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Solutions for some families of Fuchsian differential 
equations free from accessory parameters in terms of 

the integral of Euler type 

Katsuhisa Mimachi 

An ordinary differential equation of regular singular type defined 
on the Riemann sphere is called the Fuchsian differential equation free 
from accessory parameters or the rigid Fuchsian differential equation, if 
the equation is determined by the set of local data on monodromy, in 
particular, its spectral type. 

About two decades ago, Yokoyama [29] classified such equations 
into eight types, I, II, III, IV, I*, II*, III*, and IV*, under some condi
tions from the viewpoint of the differential equation of Okubo type [23] 
(see also [8]). While the equation of type I is nothing but the gener
alized hypergeometric equation n+lEn and that of type I* the Jordan
Pochhammer equation, the equations of the other types are new ones. 
Concerning the latter cases, very little has been understood: a restric
tion into one variable case of Appel's F3 satisfies the equation II* of rank 
4, the function satisfying the equation II of rank 4 is found in [16], and 
the functions satisfying the equation III* of rank 5 and of rank 7, the 
functions satisfying the equation II* of rank 4 and of rank 6, and the 
functions satisfying the equation II of rank 6 are found in [9]. 

The purpose of the present paper is to give solutions for the equa
tions of types II, III, IV, II*, III*, and IV* in terms of the integral of 
Euler type. 

In this paper, we frequantly use the symbol 

e(A) = exp(2?TV-1A) 

for abbreviation. 
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§1. Fuchsian differential equations free from accessory param
eters 

For a Fuchsian differential equation with regular singular points 
{Pl , · .. , p N, oo}, let 

{>.j,l, >.1,1 + 1, ... , >.1,1 + m1,1, >.1,2, >.1,2 + 1, ... , >.1,2 + m1,2, ... 

. . . , Aj,nj, >.j,nj + 1, ... , >.),nj + m),nj} 

with Aj,k- Aj,l <t Z (k =f. l) be a set of characteristic exponents at Pj for 
j = 1, ... , N and oo. Then ( m1,1, m1,2 , ... , m1,nj) is called the spectral 
type at Pj and 

the spectral type of the equation. For instance, the spectral type of 
the Gauss hypergeometric equation is, under some genericity condition, 
(1, 1; 1, 1; 1, 1) and that of the generalized hypergeometric equation 
n+lEn is, under some genericity condition, (1, 1, ... , 1; 1, n; 1, 1, ... , 1), 

'---v----' '---v----' 
n+l n+l 

which is also denoted by (1 n+l. 1 n · 1 n+l) or (1 n+l. 1 n · 1 n+l) Ac-
' ' ' ' ' ' . 

tually, the generalized hypergeometric differential equation n+lEn is 

where ()z = zd/dz, and its characteristic exponents are 

0,1-,81,1-,82,···,1-,Bn at z=O, 

0, 1, ... , n- 1, L ,Bi - L ai at z = 1, 
1:-:;i::;n l::;i::;n+l 

Thus its spectral type is (1 n+l ; 1, n; 1 n+l) under the genericity condi
tion 

n n+l 
,ai- ,aj rt z, 1 ::; i < j ::; n + 1, 2: ,ai - 2: ai rt z, 

i=l i=l 
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where f3n+1 = 1. 

Similarly, the spectral type of the Jordan-Pochhamer differential 
equation 

where 

Q(z)F(n)- J.LQ'(z)F(n-1) + J.L(J.L + 1) Q"(z)F(n-2)- ... 
2 

- R(z)F(n-1) + (J.L + 1)R'(z)F(n-2)- · · · = 0, 

Q(z) = (z- cl)(z- c2) ···(z-en), 
n 

R(z)/Q(z) = L ajj(z- cj) 
j=1 

is (1, n- 1; 1, n- 1; · · · ; 1, n- 1) under the condition 

11 + aj ¢:_ Z for j = 1, ... , n, and a1 +···+an ¢:_ Z, 

since the characteristic exponents at z = Cj, j = 1, ... , n are 

0, 1, ... , n- 2,11 + n- 1 + aj, 

and those at z = oo are 

Yokoyama's classification of the Fuchsian differential equations ac
cessory parameter free is asserted as follows [29]: 
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rank # of singu- spectral type 
lari ties on IP'1 

I (GHGF) n 3 1n;1,n-1;1n 
I* (Pochhammer) n n-1 1, n- 1; 1, n- 1; 

... ; 1,n -1 
II 2n 3 1n, n; 1n,n; 

1,n-1,n 
II* 2n 4 1n, n; 1n-1, n + 1; 

1, 2n -1;n,n 
III 2n+ 1 3 1n+1, n; 1n, n + 1; 

1,n,n 
III* 2n+ 1 4 1n,n+1;1n,n+1; 

1,2n;n,n+ 1 
IV 6 3 12 ,4;23 ;14 ,2 
IV* 6 4 12 ,4; 12 ,4; 

12 ,4;2,4 

We consider their solutions. 

It is known that the function of the form 

where t0 = 1, tn+l = z and C a suitable cycle, satisfies the generalized 
hypergeometric equation n+lEn, which is the equation of type I. See, 
for instance, [17, 18]. 

It is also known that the function of the form 

(1.2) 

where tn+l = z, Ctn+l = f-l + n and C a suitable cycle, satisfies the 
Jordan-Pochhammer equation, which is the equation of type I*. See, 
for instance, [28]. 

In the remaining sections, we give the solutions for all theequations 
of types II, III, IV, II*, III*, and IV* in terms of the integral of Euler 
type. 

For our purpose, we apply the framework of the twisted homology 
theory developed by Aomoto in these decades [1, 2]. We refer the reader 
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to [3, 14, 19, 20, 21, 22] for more knowledge about the twisted homol
ogy and its application to the integral representation of the solution to 
differential equations. 

§2. The equation of type II 

In this section, let Lz be the locally constant sheaf (the local system) 
determined by a function 

(2.1) u(t) = (tn- to)>.on II tti II (ti- ti+l)>.i,i+l 

l:<;i:<;n O:<;i:<;n 

on 

where t0 = 1 and tn+l = z : the sheaf consisting of the local solutions of 
dL = Lw for w = du(t)ju(t). 

Let Hn(Tz, Lz) be the n-th homology group with coefficients in Lz, 
H!; (Tz, Lz) the n-th locally finite homology group with coefficients in 
£z. 

After fixing the variable z to be a real number satisfying 0 < z < 1, 
the bounded chambers in the real locus TR ofT= Tz are 

(2.2) 

for 1 ~ s ~ n and 

(2.3) 

( 
0 < ts < ts+l < · · · < tn < z, ) 

ts < ts-1 · · · < h < 1 

for 1 ~ s ~ n. Thus it follows from Theorem 5 of [3] that dimH!;(Tz, 
Lz) = 2n under the condition 

>..==tp=···=tq = - L Ak - L Ak-l,k ¢:. Z, 1 ~ p ~ q ~ n - 1, 
p:<;k:<;q p:<;k:<;q+l 

A==tp=···=tn = -Aon- L Ak - L Ak-l,k ¢:. z' 1 ~ p ~ n. 
p:<;k:<;n p:<;k:<;n+l 

Hereafter we denote the exponent of an irreducible component of the 

divisor jj = 7f- 1 (D) by AD, where 7f : o¥1(C))n ---+ (1P'1 (C))n is the 
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minimal blow-up along the non-normally crossing loci of D. If A.v is an 
integer, the irreducible component or the exponent itself is said to be 
resonant. For instance, Aoo=tp=···=to f/- Z means that the exponent of 
n-1{oo = tp = · · · = tq} is not resonant. 

For each i = 0, 1, let '"Yi be a simple loop which starts and ends 
at a base point z for 0 < z < 1 and surrounds only the singular 
point i in counterclockwise direction. It corresponds to a generator of 
1r1 ( C\ { 0, 1}), and induces an action of n 1 ( C\ { 0, 1}) on the family of the 
homology group H~(Tz, .Cz) on C\{0, 1}. 

Fig. 1. 

Considering the action of '"Yo on the chambers (2.3) shows that the 
multiplicity of holomorphic solutions around 0, which correspond to the 
eigenvalue 1, is n; considering the action of '"Yo on the chambers (2.2) 
shows that the eigenvalue 

(2.4) e( L (>..k + Ak,k+l)) 
sS,kS,n 

for each 1 < s ::; n is multiplicity free. Moreover, it is seen that the 
chamber 

( 
0 < ts < ts+l < · · · < tn < z, ) 

1 < t1 < · · · < ts-1 < ts 

gives the eigenvector for the eigenvalue (2.4). 

Similarly, considering the action of '"Yl on the chambers (2.2) shows 
that the multiplicity of the eigenvalue 1 is n- 1, considering the action 
on the chambers (2.3) for 1 ::; s ::; n- 1 shows that the multiplicity of 
the eigenvalue 

e(A.on + A.n,n+l) 

is n- 1, and the action on the chamber (2.3) for s = n shows that the 
multiplicity of the eigenvalue 

e(>..ol + A.on + L Ak,k+l) 
lS,kS,n 
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is free. 

Next, to know the eigenvalues of the action of '/oo = "fo 1"f.[ 1 and 
their multiplicities, we change the variables ti into t; 1 for 1 :::; i :::; n. 
Then we have 

where 

1 :::; i :::; n ~ 1, 

with tn+1 = z-1 and to = 1. After fixing the variable z- 1 to be a real 
number satisfying 0 < z-1 < 1, the bounded chambers are 

for 1 :::; s :::; n and 

for 1 :::; s :::; n. Hence, the multiplicity of the eigenvalue 

is free and that of 

e( ~>-an~ As-1,s ~ L (Ak + Ak,k+l)), 1:::; s:::; n 
s"""k"""n 

1s n. 

Consequently, the spectral type turns out to be (1 n, n; n, n~ 1, 1; 1 n, n) 
under the conditions 

L (>.k + Ak,k+1) ~ Z, (1:::; s:::; l:::; n), 
s"""k"""l 
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which is for the separation of the eigenvalues at 0, 

AQl + Aon + L Ak,k+1 if_ Z, 
1<;k<;n 

Aon + An,n+1 if_ Z, 

AQl + L Ak,k+1 1- z, 
1<;k<::n-1 

which is for the separation of the eigenvalues at 1, and 

Aon + L (>.k + Ak-1,k) if_ Z, 1 :::; s :::; n, 
s<;k<;n 

L (>.k + Ak-1,k) if_ Z, 1 :::; s < l :::; n, 
s<;k<;l-1 

which is for the separation of the eigenvalues at oo. 

As a result, we have 

Theorem 2.1. The function of the form 

1 (tn- to).\on II t;i II (ti- ti+l).\i,i+l dt1 · · · dtn, 
C 1<;i<;n O<;i<;n 

where to = 1, tn+1 = z and C a suitable cycle, satisfies the equation of 
type II, whose rank is 2n. 

§3. The equation of type III 

In this section, let Lz be the locally constant sheaf determined by a 
function 

(3.1) u(t) = (tn- to).\on II t;i II (ti- ti+l).\i,i+l 

1<;i<;n-1 O<;i<;n 

on 

where to= 1 and tn+1 = z. 

For a fixed variable z such that 0 < z < 1, the bounded chambers 
in the real locus TIR ofT= Tz are 

(3.2) ( 
0 < ts < ts+l < · · · < tn < z, ) 

ts < ts-1 · · · < t1 < 1 
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for 1 ::::; s ::::; n (Remark that the latter one for s = n means (z < tn < 
... < t1 < 1)). 

Thus dimH![(Tz, £z) = 2n- 1 under the condition 

Aoo=tp=···=tq = - L Ak - L Ak-1,k rt Z, 1 ::::; P::::; q ::::; n- 1, 
p~k~q p~k~q+1 

Aoo=tp= .. ·=tn = -Aon- L Ak - L Ak-1,k rt z' 1 ::::; p::::; n. 
p~k~n p~k~n+1 

Considering the action of 'Yo on the cycles (3.2) for 1 ::::; s ::::; n- 1 
and (3.3) for 1 ::::; s ::::; n as in Section 2, it is seen that the multiplicity 
of the eigenvalue 

e( L (Ak + Ak,k+l) + An,n+d 
s~k~n-1 

for each 1 ::::; s ::::; n - 1 is free and the multiplicity of the eigenvalue 1 is 
n. 

Similarly, as for the action of "(1 , the multiplicity of the eigenvalue 
1 is n- 1, the multiplicity of the eigenvalue 

e(Aon + An,n+1) 

is n- 1, and the multiplicity of the eigenvalue 

is free. 

e(Ao1 + Aon + L Ak,k+1) 
1~k~n 

As for the multiplicities of the eigenvalues of the action of "(00 , we 
consider 

u(t) = z>.n,n+l (to- tn)>.on II t;f' II (ti+1 - ti)>.i,i+l' 

where 

1::::; i::::; n- 1, 

A~ = -Aon- An-1,n- An,n+1 
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with tn+l = z-1 and to 
eigenvalue 

1. This shows that the multiplicity of the 

e( -Aon- L (Ak + Ak-l,k) - An-l,n - An,n+d 
s$k$n-1 

for each 1 ::::; s ::::; n is free, and the multiplicity of the eigenvalue 

is n- 1. 

Therefore, the spectral type is (1n-I,n;1,n -1,n -1;1n,n -1) 
under the condition 

L (.Ak + Ak,k+d + An,n+l ~ z, 1 ::::; s ::::; n- 1, 
s$k$n-1 

L (Ak + Ak,k+l) ~ Z, 1 ::::; s < l ::::; n - 1, 
s$k$l-1 

which is for the separation of the eigenvalues at 0, 

Am + Aon + L Ak,k+l ~ Z, 
l$k$n 

.Ao1 + L Ak,k+l ~ Z, 
1$k$n-1 

which is for the separation of the eigenvalues at 1, and 

Ao,n + L (Ak + Ak,k+l) + As-l,s ~ z, 1 ::::; s ::::; n, 
s$k$n-1 

L (.Ak + Ak-l,k) ~ Z, 1 ::::; s < l ::::; n, 
s$k$l-1 

which is for the separation of the eigenvalues at oo. 

Finally we reach the following. 

Theorem 3.1. The function of the form 

1 (tn - to)Aon II t;' II (ti - ti+l)Ai,i+l dt1 · · · dtn, 
C 1$i$n-1 O$i$n 
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where to = 1, tn+l = z and C a suitable cycle, satisfies the equation of 
type III, whose rank is 2n - 1. 

It is worthwhile to note that the function (3.1) can be obtained from 
(2.1) by the specialization An = 0. 

§4. The equation of type IV 

In this section, let £z be the locally constant sheaf determined by a 
function 

i=1,2 i=1,3,4 i=1,2,3,4 

on 

where to = 1 and t5 = z. 

For a fixed z such that 0 < z < 1, the bounded chambers in the real 
locusT~ ofT= Tz are 

( z < t4 < t3 < 1' 
0 < t1 < tz < t3 

( z < t4 < 1, 
0 < t1 < tz < t3 < t4 

) 
Thus dim H![ (Tz, Lz) = 7 under the condition 

), 

), 
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Aoo=tp=···=tq = - L Ak - L Ak-l,k ¢_ Z, 1 :S P :S q :S 2, 
p"'5_k"'5_q p"'5_k"'5_q+l 

Aoo=tp=···=tq = - L Aok - L Ak-l,k ¢_ Z, 3 :S p :S q :S 4, 
p"'5_k"'5_q p"'5_k"'5_q+l 

Aoo=t1 =···=tq =- L Ak- L Aok 

1"'5_k9 3"'5_k"'5_q 

L Ak-l,k ¢. z' 3 :S q :S 4, 
1"'5_k"'5_q+l 

Aoo=t2 =···=tq = ->..2 - L Aok - L Ak-l,k ¢_ Z, 3 :S q :S 4. 
3"'5_k"'5_q 2"'5_k"'5_q+l 

As for the action of ')'o, the multiplicities of the eigenvalues 

e(>..t + >..2 + L >.k,k+t), e(>..2 + L Ak,k+t) 

J"'5_k"'5_4 2"'5_k"'5_4 

are both multiplicity free, and the multiplicity of the eigenvalue 1 is 5; 
as for the action of 'Yt, the multiplicities of the eigenvalues 

e( L (>.o,k + Ak,k+t)), e(>.o4 + A45), 1 
k=3,4 

are all 2, and the multiplicity of the eigenvalue 

is free. 

As for the action of ')'00 , we consider the function 

where 

>..f= { 
->.i- Ai-t,i- >..i,i+t, 

->.oi- >..i-t,i- >..i,i+t, 

i = 1, 2, 

i = 3,4, 
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with t5 = z-1 and t0 = 1. It is seen that the multiplicity of each of the 
eigenvalues 

e( -.Xo4- A34- A45) and e( -.X45) 

is 2, and the multiplicity of each of the eigenvalues 

e( -.X1 - A2 - L .Xo,k - L Ak,k+l), 
k=l,3,4 l:Sk:S4 

e( -.X2 - L Ao,k - L Ak,k+l), 
k=3,4 l:Sk:S4 

and e( -Ao3 - Ao4 - L Ak,k+l) 
29::04 

is free. 

Thus the spectral type is (511; 2221; 22111) under some genericity 
condition. 

At this stage, we impose a resonace condition 

As a result, a subspace which is invariant with respect to the action of 
the monodromy group emerges; it consists of the regularizable cycles, it 
has a spectral data (411; 222; 21111), and it gives the solution space of 
the equation of type IV. We proceed to that point. 

First, it is important to note that the resonance (4.2) leads to the 
nontriviality of the kernel of the map i : H4 (T, .C) ------+ Hlf (T, .C). The 
dimension of the kernel is one, and thus the dimension of the image is 
6. The image Imi is called the space of regularizable cycles. (See [19].) 

Secondly, the chambers 

( 0 < t2 < t3 < t4 < z, ) 
1<h<oo ' 

are regularizable even if the resonance condition ( 4.2) is imposed, and 
give the eigenvectors with the eigenvalues 

e(.X1 + .X2 + L Ak,k+l), 
l:Sk:S4 

e(.X2 + L Ak,k+l), 
2:Sk::;4 

with respect to the action of 1'0· Thus the spectral type at 0 of the space 
of regularizable cycles must be (114). 
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On the other hand, the chamber 

cannot be regularizable under the resonance condition (4.2). Thus (222) 
is the specral type at 1 of the space of regularizable cycles. 

Moreover, if we consider 

for 0 < z-1 < 1, it is seen that the chambers 

( 0 < t2 < t3 < t4 < z-1, ) 
1<h ' 

and 

are regularizable, even if the resonance condition ( 4.2) is imposed. Hence, 
either the eigenspace with the eigenvalue e( -A04 - A34 - A45 ) or that 
with e( -A45) becomes one dimensional space. It means that spectral 
type at oo is (11112). 

Therefore, the spectral type of the space of regularizable cycles turns 
out to be (114; 222; 11112). 

1, 1, 5 at 0 1, 1, 4 at 0 
1, 2, 2, 2 at 1 -----+ (IV) 2, 2, 2 at 1 
1, 1, 1, 2, 2 at oo 1, 1, 1, 1, 2 at oo. 

Consequently, we have 

Theorem 4.1. The function of the form 

i IJ t7; . II (ti - tof'oi II (ti - ti+1)>..i,Hl dt1 · · · dt4, 
•=1,2 •=1,3,4 i=1,2,3,4 

where 

Am + A12 + A23 + A03 + A34 + Ao4 + 3 = 0, to = 1, t5 = z, 

and C a suitable cycle, satisfies the equation of type IV, whose rank is 
6. 
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Remark. The spectral type of the function ¢ which is obtained from 
the integral in the case III of rank 5 multiplied by (1- z)>-04 = (1- t4).>.04 

is (311; 221; 2111), and the characteristic exponent corresponding to the 
solution around 1 whose multiplicity is free is Am + .X12 + A23 + .Xoa + 
.X34 + .Xo4 + 3. Euler trans from of¢ under ( 4.2) is nothing but the integral 
in Theorem 4.1. 

§5. The equation of type IV* 

In this section, let .Cz be the locally constant sheaf determined by a 
function 

(5.1) u(t) = (t2 - c)>-2 c IT { t;' (ti - to).>.o; (ti - ti+l).>.','+1 } 

i=l,2 

on 

Tz = C2 \ { t2 - c = 0} U 

u~=l ( { ti = 0} u { ti- to = 0} u { ti- ti+l = 0}), 

where to= 1 and ta = z. 

After fixing the variable z and parameter c to be real numbers sat
isfying 0 < z < c < 1, the bounded chambers in the real locus TIR of 
T = Tz are 

(O<t1<t2 <z), 
(0 < t1 < t2, z < t2 <c), 

( 0 < h < t2' c < t2 < 1)' 

(0 < t2 < z, t2 < tl < 1), 

( z < t2 < c, t2 < h < 1)' 
(c<t2 <t1 < 1). 

Thus dim H~f (Tz, .Cz) = 6 under the condition 

A==h=t2 = -A2c- L (.Xk + Aok + Ak,k+l) t/:. Z, 
l:S:k9 

.X==h = -.X1 - .Xm - .X12 tj:. Z, 

.X==t2 = -.X2- .Xo2- .X2c- .X12- .X2a tj:. Z. 

The eigenvalues of the action of 'Yo are 

each with multiplicity free, and 1 with multiplicity 4; the action of 'Yc 
are 
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with multiplicity 2, and 1 with multiplicity 4. To know the eigenvalues 
of the action of ')'1 and ')'00 , fix z and c to be 0 < c < 1 < z < oo. Then 
it turns out that the eigenvalues of the action of ')'1 are 

e(A.o2 + A.23), e(A.01 + A.o2 + A12 + A.23), 

each with multiplicity free, and 1 with multiplicity 4; those of the action 
of ')'00 are 

e(- L (A.oi + Ai + Ai,i+1) - A2c), e( -A.o2 - A.2 - A23- A2c), 
i=1,2 

each with multiplicity free, and e(A.23) with multiplicity 4. 

Therefore, the specral type of the space of regularizable cycle is 
(411; 42; 411; 411) under the conditions: 

L (A.k + Ak,k+t) rj_ z, 
k=1,2 

which is for the separation of the eigenvalues at 0, 

A.2c + A.23 rj. Z, 

which is for the separation of the eigenvalues at c, 

L (A.ok + Ak,k+t) rf_ Z, 
k=1,2 

which is for the separation of the eigenvalues at 1, and 

k = 1,2, 

k = 1,2, 

A2c + L (A.k + Aok + Ak,k+t) rf_ Z, A2c + A12 + L (A.k + Aok) rf_ Z, 
k=1,2 k=1,2 

A.2 + A.o2 + A.2c + A.12 + A.23 rj. Z, A.2 + A.o2 + A.2c + A.12 rj. Z, 

A.1 + A.o1 rj. Z, A.23 rj. Z, 

which is for the separation of the eigenvalues at oo. 

The combination of these facts leads to 

Theorem 5.1. The function of the form 

r (t2 - c)A2 c II { t;' (ti - to)AOi (ti - ti+1)Ai,i+l} ditdt2, 
lc i=1,2 

where to = 1, t3 = z and C a suitable cycle, satisfies the equation of type 
IV*, whose rank is 6. 
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§6. The equation of type III* 

In this section, let ,(z be the locally constant sheaf determined by a 
function 

(6.1) u(t) = (tl- cf"c(tn- tof'On II t7' II (ti- ti+I)Ai,i+l 

l::Oi::On l::Oi::On 

on 

where tn+l = z and t 0 = 1. After fixing the variable z and parameter c 
to be real numbers satisfying 0 < z < c < 1, the bounded chambers in 
the real locus TIR ofT= Tz are 

for 1 :<::: s :<::: n and 

for 1 :<::: s :<::: n and 

( 
0 < ts < ts+l < ' · · < tn < z, ) 

ts < ts-1 '· · < h < C 

( Z < tn < · · ' < h < C). 

Thus dimH;[(Tz, Lz) = 2n + 1 under the condition 

--\xo=tl=---=tq =-Ale- L (Ak + Ak,k+l) tJ_ z, 1 :<::: q :<::: n- 1, 
l::Ok::Oq 

Aoo=h=---=tn =-Ale- Aon- L (Ak + Ak,k+I) tJ- Z, 
l::Ok::On 

Aoo=tv=---=tq =- L (Ak + Ak-l,k)- Aq,q+l tJ_ ;z' 2 :<::: p :<::: q :<::: n- 1, 
p::Ok::Oq 

Aoo=tp=---=tn = -Aon - L (Ak + Ak-l,k) - An,n+l tJ_ ;z' 2 :<::: p :<::: n. 
p::Ok::On 

The eigenvalues of the action of /o are 

e( L (Ak + Ak,k+I)), 1 :<::: s :<::: n 
s::Ok::On 
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with multiplicity free and 1 with multiplicity n + 1; the action of 'Ye are 

e(Ale + L Ak,k+l) 
l$k$n 

with multiplicity free and 1 with multiplicity 2n; the eigenvalues of the 
action of 'Yl are 

e(Aon + An,n+d 

with multiplicity n and 1 with multiplicity n + 1. 

The eigenvalues of the action of "too is derived from 

u(t) 

= C>.1c z>.n,n+l ( c-1 _ tl)>.lc (to _ tn)>.on II t?r' II (ti+l _ ti)>.i,i+!, 

where 

-Al- Ale- A12, i = 1, 

-Ai- Ai-l,i- Ai,i+l, 2:::; i:::; n -1, 

-Aon- An- An-l,n- An,n+l, i = n, 

with tn+l = z-1 and t 0 == 1. This shows the eigenvalues of the action of 
"(ooare 

e( -Aon- Ale- L (Ak + Ak,k+l)), 
l$k$n 

e( -Aon- L (Ak + Ak-l,k)- An,n+l), 2:::; 8:::; n, 
s$k$n 

each with multiplicity free, and e( -An,n+l) with multiplicity n + 1. 

Thus, the spectral type is (1 n, n + 1; n, n + 1; 1, 2n; 1 n, n + 1) under 
the conditions 

L (Ak + Ak,k+l) 1'- Z, 1 :::; 8 :::; l :::; n, 
s$k$l-l 

which is for the separation of the eigenvalues at 0, 

Ale + L Ak,k+l tf_ Z, 
l$k$n 
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which is for the separation of the eigenvalues at c, 

which is for the separation of the eigenvalues at 1, and 

Ale+ Aon + 2::::: (Ak + Ak,k+l) + An 1- Z, 
l::s;k::s;n-1 

Aon + 2::::: (Ak + Ak-l,k) 1- Z, 2::::; s::::; n, 
s:s;k:s;n 

Ale+ 2::::: (Ak + Ak,k+l) + As-1, 1- Z, 
l:s;k:s;s-2 

which is for the separation of the eigenvalues at oo. 

It means 

Theorem 6.1. The function of the form 

2::::; s::::; n, 

1 (tl- c)Alc(tn- to)Aon II t;; II (ti- ti+l)A;,Hl dh ... dtn, 
C l:s;i:s;n l:s;i:s;n 
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where to = 1, tn+l = z and C a suitable cycle, satisfies the equation of 
type III*, whose rank is 2n + 1. 

§7. The equation of type II* 

In this section, let Lz be the locally constant sheaf determined by a 
function 

(7.1) u(t) = (h- c).A1c(tn- to)Aon II t;; II (ti- ti+l).A;,;+l 
l::s;i::s;n-1 l:s;i:s;n 

on 

where tn+l = z and to= 1. 

After fixing the variable z and parameter c to be real numbers sat
isfying 0 < z < c < 1, the bounded chambers in the real locus TIR of 
T=Tz are 

( 
0 < ts < ts+l < · · · < tn < z, ) 

ts < ts-1 · · · < t1 < C 
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for 1 ::::; s ::::; n - 1 and 

( 

Z < tn < 1 ) 
0 < ts < ts+l < 0 0 0 < tn, 

ts < ts-1 ° 0 0 < t1 < C 

for 1 ::::; s ::::; n and 
( Z < tn < o o o < h < C) 0 

Thus dimH~(Tz,Lz) = 2n under the condition 

Aoo=t1 =ooo=tq = -Ale- L (>.k + Ak,k+I) >t Z, 1 ::::; q ::::; n- 1, 
l:s;k:s;q 

Aoo=t1 =ooo=tn = -Ale- Aon - L (>.k + Ak,k+I) - An,n+l >t Z, 
l:s:;k:s:;n-1 

Aoo=tp=ooo=tq = - L (>.k + Ak-l,k) - Aq,q+l >t Z, 
p:s;k:s;q 

2::::; p::::; q::::; n -1, 

Aoo=tp=ooo=tn = -Aon- L (>.k + Ak-l,k) - An-l,n - An,n+l >t Z, 
p:s;k:s;n-1 

2 ::::;p::::; no 

The eigenvalues of the action of 'Yo are 

e(>.n,n+l + L (>.k + Ak,k+l)), 1 ::::; s ::::; n- 1 
s:s;k:s;n-1 

with multiplicity free and 1 with multiplicity n + 1; the action of 'Ye are 

e(>.le + L (>.k + Ak,k+I)) 
l:s;k:s;n 

with multiplicity free and 1 with multiplicity 2n- 1; the eigenvalues of 
the action of 'Yl are 

e(>.on + An,n+d 

with multiplicity n, arid 1 with multiplicity no 

The eigenvalues of the action of 'Yoo is derived from 

u(t) 

= c>-lcz>-n,n+l(c-1- h)Alc(to- tn)Aon II t7f' II (ti+l- ti)Ai,Hl, 
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where 

i = 1, 

-Ai- Ai-l;i- Ai,i+l, 2::::; i::::; n- 1, 

-Aon- An-l,n- An,n+l, i = n, 

with tn+l = z-l and t 0 = 1. This shows the eigenvalues of the action of 
'Yooare 

e( -Aon -Ale- L (Ak + Ak,k+l) - An,n+l), 
l:'Ok:'On 

e( -Aon- L (Ak + Ak-l,k) - An-l,n- An,n+l), 2 ::::; S ::::; n, 
s:'Ok:'On-1 

each with multiplicity free, and e( -An,n+l) with multiplicity n. 

Thus, the spectral type is (1n-I,n + 1; 1,2n -1;n,n; 1n,n) under 
the condition 

An,n+l + L (Ak + Ak,k+l) ~ Z, 1 ::::; S ::::; n- 1, 
s:'Ok:'On-1 

L (Ak + Ak,kH) ~ Z, 1::::; s < l::::; n -1, 
s:'Ok:'Ol-1 

which is for the separation of the eigenvalues at 0, 

Ale + L Ak,k+l ~ Z, 
l:'Ok:'On-1 

which is for the separation of the eigenvalues at c, 
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which is for the separation of the eigenvalues at 1, and 

Ale+ Aon + L (Ak + Ak,k+l) tt Z, 
l:Sk:Sn-1 

Aon + L (Ak + Ak-l,k)+ An-l,n tt Z, 
s:Sk:Sn-1 

Ale+ L (Ak + Ak,k+!) + As-1 tt Z, 
l:Sk:Ss-2 

2 :S s :S n, 

2 :S s :S n, 

L (Ak + Ak-l,k) tt z, 2 :S s < l :S n, 
s:Sk:Sl-1 

which is for the separation of the eigenvalues at OOo 

Finally, we obtain 

Theorem 7.1. The function of the form 

1 (tl- c)Alc(tn- to)Aon II t> II (ti- ti+!)Ai,i+l dtl 0 0 0 dtn, 
C l:Si:Sn-1 l:Si:Sn 

where t 0 = 1, tn+l = z and C a suitable cycle, satisfies the equation of 
type II*, whose rank is 2no 

§8. Supplements 

Apart from the viewpoint of Okubo equations, Oshima recently 
studies the Fuchsian differential equations free from accessory parame
ters [24, 25, 26]0 He demonstrates that there exist quite many examples 
of such equations; indeed, the cardinality of them is described in the 
following tables: 

# of irreducible rigid Fuchsian differential systems with 3 singularities 
on IP'1 

# of irreducible rigid Fuchsian differential systems 



Integral representations 255 

On the other hand, in addition to Oshima's work, we refer the reader 
to the works by Katz [13], Simpson [27] Dettweiler and Reiter [5, 6], 
Kostov [15], Gleizer [7], and Crawley-Boavey and Shaw [4], who study 
intimately related topics from the viewpoint of rigid local systems (See 
also [10, 11, 12, 30]). 

Finally, for our convenience, we illustrate the diagrams to express 
the integrands u(t) treated in the present paper. Here o------o means 
(a- b)Aab up to a constant factor. a b 

I (Generalized hypergeometric function) : 

0 0 0 0 0 

I I I I I 
-tn-l-tn-Z 

at 0 
1, n at 1 
1n+l at 00 

I* (Pochhammmer function): 

C1 0 1,n -1 at 0 

c2~l-z 
1,n -1 at c1 

1,n -1 at Cn 
..... ; 1,n -1 at oo 

Cn 

II: 

0 0 0 0 0 

I I I I I /1 
1 - tl - t2 - t3 - 00 00 00 -tn-l-tn 

~z 
1n,n at 0 
1,n-1,n at 1 
1n,n at oo 



256 K. Mimachi 

II*: 

0 0 0 

I I I 
c- tl - t2- t3- ...... 

III: 

0 0 0 

I I I 
1-tl-t2-t3- ------

III* : 

0 0 0 

I I I 
c-h-t2-t3- ·····-

IV: 

0 0 1 1 

I I I I 
1 - tl - t2 - t3 - t4- z 

0 

I /1 
-tn~l -tn 

~z 
1n~l, n + 1 at 0 
n,n at 1 
1, 2n- 1 at c 
1n,n at oo 

0 

I /1 
-tn~l-tn 

~z 
1n~l ,n at 0 
1,n-1,n-1 at 1 
1n,n-1 at oo 

0 0 

I I /1 
-tn~l-tn 

~z 

1n,n + 1 at 0 
n,n+ 1 at 1 
1, 2n at c 
1n,n+1 at oo 

12 ,4 at 0 
23 at 1 
14 ,2 at oo 

(with the resonance around t1 = t2 = t3 = t4 = 1) 
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IV*: 

1, 1, 4 at 0 
1, 1, 4 at 1 
2, 4 at c 
1, 1, 4 at oo 

257 

This diagram is very useful in several situations. In fact, when we 
find our integrands, it played a crucial role. 

The integrands u(t) in the case II of rank 4 and that of rank 6, 
written in subsections 5.5 and 5.10 of [9], are depicted as 

and 

It is easy to guess that u(t) for type II of rank 2n might be 

0 0 0 

I I I 

The integrands u(t) in the case II* of rank 4 and that of rank 6, written 
in subsections 5.2 and 5. 7 of [9], are depicted as 

and 

It is easy to guess that u(t) for type II* of rank 2n might be 
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0 0 0 

I I I 

Similarly, the integrands u(t) in the case III* of rank 5 and that of rank 
7, written in subsections 5.4 and 5.9 of [9], 

and 

lead to the integrand 

0 0 0 

I I I 

for type III* of rank 2n + 1. Furthermore, considering the fact that the 
integrand in the case II is obtained from the integrand in the case II* 
by the specialization c = 1, the integrand in the case III of rank 2n + 1 
might be 

0 0 0 

I I I 
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