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On the ABP maximum principle for V-viscosity 
solutions of fully nonlinear PDE 

Shigeaki Koike 

Abstract. 

Fully nonlinear second-order uniformly elliptic partial differential 
equations (PDE for short) with unbounded ingredietns are considered. 
The Aleksandrov-Bakelman-Pucci (ABP for short) maximum princi
ple for £P-viscosity solutions of fully nonlinear, second-order uniformly 
elliptic PDE are shown. 

The results here are joint works with A. Swi~ch in [12], [13], [14], [15]. 

§1. Introduction 

The aim of this manuscript is to exhibit some recent results on the 
ABP maximum principle for £P-viscosity solutions of (1) below under 
certain hypotheses. 

We are concerned with fully nonlinear second-order uniformly ellip
tic PDE: 

(1) F(x, Du, D 2u) = f(x) in D, 

where n c IRn is a bounded open set, and F : n X IRn X sn -+ R Here, 
Sn denotes the set of n X n symmetric matrices with the standard order. 

It is possible to discuss the case when F may depend on the un
known function u. However, since we focus our topics on the maximum 
principle, we shall deal with F independent of u for the sake of simplicity. 

We shall also suppose 
n c B1, 

where Br := {x E !Rn I llxll < r}. We may derive a dependence on the 
diameter of n by a scaling argument. 
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In what follows, we suppose 

n 
p> 2" 

In 1981, Crandall and Lions introduced the notion of viscosity so
lutions for first-order PDE of non-divergence type since we cannot use 
weak solutions in the distribution sense. It was extended to second
order (possibly degenerate) elliptic/parabolic PDE. Up to now, there 
have been many results on the viscosity solution theory and its applica
tions when PDE possess enough continuity. See [4] for instance. 

On the other hand, in order to study weak solutions of fully nonlin
ear PDE with discontinuous/unbounded ingredients, the notion of £P

viscosity solutions was introduced by Caffarelli-Crandall-Kocan-Swi~Jch 
[3] in 1996 motivated by a celebrated work by Caffarelli [1]. See also [2]. 

Definition 1.1. We call u E C(O) an LP-viscosity subsolution 
(resp., supersolution) of (1) if for r.p E W,~:;(n), 

(2) essliminf {F(y,Dr.p(y),D2 r.p(y))- f(y)} ~ 0 
y-+x 

(3) ( resp., ess lim sup { F(y, Dr.p(y), D 2 r.p(y)) - f(y)} ?: o) 
y-+x 

provided U- r.p attains its local maximum (resp., minimum) at X E f!. 

Remark 1.1. (i) When F and f are continuous, if we replace 
W1~·:(n) by C2 (0), the above definition is the same as the standard 
one by Crandall-Lions since (2) (resp., (3)) yields 

F(x, Dr.p(x), D 2r.p(x)) ~ f(x) (resp., ?: f(x)). 

In fact, under appropriate hypotheses, when F and f are continuous, 
the notion of viscosity solutions by Crandall-Lions coincides with that 
of £P-viscosity solutions. We notice that £P-viscosity solutions are more 
restricted than the standard one because of C2 (0) c W1~·:(n). 
(ii) We notice that if u E C(O) is an £P-viscosity subsolution (resp., 
supersolution) of (1), and ~ < p < p', then it is an LP' -viscosity subso
lution (resp., supersolution) of (1). 

We recall the definition of £P-strong solutions: 

Definition 1.2. We call u E C(n) an LP-strong subsolution (resp., 
supersolution) of(1) ifu E Wj~·:(n), and 

F(x, Du(x), D 2u(x)) ~ f(x) (resp., ?: f(x)) a.e. inn. 
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We will write II · liP for II · IILP(\1) etc. if there is no confusion. Also, 
L~(O) denotes the set of nonnegative functions in £P(O). 

We use the following Pucci operators. We hope the readers not to 
be confused because the oposite sign in the max and min below is often 
used, e.g. in [2]: for X E sn, 

and 

(4) 

p+(x) =max{ -trace(AX) I A E sn, >..I::::: A::::: AI}, 

p-(x) = min{-trace(AX) I A E sn, >..I::::: A::::: AI}. 

Now, we give a list of hypotheses for F: 

l (i) ( ii) 

(iii) 

p- (X- Y) :S: F(x, ~'X)- F(x, ~' Y) :S: p+(X- Y) 
for x E 0,~ E lRn,X, Y E Sn, 

there is f.L E L~(O) such that IF(x,~,O)I :S: f.L(x)l~l 
for X E 0,~ E JRn, 

F(x, 0, 0) = 0 for x E 0. 

We will refer to f.L E L~(O) from the above definition (ii) of (4). 

Remark 1.2. We notice that if u E C(O) is an £P-viscosity subso
lution (resp., supersolution) of (1), then it is an £P-viscosity subsolution 
(resp., supersolution) of (5) (resp., (6)) below. 

For v : 0 ---+ JR, we denote the upper contact set of v in 0 by 

r[v; OJ := {x En I :3~ E JRn s.t. v(y)::::: v(x) + (~, y- x) for \fy E 0}. 

The well-known classical ABP maximum principle is as follows: 

Theorem 1. (e.g. [8]) There exist Ck = Ck(n, >..j A) > 0 (k = 1, 2) 
such that for f E L'.f-(0) and f.L E L'.f-(0), if u E C(D) is an Ln-strong 
subsolution ( resp., supersolution) of 

(5) 

(6) (resp., p+(D2u) + f.L(x)IDul =- f(x) in 0), 

then it follows that 

(7) 
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Remark 1.3. In [6], [7], for f.L E Lq(n) with q > n, Fok obtained 
the ABP maximum principle for £P-strong solutions when p > n- c:, 
where c: > 0 depends on q - n > 0. We notice that the corresponding 
c: > 0 in our results does not depend on q- n > 0. 

In what follows, we will only present the ABP maximum princi
ple for subsolutions since the one for supersolutions can be derived by 
considering -u. 

§2. Known results 

We recall known results on the ABP maximum principle for £P_ 
viscosity solutions. 

Proposition 1. ([1], [2]) Assume that f E Lf.(n) n C(n). There 
exists C1 = C1(n,>.jA) > 0 such that ifu E C(O) is an Ln-viscosity 
subsolution of 

then it follows that 

supu::::; supu+ + ClllfllLn(r[u+·n])· 
!1 8!1 , 

Notice that we have to suppose f to be continuous in Proposition 
1. Later, this hypothesis is removed in [3]. Furthermore, we may treat 
the case when PDE admit the first derivative terms with bounded coef
ficients. Moreover, we may obtain the result even when f E £P(n) for 
p > p, where p E G, n) is the constant from [5]. 

Proposition 2. ([3]) Assume that f.L E L+'(n) and f E L~(n) for 
p > p. There exists cl = Cl(n, >.jA,p, IIMIIoo) > 0 such that ifu E C(O) 
is an £P -viscosity subsolution of 
(8) 
p-(D2u)- f.L(x)JDul = f(x) in n+[u] := {x En I u(x) > supu+}, 

8!1 

then it follows that 

supu::::; supu+ + ClllfiiLv(n+(u])· 
!1 8!1 

(9) 

In Proposition 2, if p ~ n, then the region of the £P-norm can be 
replaced by r[u+; n+[u]]. 

Here, we give an existence result for LP -strong solutions. In what 
follows, we suppose enough regularity on an so that the W 2·P-estimates 
hold up to the boundary. We refer to [20] by Winter for the regularity 
near an. 
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Proposition 3. ([3], [5]) Assume that f E £P(D) for p > p, and 
f-lo ~ 0. There exist Ck = Ck(n,AjA,p,f-lo) > 0 (k = 3,4) and an 
£P -strong subsolution ( resp., supersolution) of 

(resp., { 

such that 

in D, 
on aD 

p-(D2u)- f-lo!Du! = f(x) in D, ) 
u=O on aD 

Remark 2.1. It is possible to show £P-strong subsolutions (resp., 
supersolutions) in the above are indeed £P-strong solutions via a bit 
more precise observation while we only need the existence of £P-strong 
subsolution (resp., supersolution) for our later use. See [3] for the details. 

Now, we present an existence result for £P-strong subsolutions when 
the PDE has unbounded coefficients. 

Proposition 4. ([12]) Assume that f-l E Lq(D) and f E £P(D), 
where (p, q) satisfies 

(11) q ~ p ~ n and q > n. 

There exist Ck = Ck(n,>..jA,p,q, llf-ll!q) > 0 (k = 3,4) and an £P-strong 
subsolution of 

(12) 

such that (10) holds. 

in D, 
on aD 

Remark 2.2. (i) We can modify the argument of the proof of 
Proposition 3 to obtain Proposition 4. Moreover, it is possible to verify 
that the above constructed £P-strong subsolutions are £P-strong solu
tions as before. See [13] for the details. 
(ii) In [7], Fok obtained the existence of £P-strong subsolutions of (5) 
when q = p > n, and f-l E Lq(D) n L2n(Dc:) for some c > 0, where 
De::= {xED I dist(x,aD) < c}. 
(iii) The hypothesis (11) is equivalent to the case when q ~ p > n or 
q > p = n. 
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§3. Main results 

We shall show the ABP maximum principle for LP-viscosity subso
lutions of (5) and 

(13) 

where m > 1, JL E Lq(D.) and f E LP(fl). 

3.1. Linear growth 

First, we consider (5) in case when (11). 

Theorem 2. ([12]) Assume that JL E Lt(D.) and f E L~_(D.), where 
(p,q) satisfies (11). There exist Ck = Ck(n,>.jA) > 0 (k = 1,2) such 
that if u E C(D) is an Ln-viscosity subsolution of (5), then it follows 
that 

(14) 

Remark 3.1. (i) Although the classical ABP maximum principle 
has a slightly better estimate with the upper contact set r[u+; D.], this 
estimate is enough to use in a proof of the weak Harnack inequality. 
(ii) In [7], Fok obtained the ABP maximum principle for LP-viscosity 
subsolutions of (5) when q = p > n, and JL E Lq(D.) n L 2n(ne:) for some 
c > 0. The reason why JL E L 2n was needed is that we used the Hopf
Cole transformation in [7] (and also [8]) to cancel the quadratic terms 
1Dul2. 

We next consider the case when 

(15) p <p < n < q. 

Theorem 3. ([12]) Assume that JL E Lt(D.) and f E L~(D.), 
where (p, q) satisfies (15). There exist C1 = C1 (n, >.j A) > 0, C2 = 
C2 (n,>.jA,p,q) > 0 and N = N(n,p,q) EN such that ifu E C(D) is an 
Ln -viscosity subsolution of (5), then it follows that 

To prove Theorem 3, we established an "iterated comparison func
tion" method. Thanks to this maximum principle, we may extend 
Proposition 4 to the case of (15). 
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Proposition 5. ([12]) Assume that f..L E Lq(O) and f E LP(O), 
where (p,q) satisfies (15). There exist ck = Ck(n,>.jA,p,q, llf-LIIq) > 0 
(k = 3, 4) and an £P -strong subsolution of (12) such that (10) holds. 

In case of q = n, we need to suppose that llf-LIIn is small to obtain 
the ABP maximum principle. 

Theorem 4. ([15]) Assume that f..L E Lq(O) and f E LP(O), where 
(p, q) satisfies 

(16) q = n > P > p. 

There exist 8o = 8o ( n, >.j A, p) > 0 and C1 = C1 ( n, >.j A, p) > 0 such that 
if 

(17) 

and u E C(O) is an Ln-viscosity subsolution of (5), then it follows that 

(18) supu::; supu+ + CdfiiP" 
n an 

To prove Theorem 4, under (17) for some 80 > 0, we have first to 
construct £P-strong subsolutions of (12). See [15] for this result. 

3.2. Superlinear growth 
We shall consider (13) with m > 1 instead of (5). 
It is impossible to establish the ABP maximum principle in general 

provided the PDE may have super linear growth in Du. In fact, if it were 
true with no restrition, we may construct strong/ classical solutions of 

-!::::. u + 1Dul2 = f(x) 

under the Dirichlet condition, where f E c=. Indeed, once we obtain 
£ 00-estmates, we could show the existence of solutions, which contra
dicts to the fact that we cannot expect the existnece of solutions with 
quadratic nonlinear terms in Du because we know an example of non
existence by N agumo [17]. 

In general, there are counter examples so that the maximum princi
ple fails when the PDE have superlinear growth terms in Du. We refer 
to [11] and [12] for such examples. 

When p > n, we do not need any restriction for m > 1. 

Theorem 5. ([12]) Assume that f..L E L+(O) and f E L~(O), where 
(p, q) satisfies 

(19) q 2: p > n, q > n and m > 1. 
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There exist 81 = o1 (n,A.,A,p,m) > 0 and C1 = C1(n,A.,A,p,m) > 0 
such that if 

(20) 

and u E C(O) is an LP-viscosity subsolution of (12), then (18) holds. 

When p E (p, n], we need some restriction form> 1. 

Theorem 6. ([12]) Assume that f.L E L~(O) and f E L~(O), where 
(p, q, m) satisfies 

(21) q > n 2: p > p, and 
n 

1 < m < 2--. 
q 

There exist 81 = o1(n, A., A,p, q, m) > 0 and C1 = C1 (n, A., A,p, q, m) > 0 
such that if (20) holds, and u E C(O) is an £P -viscosity subsolution of 
(12), then (18) holds. 

Remark 3.2. As in the linear growth case, it is possible to use the 
existence of £P-strong subsolutions of the associated PDE: 

where 2m-l comes from the inequality (a+ b)m ~ 2m-1 (am + bm) for 
a, b 2: 0. See [14] for the details. 

§4. Applications 

We shall give some applications of the ABP maximum principle. In 
order to prove the assertions below, we have to use the argument in [1], 
[2], [3] with our ABP maximum principle in the preceeding section. 

4.1. Relation between £P-viscosity and £P-strong solutions 

When q = oo, in [3], the following equivalence holds. If u E C(O) 
is an £P-strong subsolution of (1) if and only if it is an £P-viscosity 
subsolution of (1) such that u E W1~':(n). This relation holds true for 
PDE with unbounded ingredients. 

If we allow F to have superlinear terms in Du as in (12), then the 
following hypotheses are reasonable for F in place of ( ii) of ( 4): Fix 
m2:1. 

{ There is f.L E £~(0) such that, for x E 0,~,7] E JR.n,X E sn, 
(22) IF(x, ~'X) - F(x, 7], X) I ~ f.L(x)(l~lm-l + l77lm-l) I~- 771· 
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We will consider the following cases: 

l (i) ( ii) 

(iii) 
(iv) 

q 2: p 2: n, q > n, m 2: 1, 
, p(q- n) 

q > n > p > p, 1 < m < 1 + ( ) , qn-p 
p = q = n, m = 1, 
q = n > p > p, m = 1. 
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We notice that if pis enough close ton in (ii) of (23), then we may treat 
the case of m = 2, which is important from a view point of applications. 

Theorem 7. ([13]) Assume (i), (iii) of (4) and (22). 
(I) Assume that one of (i), (ii), (iii) in (23) holds. If u E C(O) is an 
LP-strong subsolution of (1), then it is an LP-viscosity subsolution of (1). 
(II) Assume that one of (i), (ii), (iv) in (23) holds. If an LP-viscosity 
subsolution u E C(O) belongs to W,!:;(O) of (1), then it is an LP-strong 
subsolution of (1). 

Remark 4.1. To prove the cases of m > 1, we need the ABP 
maximum principle for 

with precise estimates. See Nakagawa [18] for the details. 

4.2. Weak Harnack inequality 

In view of the ABP maxmimum principle, we can prove the weak 
Harnack inequality, which implies the Holder continuity of £P-viscosity 
solutions of (1). We refer to Sirakov [19] by a different approach for 
the Holder continuity of £P-viscosity solutions of (1) with unbounded 
ingredients. 

We can apply the weak Harnack inequality to show the strong max
imum principle. See Section 5 in [13] for this application. 

First, we consider the case when PDE have linear growth in Du. 

Theorem 8. Assume that p, E L+(B2) and f E L~(B2 ), where 
(p, q) satisfies one of 

(24) { ( i) q 2: p > p, q > n, 
( ii) q = n > p > p. 

There exist C5 = C5 (n,>.jA,p,q,p,) > 0 and r = r(n,>./A) > 0 such 
that if u E C(B2 ) is a nonnegative LP -viscosity supersolution of 
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then it follows that 
1 

(25) (l
1 

ur dx)" ::::; 05 (ig[ u + llfiiLP(B2 )) • 

Remark 4.2. (i) We refer to [13] for a precise dedendence on IIMIIq 
in 0 5 particularly in case of (15). 
(ii) Under (i) in (24), 0 5 depends on IIMIIn while it depends on p, itself 
under (ii) of (24). Because in both cases, we need to assume IIMIIn is 
small at the first step. 
(iii) In [7], Fok obtained the weak Harnack inequality for LP-viscosity 
supersolutions assuming p, E L 2n. 

We discuss the weak Harnack ineqaulity for PDE containg superlin
ear terms in Du. 

Theorem 9. ([14]) Fix M > 0 and m > 1. Assume that p, E 
L~(B2 ) andfEL~(B2 ), where(p,q) satisfies(i) of(24) and 

(26) 
n 

1 < m < 2--. 
q 

There exist o2 = o2(n, >., A,p, m, M) > 0, 05 = 05(n, >., A,p, q, R) > 0 
and r = r(n, >., A,p, q, m) > 0 such that if 

11MIIq(1 + llfll;'-1)::::; 02, 

and u E O(B2 ) is a nonnegative LP-viscosity supersolution of 

p+(D2u) + p,(x)IDulm =- f(x) in B2 

such that 0 ::::; u ::::; M in B 2 , then it follows that (25) holds. 

We refer to [16] for the Holder continuity of viscosity solutions when 
PDE have superlinear growth terms in Du. 

It is easy to establish the weak Harnack inequality near the bound
ary, which could be used to show some maximum principle in unbounded 
domains. See Section 8 in [13] for this. See also Koike-Nakagawa [10] 
and the references theirin for an application to the Phragmen-Lindelof 
theorem. 

4.3. Local maximum principle 
Although the weak Harnack inequality shows that LP-viscosity so

lutions of (1) satisfy Holder continuity, it is natural to ask if the local 
maximum principle for LP-viscosity subsolutions holds or not. In fact, 
when we have unbounded coefficients to Du, we cannot apply the stan
dard method as in [8]. However, we may modify the argument in [2]. 
See a recent work [9] by Imbert. 
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Theorem 10. Assume that p, E L+(B2) and f E L~(B2), where 
(p, q) satisfies one of (24). For s > 0, there is C6 = CB(n, >.j A,p, q, p,, s) > 
0 such that if u E C ( B2) is an £P -viscosity subsolution of 

then it follows that 

(27) s;:;u s; c6 { (Ll u+dx) ~ + llfii£P"n<B2 )}. 

Remark 4.3. When (i) in (24) holds, c6 depends on llf.J-IIq while it 
depends on p, itself under (ii) of (24). 
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