 

This theorem shows that condition (C) provides a criterion for bifur­
cations of symmetric homoclinic orbits in (1). The nondegenerate con­
ditions are precisely stated by using some integrals [6]. A similar result 
was obtained by Knobloch [7] earlier although no computable condition 
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was given. We can prove the same statement for general 2n-dimensional 
systems with n > 2. 

Let r 0 = {x = xh(t) It E JR} U {0}. The curve r 0 in the complex 
space C4 consists of the homoclinic orbit xh(t) and saddle x = 0, and it is 
"singular" at X= 0. We introduce two points o+ and o- corresponding 
to the origin for desingularizing the curve r 0 . The points 0+ and 0_ 
are represented in the temporal parameterization by t = +oo and t = 

-oo, respectively. Denote by r 1 the nonsingular curve and let r be 
the Riemann surface defined by the curve r 1 . We transform the VE 
(2) onto r. Choose a sufficiently narrow domain r 1oc on the Riemann 
surface r such that the curve r 1 is contained but singular points of the 
transformed VE are only 0±. Applying arguments in [2], we can also 
obtain the following result. 

Theorem 2. Suppose that condition (C) holds as well as assump­
tions ( A1 )-(A 4). Then the VE ( 2) has a triangularizable differential 
Galois group when regarded as a complex differential equation with mero­
morphic coefficients in rloc· 

This theorem gives an algebraic condition for bifurcations of homo­
clinic orbits to hyperbolic saddles in (1) and means that the VE (2) is 
integrable in the meaning of differential Galois theory if such a bifurca­
tion occurs. Thus, there is a relationship between analytic and algebraic 
conditions for the hyperbolic saddle case. 

We turn to the case in which the origin 0 is a saddle-center, i.e., 
assumptions (A1)-(A3) and (A4') hold, and take m = 2. We easily see 
that the AVE (3) has a bounded solution 1/;(t) with 1/;(0) E Fix( -R*). 
Let 

where (·, ·) represents the inner product. Using the result of [5], we 
obtain the following result. 

Theorem 3. Suppose that assumptions (A1)-(A3) and (A4) hold. 
If ai = 0 for i = 1, 2, then a saddle-node or pitchfork bifurcation of 
homoclinic orbits occurs under some nondegenerate conditions. 

This theorem gives analytic condition for bifurcations of homoclinic 
orbits to saddle-centers in (1). The nondegenerate conditions are also 
stated by using some integrals. We have no corresponding algebraic 
condition in general, but the VE (2) is often integrable in the meaning 
of differential Galois theory if such a bifurcation occurs. See [6] for more 
details. 
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§4. Example 

We consider a system 

±1 = x2, ±2 =x1 - (xi+ 8x~)x1 - 2p.1x1xa, 

±a= X4, X4 =sxa -p.2(xi + 2x~)xa -p.1(E1xi + E2x~), 
(4) 

which comes from a model of a nonlinear optical medium with both 
quadratic and cubic nonlinearities [8], where s and Ej, j = 1, 2, are 
constants. Equation (4) is reversible with the involution 

and an equilibrium at the origin 0, which is a saddle for s > 0 and a 
saddle-center for s < 0. There are a pair of homoclinic orbits, 

xi(t) = (±v'2secht,=fv'2secht tanht,O,O), 

to 0 at Ill = 0. The VE along xi(t) at /Ll = 0 is given by 

(5) 
~1 =6, 

~3 = ~4. 

. 2 6 =(1- 6sech t)6, 

. 2 
~4 =(s- 2p.2 sech t)6. 

The case of s < 0 was studied earlier in [5]. 
Theorems 1 and 2 can be applied to (4) for s > 0, while Theo­

rem 3 for s < 0. We also show that equation (5) has a triangularizable 
differential Galois group if and only if 

(6) 
(2ft+ 2f + 1)2 - 1 

p.= 
8 

for s > 0 and 

(7) 
.e(.e- 1) 

IL = ---'----'-
2 

for s < 0, where .e E Z. Hence, when s > 0, a saddle-node or pitchfork 
bifurcations of homoclinic orbits can occur only if condition (6) holds. 
However, when s < 0, a saddle-node or pitchfork bifurcations of homo­
clinic orbits can occur even if condition (7) does not hold, although for 
E2 = 0 they can only if it does. See [6] for the details. 
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