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Harmonic Galois theory for finite graphs 

Scott Corry 

Abstract. 

This paper develops a harmonic Galois theory for finite graphs, 
thereby classifying harmonic branched G-covers of a fixed base X in 
terms of homomorphisms from a suitable fundamental group of X to
gether with G-inertia structures on X. As applications, we show that 
finite embedding problems for graphs have proper solutions and prove 
a Grunwald-Wang type result stating that an arbitrary collection of 
fibers may be realized by a global cover. 

§1. Introduction 

The fact that finite graphs may be viewed as discrete Riemann sur
faces has appeared in a variety of contexts, and this analogy has con
nections to arithmetic geometry, tropical geometry, and cryptography. 
Baker and Norine [2] introduced harmonic morphisms as the correct 
graph-analogue of holomorphic maps and derived a harmonic Riemann
Hurwitz formula. They also studied hyperelliptic graphs: finite graphs 
of genus at least 2 possessing an involution such that the quotient mor
phism is harmonic with target a tree. In [3] we furthered this line of 
thought by introducing the notion of a harmonic group action on a fi
nite graph, and determined sharp linear genus bounds on the maximal 
size of such actions. The main result of [3] is a graph-analogue of the 
Accola-Maclachlan [1], [6] and Hurwitz [5] genus bounds for holomorphic 
group actions on compact Riemann surfaces. 

Our approach in [3] was "top-down" in the sense that we began with 
a finite graph Y and searched for groups G acting harmonically on Y, our 
main tool being the Riemann-Hurwitz formula applied to the harmonic 
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quotient morphism Y-+ G\Y. But Galois theory (whether for Riemann 
surfaces, algebraic curves, schemes, topological spaces, etc.) generally 
proceeds in a "bottom-up" fashion, fixing a base object X, and studying 
a distinguished class of "covers" of X with the goal of classifying these 
covers by means of a suitable fundamental group (see [8] for a broad 
overview). In the case of Riemann surfaces (and more generally algebraic 
curves), this approach succeeds in classifying branched covers in addition 
to etale covers. The aim of this paper is to develop such a harmonic 
Galois theory for finite graphs, and our basic goal is as follows: given a 
finite graph X, a subset B C V(X), and a finite group G, to describe as 
precisely as possible the harmonic G-covers of X branched only at B. In 
Section 6, we present such a description in the form of a Grunwald-Wang 
type theorem (Theorem 6.2). 

As observed in Section 4.1 of [3], arbitrary finite groups occur as 
inertia groups of harmonic branched covers of graphs, unlike the case of 
Riemann surfaces where all inertia is cyclic. Moreover, while horizontal 
ramification for graphs corresponds nicely to the ramification of Rie
mann surfaces, there is no analogue of vertical ramification in the classi
cal context. In light of these differences, we wish to promote the idea that 
graphs are actually analogous to smooth proper algebraic curves over a 
perfect non-algebraically closed field. If C -+ D is a degree-n etale cover 
of such curves, then a scheme-theoretic fiber Cx may have fewer than 
n points provided there is an extension of residue fields. If the cover 
is Galois, this corresponds to the presence of non-trivial decomposition 
groups with trivial inertia groups. Analogously, if Y -+ X is a harmonic 
G-cover of finite graphs with only vertical ramification, then each fiber 
Yx has IGI vertices, but the vertical ramification produces fewer than 
IGI connected components, and the stabilizers of these components play 
the role of decomposition groups. Motivated by this analogy, we will 
refer to horizontally unramified harmonic maps as graph-theoretic etale 
covers (see Definition 2.13). 

Another difference between graphs and Riemann surfaces is that 
there is no full harmonic automorphism group of a finite graph. More
over, if Y-+ X is a harmonic morphism, then there may exist two non
isomorphic subgroups G 1 , G2 ::; Aut(YIX) such that the natural maps 
Gi \Y-+ X are isomorphisms (see Examples 2.9, 2.10). This means that 
we must specify the G-action on Y as an X -graph as part of the data of 
our branched covers. We introduce the relevant categories of G-covers 
in Definitions 2.11-2.14 after reviewing the notion of harmonic group 
action from [3]. 

This paper began as a lecture delivered during the RIMS-Camp
Style Seminar "Galois-theoretic Arithmetic Geometry" held in Kyoto, 
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Japan (October 19-24, 2010). The author thanks the organizers as 
well as the referee who provided many valuable comments. In addition, 
the author was supported by National Science Foundation grant DMS-
1044746 for travel and conference expenses. 

1.1. Terminology and notation 

The term graph will always refer to a finite multi-graph without loop 
edges. This means that two vertices of a graph may be connected by 
multiple edges, but no vertex has an edge to itself. While these are the 
main objects of interest, multi-graphs with (possibly infinitely many) 
loops will play an auxiliary role in our constructions. We will refer 
to these more general graphs as loop-graphs to avoid confusion. For a 
(loop)-graph X, we denote by V(X) and E(X) the vertex- and edge
sets of X respectively. For x E V(X), the subgraph of X induced by 
the edges incident to xis denoted x(1), and should be thought of as the 
smallest neighborhood of x in X. To be explicit, the vertices of x(1) are 
x together with the vertices of X adjacent to x, and the edges of x(1) are 
those of X incident to x. The genus of a connected graph X is the rank 
of its first Betti homology group: g(X) = IE(X)I- IV(X)I + 1. As in 
[2], [3], this language is chosen to emphasize the analogy with Riemann 
surfaces, despite the fact that the quantity g(X) is more commonly called 
the cyclomatic number of X by graph theorists, who use the term genus 
for a different concept (i.e. the minimal topological genus of a surface 
into which X may be embedded). 

§2. Harmonic group actions 

We begin by recalling the definition of a harmonic morphism be
tween graphs and some related terminology from [2]. Note that in the 
following definition, we allow the graphs to be disconnected. 

Definition 2.1. A morphism of graphs ¢ : Y -+ X is a function 
¢: V(Y) U E(Y)-+ V(X) U E(X) mapping vertices to vertices and such 
that for each edge e E E(Y) with endpoints y1 "1- y2 , either ¢(e) E E(X) 
has endpoints cp(yi) "1- ¢(y2), or ¢(e) = ¢(yl) = ¢(y2) E V(X). In 
the latter case, we say that the edge e is ¢-vertical. ¢ is degenerate 
at y E V (Y) if ¢(y(1)) = { ¢(y)}, i.e. if ¢ collapses a neighborhood 
of y to a vertex of X. The morphism ¢ is harmonic if for all vertices 
y E V(Y), the quantity l¢-1 (e') n y(1)1 is independent of the choice of 
edge e' E E(¢(y)(1)). 

In Section 3, we will need to consider morphisms between loop
graphs (see Section 1.1), which for completeness we now define explicitly. 
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The key point is that whereas graph morphisms must contract an edge 
whose endpoints are mapped to the same vertex, loop-graph morphisms 
can send such an edge to a loop. 

Definition 2.2. A morphism of loop-graphs 'lj;: W-+ Z is a func
tion 'lj;: V(W) U E(W) -+ V(Z) U E(Z) mapping vertices to vertices and 
such that for each edge e E E(W) with endpoints w1, w2, either 'lj;(e) E 

E(Z) has endpoints 'lj;(w1), 'lj;(w2), or 1/J(e) = 'lj;(wl) = 'lj;(w2) E V(Z). 

Definition 2.3. Let ¢ : Y -+ X be a harmonic morphism between 
connected graphs. If IV (X) I > 1 (i.e. if X is not the point graph*), then 
the degree of the harmonic morphism ¢ is the number of pre-images in 
Y of any edge of X (this is well-defined by [2], Lemma 2.4). If X = * is 
the point graph, then the degree of¢ is defined to be IV (Y) I, the number 
of vertices of Y. 

In [2], the authors define the degree of any harmonic morphism to 
the point graph * to be zero. Since such morphisms play a central 
role in our theory, we need to alter this convention as in Definition 2.3, 
especially in the context of vertex-transitive group actions on graphs 
(see Example 2.8). Note, however, that according to our definition, a 
constant harmonic morphism to a connected graph with more than one 
vertex still has degree zero, as in [2]. 

Definition 2.4. Suppose that C :::: Aut(Y) is a (necessarily finite) 
group of automorphisms of the graph Y, so that we have a left action 
C x Y-+ Y of C on Y. We say that (C, Y) is a faithful group action 
if the stabilizer of each connected component of Y acts faithfully on that 
component. Note that this condition is automatic if Y is connected. 

Given a faithful group action (C, Y), we denote by C\Y the quotient 
graph 1 with vertex-set V ( C\ Y) = C\ V (Y), and edge-set 

E(C\Y) = C\E(Y)- {Ce I e has endpoints Yl, Y2 and Cy1 = Cy2}. 

Thus, the vertices and edges of C\Y are the left C-or bits of the vertices 
and edges of Y, with any loop edges removed. There is a natural mor
phism ¢c : Y-+ C\Y sending each vertex and edge to its C-orbit, and 
such that edges of Y with endpoints in the same C-orbit are ¢c-vertical. 

The observation that the quotient morphism ¢c need not be har
monic in general led us to introduce the notion of a harmonic group 
action in [3]. 

1The notation Y/G is used for the quotient graph in [2] and [3]. We have 
chosen the notation G\Y as in [8] to emphasize the left action of G on Y. 
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Definition 2.5. Suppose that (G, Y) is a faithful group action. 
Then (G, Y) is a harmonic group action if for all subgroups H < G, 
the quotient morphism ¢ H : Y --+ H\ Y is harmonic. 

The original definition ([3], Definition 2.4) included a non-degeneracy 
requirement for harmonic morphisms; we explictly relax that require
ment in the present paper. Nevertheless, the following proposition shows 
that only a very specific type of degeneracy is possible for harmonic 
group actions with connected quotients. See Example 2.8 for an illus
tration. 

Proposition 2.6. Suppose that ( G, Y) is a harmonic group action 
such that G\ Y is connected. If the quotient morphism ¢c : Y --+ G\ Y 
is degenerate, then G\ Y is the point graph *. 

Proof. Suppose that ¢c is degenerate at y E V(Y), and set x = 
¢c(y). Then ¢c is degenerate at every vertex of the fiber Yx. But then 
¢(/(e)= 0 for every edge e E E(x(l)). Since ¢cis surjective, it follows 
that E(x(l)) = 0. Connectivity then implies G\Y = *· Q.E.D. 

Proposition 2.5 of [3] provides a criterion for a group action on a 
connected graph to be harmonic and non-degenerate, and a small mod
ification of the proof shows that the following version holds for possibly 
degenerate harmonic group actions on possibly disconnected graphs. 

Proposition 2.7. Suppose that (G, Y) is a faithful group action. 
Then ( G, Y) is a harmonic group action if and only if for every vertex 
y E V(Y), the stabilizer subgroup Gy acts freely on the edge-set E(y(l)). 

An equivalent way of stating the previous criterion is that ( G, Y) 
is harmonic if and only if the stabilizers of directed edges are trivial. 
Note, however, that a non-directed edge e can be fixed by some element 
T E G, provided that T switches the endpoints of e. But then T 2 fixes the 
directed edge e, forcing it to be the identity. Similarly, if T 1 is another 
involution flipping e, then TT1 fixes the directed edge e, forcing T = T 1. 

This shows that non-trivial edge-stablizers of harmonic group actions 
have order 2. If all edge-stabilizers are trivial, then we say that the 
harmonic group action is unfiipped. 

We now describe a simple procedure that produces an unflipped 
harmonic group action from an arbitrary harmonic group action (G, Y). 
If e is a flipped edge in (G, Y), then by the orbit-stabilizer theorem, the 

orbit Ge has 1~1 elements. Doubling each of the edges in Ge yields a new 
graph Y' containing Y as a subgraph. Moreover, G acts harmonically 
on Y' in such a way that e is unflipped. Repeating this construction for 
any remaining flipped edges ultimately produces an unflipped harmonic 
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group action (G, Y). Moreover, the graph Y is minimal with respect 
to the property that Y is obtained from Y by adding edges. In this 
way we see that every harmonic group action (G, Y) corresponds to a 
unique unflipped action ( G, Y), called the unflipped model of ( G, Y). 
Conversely, given an unflipped action ( G, Y), it is straightforward to 
recover all pairs ( G, Y) whose unflipped model is ( G, Y) by looking at 
the way conjugacy classes of involutions in G act on Y. Thus, there is 
no loss in restricting attention to unflipped harmonic group actions; the 
fact that such actions are fixed-point free away from the vertices (when 
viewed as maps of topological spaces) will be essential to our analysis in 
Section 3. 

The following central example explains our desire to weaken the 
definition of harmonic group action as in Definition 2.5 by removing the 
requirement of non-degeneracy. 

Example 2.8 (Cayley graphs). Let G be a finite group, and S = 
{ Ji} a finite symmetric multi-set of elements of G. Thus, the elements of 
S may occur with multiplicity, and S is stable under inversion of group 
elements. We define a (possibly disconnected) Cayley graph Cay(G, S) 
with vertex set G as follows: for each Ji E S, and each vertex g E G, 
there is an edge connecting g to gbi. Moreover, if Ji # 6i 1 , we identify 
this edge to the edge connecting gbi to g = g6i6i 1 corresponding to 
bi 1 E S. We do not identify edges corresponding to involutions in S. 
The graph Cay( G, S) will be connected precisely when G is generated 
by the subset S. In any case, Cay( G, S) supports a natural unflipped 
G-action given by left multiplication in G. Since the vertex stabilizers 
are trivial, Proposition 2. 7 shows that the a"ction is harmonic. It is also 
vertex-transitive, so the quotient graph is a single point, and the quotient 
morphism ¢c : Cay( G, S) ~ * is degenerate. The degree of ¢c is IGI 
according to Definition 2.3. 

Example 2.9 (A Cayley graph on 6 3 ). Consider the symmetric 
group 63 = (O",T I 0"3 = T 2 = E,O"T = T0" 2 ), together with the generating 
set S = { O", 0"- 1 , T}. The Cayley graph Cay( 6 3 , S) is shown below: 

IJ"T 
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The single horizontal edges correspond to the pair { u, u-1 } c S, while 
the double vertical edges correspond to the involution T E S. The 6 3 -

action is given by left multiplication on the labeled vertices. 

Example 2.10 (A Cayley graph on Z/6Z). Consider the cyclic 
group Z/6Z = (a I o:6 = c), together with the generating set S = { o:2, 
o:- 2 , a 3 }. The Cayley graph Cay(Z/6Z, S) is shown below: 

0:5 

~'~o 
E~o:4 

The single horizontal edges correspond to the pair {o:2,o:-2} c S, while 
the double vertical edges correspond to the involution a 3 E S. The Z/6Z
action is given by left multiplication on the labeled vertices. 

These examples show that the same graph Y may be a Cayley graph 
for two different groups. In particular, the group G cannot be recovered 
from the quotient morphism ¢0 : Y --t *· This phenomenon has nothing 
to do with the target being a point: a harmonic group action ( G, Y) is 
not in general determined by the quotient morphism Y --t G\ Y. For an 
example where the target is a segment (rather than a point), consider 
the "cone" on the graph in Examples 2.9 and 2.10: 

The 6 3 and Z/6Z-actions from the examples extend to this graph, and 
both actions yield the same quotient morphism to a segment, so the 
group cannot be recovered from the quotient morphism alone. Hence, 
we study harmonic G-covers of a connected graph X as defined below, 
rather than "Galois covers" of X. Note that in the following definition 
and throughout the rest of the paper the G-covers under consideration 
are required to be connected; this corresponds to the fact that Galois 
covers in topology are connected by definition. 

Definition 2.11. Let Harm be the category with objects 

{(G, Y, y) I (G, Y) unfiipped harmonic action, Y connected, y E V(Y)}, 
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and morphisms 

HomHarm((G, Y, y), (G', Y', y')) := 

{(cp: G-+ G',f: (Y,y)-+ (Y',y')) I cp(g)f(a) = f(ga) Vg E G,a E Y}. 

Here cp is a homomorphism of groups, f is a harmonic morphism of 
pointed graphs, and a runs over both the vertices and edges of Y. 

The category CG of pointed connected graphs with harmonic mor
phisms embeds fully into the category Harm by sending (X, x) to the 
trivial action ( {idx }, X, x ). Using this identification, we define the cat
egory Harmcx,x) of harmonic G-covers of X as follows. 

Definition 2.12. Let (X, x) be a pointed connected graph. Then 
define Harm(x,x) to be the full subcategory of the slice category of Harm 
over (X, x) with objects 

{f: (G, Y,y)-+ (X,x) 17: G\Y-+ X is an isomorphism}. 

Definition 2.13. Suppose that f: (G, Y,y)-+ (X,x) is a harmonic 
G-cover of X, and w E V(Y). The decomposition group ~w at w is 
the stabilizer of the connected component of the fiber Yf(w) containing w. 
The inertia group Iw at w is the stabilizer subgroup of w in G. Note that 
Iw ::; ~w, and the decomposition /inertia groups form conjugacy classes 
in G as w varies over the fiber Yf(w). We say that f is horizontally 
unramified or etale at w if I w = { E}' and the cover f is etale if it is 
etale at all wE V(Y). If ~w = {c} (resp. Iw =G) we say that f(w) is 
totally split (resp. totally ramified) in Y. 

As mentioned in the Introduction, our definition of decomposition 
and inertia groups is motivated by the theory of algebraic curves over 
perfect non-algebraically closed fields. If C -+ D is a degree-n Galois 
cover of such curves, then the fiber Cx over a point x E D may have 
fewer than n points for two different reasons: ramification and extension 
of residue fields. Moreover, the relationship between these two possibili
ties is captured by the decomposition and inertia groups. For y E Cx, the 
decomposition group at y is defined to be the stabilizer subgroup of y in 
Gal( CID), while the inertia subgroup is defined to be the subgroup of the 
decomposition group that acts trivially on the residue field at y. Rami
fication corresponds to a nontrivial inertia group, while an extension of 
residue fields corresponds to the inertia being a proper subgroup of the 
decomposition group. Of course, over an algebraically closed field like C 
(corresponding to the case of Riemann surfaces), no residue field exten
sion is possible, and the decomposition and inertia groups are identical. 
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By analogy, our graph-theoretic definitions are motivated by the idea 
that the connected components of the fiber Yf(w) are the "points" of the 
fiber, which allows for a new perspective on the phenomena of "vertical 
ramification": it is not ramification at all, but rather the graph-theoretic 
analogue of an extension of residue fields. Since etale (i.e. unramified) 
covers of curves are classified by the algebraic fundamental group, our 
analogy suggests that etale G-covers of graphs should be classified by a 
suitable fundamental group (see Section 3.1). 

Definition 2.14. For a pointed connected graph (X,x), we denote 

by Etcx,x) the full subcategory of Harmcx,x) consisting of etale G-covers 
of X. 

2.1. Spanning trees 

A Riemann surface of genus g is given by specifying a complex struc
ture on the unique orientable topological surface of genus g. In the 
case of graphs, the best we can say is that every connected graph X of 
genus g is homotopy equivalent to the rose R9 consisting of one vertex 
with g loop edges. Such a homotopy equivalence induces an isomor
phism 1r1 (X) ~ 1r1 ( R9 ) ~ F9 , the free group on g generators, thereby 
yielding a concrete description of unramified covers of X. But a homo
topy equivalence X -+ R9 will generally collapse many vertices of X to 
the unique vertex of R 9 , thereby destroying the notion of distinguished 
branch points. Moreover, whereas in the case of Riemann surfaces we can 
capture the branching by puncturing the surface, the analogous strat
egy for graphs fails. Indeed, puncturing a surface adds a free generator 
to the fundamental group (explaining why all inertia is cyclic), while 
removing a vertex from a graph will (if anything) decrease the size of 
the fundamental group by killing off cycles. As we will see, rather than 
puncturing a surface to allow for ramification above a branch point, we 
will add a countably infinite wedge of loops at a vertex of X to allow for 
"vertical ramification" (which we have argued above should be thought 
of as analogous to an extension of residue fields rather than a type of 
ramification). But this realization, while important, doesn't change the 
fact that any fundamental group that hopes to classify harmonic covers 
will need to see the difference between vertices of X. 

Our solution to this problem is to choose a spanning tree T c X, 
so that X may be thought of as the tree T together with the extra 
structure of a multi-set of g pairs of vertices specifying the edges of 
X- T. Of course, the spanning tree T is not uniquely determined by 
X. Indeed, it is exactly this lack of uniqueness that forces us to fix a 
spanning tree T C X in the subsequent development. The importance 
of fixing the spanning tree T for the pointed graph (X, x) comes from 
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the following observation: iff : (Y,y) --+ (X,x) is a non-degenerate 
harmonic morphism, then the tree T lifts (non-uniquely) to a tree Tin 
Y containing y. Iff is horizontally unramified, then the lifting is unique. 
In any case, the tree T determines a vertex section V (X) --+ V (Y) to 
the map j, which we will denote by z 1--t z. 

§3. The etale fundamental group 

Fix a connected pointed graph (X, x). In this section we describe 
the category Et(X,x) by means of a suitable fundamental group, which 
we will call the etale fundamental group of the pointed graph (X, X) 
and denote by 1r~t(X,x). The upshot, as described more fully in the 
next section, is that the structure of this fundamental group provides 
a concrete description of the etale G-covers of X. Namely, we will see 
that to give a pointed etale G-cover (G, Y,y) --+ (X,x) is to give a 
homomorphism 1r1 (X,x) --+ G (i.e. a pointed, topological G-cover of 
X) together with a finite, symmetric, unordered multi-set of nontrivial 
elements of G at each vertex of X. Before embarking on the construction 
of the etale fundamental group, we briefly describe the steps of the 
argument as an aid to the reader: 

(1) Associate to each etale G-cover of X a Galois topological cover 
of a loop-graph Xn. 

(2) Show that this association yields an isomorphism between a 
certain subcategory of etale G-covers Etcx,x) (n) and a category 
of Galois topological covers of Xn. 

(3) Take the direct limit to obtain an isomorphism between Et(x,x) 

and a category of Galois topological covers of a loop-graph X 00 . 

( 4) Use the theory of fiber functors to obtain a profinite group 
classifying the appropriate Galois topological covers of X 00 • 

For an overview of the use of fiber functors in Galois theory, 
see [8]. 

As described in Section 2.1, we fix a spanning tree T C X once and for 
all. 

Step 1: Given an object f: (G, Y, y)--+ (X,x) ofEtcx,x)' let G\Y denote 
the uncontracted quotient, which may have loops. We have the following 
commutative diagram, where X f is a loop-graph obtained from X by 
adding finitely many loops at each vertex, J is an isomorphism extending 
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f, and the bottom vertical arrows are loop contractions: 

y y 

1 1 
G\Y ~ Xt 

1 1 
G\Y ~ X. 

Note that the isomorphism j is unique up to a permutation of the loops 
of Xf, i.e. up to the action of the "loop group" Lt := flzEV(X) 6nz on 
Xf, where 

nz number of loops at the vertex z E X f 
--1 ~ 

number of loops at the vertex f (z) E V(G\Y). 

We thus obtain a map Y ---+ X f, uniquely defined up to the action of 
L 1. Note that this map is purely combinatorial, but may be viewed as 
a topological G-cover of !-dimensional CW complexes once we choose 
an orientation for each loop of X f. Hence, the topological G-cover Y ---+ 
X f is defined up to the action of the "topological loop group" T L f := 

flzEV(X) (Z/2Ztz >1 Lf, where the elementary abelian 2-groups account 
for the choice of orientations. 

Now choose n :::0: max{nz I z E V(X)}, and let Xn be the loop-graph 
obtained from X by adding n loops at each vertex. We have a surjective 
contraction map Xn ---+ X f, which is well-defined up to the action of 
the topological loop group TLn on Xn. Pulling back Y ---+ Xf over 
this contraction map yields a topological G-cover Yt ---+ Xn, which is 
well-defined up to the action ofT Ln on Xn. This fits into the previous 
diagram as follows: 

y y +------- Yt 

1 1 1 
G\Y ~ Xt +------- Xn 

1 1 
G\Y ~ X. 

To illustrate, consider the following Z/2Z-cover: 
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y~ 0 
1 

X 

Applying the foregoing construction yields the following picture corre
sponding to the right side of the previous commutative diagram: 

X 

Step 2: Let Et(x,x)(n) be the full subcategory of Et(x,x) consisting of 
maps f: (G, Y,y)--+ (X,x) such that Xf has at most n loops at each 
vertex, hence is dominated by the graph Xn as above. Our construction 
defines a functor <P: Et(x,x)(n)--+ TLn \GalCov(xn,x), where the latter 
category consists of finite pointed Galois topological covers of (Xn, x), 
considered up to the action of the topological loop group T Ln. We claim 
that <P is an isomorphism of categories. 

Indeed, let (Y,y)--+ (Xn,x) be a Galois topological cover, and set 
G = Aut(YIXn)· Let Y := Y- {loops in Y}, and observe that~) is 

an etale action inducing an isomorphism G\Y--+ X. Moreover, G\Y has 
at most n loops at each vertex. This construction provides an inverse 
functor to <P, and we have established the isomorphism of categories 
Et(X,x)(n) ~ TLn \GalCov(Xn,x)· 
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Step 3: Etcx,x) is the direct limit of the subcategories Etcx,x)(n), so we 
obtain an isomorphism 

Etcx,x)-+ ~TLn \GalCov(xn,x) = TL00 \GalCov(xoa,x)' 
n 

where X 00 = ~n Xn is the graph X with countably-many loops at 

each vertex, TL00 = Tiv(X) ~n ((Z/2Z)n ><1 6n), and GalCov(xoa,x) 
is the category of finite pointed Galois covers (Y, y) -+ (X00 , x) with the 
property that all but finitely many loops of X00 lift to loops in Y. 

Step 4: The fiber functor at x yields an equivalence of categories Fibx : 

-------Covcxoa,x) -+ 7TI (X00 , x)- FPSets, where Covcxaa,x) is the category of 
-------finite pointed topological covers, 1T1 (X00 , x) denotes the profinite com-

pletion of the topological fundamental group 7T1 (Xoo, x), and FPSets 
stands for finite pointed sets. Observe that the spanning tree T C X 
specifies a van Kampen isomorphism 

PT: 7TI(Xoo,x) -=t 1T1(X,x) II II 7TI(Roo), 
V(X) 

where Roo is the rose with countably-many loops, and U denotes the 
coproduct in the category of groups, i.e. the free product. Moreover, 
the group 7T1(R00 ) is free of countable rank, and has a canonical system 
of generators, well defined up to inverses. 

Now (Y, y) -+ (X00 , x) is in Cov(xaa,x) if and only if all but finitely 
many of the loops in X00 lift to loops in Y if and only if all but finitely 
many of the canonical generators of the rose subgroups Pr 1 ( 7T1 (Roo)) 2= 
7T1 (Xoo, x) are in the kernel of the associated monodromy representation. 
It follows that the fiber functor restricts to an equivalence of categories 
Fibx : Cov(xoo,x) -+ F(7Tl(Xoo,x))- FPSets, where F(7TI(Xoo,x)) 
denotes the free profinite completion with respect to the roses, i.e. the 
inverse limit with respect to the system of normal subgroups of finite 
index containing all but finitely many of the canonical generators of the 
rose subgroups pY,1(7TI(R00 )). Define the etale fundamental group of 

(X,x) to be 7Ttt(X,x) := F(7TI(X00 ,x)). 
The preceding equivalence descends to an equivalence between the 

quotient categories under the actions of T L 00 : 

Note that Fibx transforms the left action of T L 00 on covers into a right 
action on sets. Since finite Galois covers correspond to the coset spaces 
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of open normal subgroups, we have an equivalence of categories 

TL 00 \GalCov(xoo,x) ~ TL00 \OpNorntt(X,x)' 

where the objects of the latter category are the orbits of the open normal 
subgroups of 7fft (X, x) under the left action ofT L 00 , and the morphisms 
are given by 

if CYN C N' for some CY E TL00 , 

otherwise. 

But this category is in turn equivalent to FinSurj(Kft(X, x))/TLoo of 
T L 00-orbits of surjections onto finite groups, where the Hom-sets are 
either empty or singletons as before. Putting all of this together, we 
obtain an equivalence of categories which we record in the following 
theorem. 

Theorem 3.1. There exists an equivalence of categories 

where the topological loop group T L 00 acts on the right by pre-composition 
with homomorphisms from 1fft(X, x). 

§4. Concrete description of etale G-covers 

We now utilize the equivalence of Theorem 3.1 to provide a concrete 
description of etale G-covers of a connected pointed graph (X, x). Recall 
from the previous section that the spanning tree T C X provides a van 

Kampen isomorphism PT : Kft(X, x) ~ K~) llllv(X) F(Kl(Roo)). 
Moreover, the group F(K1 (R00 )) is isomorphic to the free profinite com
pletion of the free group on countably many generators, i.e. the inverse 
limit with respect to the system of normal subgroups of finite index 
containing all but finitely many of the generators. 

By Theorem 3.1, to give a pointed etale G-cover (G, Y, y)-+ (X, x) is 
to give a surjective homomorphism from 7fft(X, x) onto G, considered up 
to pre-composition with elements ofT Loo. But via the isomorphism pr, 
such a homomorphism is the same as a homomorphism K 1 (X,x)-+ G 
(yielding a topological G-cover of X) together with a finite multi-set of 
nontrivial elements of G for each vertex of X, and the T L 00-action means 
that these multi-sets are symmetric and unordered. Clearly, the homo
morphism from 7fft (X, x) will be surjective exactly when the image of the 
homomorphism from 7f1 (X, x) together with the union of the multi-sets 
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generate G. If Sz = { Ji} is the multi-set attached to z E V(X), then 
the fiber ( G, Yz, z) of the corresponding G-cover is isomorphic to the 
Cayley graph Cay(G, Sz) (see Example 2.8). Here, z denotes the vertex 
of Yz determined by the unique lifting T of the tree T C X to (Y, y) (see 
Section 2.1). Moreover, the decomposition group at z is the subgroup 
~z generated by Sz (see Definition 2.13). If ~z is a proper subgroup of 
G, then the disconnected fiber (G, Y2 ,z) is obtained by induction from 
a connected Cayley graph on ~z: 

(G, Yz, z) '?=' Ind~zCay(~z, Sz)· 

Thus, we see that an etale G-cover of X is a family of Cayley graphs 
on G over the base X. The case of a topologically unramified cover 
corresponds to a family of trivial Cayley graphs on G, each with vertex 
set G and no edges. If we ignore basepoints in our covers, then an 
etale G-cover of X corresponds to a surjection from 1rft(X, x) onto G, 
considered up to inner automorphisms of G. Hence, to give such a 
cover is to give the data described above, up to uniform conjugation by 
elements of G. 

§5. Branched G-covers and inertia structures 

We now extend our classification to arbitrary harmonic G-covers of 
X. For this, fix a finite group G, and consider the full subcategory 
Harm(x,x) of Harm(x,x) consisting of G-covers of X for the particular 
group G. 

Definition 5.1. A G-inertia structure on X is a collection of sub
groups I= {Iz :<:: G I z E V(X)}. 

If (G,Y,y)-+ (X,x) is an etale G-cover, then as explained in the 
preceding section, each fiber ( G, Yz, z) is canonically isomorphic to a 
Cayley graph Cay(G, S2 ). In particular, we have a canonical identifi
cation V(Yz) = G, which defines a right action of the subgroup Iz on 
V(Yz), given by right multiplication of Iz on G. Let Y 1z be the graph 
obtained from Y by identifying the right orbits of Iz on V(Yz), and delet
ing any resulting loops. Then G acts harmonically on Y 1z with quotient 
X and inertia Iz at the image z' of z in Y 1z. Collapsing all of the 
fibers in this way, we obtain a harmonic G-cover (G, yi,y')-+ (X,x), 
together with a lifting i'I C yi of the tree T C X, given by the image 
of the unique lifting T C (Y, y). By construction, the inertia group at 
z' E V(YI) is the given subgroup Iz E I. 

We thus have a functor 

I ' G G C(I) 
F : Et(X,x) -+ Harm(JC,x) 
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from the full subcategory of pointed etale G-covers of (X, X) to the 
full subcategory of pointed harmonic G-covers (G,Y,y)---+ (X,x) with 
inertia groups given by the conjugacy classes C(I) := { c(Iz) I z E V(X)} 
such that the inertia group at y is Ix. 

Proposition 5.2. Every object of Harm~x~~T) is in the image of a 

functorFi where I= {gzfzg; 1 I z E V(X)-{x}}U{Ix} is a pointwise 
conjugate of 'I away from x. 

Proof. Let f : ( G, Y, y) ---+ (X, x) be a harmonic G-cover with in
ertia given by the conjugacy classes C(I) such that Iy = Ix. Choose 
a lifting T C (Y, y) of T c X, which defines a G-inertia structure 
i = {fz I z E V(X)} E C(I) on X. For each z E V(X), we have 
an isomorphism of left G-sets G / fz ---+ V (Yz) defined by sending g ]z to 
gz. Moreover, since the G-action is harmonic, the inertia group fz acts 
freely on the edges adjacent to z in Yz, so those edges may be labeled 
by a multi-set S z := {fz6J.z} of left fz-orbits of left cosets of fz. Here 
we must count appropriately: not only can each orbit appear more than 
once (accounting for multiple edges), but every orbit corresponds to II.zl 
edges. 

Observe that if e E E(Yz) connects fz to 6]z, then the edge J- 1e 
connects fz to J- 1 ]z. This implies that the multi-set Sz is symmetric: 
the multiplicity of I.z6J.z in Sz is the same as the multiplicity of I.z6i 1 ]z. 

Of course, it is possible that I.z6J.z = fz6i 1 fz for some i, but the multi
plicity of such a self-inverse orbit in S z is automatically even since the 
G-action is unftipped. Indeed, for a self-inverse orbit, we may choose 
a representative 6 so that JJ.z = J- 1 I.z. If e connects I.z to 6]z, then 
so does the distinct edge 6e. But then the two orbits ]ze and ]z6e are 
distinct and together contribute 2 to the multiplicity of IzJiz in Sz. 

The symmetry of S z allows us to define a symmetric multi-set of 
elements from G, given by Sz := Ui{ Ji, <5; 1 }, where for each inverse 
pair of orbits from S z, we have chosen an inverse pair of representatives. 
Note that if the orbit fz6ifz can be represented by an involution Ji, 
then it is self-inverse, and occurs with even multiplicity by the previous 
paragraph. In this special case, we take each pair of orbits fzilifz to 
contribute one copy of the involution Ji to Sz. 

Next, we choose a finite set of edges { ~j} adjacent to z in Y- Yz such 
that f- 1 (E(z(l))) is the disjoint union of the G-orbits of the ~j (each 
of which has size IGI since the action is harmonic). Furthermore, we 
may choose the ~j so as to include the edges of the tree T C Y adjacent 
to z. Define a new graph Y' by glueing Y - Yz to the Cayley graph 
Cay( G, Sz U (J.z- { E})) (see Example 2.8) by identifying the vertex g E G 
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with the free endpoint of the edge g~j for all j. The resulting graph Y' 
supports a natural unfiipped harmonic G-action, and the corresponding 
harmonic G-cover ( G, Y') -7 X is etale at z. Repeating this procedure 
for all vertices of X, we finally obtain an etale G-cover of X, which 
we denote by jet : (G, yet, yet) -7 (X,x). The inclusion of the non
identity inertia elements in the Cayley graphs guarantees that yet is 
connected. Here yet is the vertex of Y:ft corresponding to ide in t~e 
Cayley graph construction starting with the inertia group Iy = Ix E I. 
By construction, we have fi(fet) =f. Q.E.D. 

The functors FT are neither full nor faithful. For instance, two etale 
covers that differ by vertical edges corresponding to inertia elements in I 
will be sent to the same harmonic cover by FT. Since our main concern 
in the next section is with existence theorems for harmonic G-covers, this 
will not concern us. We end this section by illustrating the construction 
of Proposition 5.2 via a continuation of Example 2.9. 

Example 5.3 (An 6 3-cover with inertia of order 2). Consider the 
symmetric group 6 3 = (a, T I a 3 = T2 = E, aT = Ta2), acting as the per
mutation group of the double-sided triangular graph pictured below. (We 
have doubled the edges to permit an unfiipped action.) As in the proof 
of Proposition 5.2, the vertices have been labeled by the lejt-cosets of the 
inertia group (T). 

Following the proof of Proposition 5.2, the multi-setS contains two or
bits: S = { (T) a (T), (T) a 2 (T)}, from which we obtain the multi-set 
S = {a, a 2 } = {a, a-1 }. In order to obtain a connected etale group 
action, we construct the Cayley graph Cay( 63, S U { T}) shown below, 
which gives an etale 6 3 -cover of the point-graph * as described in Ex
ample 2.9. 

T~u'T 
E~a2 

Applying the functor F(T) to this cover yields the original <53 -action on 
the double-sided triangle. 
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§6. Embedding problems and a Grunwald-Wang theorem 

In this section we consider embedding problems for finite graphs 
(see [4] Section 5.1 for more on embedding problems in the context 
of function fields of curves). The following theorem states that finite 
embedding problems for graphs always have proper solutions, with good 
control over the branch locus. 

Theorem 6.1. Suppose that f: (G, Y, y) -f (X, x) is a connecter£2 
harmonic G-cover, and consider an exact sequence of finite groups 

1 -f K -f G' -4 G -f 1. 

Then there exists a connected harmonic G' -cover of (X, x) dominating 
f via the group homomorphism p. If f is etale, then there exists a 
dominating etale G' -cover. Moreover, if the branch locus (horizontal 
and vertical) off is nonempty, then there exists a dominating G' -cover 
with the same branch locus as f. 

Proof. By Proposition 5.2 (and its proof), there exists a connected 
etale G-cover J''t : ( G' yet' yet) -f (X, X) and a G-inertia structure 
I on (X, x) such that f = FT(fet). Furthermore, by Theorem 3.1, 
the cover fet corresponds to a surjection ¢ : 1rtt (X, x) -f G (up to 
the action of T L=), and we wish to lift ¢ through p to a surjection 
¢': 1rtt(X,x) -f G'. Such a lifting always exists since 1rtt(X,x) is 
free profinite of countably-infinite rank (see Section 4). Each such 
lifting (up to the action of T L=) yields a connected etale G' -cover 
j' et : ( G', y' et, y' et) -f (X, x) dominating fet via p. Moreover, assuming 
that Y -f X is not a topologically unramified cover, we can choose the 
lifting ¢' so that points of X that are totally split in yet remain totally 
split in y' et. 

Now let I' be any G'-inertia structure on (X, x) with the prop
erty that p(I~) = lz E I for all z E V(X). Such an inertia struc
ture always exists: take I':= p-1 (I) for instance. Set (G',Y',y') := 
FT' ( G', y' et, y' et), and observe that this connected harmonic G' -cover 
dominates the G-cover (G,Y,y). In the case where I':= p-1 (I), note 
that every point of Y is totally ramified in Y'. At the other extreme, 
if there exists a section O" : G -f G' to p, then taking I' := O"(I) 
yields an etale K-cover Y' -f Y. Of course, if the point z E V(X) 
is horizontally unramified in Y -f X, then Iz = {ide}, and we can 

2In this section we consistently emphasize the connectedness of the cov
ers, even though this is redundant given our definition of harmonic G-covers in 
Section 2. 
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always choose I~ = {ida,}, so that z is still horizontally unramified in 
Y'--+ X. Q.E.D. 

Given a finite group G and a connected graph X, it is easy to con
struct a connected etale G-cover of X: start with JGI disjoint copies 
of X (labeled by the elements of G), and connect them with vertical 
fibers given by connected Cayley graphs Cay(G, S) (see Example 2.8). 
But our analysis shows much more than an affirmative answer to this 
existence problem for etale G-covers of graphs. As motivation, recall the 
Grunwald-Wang theorem concerning abelian extensions of a global field 
k (see [7]): let S be a finite set of primes of k, and let A be an abelian 
group. For each p E S, let Kp Jkp be an abelian extension ofthe comple
tion kp with Galois group isomorphic to a subgroup of A. Then (except 
in one special case), there exists an A-Galois extension KJk inducing the 
given local extensions Kp Jkp for all p E S. For graphs we have: 

Theorem 6.2. Let X be a finite connected graph of genus g, B c 
V(X) a subset of vertices, and G a finite group. For each b E B, let 
( Gb, Yb) --+ b be a connected harmonic Gb-cover of the point b, where Gb 
is isomorphic to a subgroup of G. For each bE B, choose an embedding 
'Pb : Gb '---+ G, and let G(B) be the subgroup of G generated by the 
images 'Pb(Gb) forb E B. Assume that G = (G(B),"'fl, ... ,"'f9 ) for 
some elements "Yi E G. Then there exists a connected harmonic G-cover 
(G, Y) --+ X, totally split outside of B, such that for each b E B, the 
fiber ( G, Yb) --+ b is isomorphic to the G-cover of b induced by the given 
Gb-cover (Gb, Yb)--+ b. 

Proof. For each b E B, we are given a transitive, harmonic Gb
action (Gb, Yb, Yb), where we have chosen a point Yb E V(Yb)· By Propo
sition 5.2 and Theorem 3.1, these actions correspond to inertia groups 
h C Gb and multi-sets {8}b)} c Gb. Via the embeddings 'Pb, we may 
view everything in the group G. Since X has genus g, there exists a 
homomorphism 1r1 (X, x) --+ G defined by sending a free basis to the 

elements "Yi. This homomorphism together with the multi-sets { 8Y)} 
give a homomorphism 7Ttt(X, x) --+ G, and the inertia groups h give a 
G-inertia structure I on (X,x), where we set Iz ={ida} if z rf_ B. To
gether these define a harmonic G-cover ( G, Y) --+ X, which is connected 
by our assumption on the generation of G. By construction, it is totally 
split outside of B, and the fibers over Bare as required. Q.E.D. 
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