
Advanced Studies in Pure Mathematics 63, 2012 
Galois-Teichmuller Theory and Arithmetic Geometry 
pp. 579-600 

n-nilpotent obstructions to n1 sections 
of JP1 - {0, 1, oo} and Massey products 

Kirsten Wickelgren 

Abstract. 

Let 1r be a pro-£ completion of a free group, and let 1r = [1rh ::l 

[1r]2 ::l [1r]3 ::l ... denote the lower central series of Jr. Let G be a profi
nite group acting continuously on Jr. First suppose that the action is 
given by a character. Then the boundary maps bn: H 1 (G,7r/[7r]n)--+ 
H 2 (G, [7r]n/[7r]n+l) are Massey products. When the action is more 
general, we partially compute these boundary maps. Via obstructions 
of Jordan Ellenberg, this implies that 1r1 sections of IP'1- {0, 1, oo} sat
isfy the condition that associated nth order Massey products in Galois 
cohomology vanish. For the 1r1 sections coming from rational points, 
these conditions imply that 

where x in H 1 ( Gal(k/ k), Ze (x)) is the image of an element of k* under 
the Kummer map. For the 1r1 sections coming from rational tangent 
vectors at infinity, these conditions imply that 

§1. Introduction 

Grothendieck's section conjecture predicts that the rational points 
of a proper smooth hyperbolic curve X over a number field k are in 
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natural bijection with the conjugacy classes of sections of the homotopy 
exact sequence for the etale fundamental group 
(1) 

where the conjugacy class of a section s : Gal(k / k) -+ 1r1 (X) is the 
set of those sections g f---t f'S(g)'-y- 1 where/' is an element of 1r1 (X1j. 
The phrase "1r1 section" in the title refers to a section s of 1r1 (X) -+ 
1r1 (Speck). For a non-proper smooth hyperbolic curve, rational points 
of the smooth compactification not contained in the curve are called 
rational points at infinity. Such a rational point determines a set of 
sections of (1) in bijection with H 1 (Gal(k/k),Z(x))-see [Pop10, p. 2], 
where x denotes the cyclotomic character, and Z(xn) denotes the profi
nite completion of Z with Galois action given by multiplication by xn. 
More specifically, let X be a smooth, geometrically integral curve over k 
with negative Euler characteristic. Let X denote the smooth compacti
fication of X. The section conjecture predicts that 

( ~ lJ H 1 (Gal(k/k), Z(x))) U X(k) 
(X-X)(k) 

is in bijection with the conjugacy classes of sections of (1) via a non
abelian Kummer map discussed in 3.4. 

Consider the problem of counting the conjugacy classes of sections 
of (1). When (1) is split, this is equivalent to computing the pointed set 
H 1 (Gal(k/k), 1r1 (Xk)), which is difficult. In [EllOO], Jordan Ellenberg 
suggested studying instead the image of 

by filtering 1r1 (Xk) by its lower central series. More specifically, let 1r 

abbreviate 1r1(Xk), let 1rab denote the abelianization of 1r, and let [1r]n 
denote the nth subgroup of the lower central series ( cf. 2.1). Ellenberg 
proposed successively computing the images of 

(3) 

via the boundary maps 

coming from the central extensions 
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The image of (3) for any n contains the image of (2), and we view the 
former for n = 2, 3, ... as an improving series of approximations to the 
latter, although there is no reason to believe that the intersection of 
these approximations is close to the image of (2). 

This paper makes two group cohomology computations relating 6n 
to Massey products (Propositions 2 and 5), and then applies them to 
study the 1r1 sections of lP'l,- { 0, 1, oo} (Corollary 7) and Massey products 
of elements of H 1 (Gal(k/k),zE(x)), where~ is the set of primes not 
dividing any integer less than the order of the Massey product, and ;z;E 
denotes the pro-~ completion of ;z; (Corollary 9). 

More specifically, the content of this paper is as follows: Section 2.6 
computes 6n: H 1 (G,1r/[1r]n)--+ H 2 (G, [7r]n/[7r]n+I) when 1r is a pro-~ 
completion of a free group with generators { rl) /2) ... ) rr}) where ~ is 
any set of primes not dividing n!, and G is a profinite group acting on 
1f by 

ni = 1-:(g) 

where X : G --+ ;z;E is a character. In this case, 6n is determined by 
nr order n Massey products-see Proposition 2. The case of the trivial 
character with G and 1r replaced by discrete groups is essentially con
tained in [Dwy75]. The generalization to non-trivial characters is not 
immediate; for instance, it depends on the existence of certain upper 
triangular matrices whose Nth powers are given by multiplying the ith 

upper diagonal by Ni-see (7) and Lemma 1. To obtain these matri
ces one must invert n! or work with pro-~ groups. We do the latter, 
although the former works as well. This computation is then used to 
study 6n where 1r is as above for r = 2, and G is a group acting on 1r by 

g({I) =~~(g) 

g(r2) = f(g)~l~~(g)f(g) 

where x is as above, and f : G --+ [1r]2 is a cocycle taking values in the 
commutator subgroup of 1r. In this case, 6n pushed forward by certain 
Magnus coefficients are Massey products. The Magnus coefficients in 
question are those associated to degree n noncommutative monomials 
in two variables containing n -1 factors of one variable-see Proposition 
5. This calculation imposes restrictions on the image of 

H 1 ( Gal(k/ k ), 1f /[7r]n+I) --+ H 1 ( Gal(k/ k ), Jrab) 

for X = lP'l,- {0, 1, oo} and 1r = 1r1 (Xk)E. Identifying H 1 (Gal(k/k), Jrab) 

with H 1 ( Gal(k/ k ), ;z;E (x) )2 , these restrictions are that the image is con
tained in the subset of elements (x1 , x2 ) such that the Massey products 
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( -XJ(1), -XJ(2), ... , -XJ(n)) vanish for all J : {1, 2, ... , n} -+ {1, 2} 
which only assume the value 2 once-see Corollary 7. Corollary 9 writes 
these restrictions for the n1 sections coming from rational points and 
tangential points, and concludes that the nth order Massey products 

( ~1 ~1 (1 )~1 ~1 ~1) d ( ) X , ... , X , -X , X , ... , X an X, ... X, -X, X, ... , X 

vanish, where x in H 1 ( Gal(k / k), Z(x)) denotes the image of an element 
of k* under the Kummer map. Much of this vanishing behavior was 
previously shown by Sharifi [Sha07], who calculates Massey products 
of the form (x, x, ... , x, y) under certain hypotheses and using different 
methods-see Remarks 3.12 and 3.15. Triple Massey products in Galois 
cohomology with restricted ramification are studied by Vogel in [Vog04]. 

The first subsections of Sections 2 and 3 contain only well-known 
material. They are meant to be expository and to fix notation. 

Acknowledgments. I wish to thank Romyar Sharifi for useful corre
spondence. 

§2. nth order Massey products and bn 

Notation 2.1. For elements g1, g2 of G, let [g1, g2] = g1gzg11g21 

denote the commutator. For a profinite group n, let n = [nh ::2 [n]z ::2 
[nh ... denote the lower central series: [n]n is defined to be the closure 
of the subgroup generated by the elements of [n, [n]n~1]· 

For a (profinite) group G, a pro finite abelian group A, and a ( contin
uous) homomorphism x : G-+ Aut(A), let A(x) denote the associated 
profinite group with G action. For example, if A is a ring and X is a 
homomorphism G -+ A*, then for any integer n, A(xn) is a profinite 
group with G-action. 

Let I: denote a set of primes (of Z). For any group G, let GE denote 
the pro-2.: completion of G, i.e., the inverse limit of all quotients of G 
whose order divides a product of powers of primes in I:. 

2.2. Massey Products 

For a profinite group G and a profinite abelian group A with a 
continuous action of G, let (C*(G,A),D) be the complex of inhomoge
neous cochains of G with coefficients in A as in [NSW08, I.2 p. 14]. 
ForcE CP(G, A) and dE Cq(G, A), let cUd denote the cup product 
cUd E CP+q(G,A®A) 

(cu d)(g1, ... ,gp+q) = c(g1, ... ,gp) 181 ((g1· · · gp)d(gp+1, ... ,gp+q)). 
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This product induces a well defined map on cohomology. If A is a ring 
with G-action given by a homomorphism X : G ---+ A*, the G-equivariant 
multiplication map A(xn) 181 A(xm) ---+ A(xn+m) induces cup products 

CP(G, A(xn)) 181 Cq(G, A(xm))---+ cp+q(G, A(xn+m)) 

HP(G, A(xn)) 181 Hq(G, A(xm)) ---+ Hp+q(G, A(xn+m)). 

For a profinite group Q, no longer assumed to be abelian, the set 
of continuous functions G ---+ Q is denoted C 1 (G, Q). An element s 
of C 1 (G, Q) such that s(g1g2 ) = s(g1 )g1s(g2 ) is a cocycle or twisted 
homomorphism. The pointed set H 1 ( G, Q) is defined as equivalence 
classes of cocycles in the usual manner (cf. [Ser79, VII Appendix]). 

Definition 2.3. Let t 1 , ... , tn be elements of H 1 (G, A(x)). The nth 

order Massey product of the ordered n-tuple ( ii, ... , tn) is defined if there 
exist Tij in C 1 (G,A(xj-i)) for i,j in {1,2, ... ,n + 1} such that i < j 
and (i,j) =1- (1,n + 1) satisfying 

• Ti,i+l represents ti, 

• DTij = I:;~;:~+ I Tip U Tpj fori+ 1 < j, 
where as above, D: C*(G,A(xj-i))---+ C*+1 (G,A(xj-i)) denotes the 
differential. 

T is called a defining system. The Massey product relative to T is 
defined by 

n 

(t1, ... tn)r = LTlp U Tp,n+l· 
p=2 

2.4. Massey products and unipotent matrices 

Let U n+l denote the multiplicative group of ( n + 1) x ( n + 1) upper 
triangular matrices with coefficients in A whose diagonal entries are 
1. ( "U" stands for unipotent-not unitary.) Let aij be the function 
taking a matrix to its (i,j)-entry. Un+l inherits an action of G by 
aij(gM) = x(g)j-iaij(M). We have a G-equivariant inclusion A(xn)---+ 
Un+l sending a in A to the matrix with a in the (1, n)-entry, and with all 
other off diagonal matrix entries 0. This inclusion gives rise to a central 
extension 

(4) 

where Un+l is defined as the quotient Un+dA(xn). 
The element of H 2 (Un+l ><l G,A(xn)) classifying (4) is an order n 

Massey product. (See [Bro94, IV §3] for the definition of the element 
of H 2 classifying a short exact sequence of groups; to apply the same 
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discussion to profinite groups, one needs continuous sections of profinite 
quotient maps. For this, see [RZOO, Prop 2.2.2].) Note that ai,j deter
mines an element of C 1 (U n+l ><1 G, A(x1-i)). By the definition of matrix 
multiplication, the boundary of ai,j for i < j is given 

(5) 
j-1 

D(ai,j) =- L aip U apj· 
p=i+l 

It follows that as (i,j) ranges through the set of pairs of elements of 
{1, 2, ... , n + 1} such that i < j and (i,j) "/= (1, n + 1), the cochains 
-ai,j form a defining system for (-a1,2, -a2,3, ... , -an,n+l)· Note the 
minus sign in -ai,j· It rectifies the sign difference between (5) and 
Definition 2.3. The element of H 2 (Un+l ><1 G,A(xn)) classifying (4) 
is (-a1,2, -a2,3, ... , -an,n+l), where the Massey product is taken with 
respect to the defining system -ai,j. 

2.5. Magnus embedding 

For later use, we recall some well-known properties of the Magnus 
embedding. Let F denote the free group on the r generators /i, i = 
1, ... , r. For any ring A, let A( (z1, ... , Zr)) be the ring of associative 
power series in the non-commuting variables z1 , ... , Zr with coefficients 
in A. Let A( (z1, ... , zr) )(l,x) denote the subgroup of the multiplicative 
group of units of A ( (z1 , ... , Zr)) consisting of power series with constant 
coefficient 1. The Magnus embedding is defined 

by x1 r--+ 1 + z1 for all j. 
Since zE((zl, ... ,zr))(l,x) is pro-~, F---+ Z((z1, ... ,zr))(l,x) gives 

rise to a commutative diagram 

F E '77E(( ))(l,x) l ~~ z, ( . 

F-- Z((z1, ... , Zr))(l,x) 

Let J : { 1, ... , n} ---7 { 1, ... , r} be any function. The degree n mono
mial ZJ(l) · · · ZJ(n) determines the Magnus coefficient /-lJ : pE ---7 zE 
(or /-lJ : F ---7 Z) given by taking an element of pE to the coefficient 
of ZJ(l) · · · ZJ(n) in its image under the Magnus embedding. It is well 
known that P,J(r) = 0 for 1 E [F]m and m > n 2:: 1 (see [MKS04, 
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§5.5, Cororally 5.7]), and it follows by continuity that M('/) = 0 for"( 
in [FI:]m and m > n :::0: 1. 

The Lie elements of Z( (z1, ... , Zr)) are the elements in the image 
of the Lie algebra map (i f---+ Zi from the free Lie algebra over Z on r 
generators (i to Z( (z1, ... , Zr)), where Z( (z1, ... , Zr)) is considered as a 
Lie algebra with bracket [z, z'] = zz' - z' z. It is well known that the 
Magnus embedding induces an isomorphism from [F]n/[F]n+l to the ho
mogeneous degree n Lie elements of Z( (z1, ... , Zr)) [MKS04, §5. 7, Cora
rally 5.12(i)]. The Lie basis theorem [MKS04, §5.6, Theorem. 5.8(ii)] 
implies that the inclusion of the Lie elements of degree n into all the 
degree n elements of Z( (z1 , ... , Zr)) is a direct summand. It follows that 

is the inclusion of a (free) direct summand, where the direct sum is taken 
over all functions J : { 1, ... , n} ---+ { 1, ... , r}. By definition of JLJ, we 
have the commutative diagram 

(6) 

We claim that the top horizontal morphism in ( 6) is the inclusion of 
a direct summand of the form EBZI:, and that the left vertical morphism 
is the pro-~ completion. To see this: note that since [F]n/[F]n+l is a 
free Z submodule of EBJZ, we have a commutative diagram 

where the bottom horizontal morphism is the inclusion of a direct sum
mand which is a free Z-module, the top horizontal morphism is the 
inclusion of a direct summand which is a free zr:_module, and both ver
tical maps are pro-~ completions. The map ([F]n/[F]n+l)I: ---+ EBJZI: 
factors through [FI:]n/[FI:]n+l by the universal property of pro-~ com
pletion, and it follows that ([F]n/[F]n+l)I: ---+ [FI:]n/[FI:]n+l is injec
tive. Since [F]n has dense image in [FI:]n, and since the image of a 
compact set under a continuous map to a Hausdorff topological space 
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is closed, we have that ([F]n/[F]n+1)~ ---+ [F~]n/[F~]n+1 is surjective. 
Thus ([F]n/[F]n+d~ ---+ [F~]n/[F~]n+1 is an isomorphism of profinite 
groups (because a continuous bijection between compact Hausdorff topo
logical spaces is a homeomorphism). From this it also follows that the 
top horizontal morphism in (6) is the inclusion of a direct summand of 
the form ffiZ~. 

2.6. bn for the free pro-~ group with action via a character 

Let n be a positive integer, and let ~ be the set of primes not dividing 
n!. Let 7f be the pro-~ completion of the free group on the generators 
{/'1?/2, ... ,f'r}· Let G be any profinite group and let X: G---+ (Z~)* be 

a (continuous) character of G. Let G act on 7f via 9/'i =/';(g). Then 
the map 

is given by nth order Massey products in the following manner: 
Recall that U n+ 1 denotes the group of ( n + 1) X ( n + 1) upper trian

gular matrices with diagonal entries equal to 1, that ai,J : Un+ 1 ---+ Z~ 
denotes the ( i, j)th matrix entry, and that Un+ 1 inherits a G-action de
fined by ai,J(g(M)) = x(g)1-iai,j(M) for all Min Un+ 1 (see 2.2). 

For each J: {1, 2, ... , n}---+ {1, 2, ... , r }, let cpJ: 7f---+ Un+ 1 be the 
homomorphism defined 
(7) 

j = i + l, l > 0 and k = J ( v) for all i -::; v < i + l 
{

fr 
ai,jcpJ(/'k) = 

0
1 j=i 

otherwise. 

It is a straightforward consequence of the following lemma that cp J 

is G-equivariant: 

Lemma 1. Let Az be the matrix in Uz+1 defined by ai i+1·Az = ~ 
' 1· 

for j > 0. Then for all positive integers N, ai,i+J(A{") = N1ai,i+j(A1). 

Proof. By induction on l. For l = 1, the lemma is clear. By 
induction and symmetry, it is sufficient to check that a1,l+l (A{") 
N 1a1,l+1(Az). Now induct on N, so in particular, a 1,H1(Af"-1 ) = 
(N-1)J~forj=O, ... ,l. Thus 

J. 

l 

( N) """ N-1 1 a1,Z+1 A1 = L...- a1,1+j (A1 ) (l _ ')! = 
j=O J 

l 

L j1 1 1 1 
(N- 1) --- = ((N- 1) + 1) -., (l - ')' l'' j=O J. J . . 
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completing the proof. Q.E.D. 

Since [Un+l]n+l = 1 and [U n+l]n = 1, i.pJ descends to G-equivariant 
homomorphisms 

7T/[7T]n+l--+ Un+l, 

7T/[7T]n--+ Un+l, 

[7T]n/[7T]n+l--+ Z~(Xn) 

which we also denote by r.p J. 

The basis { /1, 12, ... , rr} determines an isomorphism 

and therefore an isomorphism H 1 (G, ?Tab) ~ H 1 (G, Z~(x)Y. An element 
x of H 1 ( G, 1T /[7T]n) maps to an element of H 1 ( G, 1rab). Let X1 ffi ... ffi Xr 

in H 1(G, Z~(x)Y denote the image of x. 
Note that applying ai,i+li.PJ to a cocycle x: G--+ 7T/[7T]n produces 

a cocycle representing XJ(i). Furthermore, 

{ -ai,jl.fJJX: i < j, (i, j) #- (1, n + 1)} 

is a defining system for the Massey product (-XJ(l), -XJ(2), ... , -XJ(n))· 

Proposition 2. For any cocycle x : G --+ 1T /[7T]n, let [x] denote 
the corresponding element of H 1(G,7r/[7T]n)· Then On([x]) = 0 if and 
only if (-XJ(l),-XJ(2), ... ,-XJ(n)) = 0 for every J: {1,2, ... ,n}--+ 
{1, 2, ... , r}, where the Massey product is taken with respect to the defin
ing system { -ai,jl.fJJX: i < j, (i,j) #- (1, n + 1)}. 

Proof. Choose J : {1, 2, ... , n} --+ {1, 2, ... , r }. I.PJ induces a com
mutative diagram 
(8) 

1--~z~(xn) ---~Un+l ><1 G -----?-Un+l ><1 G -+-1 

I I I 
All the vertical morphisms in (8) will be denoted by I.PJ· Let~ denote the 
element of H 2(1r/[1r]n ><1 G, [7r]n/[7T]nH) classifying the bottom horizontal 
row, and let~' denote the element of H 2(Un+l ><1 G,Z~(xn)) classifying 
the top horizontal row (c.£. 2.4). The morphism of short exact sequences 
(8) gives the equality ( r.p J )*~ = r.pj""' in H 2 ( 1r j[1r]n ><1 G, Z~ (xn)). 

Choose a cocycle x : G--+ 1T /[7T]n- Let x ><1 id : G--+ 1r /[7T]n ><1 G denote 
the homomorphism g r-+ x(g) ><1 g induced by the twisted homomorphism 
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x. Then, On([x]) = (x ><1 id)*K. Since (rPJ )*K = cpjK', we have that 
( 'PJ )*on([x]) = ( 'PJ o (x ><1 id) )* K1 • By 2.4, ( 'PJ o (x ><1 id) )* K1 is the Massey 
product (-XJ(l)• -XJ(Z)• ... , -XJ(n)) computed with the defining system 
{ -ai,j'PJX: i < j, (i,j) # (1, n + 1)}. 

It is therefore sufficient to see that 

is injective. This follows from a result of Dwyer: let f.LJ denote the 
Magnus coefficient as in 2.5. By [Dwy75, Lem 4.2], JLJ(I) = 'PJ(r) for 
any element 1 in the free group generated by the /i, and the equality 
/LJ = 'PJ for any element of 1r follows by continuity. Thus the map 
ffiJ'PJ: [7r]n/[7r]n+l---+ ffi/:ZI:(xn) is the split injection ffiJJLJ induced by 
the homogeneous degree n piece of the Magnus embedding-see (6) in 
2.5. Note that G acts on both the domain and codomain of ffiJ'PJ by 
multiplication by xn, so ffi J'P J is a direct summand in the category of 
G-modules. Q.E.D. 

Thus, if the element x1 ffi x 2 ffi ... ffi x,.. of H 1 ( G, 1rab) lifts to x in 

all the order n Massey products 

vanish. Furthermore, if the vanishing of the order n Massey products 
occurs with respect to defining systems which are compatible in the sense 
of Proposition 2, the converse holds as well. 

2. 7. Partial computation of On for the free pro-'E group 
with action determined by a character and conjugation 
by a cocyle valued in the commutator subgroup 

Choose a positive integer n, and let 'E denote the set of primes not 
dividing n!. Let 1r be the pro-'E completion of the free group on two 
generators {11 ,12 }. Let x: G---+ (ZI:)* be a (continuous) character of a 
profinite group G. Let G act on 1r via 

(9) g( rd = ~~(gJ 

g(!z) = f(g)- 1 /~(g)f(g), 

where f : G ---+ [1r]z is a cocyle. For instance, the Galois action on the pro
'E etale fundamental group of JP'~ - {0, 1, 00} has this form with respect 
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to an appropriate base point. See, for instance, [Iha94]. This situation 
will be considered in Section 3. 

Then there are obstructions to On = 0 given by order n Massey 
products: 

Choose i0 in {1,2, ... ,n} and let J: {1,2, ... ,n}-+ {1,2} be the 
function J(io) = 2, J(j) = 1 for j "I io. Let 'PJ : 1r -+ Un+1 be the 
homomorphism given by equation (7) in 2.6. The next two lemmas are 
used to show that 'PJ is G-equivariant. 

Lemma 3. Let 

Uio,Jo ={ME Un+1 : aiJ(M) = 0 fori-# j unless i :S: io and j :2: ]o}. 

Then Uio,Jo is a normal subgroup of U which is commutative for i 0 < j 0 . 

Proof. It is straightforward to see that Uio,Jo is a subgroup. (In
deed, it suffices to note that for M1 ,M2 in Uio,Jo, we have aiJ ( ( M1 -

1)(M2 -1)) = 0 fori> io or j < ]o; for instance, this implies that Uio,Jo 
is closed under inverses because M- 1 = 1 + ~k> 1 (-1)k(M -1)k.) 

To see that Uio ,Jo is normal, choose Z in U n+ ~ and M in Uio ,Jo. Note 
that 

aij(Z(M -1)Z- 1 ) = Laik(Zik)akk'(M -1)ak'J(Z- 1 ) 

k,k' 

which is only non-zero if there exist k and k such that i :=:;: k :=:;: k' :=:;: j, 
k ::;: i 0 , and k' ;::: ]o. This can only occur fori ::;: io and j ;::: ]o. So, Uio,jo 
is normal. 

Suppose that io < ]o, and let M1, M2 be in Uio ,Jo. To see that Uio ,jo 
is commutative, it suffices to see that (M1 -1)(M2 -1) = 0. To see this 
equality, note that for all i,j,k, we have aik(M1 -1)akj(M2 -1) = 0, 
because if k < j 0 , then aik(M1 - 1) = 0, and if k ;::: j 0 , then k > i0 , 

whence akj(M2 - 1) = 0. Q.E.D. 

Lemma 4. 'PJ(r2 ) commutes with any element of 'PJ([1r]2). 

Proof. Let X = l{JJ(r1), Y = rpJ(r2 ), and w be the closure of the 
subgroup generated by X andY. By Lemma 3, it is sufficient to show 
that [wh is contained in uio,io+1· 

[wh is topologically generated by elements of the form 

where Zi is either X or Y and k = 0, 1, .... By Lemma 3, if W is in 
Uio,ia+1 , so is [W, Z] for any Z in w. Since Y is in Uio,io+l• it follows 
that [···[[X, Y], Z1], Z2, ... ], Zk] is as well. Q.E.D. 
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In particular, <pJ(g(ry2)) = <f!Jb2)x(g), so <f!J is G-equivariant by 2.6. 
Since <f!J is G-equivariant, we have the commutative diagram (8). 

Choose a cocycle x : G --+ 1rj[1r]n. (<pJ)*on([x]) is the Massey prod
uct (-a1,2<f!JX, -a2,3 <pJX, ... , -an,n+l<f!JX) computed with the defining 
system {-ai,J<f!JX: i < j, (i,j) -=1 (1,n + 1)} by 2.2 (see the proof of 
Proposition 2). 

Note that {1'1, 12} is a zL:(x) basis for 1r j[1r]2, giving an isomorphism 
H 1(G, 1rab) ~ H 1(G, zL:(x)) 2. As above, an element x of H 1(G, 7r/[7r]n) 
maps to an element of H 1 ( G, 1fab). Let Xl EB X2 in H 1 ( G, zL: (x)? denote 
the image of x under this map. Note that -aJ,J+l<f!JX = XJ(J)· We have 
therefore shown: 

Proposition 5. Let x : G--+ 1r /[7r]n be a cocycle, and let [x] denote 
the corresponding cohomology class. If On([x]) = 0, then 

where this Massey product is taken with respect to the defining system 
{ -ai,J<f!JX: i < j, (i,j) "I (1, n + 1)} defined above. 

Remark 2.8. As in 2.6, the Massey product in Proposition 5 is 
JLJOn, where JLJ is the Magnus coefficient defined in 2.5. In other words, 
Proposition 5 computes JLJOn for all functions J which only assume the 
value 2 once. 

§3. Application to 1r1 sections of punctured JP'1 and Massey 
products in Galois cohomology 

Notation 3.1. Let k be a field of characteristic 0 and let k be an 
algebraic closure of k. Let Gk = Gal(k/k) denote the absolute Galois 
group of k. 

3.2. Review of the etale fundamental group 

A geometric point b of a scheme X (i.e., a map b : Spec D --+ X 
where n is an algebraically closed field) determines a functor from the 
finite etale covers of X to the category of sets, called a fiber functor. 
Given two geometric points b1, b2 , define Path(b1, b2 ) to be the natu
ral transformations from the fiber functor associated to b1 to the fiber 
functor associated to b2 . Path(b1, b2 ) naturally has the structure of a 
profinite set. Path composition will be in "functional order," so given 
s::>1 in Path(b1,b2) and s::>2 in Path(b2,b3), we have s::>2s::>1 in Path(b1,b3). 
The etale fundamental group 1r1 (X, b) is the profinite group Path(b, b) 
(see [SGAI] [MezOO]). 
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Suppose that X is defined over a field k. Let k denote a fixed 
algebraic closure of k, and let xk =X Xspeck Speck denote the base 
change of X to k. For each gin Gb there is a functor - ()99 k from the 
finite etale covers of xk to itself given by pullback along 

g : Speck -+ Speck. 

A rational point x : Speck -+ X gives rise to a geometric point xk : 

Speck-+ XI< of XI<, and the commutative diagram 

- g -
Speck ~ Speck 

l g l 
x~< x~< 

determines a natural isomorphism from the pullback of the fiber functor 
of xk by - ®9 k to the fiber functor of xk. This defines a Gk-action on 
the profinite set of paths between two such geometric points. 

Now suppose that X is a smooth, geometrically connected curve over 
k. Let X denote its smooth compactification, and let x : Speck -+ X 
be a rational point. The completed local ring of X at the image of x 
is isomorphic to k[[E]] and the choice of such an isomorphism gives a 
map from the function field of X into k((E)), where k((E)) denotes the 
field of Laurent power series. This produces a map Speck( (E)) -+ X, 
which factors through the generic point of X. Such a map will be called 
a rational tangential point. To a rational tangential point, we can nat
urally associate a map Speck((E)) -+ Xk. Since k is characteristic 0, 
the field of Puiseux series UnEZ>o k( ( El/n)) is algebraically closed. Em
bedding k((E)) in UnEZ>ok((El/n)) in the obvious manner allows us to 
associate to a rational tangential point a corresponding geometric point 
SpecUnEZ>ok((E1/n))-+ xk and fiber functor. There is a a natural iso
morphism from the pullback of such a fiber functor by - ()9 9 k to the fiber 
functor given by the previous commutative diagram with the spectrum 
of the field of Puiseux series replacing Speck, and where gin Gk is taken 
to act on the field of Puiseux series via the action on the k coefficients, 
producing Gk-actions on sets of paths. Tangential points are discussed 
in greater generality and more detail in [Del89, §15] and [Nak99]. 

Example 3.3. Let U be an open subset of A1 = Speck[z]. A 
tangent vector of A~ 

Spec k[E]/ (E2 ) -+A~ 

a+ VE ~ Z 
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where a in k, v in k*, gives a rational tangential point Speck( (E)) --+ 
Spec k(z) --+ U of U, where the first map is defined by z >--+ a+ VE, and 
the second is the map Spec k(z) --+ U from the generic point of U to U. 

By a rational base point, we will mean either a rational point or a 
rational tangential point, and by a slight abuse of notation, rational base 
point will also refer to the geometric points given above and their fiber 
functors. 

3.4. Non-abelian Kummer map 

Let X be a smooth curve over a field k. Let XbP(k) denote the set 
of rational base points of X, and assume that XbP(k) cJ 0. Fix b in 
XbP(k). There is a "non-abelian Kummer map" based at b 

Kb: XbP(k)--+ H 1 (Gk, 7rl(Xk, b)) 

defined as follows: for x in XbP(k), choose pin Path(b,x) and define a 
1-cocycle "'(b,so)(x): Gk--+ n1(Xk, b) by 

(10) 

The cohomology class of this cocycle is independent of the choice of p, 
and r;,b(x) is defined to be this cohomology class. When the base point 
is clear, Kb will also be denoted by K. 

Note that associated to a rational tangential point of X, there is a 
tangent vector 

Spec k[E]/ (E2 ) --+X 

of the smooth compactification (see the above definition of a rational 
tangential point; the tangent vector is induced by the chosen isomor
phism of k[[E]] with the completed local ring of X). It is not difficult to 
check that the images under Kb of two rational tangential points with 
the same tangent vector are equal (see [Wic10, p 6]). 

Example 3.5. Kummer map in Galois cohomology. Let k be a field 
of characteristic 0, and choose an isomorphism of the roots of unity in k 
with Z(x), where x denotes the cyclotomic character. The short exact 
sequence 

-* xr-+x rn -* 1 ______,_ Z j m (x) ______,_ k ______,_ k ______,_ 1 

of Gk-modules gives a boundary map k* --+ H 1 (Gk, Z/m(x)). Letting 
m vary gives the Kummer map 

We will adopt the notational convention that an element of k* will also 
denote the corresponding class in H 1 (Gk,Zr;(x)). 
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Lemma 6. For <Gm based at the rational point 1, r,;(x) 
r,;(O + vE) = v for all x, v ink*. 

We sketch of a proof of this well-known fact. 
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x and 

Proof. The connected finite etale covers of <Gm,k = Spec k[z, ~] are 
ZMZn 

<Gm.k <Gm,k for n in Z>o. Let F(O + VE, n) denote the fiber 

of z f--7 zn over (the geometric point associated to) 0 + VE, where 0 + VE 

denotes the tangent vector k[E]/ (E2) --+ Spec k[z] given by z r--+ VE ( cf. 
3.3). Note that the nth roots of v are in bijection with F(O + VE, n); 
namely, an nth root y'v of v gives a map k[zl/n, ~]--+ Un'EZ>ok((El/n')) 
which is tautologically a point of this fiber. Define F(1, n) similarly, and 
note that there is an identification of F(1, n) with the nth roots of unity 
ink. A choice { y'v: n E Z} of compatible nth roots of unity of v gives 
rise to SJ in Path(1, 0 + vE); SJ is the natural transformation such that 
the induced map F(1, n) --+ F(O + VE, n) takes 1 to y'v. It follows that 
gSJ takes g1 tog y'v, from which we see that r,;(O+vE) = v. The equality 
r,;(x) =xis shown similarly. Q.E.D. 

Remark 3.6. For a topological space X with a G-action and fixed 
points b, x let Path(b, x) denote the space of paths from b to x. Note 
that Path(b, x) has a G-action. We can therefore define a map r,; from 
the fixed points of X to H 1(G,1r1 (X,b)) by (10) given above. For a 
K(1r, 1) with G-action, r,; is 1ro applied to the canonical map from fixed 
points to homotopy fixed points. 

Observation 3. 7. Let X be a scheme over k, and let b1, b2 be ratio
nal base points. A choice of path SJ in Path(b1, b2) gives an isomorphism 
of profinite groups 8: 1r1(X"k, b2)--+ 1r1(X"k, bl), defined 

Note that 8 is not Gk-equivariant. Rather, for any g in Gk, 

ge(!) = r,;(h,pJ(b2)~ 1 B(gl)r,;(bl,fi'J(b2) 

(cf. 3.4 for the definition of r,;(b1 ,p)(b2)). 

Observation 3.8. Let X be a smooth curve over k, and let X be its 
smooth compactification. Suppose that x is a rational point of X - X. 
Choose a rational tangential base point b at x. Let 1 in 1r 1 (X k, b) be the 
path determined by a small loop around the puncture at x. Then 1 gen
erates the inertia group at x ([SGAI, XIII 2.12]), and it follows that for 
any gin Gk, g1 = lm(g) for some m(g) in Z, where Z denotes the profi
nite completion of Z. Furthermore, g1 = lx(g) where x : Gk --+ Z* is the 
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cyclotomic character. One way to see this last assertion is to note that it 
is sufficient to assume that XUx is non-proper and show that the kernel 
of 1r1(Xk,b)ab--+ 1r1((X U x)k,b)ab is Z(x). Denote this kernel by M. 
As a profinite group, M ~ Z. Furthermore, Hom(1r1(Xk,b)ab,Z) is the 
etale cohomology group H 1 (Xk, Z) and the analogous statement holds 
with (XU x)k replacing Xk. By the long exact sequence in cohomology 
of the pair ((XU x)k, Xk) and the purity isomorphism 

we have a short exact sequence 

ih =2 

otherwise, 

1 --+ Hom(1r1 ((XU x)k, btb, Z) --+ Hom(1r1 (Xk, b)ab, Z) --+ Z(x-1) --+ 1. 

It follows that M ~ Z(x) as Gk-modules, as desired. 

3.9. Galois action on 1r1 (lP't- { oo, a1, a2, ... , an}) 

Let ai be in k for i = 1, ... , n, and consider the curve X = lP'~ -
{ oo, a 1, a2, ... , an} defined over k. Let bi be a rational tangential base 
point of X at ai. Let SJi in Path(b1, bi) be a path from b1 to bi for 
i = 2, 3, ... , n, and for notational convenience, let SJ1 be the trivial path 
from b1 to itself. Let Ci in Path(bi, bi) be the path determined by a small 
loop around the puncture at ai. The loops based at b1 defined by 

-1 fl 
/i = SJi t-i SJi 

are free topological generators for 1r1 (X k• bi), and it follows from 3. 7 and 
3.8 that the Gk-action on 1r1 (Xk, bi) has the form 

where fi = "'(bl,Pi)(bi) and g is any element of Gk· 
Let 1r abbreviate 1r1 (Xk, h). Choose Vi in k* for i = 1, ... , n, and 

suppose that bi is a rational tangential point associated to the tangent 
vector ai +viE (see 3.3 for this notation). The image of fi in H 1(Gk, 1rab) 
can be expressed in terms of the Kummer map: the basis { /1, 12, ... , In} 
of 1rab as a free Z-module determines an isomorphism H 1(Gk,7rab) --+ 
H 1 ( Gk, Z(x) )n. Let (fi)jb denote the image of fi in the lh factor of 

H 1(Gk, Z(x)) in H 1(Gk, Z(x))n. 
Since the etale fundamental group of At- { aj} is abelian, there are 

canonical Gk-equivariant isomorphisms between the fundamental groups 
of this scheme taken with respect to different base points. In particular, 
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/j determines an isomorphism of this fundamental group with Z(x). By 
the functoriality of the maps "'defined in 3.4, the cohomology class (fi)jb 
is also the image of bi under the map "'b, for A 1 - { aj} based at b1 . 

Let "'j: (A1 - {aj})bP(k) -t H 1 (Gk,Z(x)) denote the map defined 
in 3.4 for A 1 - { aj} based at aj + 1. Since the cohomology class (fi)jb 
could be computed by choosing a path from b1 to bi passing through 
aj + 1, 

(fi)Jb = "'j(ai + ViE)/"'j(al +VIE). 

By functoriality of "' and Lemma 6, 

{
a-a· 

"'j (a + VE) = V J 
if a "I aj 

if a= aj. 

Thus 

(11) 

if j = i 
if j = 1 

if j "/c1,i. 

In particular, it follows that if v1 = ai- a 1 = -vi, then the quotient 
of 1TE by (lj : j "I 1, i) is a pro-~ group with Gk-action of the form 
considered in 2. 7. (Here, (rj : j "I 1, i) denotes the closed normal 
subgroup generated by the rj for j -#1, i.) 

Much more interesting information is known about the fi due to con
tributions of Anderson, Coleman, Deligne, Ihara, Kaneko, and Yukinari 
-see for instance, [Iha91, 6.3 Theorem p.115]. 

3.10. Restriction on 1r1 sections of punctured JID1 

Let X= lP');,- {0, 1, oo }, and base X at 0 + 1E, where 0 + 1E denotes 
the tangent vector k[E]/ (E2 ) -t Spec k[z] given by z ~ E ( cf. 3.3). Fix 
a positive integer n 2': 2 and let 1T = 1T1 ( Xk) E, where ~ denotes the set 
of primes not dividing n!. By (11), the presentation of 1r1 (Xk) given in 
3.9 with its Gk-action is of the form (9). Thus, the calculation of JLJOn 
given in 2.7 places restrictions on the sections of 1r1(X) -t Gk. 

The zE basis { /1' /2} of 1Tab determines an isomorphism 

The quotient map 7r/[7r]n+l -t 1Tab therefore defines a map 
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Note that the sections of n1 (X) --+ G k are in natural bijection with 
H 1 ( G k, n). These sections map to H 1 ( G b z'E- (x) )2 and the image is 
restricted by the following corollary of Proposition 5. 

Corollary 7. The image of H 1 (Gk,n/[n]n+d--+ H 1 (GbzE(x)) 2 

lies in the subset of elements x 1 x x2 such that 

(-XJ(l)' -XJ(2)' ... , -XJ(n)) = 0 

for all J : {1, 2, ... , n} --+ {1, 2} which only assume the value 2 once. 

Proof. An element of H 1(Gk, n/[n]n+I) determines an element Sn 

of H 1 (Gk,n/[n]n) satisfying 6n(sn) = 0. Applying Proposition 5 to Sn 
shows the claim. Q.E.D. 

For n = 2, 3 these restrictions are studied in [WiclO]. 

Remark 3.11. Note that in the presentation of 

1f1 (lP'f- { oo, a1, a2, ... , am}) 

given in 3.9, it is only possible to arrange that one of the fi for i > 1 
has image contained in the commutator subgroup, so the restrictions on 
1fl sections for 1P'f - { oo, a 1, a2, ... , am} placed by Proposition 5 will be 
pulled back from a map to lP'}, - {0, 1, oo }. 

Remark 3.12. Sharifi [Sha07, Theorem 4.3] shows the vanishing of 
the nth order Massey products (x,x, ... ,x,y) in H 2(Gk,Z/pm) for x,y 

in k* such that y is in the image of the norm k( PVx) --+ k, assuming 
k contains the (pM)th roots of unity and m ::; M- rn, where rn is the 
largest integer such that prn ::; n. Furthermore, Sharifi's methods should 
produce similar results under weaker hypotheses and with larger coeffi
cient rings, although this has not been written down in detail. Sharifi's 
result also implies the vanishing of the Massey product (y, x, x, ... , x) 

by formal properties of Massey products; namely, if (x1, x2, ... , Xn) is 
defined, then (xn, Xn-1, ... , x 1 ) is defined and 

( c.f. [Kra66, Theorem 8]). This suggests redundancy among the restric
tions placed by Corollary 7 for n = 2 and higher n. 

3.13. Massey products in the cohomology of Gk 
Since rational base points produce sections of n1 (X) --+ G k, applying 

Corollary 7 to these sections produces Massey products of elements of 
H 1 (Gk, z'E-(x)) which vanish. 
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We identify the elements of HI(Gk,Zr,(x)) 2 corresponding to the 
rational base points to identify these Massey products. Let "' denote the 
map of 3.4 for X = lP't - {0, 1, oo} based at 0 + 1E ( cf. 3.3), and let "'ab 

denote the composition of"' with the map HI ( Gk, 1r) -+ HI ( Gk, Zr,(x)) 2 

induced by the quotient 1T -+ ?Tab. For an element x of k*, let x also 
denote the image in HI(Gk,Zr,(x)) of x under the Kummer map. 

Lemma 8. 

• For x in lP'l- {0, 1, oo}(k) = k- {0, 1}, "'ab(x) = (x, 1- x). 
• For v ink*, "'ab(1 + vE) = (1, -v) and "'ab(O + vE) = (v, 1). 
• For v ink*, "'ab(L(O + VE)) = (1lv,-1lv), where L: lP'l

{0, 1,oo} = Speck[z, ~' z~I]-+ lP'k- {0, 1,oo} is given by z f--7 
I 
z 

Proof. Lemma 8 follows directly from 3.9. To be specific, choose x 
in JPl- {0, 1, oo }(k). Let ai +viE= 0+ lE, a2 = 1, and ai = x, where we 
suppose that i > 2. Applying (11) in the case where j = 1 shows that 
the first coordinate of "'ab(x) is xll. Applying (11) in the case where 
j = 2 shows that the second coordinate of "'ab ( x) is ( x- 1) I ( 0 -1). Thus 
t;,ab(x) = (x, 1- x). 

Now choose v E k*, and let ai+viE = 1+vE. As above, let ai +viE= 
0 + 1E and a 2 = 1. In the setting of 3.9, we have i = 2, because the 
punctures oo, ai, ... , an are assumed to be distinct. Applying (11) in 
the case j = 1 shows that the first coordinate of "'ab ( 1 + VE) is ( 1 - 0) I 1. 
Applying (11) in the case j = 2, which in (11) is written "j = i," 
shows that the second coordinate of "'ab ( 1 + VE) is vI ( 0 - 1). Thus 
"'ab(1 + vE) = (1, -v) and one shows similarly that "'ab(O + vE) = (v, 1). 

Note that L extends to an automorphism of Gm which fixes 1 and 
induces multiplication by -1 on 1TI(Gm k' 1). Let K denote the map of 
3.4 for Gm based at 1. By functoriality of the maps defined in 3.4, it 
follows that K(L(O + vE)) is the inverse of K(O + vE) in HI(Gk, Zr,(x)), 
which we will write multiplicatively as above. (Recall that there is a 
canonical Gk-equivariant identification of zr,(x) with the pro-I; comple
tion of the fundamental group of Gm at any base point, because this 
group is abelian.) 

Let K' denote the map of 3.4 for Gm based at 0+ 1E, so in particular, 
the first coordinate of "'ab(L(O + vE)) is K'(L(O + vE)). Since a path from 
0 + 1E to some other rational base point b can be chosen to pass through 
1, it follows from the Definition 3.4 that 

K'(b) = K(b)K'(1) = K(b)IK(O +IE) 
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in H 1 ( G k, Z2; (x)). Combining this equation with the previous paragraph 
and Lemma 6, gives that 

K'([(O + vE)) = K([(O + vE))IK(O + lE) = 1IK(O + vE) = 11v. 

Let Kf denote the map of 3.4 for Ai,-{ 1} based at 0, so in particular, 

the second coordinate of K:ab([(O + vE)) is Kf([(O + vE)). 
Let [1 ( z) = z I ( z - 1) be the automorphism of 1P'1 fixing 0 and 

switching 1 and oo. Note that [1 induces multiplication by -1 on the 
fundamental group 1r1 (Ai,- {1},0). By functoriality of the maps de
fined in 3.4, it follows that Kf([(O + vE)) = 11Kf([1[(0 + vE)). Note 
that [1 [(z) = 11(1- z), and thus the tangent vector 0 + VE is taken to 
11(1- VE) = 1 + VE under [1L Thus Kf([(O + VE)) = 11Ki(1 + VE). 
By functoriality of the maps defined in 3.4, we have that K{ (1 + VE) = 
K"(vE), where K" is the map of 3.4 for CGm based at -1. Note that 
K" ( VE) = K ( VE) I K ( -1) = -v. 

Thus K:ab([(O+vE)) = (1lv,-1lv). 
Q.E.D. 

Corollary 9. Let (X, Y) in H 1 ( Gk> Z2;(x)? be (x- 1 , (1- x )- 1) for 
x ink* -{1 }, or (x, -x) for x ink*. Then the nth order Massey products 

(X, ... ,X, Y,X, ... ,X) 

vanish in H 2 ( G k, Z2; (x2 )). Here, the Massey products have ( n - 1) fac
tors of X and one factor of Y. The Y can occur in any position. 

Proof. By Lemma 8, -(X, Y) is in the image of 

H 1 (Gk, 1r)--+ H 1 (Gk, Z2;(x))2 . 

(Note that -(X, Y) = (x, 1- x) or (x-I, (-x)-1 ).) Applying Corollary 
7 gives the result. Q.E.D. 

The vanishing of these Massey products occurs with the defining sys
tems determined by Proposition 5 and K: applied to x E JP'~- {0, 1, oo }(k) 
or u( 0 + XE) for x in k*. 

Remark 3.14. Corollary 9 is also true for (X, Y) = (x, 1) or (1,x) 
with x E k* by the same proof, but this result is a formal consequence 
of the linearity of the Massey product [Fen83, Lemma 6.2.4], since 1 
vanishes under the Kummer map. 

Remark 3.15. The result of Sharifi discussed in Remark 3.12 gives 
a different proof of the vanishing of (X, X, ... , X, Y) and (Y, X, ... , X, X) 
reduced mod pm when k contains the (pM)th roots of unity for M :2: 
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m + rn, and his methods should produce more general results as well. 
They also show vanishing mod pm for more general (X, Y) under his 
hypotheses-see 3.12. 
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