On the ABP maximum principle for L^{p}-viscosity solutions of fully nonlinear PDE

Shigeaki Koike

Abstract

. Fully nonlinear second-order uniformly elliptic partial differential equations (PDE for short) with unbounded ingredietns are considered. The Aleksandrov-Bakelman-Pucci (ABP for short) maximum principle for L^{p}-viscosity solutions of fully nonlinear, second-order uniformly elliptic PDE are shown.

The results here are joint works with A. Świȩch in [12], [13], [14], [15].

§1. Introduction

The aim of this manuscript is to exhibit some recent results on the ABP maximum principle for L^{p}-viscosity solutions of (1) below under certain hypotheses.

We are concerned with fully nonlinear second-order uniformly elliptic PDE:

$$
\begin{equation*}
F\left(x, D u, D^{2} u\right)=f(x) \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded open set, and $F: \Omega \times \mathbb{R}^{n} \times S^{n} \rightarrow \mathbb{R}$. Here, S^{n} denotes the set of $n \times n$ symmetric matrices with the standard order.

It is possible to discuss the case when F may depend on the unknown function u. However, since we focus our topics on the maximum principle, we shall deal with F independent of u for the sake of simplicity.

We shall also suppose

$$
\Omega \subset B_{1}
$$

where $B_{r}:=\left\{x \in \mathbb{R}^{n} \mid\|x\|<r\right\}$. We may derive a dependence on the diameter of Ω by a scaling argument.

[^0]In what follows, we suppose

$$
p>\frac{n}{2} .
$$

In 1981, Crandall and Lions introduced the notion of viscosity solutions for first-order PDE of non-divergence type since we cannot use weak solutions in the distribution sense. It was extended to secondorder (possibly degenerate) elliptic/parabolic PDE. Up to now, there have been many results on the viscosity solution theory and its applications when PDE possess enough continuity. See [4] for instance.

On the other hand, in order to study weak solutions of fully nonlinear PDE with discontinuous/unbounded ingredients, the notion of $L^{p_{-}}$ viscosity solutions was introduced by Caffarelli-Crandall-Kocan-Świȩch [3] in 1996 motivated by a celebrated work by Caffarelli [1]. See also [2].

Definition 1.1. We call $u \in C(\Omega)$ an L^{p}-viscosity subsolution (resp., supersolution) of (1) if for $\varphi \in W_{\mathrm{loc}}^{2, p}(\Omega)$,

$$
\begin{equation*}
e s s \liminf _{y \rightarrow x}\left\{F\left(y, D \varphi(y), D^{2} \varphi(y)\right)-f(y)\right\} \leq 0 \tag{2}
\end{equation*}
$$

$$
\left(r e s p ., \quad \text { ess } \limsup _{y \rightarrow x}\left\{F\left(y, D \varphi(y), D^{2} \varphi(y)\right)-f(y)\right\} \geq 0\right)
$$

provided $u-\varphi$ attains its local maximum (resp., minimum) at $x \in \Omega$.
Remark 1.1. (i) When F and f are continuous, if we replace $W_{\mathrm{loc}}^{2, p}(\Omega)$ by $C^{2}(\Omega)$, the above definition is the same as the standard one by Crandall-Lions since (2) (resp., (3)) yields

$$
F\left(x, D \varphi(x), D^{2} \varphi(x)\right) \leq f(x) \quad(\text { resp. }, \geq f(x))
$$

In fact, under appropriate hypotheses, when F and f are continuous, the notion of viscosity solutions by Crandall-Lions coincides with that of L^{p}-viscosity solutions. We notice that L^{p}-viscosity solutions are more restricted than the standard one because of $C^{2}(\Omega) \subset W_{\mathrm{loc}}^{2, p}(\Omega)$.
(ii) We notice that if $u \in C(\Omega)$ is an L^{p}-viscosity subsolution (resp., supersolution) of (1), and $\frac{n}{2}<p<p^{\prime}$, then it is an $L^{p^{\prime}}$-viscosity subsolution (resp., supersolution) of (1).

We recall the definition of L^{p}-strong solutions:
Definition 1.2. We call $u \in C(\Omega)$ an L^{p}-strong subsolution (resp., supersolution) of (1) if $u \in W_{\mathrm{loc}}^{2, p}(\Omega)$, and

$$
F\left(x, D u(x), D^{2} u(x)\right) \leq f(x) \quad(\text { resp } ., \geq f(x)) \quad \text { a.e. } \quad \text { in } \Omega .
$$

We will write $\|\cdot\|_{p}$ for $\|\cdot\|_{L^{p}(\Omega)}$ etc. if there is no confusion. Also, $L_{+}^{p}(\Omega)$ denotes the set of nonnegative functions in $L^{p}(\Omega)$.

We use the following Pucci operators. We hope the readers not to be confused because the oposite sign in the max and min below is often used, e.g. in [2]: for $X \in S^{n}$,

$$
\mathcal{P}^{+}(X)=\max \left\{-\operatorname{trace}(A X) \mid A \in S^{n}, \lambda I \leq A \leq \Lambda I\right\}
$$

and

$$
\mathcal{P}^{-}(X)=\min \left\{-\operatorname{trace}(A X) \mid A \in S^{n}, \lambda I \leq A \leq \Lambda I\right\}
$$

Now, we give a list of hypotheses for F :

$$
\left\{\begin{array}{cc}
(i) & \mathcal{P}^{-}(X-Y) \leq F(x, \xi, X)-F(x, \xi, Y) \leq \mathcal{P}^{+}(X-Y) \tag{4}\\
& \text { for } x \in \Omega, \xi \in \mathbb{R}^{n}, X, Y \in S^{n} \\
(i i) & \text { there is } \mu \in L_{+}^{q}(\Omega) \operatorname{such} \text { that }|F(x, \xi, O)| \leq \mu(x)|\xi| \\
& \text { for } x \in \Omega, \xi \in \mathbb{R}^{n} \\
& F(x, 0, O)=0 \text { for } x \in \Omega .
\end{array}\right.
$$

We will refer to $\mu \in L_{+}^{q}(\Omega)$ from the above definition (ii) of (4).
Remark 1.2. We notice that if $u \in C(\Omega)$ is an L^{p}-viscosity subsolution (resp., supersolution) of (1), then it is an L^{p}-viscosity subsolution (resp., supersolution) of (5) (resp., (6)) below.

For $v: \Omega \rightarrow \mathbb{R}$, we denote the upper contact set of v in Ω by
$\Gamma[v ; \Omega]:=\left\{x \in \Omega \mid \exists \xi \in \mathbb{R}^{n}\right.$ s.t. $v(y) \leq v(x)+\langle\xi, y-x\rangle$ for $\left.\forall y \in \Omega\right\}$.
The well-known classical ABP maximum principle is as follows:
Theorem 1. (e.g. [8]) There exist $C_{k}=C_{k}(n, \lambda / \Lambda)>0(k=1,2)$ such that for $f \in L_{+}^{n}(\Omega)$ and $\mu \in L_{+}^{n}(\Omega)$, if $u \in C(\bar{\Omega})$ is an L^{n}-strong subsolution (resp., supersolution) of

$$
\begin{gather*}
\mathcal{P}^{-}\left(D^{2} u\right)-\mu(x)|D u|=f(x) \quad \text { in } \Omega \tag{5}\\
\left(\text { resp. }, \mathcal{P}^{+}\left(D^{2} u\right)+\mu(x)|D u|=-f(x) \quad \text { in } \Omega\right),
\end{gather*}
$$

then it follows that

$$
\begin{gather*}
\sup _{\Omega} u \leq \sup _{\partial \Omega} u^{+}+C_{1} e^{C_{2}\|\mu\|_{n}^{n}}\|f\|_{L^{n}\left(\Gamma\left[u^{+} ; \Omega\right]\right)} \tag{7}\\
\left(\text { resp., } \inf _{\Omega} u \geq \inf _{\partial \Omega}\left(-u^{-}\right)-C_{1} e^{C_{2}\|\mu\|_{n}^{n}}\|f\|_{L^{n}\left(\Gamma\left[u^{-} ; \Omega\right]\right)}\right) .
\end{gather*}
$$

Remark 1.3. In [6], [7], for $\mu \in L^{q}(\Omega)$ with $q>n$, Fok obtained the ABP maximum principle for L^{p}-strong solutions when $p>n-\varepsilon$, where $\varepsilon>0$ depends on $q-n>0$. We notice that the corresponding $\varepsilon>0$ in our results does not depend on $q-n>0$.

In what follows, we will only present the ABP maximum principle for subsolutions since the one for supersolutions can be derived by considering $-u$.

§2. Known results

We recall known results on the ABP maximum principle for $L^{p_{-}}$ viscosity solutions.

Proposition 1. ([1], [2]) Assume that $f \in L_{+}^{n}(\Omega) \cap C(\Omega)$. There exists $C_{1}=C_{1}(n, \lambda / \Lambda)>0$ such that if $u \in C(\bar{\Omega})$ is an L^{n}-viscosity subsolution of

$$
\mathcal{P}^{-}\left(D^{2} u\right)=f(x) \quad \text { in } \Omega
$$

then it follows that

$$
\sup _{\Omega} u \leq \sup _{\partial \Omega} u^{+}+C_{1}\|f\|_{L^{n}\left(\Gamma\left[u^{+} ; \Omega\right]\right)}
$$

Notice that we have to suppose f to be continuous in Proposition 1. Later, this hypothesis is removed in [3]. Furthermore, we may treat the case when PDE admit the first derivative terms with bounded coefficients. Moreover, we may obtain the result even when $f \in L^{p}(\Omega)$ for $p>\hat{p}$, where $\hat{p} \in\left(\frac{n}{2}, n\right)$ is the constant from [5].

Proposition 2. ([3]) Assume that $\mu \in L_{+}^{\infty}(\Omega)$ and $f \in L_{+}^{p}(\Omega)$ for $p>\hat{p}$. There exists $C_{1}=C_{1}\left(n, \lambda / \Lambda, p,\|\mu\|_{\infty}\right)>0$ such that if $u \in C(\bar{\Omega})$ is an L^{p}-viscosity subsolution of

$$
\begin{equation*}
\mathcal{P}^{-}\left(D^{2} u\right)-\mu(x)|D u|=f(x) \quad \text { in } \Omega_{+}[u]:=\left\{x \in \Omega \mid u(x)>\sup _{\partial \Omega} u^{+}\right\} \tag{8}
\end{equation*}
$$

then it follows that

$$
\begin{equation*}
\sup _{\Omega} u \leq \sup _{\partial \Omega} u^{+}+C_{1}\|f\|_{L^{p}\left(\Omega_{+}[u]\right)} \tag{9}
\end{equation*}
$$

In Proposition 2, if $p \geq n$, then the region of the L^{p}-norm can be replaced by $\Gamma\left[u^{+} ; \Omega_{+}[u]\right]$.

Here, we give an existence result for L^{p}-strong solutions. In what follows, we suppose enough regularity on $\partial \Omega$ so that the $W^{2, p}$-estimates hold up to the boundary. We refer to [20] by Winter for the regularity near $\partial \Omega$.

Proposition 3. ([3], [5]) Assume that $f \in L^{p}(\Omega)$ for $p>\hat{p}$, and $\mu_{0} \geq 0$. There exist $C_{k}=C_{k}\left(n, \lambda / \Lambda, p, \mu_{0}\right)>0(k=3,4)$ and an L^{p}-strong subsolution (resp., supersolution) of

$$
\begin{gathered}
\left\{\begin{array}{cc}
\mathcal{P}^{+}\left(D^{2} u\right)+\mu_{0}|D u|=f(x) & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right. \\
\left(\text { resp., }\left\{\begin{array}{cc}
\mathcal{P}^{-}\left(D^{2} u\right)-\mu_{0}|D u|=f(x) & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right)\right.
\end{gathered}
$$

such that

$$
\begin{equation*}
\|u\|_{\infty} \leq C_{3}\|f\|_{p}, \quad \text { and } \quad\|u\|_{W^{2, p}(\Omega)} \leq C_{4}\|f\|_{p} \tag{10}
\end{equation*}
$$

Remark 2.1. It is possible to show L^{p}-strong subsolutions (resp., supersolutions) in the above are indeed L^{p}-strong solutions via a bit more precise observation while we only need the existence of L^{p}-strong subsolution (resp., supersolution) for our later use. See [3] for the details.

Now, we present an existence result for L^{p}-strong subsolutions when the PDE has unbounded coefficients.

Proposition 4. ([12]) Assume that $\mu \in L^{q}(\Omega)$ and $f \in L^{p}(\Omega)$, where (p, q) satisfies

$$
\begin{equation*}
q \geq p \geq n \quad \text { and } \quad q>n \tag{11}
\end{equation*}
$$

There exist $C_{k}=C_{k}\left(n, \lambda / \Lambda, p, q,\|\mu\|_{q}\right)>0(k=3,4)$ and an L^{p}-strong subsolution of

$$
\left\{\begin{array}{cl}
\mathcal{P}^{+}\left(D^{2} u\right)+\mu(x)|D u|=f(x) & \text { in } \Omega \tag{12}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

such that (10) holds.
Remark 2.2. (i) We can modify the argument of the proof of Proposition 3 to obtain Proposition 4. Moreover, it is possible to verify that the above constructed L^{p}-strong subsolutions are L^{p}-strong solutions as before. See [13] for the details.
(ii) In [7], Fok obtained the existence of L^{p}-strong subsolutions of (5) when $q=p>n$, and $\mu \in L^{q}(\Omega) \cap L^{2 n}\left(\Omega^{\varepsilon}\right)$ for some $\varepsilon>0$, where $\Omega^{\varepsilon}:=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)<\varepsilon\}$.
(iii) The hypothesis (11) is equivalent to the case when $q \geq p>n$ or $q>p=n$.

§3. Main results

We shall show the ABP maximum principle for L^{p}-viscosity subsolutions of (5) and

$$
\begin{equation*}
\mathcal{P}^{-}\left(D^{2} u\right)-\mu(x)|D u|^{m}=f(x) \quad \text { in } \Omega, \tag{13}
\end{equation*}
$$

where $m>1, \mu \in L^{q}(\Omega)$ and $f \in L^{p}(\Omega)$.

3.1. Linear growth

First, we consider (5) in case when (11).
Theorem 2. ([12]) Assume that $\mu \in L_{+}^{q}(\Omega)$ and $f \in L_{+}^{p}(\Omega)$, where (p, q) satisfies (11). There exist $C_{k}=C_{k}(n, \lambda / \Lambda)>0(k=1,2)$ such that if $u \in C(\bar{\Omega})$ is an L^{n}-viscosity subsolution of (5), then it follows that

$$
\begin{equation*}
\sup _{\Omega} u \leq \sup _{\partial \Omega} u^{+}+C_{1} e^{C_{2}\|\mu\|_{n}^{n}}\|f\|_{L^{n}(\Omega)} \tag{14}
\end{equation*}
$$

Remark 3.1. (i) Although the classical ABP maximum principle has a slightly better estimate with the upper contact set $\Gamma\left[u^{+} ; \Omega\right]$, this estimate is enough to use in a proof of the weak Harnack inequality.
(ii) In [7], Fok obtained the ABP maximum principle for L^{p}-viscosity subsolutions of (5) when $q=p>n$, and $\mu \in L^{q}(\Omega) \cap L^{2 n}\left(\Omega^{\varepsilon}\right)$ for some $\varepsilon>0$. The reason why $\mu \in L^{2 n}$ was needed is that we used the HopfCole transformation in [7] (and also [8]) to cancel the quadratic terms $|D u|^{2}$.

We next consider the case when

$$
\begin{equation*}
\hat{p}<p<n<q . \tag{15}
\end{equation*}
$$

Theorem 3. ([12]) Assume that $\mu \in L_{+}^{q}(\Omega)$ and $f \in L_{+}^{p}(\Omega)$, where (p, q) satisfies (15). There exist $C_{1}=C_{1}(n, \lambda / \Lambda)>0, C_{2}=$ $C_{2}(n, \lambda / \Lambda, p, q)>0$ and $N=N(n, p, q) \in \mathbb{N}$ such that if $u \in C(\bar{\Omega})$ is an L^{n}-viscosity subsolution of (5), then it follows that

$$
\sup _{\Omega} u \leq \sup _{\partial \Omega} u^{+}+C_{1}\left\{e^{C_{2}\|\mu\|_{n}^{n}}\|\mu\|_{q}^{N}+\sum_{k=0}^{N-1}\|\mu\|_{q}^{k}\right\}\|f\|_{L^{p}(\Omega)}
$$

To prove Theorem 3, we established an "iterated comparison function" method. Thanks to this maximum principle, we may extend Proposition 4 to the case of (15).

Proposition 5. ([12]) Assume that $\mu \in L^{q}(\Omega)$ and $f \in L^{p}(\Omega)$, where (p, q) satisfies (15). There exist $C_{k}=C_{k}\left(n, \lambda / \Lambda, p, q,\|\mu\|_{q}\right)>0$ ($k=3,4$) and an L^{p}-strong subsolution of (12) such that (10) holds.

In case of $q=n$, we need to suppose that $\|\mu\|_{n}$ is small to obtain the ABP maximum principle.

Theorem 4. ([15]) Assume that $\mu \in L^{q}(\Omega)$ and $f \in L^{p}(\Omega)$, where (p, q) satisfies

$$
\begin{equation*}
q=n>p>\hat{p} \tag{16}
\end{equation*}
$$

There exist $\delta_{0}=\delta_{0}(n, \lambda / \Lambda, p)>0$ and $C_{1}=C_{1}(n, \lambda / \Lambda, p)>0$ such that if

$$
\begin{equation*}
\|\mu\|_{n} \leq \delta_{0} \tag{17}
\end{equation*}
$$

and $u \in C(\bar{\Omega})$ is an L^{n}-viscosity subsolution of (5), then it follows that

$$
\begin{equation*}
\sup _{\Omega} u \leq \sup _{\partial \Omega} u^{+}+C_{1}\|f\|_{p} \tag{18}
\end{equation*}
$$

To prove Theorem 4, under (17) for some $\delta_{0}>0$, we have first to construct L^{p}-strong subsolutions of (12). See [15] for this result.

3.2. Superlinear growth

We shall consider (13) with $m>1$ instead of (5).
It is impossible to establish the ABP maximum principle in general provided the PDE may have superlinear growth in $D u$. In fact, if it were true with no restrition, we may construct strong/classical solutions of

$$
-\triangle u+|D u|^{2}=f(x)
$$

under the Dirichlet condition, where $f \in C^{\infty}$. Indeed, once we obtain L^{∞}-estmates, we could show the existence of solutions, which contradicts to the fact that we cannot expect the existnece of solutions with quadratic nonlinear terms in $D u$ because we know an example of nonexistence by Nagumo [17].

In general, there are counter examples so that the maximum principle fails when the PDE have superlinear growth terms in $D u$. We refer to [11] and [12] for such examples.

When $p>n$, we do not need any restriction for $m>1$.
Theorem 5. ([12]) Assume that $\mu \in L_{+}^{q}(\Omega)$ and $f \in L_{+}^{p}(\Omega)$, where (p, q) satisfies

$$
\begin{equation*}
q \geq p>n, q>n \quad \text { and } \quad m>1 \tag{19}
\end{equation*}
$$

There exist $\delta_{1}=\delta_{1}(n, \lambda, \Lambda, p, m)>0$ and $C_{1}=C_{1}(n, \lambda, \Lambda, p, m)>0$ such that if

$$
\begin{equation*}
\|f\|_{p}^{m-1}\|\mu\|_{q} \leq \delta_{1} \tag{20}
\end{equation*}
$$

and $u \in C(\bar{\Omega})$ is an L^{p}-viscosity subsolution of (12), then (18) holds.
When $p \in(\hat{p}, n]$, we need some restriction for $m>1$.
Theorem 6. ([12]) Assume that $\mu \in L_{+}^{q}(\Omega)$ and $f \in L_{+}^{p}(\Omega)$, where (p, q, m) satisfies

$$
\begin{equation*}
q>n \geq p>\hat{p}, \quad \text { and } \quad 1<m<2-\frac{n}{q} \tag{21}
\end{equation*}
$$

There exist $\delta_{1}=\delta_{1}(n, \lambda, \Lambda, p, q, m)>0$ and $C_{1}=C_{1}(n, \lambda, \Lambda, p, q, m)>0$ such that if (20) holds, and $u \in C(\bar{\Omega})$ is an L^{p}-viscosity subsolution of (12), then (18) holds.

Remark 3.2. As in the linear growth case, it is possible to use the existence of L^{p}-strong subsolutions of the associated PDE:

$$
\mathcal{P}^{+}\left(D^{2} u\right)+2^{m-1} \mu(x)|D u|^{m}=f(x) \quad \text { in } \Omega
$$

where 2^{m-1} comes from the inequality $(a+b)^{m} \leq 2^{m-1}\left(a^{m}+b^{m}\right)$ for $a, b \geq 0$. See [14] for the details.

§4. Applications

We shall give some applications of the ABP maximum principle. In order to prove the assertions below, we have to use the argument in [1], [2], [3] with our ABP maximum principle in the preceeding section.

4.1. Relation between L^{p}-viscosity and L^{p}-strong solutions

When $q=\infty$, in [3], the following equivalence holds. If $u \in C(\Omega)$ is an L^{p}-strong subsolution of (1) if and only if it is an L^{p}-viscosity subsolution of (1) such that $u \in W_{\text {loc }}^{2, p}(\Omega)$. This relation holds true for PDE with unbounded ingredients.

If we allow F to have superlinear terms in $D u$ as in (12), then the following hypotheses are reasonable for F in place of (ii) of (4): Fix $m \geq 1$.

$$
\left\{\begin{array}{c}
\text { There is } \mu \in L_{+}^{q}(\Omega) \text { such that, for } x \in \Omega, \xi, \eta \in \mathbb{R}^{n}, X \in S^{n}, \tag{22}\\
|F(x, \xi, X)-F(x, \eta, X)| \leq \mu(x)\left(|\xi|^{m-1}+|\eta|^{m-1}\right)|\xi-\eta|
\end{array}\right.
$$

We will consider the following cases:

$$
\begin{cases}(i) & q \geq p \geq n, q>n, m \geq 1 \tag{23}\\ (i i) & q>n>p>\hat{p}, 1<m<1+\frac{p(q-n)}{q(n-p)} \\ (\text { iii }) & p=q=n, m=1 \\ \text { (iv) } & q=n>p>\hat{p}, m=1\end{cases}
$$

We notice that if p is enough close to n in (ii) of (23), then we may treat the case of $m=2$, which is important from a view point of applications.

Theorem 7. ([13]) Assume (i), (iii) of (4) and (22).
(I) Assume that one of (i), (ii), (iii) in (23) holds. If $u \in C(\Omega)$ is an L^{p}-strong subsolution of (1), then it is an L^{p}-viscosity subsolution of (1). (II) Assume that one of (i), (ii), (iv) in (23) holds. If an L^{p}-viscosity subsolution $u \in C(\Omega)$ belongs to $W_{\text {loc }}^{2, p}(\Omega)$ of (1), then it is an L^{p}-strong subsolution of (1).

Remark 4.1. To prove the cases of $m>1$, we need the ABP maximum principle for

$$
\mathcal{P}^{-}\left(D^{2} u\right)-\mu_{1}(x)|D u|-\mu_{m}(x)|D u|^{m}=f(x)
$$

with precise estimates. See Nakagawa [18] for the details.

4.2. Weak Harnack inequality

In view of the ABP maxmimum principle, we can prove the weak Harnack inequality, which implies the Hölder continuity of L^{p}-viscosity solutions of (1). We refer to Sirakov [19] by a different approach for the Hölder continuity of L^{p}-viscosity solutions of (1) with unbounded ingredients.

We can apply the weak Harnack inequality to show the strong maximum principle. See Section 5 in [13] for this application.

First, we consider the case when PDE have linear growth in $D u$.
Theorem 8. Assume that $\mu \in L_{+}^{q}\left(B_{2}\right)$ and $f \in L_{+}^{p}\left(B_{2}\right)$, where (p, q) satisfies one of

$$
\begin{cases}(i) & q \geq p>\hat{p}, q>n \tag{24}\\ \text { (ii) } & q=n>p>\hat{p}\end{cases}
$$

There exist $C_{5}=C_{5}(n, \lambda / \Lambda, p, q, \mu)>0$ and $r=r(n, \lambda / \Lambda)>0$ such that if $u \in C\left(B_{2}\right)$ is a nonnegative L^{p}-viscosity supersolution of

$$
\mathcal{P}^{+}\left(D^{2} u\right)+\mu(x)|D u|=-f(x) \quad \text { in } B_{2}
$$

then it follows that

$$
\begin{equation*}
\left(\int_{B_{1}} u^{r} d x\right)^{\frac{1}{r}} \leq C_{5}\left(\inf _{B_{1}} u+\|f\|_{L^{p}\left(B_{2}\right)}\right) \tag{25}
\end{equation*}
$$

Remark 4.2. (i) We refer to [13] for a precise dedendence on $\|\mu\|_{q}$ in C_{5} particularly in case of (15).
(ii) Under (i) in (24), C_{5} depends on $\|\mu\|_{n}$ while it depends on μ itself under (ii) of (24). Because in both cases, we need to assume $\|\mu\|_{n}$ is small at the first step.
(iii) In [7], Fok obtained the weak Harnack inequality for L^{p}-viscosity supersolutions assuming $\mu \in L^{2 n}$.

We discuss the weak Harnack ineqaulity for PDE containg superlinear terms in $D u$.

Theorem 9. ([14]) Fix $M>0$ and $m>1$. Assume that $\mu \in$ $L_{+}^{q}\left(B_{2}\right)$ and $f \in L_{+}^{p}\left(B_{2}\right)$, where (p, q) satisfies (i) of (24) and

$$
\begin{equation*}
1<m<2-\frac{n}{q} \tag{26}
\end{equation*}
$$

There exist $\delta_{2}=\delta_{2}(n, \lambda, \Lambda, p, m, M)>0, C_{5}=C_{5}(n, \lambda, \Lambda, p, q, R)>0$ and $r=r(n, \lambda, \Lambda, p, q, m)>0$ such that if

$$
\|\mu\|_{q}\left(1+\|f\|_{p}^{m-1}\right) \leq \delta_{2}
$$

and $u \in C\left(B_{2}\right)$ is a nonnegative L^{p}-viscosity supersolution of

$$
\mathcal{P}^{+}\left(D^{2} u\right)+\mu(x)|D u|^{m}=-f(x) \quad \text { in } B_{2}
$$

such that $0 \leq u \leq M$ in B_{2}, then it follows that (25) holds.
We refer to [16] for the Hölder continuity of viscosity solutions when PDE have superlinear growth terms in $D u$.

It is easy to establish the weak Harnack inequality near the boundary, which could be used to show some maximum principle in unbounded domains. See Section 8 in [13] for this. See also Koike-Nakagawa [10] and the references theirin for an application to the Phragmén-Lindelöf theorem.

4.3. Local maximum principle

Although the weak Harnack inequality shows that L^{p}-viscosity solutions of (1) satisfy Hölder continuity, it is natural to ask if the local maximum principle for L^{p}-viscosity subsolutions holds or not. In fact, when we have unbounded coefficients to $D u$, we cannot apply the standard method as in [8]. However, we may modify the argument in [2]. See a recent work [9] by Imbert.

Theorem 10. Assume that $\mu \in L_{+}^{q}\left(B_{2}\right)$ and $f \in L_{+}^{p}\left(B_{2}\right)$, where (p, q) satisfies one of (24). For $s>0$, there is $C_{6}=C_{6}(n, \lambda / \Lambda, p, q, \mu, s)>$ 0 such that if $u \in C\left(B_{2}\right)$ is an L^{p}-viscosity subsolution of

$$
\mathcal{P}^{-}\left(D^{2} u\right)-\mu(x)|D u|=f(x) \quad \text { in } B_{2}
$$

then it follows that

$$
\begin{equation*}
\sup _{B_{1}} u \leq C_{6}\left\{\left(\int_{B_{1}} u_{+}^{s} d x\right)^{\frac{1}{s}}+\|f\|_{L^{p \wedge n}\left(B_{2}\right)}\right\} . \tag{27}
\end{equation*}
$$

Remark 4.3. When (i) in (24) holds, C_{6} depends on $\|\mu\|_{q}$ while it depends on μ itself under (ii) of (24).

References

[1] L. A. Caffarelli, Interior a priori estimates for solutions of fully non-linear equations, Ann. Math. of Math. (2), 130 (1989), 189-213.
[2] L. A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ., 43, Amer. Math. Soc., Providence, RI, 1995.
[3] L. A. Caffarelli, M. G. Crandall, M. Kocan and A. Świẹch, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., 49 (1996), 365-397.
[4] M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
[5] L. Escauriaza, $W^{2, n}$ a priori estimates for solutions to fully non-linear equations, Indiana Univ. Math. J., 42 (1993), 413-423.
[6] K. Fok, A nonlinear Fabes-Stroock result, Comm. Partial Differential Equations, 23 (1998), 967-983.
[7] P. K. Fok, Some maximum principles and continuity estimates for fully nonlinear elliptic equations of second order, Ph.D. thesis, Univ. of California, Santa Barbara, 1996.
[8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second ed., Springer-Verlag, 1983.
[9] C. Imbert, Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations, J. Differential Equations, 250 (2011), 1553-1574.
[10] S. Koike and K. Nakagawa, Remarks on the Phragmén-Lindelöf theorem for L^{p}-viscosity solutions of fully nonlinear PDEs with unbounded ingredients, Electron. J. Differential Equations, 2009 (2009), no. 146, 1-14.
[11] S. Koike and A. Świȩch, Maximum principle and existence of L^{p}-viscosity solutions for fully nonlinear, uniformly elliptic equations with measurable
and quadratic terms, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 491-509.
[12] S. Koike and A. Świȩch, Maximum principle for fully nonlinear equations via the iterated comparison function method, Math. Ann., 339 (2007), 461-484.
[13] S. Koike and A. Świȩch, Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients, J. Math. Soc. Japan, 61 (2009), 723-755.
[14] S. Koike and A. Świȩch, Existence of strong solutions of Pucci extremal equations with superlinear growth in $D u$, J. Fixed Point Theory Appl., 5 (2009), 291-304.
[15] S. Koike and A. Świȩch, Local maximum principle for L^{p}-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients, Commun. Pure Appl. Anal., 11 (2012), 1897-1910.
[16] S. Koike and T. Takahashi, Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients, Adv. Differential Equations, 7 (2002), 493-512.
[17] M. Nagumo, On principally linear elliptic differential equations of the second order, Osaka Math. J., 6 (1954), 207-229.
[18] K. Nakagawa, Maximum principle for L^{p}-viscosity solutions of fully nonlinear equations with unbounded ingredients and superlinear growth terms, Adv. Math. Sci. Appl., 19 (2009), 89-107.
[19] B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE, Arch. Ration. Mech. Anal., 195 (2010), 579-607.
[20] N. Winter, $W^{2, p}$ and $W^{1, p}$-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations, Z. Anal. Anwend., 28 (2009), 129164.

Mathematical Institute
Graduate School of Science
Tohoku University, Aoba, Sendai
980-8578, Japan
E-mail address: koike@math.tohoku.ac.jp

[^0]: Received February 11, 2012.
 Revised January 22, 2013.
 2010 Mathematics Subject Classification. 35B50, 35D40.
 Key words and phrases. ABP maximum principle, L^{p}-viscosity solution.

