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Enumerative geometry of Calabi—Yau 5-folds

Rahul Pandharipande and Aleksey Zinger

Abstract.

Gromov-Witten theory is used to define an enumerative geometry
of curves in Calabi—Yau 5-folds. We find recursions for meeting num-
bers of genus 0 curves, and we determine the contributions of moving
multiple covers of genus 0 curves to the genus 1 Gromov—Witten invari-
ants. The resulting invariants, conjectured to be integral, are analogous
to the previously defined BPS counts for Calabi—Yau 3 and 4-folds. We
comment on the situation in higher dimensions where new issues arise.

Two main examples are considered: the local Calabi-Yau P? with
normal bundle &3_, O(—1) and the compact Calabi-Yau hypersurface
X7 C P8. In the former case, a closed form for our integer invariants
has been conjectured by G. Martin. In the latter case, we recover in
low degrees the classical enumeration of elliptic curves by Ellingsrud
and Stromme.

§0. Introduction

0.1. Overview

Let X be a nonsingular projective variety over C. Let M, (X, ) be
the moduli space of genus g, k pointed stable maps to X representing
the class § € Ha(X,Z). Let

ev;: My p(X,B) — X

be the evaluation morphism at the 7** marking. The Gromov-Witten
theory of primary fields concerns the invariants

_ [Tevitv) €@,
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where 7; € H*(X,Z). The relationship between the Gromov-Witten
invariants and the actual enumerative geometry of curves in X is sub-
tle. An overview of the subject in low dimensions can be found in the
introduction of [10].

For Calabi—Yau 3-folds, the Aspinwall-Morrison formula [1] is con-
jectured to produce integer invariants in genus 0. A full integrality
conjecture for the Gromov—Witten theory of Calabi-Yau 3-folds was
formulated by Gopakumar and Vafa in [5, 6] in terms of BPS states
with geometric motivation partially provided by [14]. The Aspinwall-
Morrison prediction has been extended to all Calabi—Yau n-folds in [10]:
the numbers 19 g(71,. .., V) defined by

oo
1
6 _ 44
02) > NogOn,--md® =D nos(,- %) Zd

70 570 a=1

are conjectured to be integers.

Let X be a Calabi—-Yau of dimension n > 4. Since Gromov—Witten
invariants of genus g>2 of X vanish for dimensional reasons, only inte-
grality predictions for genus 1 invariants of X remain to be considered.
The analogue of the genus 1 Gopakumar—Vafa integrality prediction for
Calabi~Yau 4-folds has been formulated in [10]. Here, we find complete
formulas in dimension 5 and reinterpret the dimension 4 predictions.
The geometry becomes significantly more complicated in each dimen-
sion. We discuss new aspects of the higher dimensional cases.

The relationship between Gromov—Witten theory and enumerative
geometry in dimensions greater than 3 is simplest in the Calabi-Yau
case. The Fano case, even in dimension 4, involves complicated higher
genus phenomena which have not yet been understood.

0.2. Elliptic invariants

If X is Calabi-Yau, the virtual moduli cycle for M (X, B) is of
dimension 0. We denote the associated Gromov—Witten invariant by

Nl,,B’
Nlﬁ = /__ 1 €Q.
[0t (X, 8)]vim

Integrality predictions for Calabi~Yau n-folds are obtained by relat-
ing curve counts to Gromov-Witten invariants in an ideal Calabi-Yau
X. All genus 1 curves in X are assumed to be nonsingular, super-rigid®,

1A nonsingular curve E C X with normal bundle Ng is super-rigid if, for
every dominant stable map f : C' — F, the vanishing H°(C, f*Ng) = 0 holds.
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and disjoint from other curves. Each genus 1 degree 3 curve then con-
tributes o(d)/d to N 4 for every d€Z* via étale covers, where

ild

The genus 1 to genus 1 multiple cover contribution is independent of
dimension.

If X is an ideal Calabi—Yau 3-fold, the genus 0 curves in X are
also nonsingular, super-rigid, and disjoint. The contribution of a genus
0 degree 8 curve to Ny 4p is then the integral of an Euler class of an
obstruction bundle on 9% (P, d),

1
e(Obs) =
/[ﬁl (P17d)]vzr 12d

calculated in [14]. Thus, if X is an ideal Calabi—Yau 3-fold,

03) > Nigd® = mpy ﬁd@qdﬁ - 1% > ngplog(l - ¢°),

B0 B£0  d=1 B0

where the enumerative invariant ny g is defined by (0.3) and the genus 0
invariant ng g is defined by the Aspinwall-Morrison formula (0.2). The
invariants n1 g are then conjectured to be integers for all Calabi-Yau
3-folds.

If X is an ideal Calabi—Yau 4-fold, embedded genus 0 degree 3
curves in X form a nonsingular, compact, 1-dimensional family Mg
The moving multiple cover calculation of Section 2 of [10] shows that
My contributes x(Mp)/24d to Ny ap for every deZ*t. The calculation
is done in two steps. First, the moving multiple cover integral is done
assuming every genus 0 degree (3 curve is nonsingular. Second, the
contribution from the nodal curves is determined for a particular, but
sufficiently representative, Calabi—Yau 4-fold X by localization. For an
ideal Calabi—Yau 4-fold X,

o d 1 —
(0.4) E Nigg® = E n1,3 E ( ~ 51 E x(Mp)log(1 — ¢°).
B#0 B#0 d=1 B0

The topological Euler characteristic X(T\/fg) is determined by

X(mﬂ) = _nO,ﬁ(CQ(X)) + z mp,,82,
B1+B2=0
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where mg, g, is the number of ordered pairs (C;,C2) of rational curves
of classes 31 and (> meeting at point; see Section 1.2 of [10].

The meeting numbers mg, g, can be expressed in terms of the invari-
ants ng g(7y) through a recursion on the total degree 31+ 32 by comput-
ing the excess contribution to the topological Kunneth decomposition
of mg, g,, see Sections 0.3 and 1.2 of [10]. Along with these recursions,
relations (0.2) and (0.4) effectively determine the numbers 171 g in terms
of the genus 0 and genus 1 Gromov-Witten invariants of X. For arbi-
trary Calabi—Yau 4-folds, equation (0.4) is taken to be the definition of
the numbers n; g which are conjectured always to be integers.

If X is an ideal Calabi—Yau 5-fold, embedded genus 0 degree (3 curves
in X form a nonsingular, compact, 2-dimensional family ﬂﬁ. However,
as the nodal curves are more complicated, the localization strategy of [10]
does not appear possible. By viewing N1 43 as the number of solutions,
counted with appropriate multiplicities, of a perturbed f-equation as in
[4, 11], we show in Section 2 that Mg contributes

ﬁ /m_ (2c2(M)—cT(Mp))

to Ny 4 for every d€Z*. Thus, for an ideal Calabi-Yau 5-fold X,

— o(d)
D Nipd” =D mp) —
(05) B#0 B#0 d=1

1 e N
- =N | (2(Mp)—cE(Mpg)) - log(1 — ¢°).
21 2 g, (o)~

The last term in (0.5) may be written in terms of various meeting
numbers of total degree § via a Grothendieck—Riemann—Roch computa-
tion applied to the deformation characterization of the tangent bundle
T'Mg. We pursue a more efficient strategy in Sections 1 and 2. Degree 1
maps from genus 0 curves to degree § curves in X are regular. Thus,
equation (2.15) in [23] expresses their contribution to N g in terms of
counts of m-tuples of 1-marked curves with cotangent v-classes meeting
at the marked point. The 1-classes can be easily eliminated using the
topological recursion relation at the cost of introducing counts of arbi-
trary meeting configurations of rational curves in X. The latter can be
recursively defined as in the case of mg; g2 in dimension 4. Relations
(0.2) and (0.5) then reduce the numbers n,g to functions of genus 0 and
genus 1 Gromov—Witten invariants.
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Let X be an arbitrary Calabi-Yau 5-fold. Equation (0.5) together
with the rules provided in Sections 1 and 2 for the calculation of

[ o))
Mg

in terms of the Gromov—Witten invariants of X define the invariants
n1,3. We view n; g as virtually enumerating elliptic curves in X.

Conjecture 1. For all Calabi—Yau 5-folds X and curve classes 3 +
0, the invariants n1 g are integers.

0.3. Examples

If the Gromov—Witten invariants of X are known, equation (0.5)
provides an effective determination of the elliptic invariants nq 3. We
consider two representative examples.

The most basic local Calabi~Yau 5-fold is the total space of the
bundle

(0.6) O(-1)e0(-1)® O(-1) — P2,

The balanced property of the bundle is analogous to the fundamental
local Calabi—Yau 3-fold

Oo-1)a0(-1) — P

As in the 3-fold case, we find very simple closed forms in Section 3.1 for
the genus 0 and 1 Gromov-Witten invariants of the local Calabi-Yau
5-fold (0.6). '

We have computed the invariants ny 4 via equation (0.5) up to de-
gree 200. All are integers. Even the first 60, shown in Table 0.3, sug-
gest intriguing patterns. For example, ny 4 =0 for all multiples of 8.
G. Martin has proposed an explicit formula for n; 4 which holds for
all the numbers we have computed. We state Martin’s conjecture in
Section 3.2.

The Calabi-Yau septic hypersurface X; C P is a much more compli-
cated example. Using the closed formulas for the genus 1 and 2-pointed
genus 0 Gromov—Witten invariants provided by [23] and [22] respec-
tively, we have computed n; 4 for d <100. All are integers. The values
of nq,4 for d < 10 are shown in Table 0.3.

The invariants ny 4 for d < 4 agree with known enumerative results
for X7. The invariants n; ; and ny 2 vanish by geometric considerations.
Since every genus 1 curve of degree 3 in PS is planar, the number of
elliptic cubics on a general X7 can be computed classically via Schubert
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d n1,d d n1,d d n1,d d n1,d d n1,d d nid
1 0|11 -225 |1 21 3025 || 31 | -14400 || 41 | -44100 || 51 | 105625
2 0] 12 -19 )| 22 3870 || 32 0 [ 42 | -51590 || 52 -7119
3 -1 13 -441 | 23 | -4356 || 33 | 18496 || 43 | -53361 || 53 | -123201
4 0] 14 630 || 24 0| 34| 22140 || 44 | -3645 || 54 0
5 -9 |l 15 784 || 25 0§ 35| 23409 || 45 0 || 55 | 142884
6 20 || 16 0| 26 7560 || 36 0| 46 | 74250 || 56 0
7 -36 || 17 | -1296 || 27 0 || 37 | -29241 || 47 | -76176 || 57 | 164836
8 018 014 28 -594 || 38 | 34560 || 48 04 58 | 187740
9 ©.0q 19 | -2025 {| 29 | -11025 || 39 | 36100 || 49 0 || 59 { -189225
101 162 | 20 -153 || 30 | -13412 || 40 0 |j 50 0 || 60 12628

Table 1. Invariants ny 4 for O(—1) ® O(—1)  O(—1) —> P2

calculus. The classical calculation agrees with ny 3. Using the expression
of non-planar genus 1 curves of degree 4 as complete intersections of
quadrics, Ellingsrud and Strémme have enumerated elliptic quartics on
X7 in Theorem 1.3 of [3]. The result agrees with n; 4. To our knowledge,
the numbers n, 4 are inaccessible by classical techniques for d > 5.

0.4. BPS states
The integer expansion (0.5) can be alternatively written as

D Nipg? == p-log(l-q°)
0

B# ﬁ#O
0.7)

Z/ (262(Mpg) — 1 (Mp)) -log(1 — ¢°).
e

The integrality condition for the invariants 7, s is equivalent to the
conjectured integrality for n; 5. We view the invariants 7i; g as analogous
to the BPS state counts in dimensions 3 and 4.

0.5. Higher dimensions

The family ﬂg of embedded genus 0 degree § curves in X is non-
singular and compact for ideal Calabi—Yau n-folds for n =3,4,5. The
moving multiple cover results for n= 3,4,5 can be summarized by the
following equation. The contribution of M—g to the genus 1 degree dg
Gromov—Witten invariant is

1

08)  Csldf) = 57

(20n~3(mﬁ)~Cl(mﬁ)%—4(ﬂﬂ)) :

For dimension 6 and higher, the family of embedded genus 0 degree 3
curves in X is not compact (multiple covers can occur as limits) even in.
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N1.d

0

0

26123172457235

81545482364153841075

117498479295762788677099464
126043741686161819224278666855602
117293462422824431122974865933687206294
100945295955344375879041227482174735213546636
82898589348613625712387472944689576403215969839772
66074146583335641807745540088333857250772567526848951526

Table 2. Invariants ny 4 for a degree 7 hypersurface in P°

O O 00O Uix WA,

—_

ideal cases. Nevertheless, we expect a contribution equation of the form
of (0.8) to hold. The result should yield integrality predictions in higher
dimensions.

Since the complexity of the Gromov-Witten approach increases so
much in every dimension, an alternate method for dimensions 6 and
higher is preferable. It is hoped a connection to newer sheaf enumeration
and derived category techniques will be made [15, 16].
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§1. Genus 0 invariants

1.1. Configuration spaces of genus 0 curves

Let X be a Calabi—Yau 5-fold. We specify here what conditions an ideal
X is to satisfy with respect to genus 0 curves. We denote by

H(X) C Hy(X,Z)—0

the cone of effective curve classes. If 8,3 € Hy (X)), we write 5/ < (3 if
B—0' is an element of H (X).
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If J is a finite set and B € H.(X), we denote by Mo ;(X, 3) the
moduli space of genus 0, J-marked stable maps to X representing the
class 8. For j€J, let L

L;j — Mo, (X, B)
be the universal tangent line bundle at the jth marked point. Denote
by
D; € I'(Mo,s(X, B), Hom(L;,ev;TX))
the bundle section induced by the differential of the stable maps at the
4** marked point.

If X is a curve, a map u: X — X is called simple if u is injective
on the complement of finitely many points and of the components of 3
on which u is constant. We will call a tuple (u1,..., %) of maps u;:
3; — X simple if the map

m
UZZ-——%X, z—aui(z)ifzeZi,

i=1
is simple. If J is a finite set and S€ H, (X), let
MS,J(Xv 5) - —E)TTO,J(Xa B)

be the open subspace of stable maps [%, u] such that ¥ is a P! and u is
a simple map.
If J; and J; are two finite sets and (4, B2 € H; (X)), we denote by
ma(JI,J2)(X, (/31,52)) -
{(b1,52) €5 (03017, (X, B1) X MG (03,155, (X, B2) : evo(br) =evo(ba) }

the subset of simple pairs of maps. Similarly, if 81, 82, 83 € H (X), let

a@ (X7 (ﬁl) /627 /63)) C
{(b1, b2, b3) € 5 113)(X, (B1, B2)) x NG (01, (X, B): eva(b2) =evo(ba) }
be the subset of simple triples of maps. If X is an ideal Calabi-Yau 5-fold
satisfying Conditions 1 and 2 below, there are no other configurations

of simple genus s 0 curves in X, see Figure 1.
Denote by 9, ;(X, 8) C My 7(X, B) and

ﬁS,(JI,JZ) (X, (B1,02)) C i)—ﬁo,{o}u_ul (X, B1) x Mo (0w, (X, B2),

the closures of MG ;(X, B) and D ;.5 (X, (B1,P2)). Let

(1.1)
m1, 72 Mo, (11,20 (X (B, B2)) — Mo 10300 (X, B1), Mo goyus, (X, B2),
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B2 Bs
B
B2
B Ba
Fig. 1. The three possible configurations of rational curves in

an ideal Calabi—Yau 5-fold. The label next to each component
indicates the degree.

be the component projection maps.

Condition 1. If u : P — X is a simple holomorphic map,
HY(P',u*TX) =0.
By Condition 1, 97 ;(X, ) is a nonsingular variety of the expected
dimension 2+|J]|.

Condition 2. For all B1,...,0x € Hi(X), finite sets Ji,..., Jk,

and a partition of JiU...UJy into nonempty disjoint subsets Iy, ..., I,
the restriction of the total evaluation map?

k k
ev: [T, (x,8) — [ X,

p=1 p=1
ev((bp)pe[k])(pﬂ-) = er(bp), Vpe [k‘], jEJzn

to the open subspace of simple tuples is transverse to the diagonal
{@wg)retr.ies, : g =@ .5 i 0,9, (0, 5') €14 for some g}

By Condition 2, M 4 4 (X, (81, B2)) and MG (X, (B1, B2, B3)) are
nonsingular of dimensions 1 and 0, respectively. Furthermore, all simple
genus 0 maps with reducible domains deform to curves with nonsingu-
lar domains. Furthermore, for all 8 € H(X), the open subspace of
ﬁo, 7(X, B) consisting of simple maps is nonsingular.

Condition 3. For all 8 € H(X), the restriction of the bundle
section Dy to MG 1(X, B) is transverse to the zero set. For all B1,[2 €
H,(X), the bundle section

i Do + 13Dy € I‘(]P’(WTLOGBW;LO)|maw,m(x’(ﬁl,ﬁ2)),Hom(fy,evSTX)),

2We denote the elements of J;Ll...UlJ, by pairs (p,5), where j € J,, and
let [k] = {1,2,...,k}.
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where ¥ — P(nf Lo®n3Lo) is the tautological line bundle, is transverse
to the zero set.

By Condition 1 and the first part of Condition 3, every simple holomor-
phic map u: P! — X is an immersion. By Condition 2, u is injective.
Thus, every irreducible genus 0 curve C' C X is nonsingular.. The normal
bundle to such a curve must split as
i=4
N=(’)(al)@O(ag)@(D(ag)@(’)(a4) — Pl, with a; €Z, Z a;=—2, a;>—1,
i=1
the last restriction follows from Condition 1. By the first part of Con-
dition 4 below, a; € {0,~1} for all ¢. The second part of Condition 3
implies that every node of a reducible genus 0 curve in X is simple.

Condition 4. For all f€ H{ (X), the bundle section
devy € T(P(TONG 1 (X, B)), Hom(y, eviT X)),

where v — (TG 1 (X, B)) is the tautological line bundle, is transverse
to the zero set. For all By, 82 € Hy(X), the bundle section

WikdeVo + W;'Do (S

F(]P)(”TTTZUIE,{O} (Xa 61)@7T;L0)lgﬁg (@,@)(X,(ﬁl,ﬂz))’Hom(,Y’ eVSTX)))

where v — P(mTIG (0, (X, B1) @73 Lo) is the tautological line bundle,
is transverse to the zero set.

By Condition 4, neither of the two bundle sections vanishes anywhere.
In the case of the first bundle section, the dimension of the base space
and the rank of the vector bundle both equal 5. On the other hand,
the vanishing of the bundle section here implies the differential of the

evaluation map
evy: fmal(X’ p) — X

is not injective at some simple, degree (3, 1-marked map [P!,z;,u)].
Hence, the normal bundle must split as

N~=0O(1)eO(-1)® O(—1)® O(—-1).

Therefore dev; is not injective at [P, z,u] for all z € P'. The zero set
of the first bundle section in Condition 4 must be at least of dimension
one. So by transversality, no vanishing is possible.

The non-vanishing of the second bundle section is clear from transver-
sality since the base space is of dimension 4 and bundle is of rank 5.
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Lemma 1.1. Let X be an ideal Calabi-Yau 5-fold. If 8 € Hy(X)
and J is a finite set, the space ﬁg, (X, B) is nonsingular of dimension
2+1|J| and consists of simple maps. Furthermore, the evaluation map

evy: ﬁ;,l(X, ) — X

s an immersion. If 81, B2 € Hy(X) and Jy, J are finite sets,
My (11,52 (X, (B1, B2)) is smooth of dimension 1+|J1|+|J2| and consists
of simple maps.

Proof. By Condition 4, the restriction of ev; to the open subset
mE,J(X7 ,3) c gﬁ—;,J(X’ ﬂ)

is an immersion for every 8 € Hy (X). Therefore, by the argument given
in Section 2.4, if
u:n— X

is not simple, then no deformation of « is simple. Hence, u cannot lie in
the closure of M7 ;(X, B). We conclude ﬁ;’ 7(X, B) consists of simple
maps and therefore nonsingular of expected dimension. The proof of the
claim for ﬁ;,(Jl,Jz) (X, (81, B2)) is the same. Q.E.D.

Conditions 1-4 can be extended to define an ideal Calabi—Yau n-
fold for any n. However, Lemma 1.1, which depends on the dimension
counting argument in the preceding paragraph, does not apply in dimen-
sions 6 and higher. For example, if Xg C IP7 is the degree 8 Calabi-Yau
hypersurface,

Ty, 1 (Xs, 1) = o1 (Xs, 1)

certainly consists of simple maps. However, a computation on G(2,8)
shows the evaluation map ev; is not an immersion along 133430226944
fibers of the forgetful morphism

ﬁ;,l(XBa 1) — ﬁ;,o(Xs, 1).

A separate computation in a projective bundle over G(3,8) shows the
space of conics in X3 contains 133430226944 double lines. In both cases
the degenerate loci correspond to the 133430226944 lines in Xg whose
normal bundle splits as O(1)®OD3O(—1), instead of the expected 30®
20(—1). While the Calabi-Yau 6-fold Xg is not ideal, low-degree curves
in projective hypersurfaces do behave as expected. The appearance
multiple covers as limits of simple maps is to be expected in dimensions 6
and higher, making a full enumerative treatment more complicated (and
likely drastically so).
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1.2. Genus 0 counts

We define here integer forms of the genus 0 Gromov-Witten invari-
ants of Calabi~Yau 5-folds by considering all possible distributions of
constraints and -classes between the marked points. The 13 relevant
types of invariants are indicated in Figure 2. We state relations moti-
vated by ideal geometry which reduce all 13 to genus 0 Gromov—Witten
invariants. These relations are taken to be the definition of 13 invariants
for arbitrary Calabi—Yau 5-folds.

If J is a finite set, J'C J, and Se H (X), let

Fr.00: 9,1 (X, B) — Mo,s—0 (X, B)

be the forgetful map dropping the marked points indexed by the set J'.
Ifjed, let

By = 3 5_% € H* (Mo, 5(X, B)),

where 9; is the first chern class of the universal cotangent line bundle
for the marked point on My (;3(X, B).

If X is an ideal Calabi~Yau 5-fold and f€ H; (X)), the dimension of
ﬁ;,O(X , ) is 2. There are 7 invariants of the form

k
nﬁ(waulauﬂa"'alj’k) :/_* Q/JfHeV;Hj, (1_>_0, HJGHQ*(X)v
Mo 1 (XoB) 521

which we require:

(1A) ng(u) where p€ H8(X) counting curves through p,

(1B) ng(p1, p2) where py, pe € H*(X) counting curves through 1
and pi2,

(1C) ng(ypu) where pe H*(X),

(1D) ng(yppr, p2) where pn € H*(X) and po € H(X),

(1E) ng(y*p) where pe H*(X),

(1F) ng(y?, ) where pe€ H4(X),

(1G) ng(4?).

Let Mg denote the unpointed space ﬁ;,O(X ,8). We will need the Chern
number

(1H) v (6) = fﬂﬁ (E(Mp) — c2(Mp)).
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B B B B
U2 2
P o Vi Y P

(1A): ng(u)  (1B): ng(pa; p2)  (10): ng($p) (1D): np(hpa, pa) (1E): ng(h2p)

B ﬂ ﬁ2 ﬂ2
i " @
,&2 1/;3

(IF): nﬁ("r/;Zv/‘) (lG): nﬁ(";?’) (2A): nﬁ1[32(1§ﬂ) (2B): 182 (”l;)
B2 B2 B2 B Ba
T
&y P B 51
(20): "By 82 (1[)2‘1) (2D): nﬁ1ﬁ2(|§"/}l”) (2E): nﬁ1ﬁ2(l;¢2) (3): MB,1 8283

Fig. 2. Counts for Calabi-Yau 5-folds

There are 5 types of relevant counts of connected 2-component
curves which we require,

Tay T = b
NG By (1ﬁi‘1¢§2uo|¢blu1,1,u1,2, e Bk Y 2,1, 2,2, - - o 2 k)

]c1 k2
= / 71-’1"( gl 11’1 evap,o Hev;/'“:j) 7(; ( 827»011)2 Hevjﬂz,j),
—x j=1 7j=1
Mo, ([ka], [ka]) (X5 (B15 B2))

where 7, T3 are the component projection maps as in (1.1), a;,b; >0,
and po,pi; € H?>*(X). The 5 types are represented by the following
counts of (81, B2)-curves:

(2A) nﬂ1ﬂ2(|; ) where #€H4(X),

(2B) np,p,(pl;) where pe H*(X),

(20) nB162 (1/)21; )’

(2D) g, 1 ) where € H2(X),

(2E) nﬁ1ﬁ2(|;¢2)'

Finally, we denote the cardinality of the compact 0-dimensional
space S)th,@(ﬂl,ﬂg, Bs) for triples 51, B2, B3 € Hy (X) by mp,8,8s:

(3) mp, .8, is the number of connected 3-component curves of
tridegree 31, (B2, O3.
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3
P = 1/11—
1+ﬂ2
B1.B2€H. (X)$]

Fig. 3. Relations for ¢; and ¥ on ’9)7;73(X ,3). Each curve

represents the divisor in —ﬁ;,3(X ,) whose general element
has the domain and the degree distribution specified by the

curve.

The numbers (1A) and (1B) are determined from 1- and 2-pointed
Gromov-Witten invariants via (0.2). The topological recursion rela-
tion for v can be used to express 1,51 in terms of boundary divisors on
ﬁ;’3(X ,3), see Figure 3. The divisor relation then gives rise to the re-
lations between the invariants (1C)—(1G) indicated in Figure 4, see also
Section 3 in [13]. We now describe these relations formally. If H is a
divisor on X and Hg=(H, (), then

(1.2)
HEng($p) = ng(u, H*) — 2Hgng(Hp) + > HE ng,,(; ),
B1+B2=0
HEng(p, pa) = (i, B) np(pg, H*) — 2Hgng(Hpa, p)
+ Z((“I»IBI)H/QBQ'I‘(NMﬁ2)H,(231)n51,32(|;/'52),
Bi+B2=p
Hinp(?p) = ng(Yu, H*) — 2Hg ng(Hp)
+ Z ng (nﬁl,ﬁz(l; wh’/l’)—l_nﬁlﬂz (//’|; ))7
B14-P2=0

np( 1) == Y ngp, (1),
Bi1+B2=p
Hjnp($®) = ng(¢?, H?) — 2Hg ng(J* H)
+ 3 HE (nup (592 + i (P2l;)),
B1+B2=0

the fourth identity above is obtained by applying the relation of Figure
4 twice. We can similarly remove 1-classes from 2-component curves:
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8 B B

2 — 0¢H? 2
HE = —2Hg + [Hﬂ Hﬁ1 % ’n

€ ¢ e € C_lll'e € C_lHﬂe B1, ég€5+(X) pe-1

H C X divisor, Hg=H -3, Hg, = H -

Fig. 4. Reducing the power of 1/; at marked point e in the
absence of 1y-classes at other marked points.

(1.3)

HE, np,p, (V2l;) = g, 5, (|; H?) — 2Hg, np,p, (HI;) + Y Himp,prs,
B+B'=pP2

HE, s, (;%0) = (u, H) ng, s, (; H?) — 2Hp, ng,p, (|; Hp)
+ Z ((/L, /B)szi"}'(uv ﬁ,)Hg)mﬁlﬁ'ﬂ’

B+B'=P2
1,8, ([; w )=-— Z MB.5'8 »
B+B"=px

the last identity above is obtained by applying the relation of Figure 4
twice. On the other hand, by (1.15) and some manipulation,

’)’1(,3) (’ng (Cg(X)) +ng ('l,bcz(X)) +ng (1/)3)
(1.4) C Hng(ea(X), ea(X)) —|—4nﬂ(d~,2,02(X)))

- Z (znﬁ152(|;¢2) + gnﬁ1ﬁ2(1/32|§))~
B1+B2=p

The meeting numbers (2A), (2B), and (3) are computed via degree
reducing recursions analogous to Rules (i)—(iv) of Section 0.3 of [10] for
the 4-dimensional case. Let ‘

{wi,...,wn} {w? ... Wt} Cc HY(X) ® H5(X)

be dual bases normalized so that

N
PD x> AX—Z wlxwl# € EB H2%k (X)®H2(5——k) (X)@HOdd(X)&HOdd(X),
=1 k=0,1,4,5
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where Ax C X? is the diagonal. Then,

N
g, (i 1) = Y _ng, (i) ng, (W, )
=1

(15) nﬂl,ﬂz—,ﬁh(lsu) + nﬁz_ﬁlﬁl(];,u), if 62>,61’

+ nﬂl—ﬂz,ﬁz(l;p’)v _ if B2 < s,
ns, (02 (X)7 //’) + Qnﬁl (¢27 N)a if ﬂZ :ﬁl-

In light of the fourth identity in (1.2), the relation differs from the 4-

dimensional case only by the expected adjustment for the constraint p.
The corresponding recursions for the numbers (2B) and (3) are more

complicated. For classes (1, 52 € Hy(X), let

(1.6)

72(ﬁ1’ ﬁ2) = 16182 (I? 02(X)) +2ng., (l? 1/}2) + g6, (¢2|; ) + g6, (1/}2]; )-

For p€ H%(X), we define

(1.7) )
NBy—p1,81 (Ia T/W) + 1By —61,6: (H|; )
+(H,51)(72(52—ﬂ1,51)+% > mgss), 62> s
B+B'=B2-F1
Cpap: (1), if B2 < Bi;
Cs18: (:u) = ~
ng, (02 (X):U‘) + ng, (’lpz/‘)
+ng, (c2(X), ¥p) + (1, B1)1(B1) if By =pPs.
-5
= Y @ngp(livp) + 5”[3/3’(%45 )
B+B'=B2

For (1, (2, B3€ H (X), let

) MB3—p1,81,82> if B3> B1;
Ch 628 = § MBL—Ba,8a,82 it B3<Pu;
v2(B2, B1), if B3=p0h;

@ MG, ,Bs,B3~B2> ?f B3> Pa;
(1.8) Cﬁ152ﬁ3 == mﬁl,ﬁa,,@z—ﬂs+mﬁ1,ﬂ2—ﬁ37537~ .1f B3 < PBa;
.6, (s €2(X)) + 21,6, (1;9°), if B3=Pa;
MB3—B1—B2,81,82> if B3> 1+ fo;
Cfalfgzﬂs — _ ) BAB2Bs,B3—Bz2.B2+ ?f B2 < B3 < B1+F2;
~2(B2, 1), if B3 =61+ B2;

0, otherwise.
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ndldz(H|;) d2=1 d2~‘=2
dy=1 145366465734 17628837973096812

2 17628837973096812 2134616449608028257452

3 | 4403307962301366086458 | 533112594803936499402982169

Table 3. Meeting invariants ng, 4, (H|; ) for a degree 7 hyper-
surface in P® counting the virtual number of (d;,ds)-curves
with node on a fixed hyperplane.

Then,
18185 ( (ul;) Znﬁl(wlu nﬁz(wl )
(1.9)
— > (1B mp,—p.5.8:-5 — Cprpa (1),
B<B1,B2
_ . #
Mp1BaBs = Znﬁlﬂz(l7wl) s (wl )
(1.10) =
1) (2) (12)
- Cﬁ1ﬁ2ﬂ3 Cﬁlﬁzﬁa Cﬁl/BZ,B:} :

A few low degree 2-component meeting numbers for a degree 7 hyper-
surface in P% are given in Table 1.2. The number n; ;(H|;) can be
confirmed via a Schubert computation similar to Section 3 in [9].

Configurations of rational curves in a Calabi—Yau n-fold can be stud-
ied for any n. If n > 6, such configurations include curves with non-
simple nodes (several components sharing a node). While describing
such curves is just notationally involved, specifying degree reducing re-
cursions for them (following the approach of Section 1.3 below) presents
new difficulties. In particular, curves with unbalanced splittings of the
normal bundle will effect excess contributions via the loci of non-simple
tuples of maps in the closures of simple tuples of maps, see the end of
Section 1.1. Thus, separate counts must be set up for such curves, and
their multiple-cover contributions to the appropriate topological inter-
section numbers (represented by the first terms on the right-hand side
of (1.5), (1.9), and (1.10)) must be determined.

1.3. Justification of degree reducing recursions

1.3.1. Overview Each curve C of type (2A), (2B), and (3) determines
a pair (C, C*) of curves, where C* is the last component of C and C consists
of the remaining component(s) of C. The curve C has 1 component in
the first two cases and 2 components in the last case. The curves € and
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C* carry marking z. €C and y. €C* satisfying z. =y.. We denote by M
and M* the corresponding compactified spaces of curves/maps:

M M*
Case (24): Mg (X, 1) {#€M () (X, B2): (Im§) N0},
Case (2B): {¢€§t9,{e}(X’ Br):eve(g) €p} _SU—IQ’{E}(X, B2),
Case (3): Mo, (,{ep) (X (Br, B2)) My, (3(X, Ba),

where p above denotes a generic representative for the Poincaré dual of
@€ H*(X). The evaluation map

eVee: M x M* — X x X, ((C_,'a:e), (C*,ye)) — (Ze, Ye),

is then a cycle of (complex) dimension 5. The relevant meeting number
is the cardinality of the subset of

zZ = ev;é(AX) = {((C—a SCe), (C*aye)) EMXM*: xe:ye}

consisting of simple pairs of maps.

The homological intersection number of the cycle ev,. with the
class of the diagonal Ax C X? in X2 is given by the diagonal-splitting
term on the right-hand side of (1.5), (1.9), and (1.10). The homological
intersection is the number of points, counted with sign, in the preimage
of Ax under a small deformation of the map ev, .. All such points must
lie near Z. The points of Z at which ev, . is transverse to Ax contribute
1 each to the homology intersection. These points include all tuples as
above such that the curves C and C* do not have any components in
common. Thus, the relevant meeting number is the diagonal-splitting
term in (1.5), (1.9), and (1.10) minus the contribution to the homology
intersection number of ev, . with Ax from the subset Z’ of Z consisting
of tuples as above such that C and C* have at least one component in
common. In the rest of this subsection, we determine these tuples and
their excess contributions.?

If X is an ideal Calabi—Yau 5-fold and S€ H..(X), the space

M_ﬂ,l = _S)—jt—();,l(Xy /6)

of simple maps to X of degree § with 1 marking is nonsingular of di-
mension 3, and the evaluation map

ev: mg,l — X

3As in the 4-dimensional case considered in [10], all contributions in case
(2A) are degenerate contributions arising from loci of dimensions 1 and 2. How-
ever, in cases (2B) and (3), Z’ includes regular points with respect to the eval-
uation condition which are isolated and nondegenerate.
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is an immersion, see Lemma 1.1. We denote by T the tangent bundle of
Mg,1 and by N3 the normal bundle to the immersion ev. Let Na — A
be the normal bundle to the diagonal in X2. If CC X is a curve, let [C]
denote the number of irreducible components of C.

1.3.2. Chern classes Let X be an ideal Calabi—Yau 5-fold, and let
B€ Hi(X). We relate here the Chern classes of the normal bundle N

to the immersion ,
evi: Mg — X

to meeting numbers. Denote by
(1.11) f: Mg — Mg

the forgetful map to the nonsingular 2-dimensional moduli space Mﬂ =
9th,O (X ) ﬂ ) . L .

Using the bundle homomorphism df : TMg1 — f*TMg over
Mg 1, we obtain

a(Ts) =-v+ ffa (Hﬁ),

(112) CQ(T[}) = A — ’l,[)f*cl (__/\./l—,g) + f*C2 (Hﬁ)v

where 1 is the first chern class of the cotangent line bundle on Mg
viewed as a 1-pointed moduli space and A C mﬂ’l is the locus of singular
points of f (points at which df is not surjective). On the other hand,
since ¢;(X) =0,

c1(Np) = —e1(Tp),

(1.13) ca(Ni) = ev*es(X) + E(Ts) — e2(Tp).-

Combining (1.12) and (1.13), we find

(1.14)
c1(Np) =1 — frer(Mpg),
c2(Np) = eviea(X) + 9% — A — 1 f*er (M) + £* (5 (Mp) — ca(Mp)).

If B14+B2 =3 and By # B2, let Dg, 5, C Mg be the closure of the locus
consisting of B-curves split into a B1-curve and a fo-curve. If 20; =g, let
Dg,p, C Mg be twice the closure of the locus of consisting of -curves
split into two (i-curves. In particular,

1
fh=35 > Dg. -
B1+B2=0

B1.B2€H(X)
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Denote by (¥1+2)Dg, 5, € H*(Mp) the class obtained by capping
A with the first chern class of the cotangent line bundle at the chosen
node for each of the two curves. From a Grothendieck—Riemann—Roch
computation applied to the deformation characterization of Tﬂg, we
find '

Cl(—Mﬁ) = —frevica(X) + Z Dg, 6, 5
B1+B2=0

B1.B2€H L (X)

(1.15)  2c2(Mpg) — & (Mpg) = —fu(ev*es(X) + Yeviea(X) + ¥°)

+ % Z(¢1 +2)Dg, g, -

B1+B2=0
B1,82€H (X)

The 4-dimensional case of the first equation above appears in Section
1.2.4 of [10] and is also an immediate consequence of the n=4 analogue
of (2.5) below. The second identity in (1.15) is (2.5) itself.

1.3.3. The numbers (2A4) Suppose ((C,z.),(C*,z.)) is an element
of Z’. Since the curve CUC* passes through p, CUC* has at most two
components. We have three possibilities for Z’.

Case 0 (C=C*): Here 31 =[3, and
2= {((0*7:66)7 (6*7 xe)) : (C*, CL'@) EM*}

The normal bundle of 2’ in Mx M* is isomorphic to T, — M* and
the differential
deve,e = deve: N — evy N

is injective over M*. Thus, the contribution of Z’ to the homology
intersection number is given by

(e(NA/N), Z") = (ca(N3,), M*).

Using the second equation in (1.14), the first equation in (1.15), and the
fourth equation in (1.2), we obtain the 8, =/, case of (1.5).

Case 1A (CEC*): Here 51 < B2 and
Z'={((C,x.),(CVC",z)): (C,me) €M, (CVC',z.)EZ*},

where Z* C M* is the locus consisting of 2-component curves with the
marked point on the first component. Thus, Z’ is the union of the first
components of the finitely many (51, B2 — B1)-curves passing through



Enumerative geometry of Calabi-Yau 5-folds 259

the constraint g. The normal bundle ' of 2’ in M x M* contains the
subbundle 7T, and N /7}T3, is isomorphic to the normal bundle N Z*
of Z* in M*. Since the differential

devee: N — evi Na

is injective over Z’, the contribution of Z’ to the homology intersection
number is given by

(e(Na/N), 2") = (a1(Np,) — al(N2¥), Z%).

Since the degrees of the restrictions of Njg, and N'Z* to each curve C
are —2 and —1, respectively, we obtain the 8; <32 case of (1.5).

Case 1B (C2C*): Here 3; > 32 and
Z' = {((C' VEC* ze), (C*,me)) S (C'VCr z)eM, (C* x.)€Z*),

where Z* C M* is the locus of curves meeting a (f1—02)-curve. Thus, Z’
is the union of the second components of the finitely many (61 —082, 52)-
curves whose second component passes through the constraint p. The
normal bundle A of 2’ in M x M* contains the subbundle 75T, and
N /7T, is isomorphic to the normal bundle NZ* of Z* in M*. The
latter is trivial. Since the differential

devee: N — evy Na

is injective over Z’, the contribution of Z’ to the homology intersection
number is given by

(eWA/N), Z2") = (e1(Np,) — et (N 2¥), Z%).

The (1 > (32 case of (1.5) now follows from the first equation in (1.14).

1.3.4. The numbers (2B) Suppose ((C,z.), (C*,z.)) is an element
of Z'. The curve CUC* then has one, two, or three components and
carries a marked point e lying on the divisor p. The 6 possibilities for
the connected components of Z’ are indicated in Figure 5.

Case 0 (C=C*): Here By =03, and ((C,z.), (C*,z.)) is an element of
S ={((€,2),(C,.)): (C.wc) M} C 2.

The normal bundle of S in MxM?* is isomorphic to T, — M, and the
contribution of S to the homology intersection number is given by

(eWNa/N),B) = (ea(Nzy), ).
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Using the second equation in (1.14) and the first equation in (1.15), we
obtain the ;=3 case of the last term in (1.9).

Case 1A (|IC*| =2, C CC*): Here 1 < 32 and ((C,zc), (C*,z.)) is an
element of

S={((C,z.),(CVC,z.)): (C,z)€Z, (CVC',zc)EM*} C Z,

where Z C M is the locus consisting of curves meeting a (82— /31 )-curve.
The normal bundle N of S in M x M* contains the subbundle 737},
and N /73T, is isomorphic to the normal bundle N'Z of Z in M. Since
the differential

devee: N — evy Na

is injective over S, the contribution of S to the homology intersection
number is given by

<6(NA/N)7‘—S—> = <61(Nﬁ2) - (cl(Nﬁz—ﬂl)_'_lzl)a?)a

where 9, is the untwisted y-class at the node of the (B2—pB1)-component
of a curve in Z.

Using the first equations in (1.14) and in (1.15) and the fourth equa-
tion in (1.2), we obtain the £ < 2 case of the last term in (1.9) minus
the last term in (1.7). The latter arises from Case 24 below.

Case 1B (IC| =2, C 2 C*): Here 81 > B2 and ((C,z.), (C*,z.)) is an
element of

S={((C'"vC* z.),(C*z)): (C'VC* 2)EZ, (C*,x)EM*} C 2/,

where Z C M is the locus of (82, 31— B2)-curves with the marked point
e lying on the first component. The normal bundle A/ of S in M x M*
contains the subbundle 757p,, N/n3Tp, is isomorphic to the normal
bundle N'Z of Z in M, and the contribution of Z’ to the homology
intersection number is given by

<6(NA/N)’§> = <01(N,32) + (1/)1"{'7/)2),_2—),

where ¢; and 9 are the t-classes of the first and second components
at the node of a curve in Z. We obtain the 5; > 2 analogue of the
Case 1A contribution in (1.9).

Case 2A (IC*| =3, CCC*): Here 1 < B2. If |C| =2, ((C,z.), (C*,z.))
is an element of the space S in Case 14 above. This is also the case if
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—B B2
e
B Br— B2

B2=p01: Contr. 0 P2>f1: Contr. 1A B2 < [31: Contr. 1B

8 Ba— g

e ( e
B
Y Bi— % Ng
B+B =p2—bh B< b1, B2 B+8 =P —0B2

B2 >y Contr. 2A Contr. 2B B2 < B1: Contr. 2C

Fig. 5. Excess contributions for the meeting number
1,8, (1];). The labels refer to the cases described in Sec-
tion 1.3.4. The marked point e corresponds to the (former)
node and lies on the divisor . The thicker lines indicate the
multiple component. The space of curves in the first diagram
in the top row is 2-dimensional. The other two spaces in the
first row are 1-dimensional. All spaces in the bottom row are
0-dimensional.

|C|=1 and the curve C*~C is connected. In the remaining case, C is the
middle component of the 3-component curve C* and carries the marked
point e, which lies on the divisor p. Each such pair ((C,z.), (C*,z.))
is a regular element of Z and therefore contributes 1 to the homology
intersection. The contribution of such pairs is accounted for by the last
term in (1.7).

Case 2B (|C|=|C*|=2, C#C*): Here the curve C UC* consists of three
components, with the middle component meeting the hyperplane u at
the marked point e. Such pairs ((C,z), (C*,z.)) are regular elements
of Z, and their contribution is accounted for by the middle term on the
right side of (1.9).
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Case 2C (|C*| =3, C 2C*): The analysis is the same as Case 2A with
(1 and s interchanged.

1.3.5. The numbers (3) If ((C,z.),(C*,z.)) is an element of Z’, C
consists of two sets of components, C; and Ca, with the second compo-
nent carrying the marked point e. Either C; or C» may consist of two
components, while the other curve must consist of one component. The
total number of components in CUC* is either two or three. The 12 pos-
sibilities for the connected components of Z’ are indicated in Figure 6.

Case 0 (ICUC*|=2, CoCC*): IfC*=Cy, then o =03 and ((C, z.), (C*, z.))

is an element of
S={((C1 v z.),(Cze)): (CLVC* z)eM} C 2.

Similarly to Case 0 in Sections 1.3.3 and 1.3.4, the normal bundle of S
in MxM?* is isomorphic to T3, — M, and the contribution of S to the
homological intersection number is given by

(e(Na/N),8) = {ca(Ng,), M).

Using the second equation in (1.14), the first equation in (1.15), and the

fourth equation in (1.2), we obtain the 83 =02 case of the term C(ﬂ?ﬁz Bs

in (1.10).
It C*=C, U Cs, then B+ B=0s and ((C,z.), (C*,.)) is an element of
S = {((C*,7e), (C*,ze)): (C*,me) €M} € 2.

The normal bundle of S in M xM?* is isomorphic to T, 45, — M, and
the contribution of S to the homological intersection number is given by

(eWa/N),8) = (ca(Np,45,), M).

Using the second equation in (1.14), the first equation in (1.15), and the
fourth equation in (1.2), we obtain the 83 = 1+ (B2 case of the term

a2y .
Cp, p,, 0 (1.10).

Case 0 (ICUC*|=2, C, ¢ C*): Here By =5 and ((C,z.), (C*,z.)) is an
element of

S={((C*VCs,z.),(C,z.)): (C*V Coyze) €2} C 2/,

where Z C M consists of the pairs of 1-marked curves with the marked
point at the node of the two curves. The normal bundle A/ of S in
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M x M* contains Tp, as a subbundle, and N/Tj, is isomorphic to the
normal bundle of Z in M. The latter is the universal tangent line bundle
at the marked point. Since the homomorphism

devee: N — ev;e./\/A

is injective over Z’, the contribution of Z’ to the homological intersection
number is given by

<6(NA/N)7—‘§> = <61(Nﬁz) +'¢J27_Z>~

Using the first equations in (1.14) and (1.15) and the fourth equation in
(1.2), we obtain the 3=/ case of the term C(ﬁll)ﬂzﬁ3 in (1.10).

Case 1A ([CUC*| =3, C* ¢ C, G CC*): T C1 ¢ C*, then B, < f5 and
((C,ze), (C*, ze)) is an element of

S={((C1V C,2e),(C2V C'me)): (C1V Cayze) €2} C 2,

where Z C M consists of the pairs of (31, 82)-curves such that the second
component meets a (83— 0:)-curve. We see S is the union of the middle
components of (31, Bz, f3—3=2)-curves in X, with each curve contributing
—1 to the homological intersection number. The contribution accounts

for the (3> (32 case of the term Cgl)ﬁzﬂa in (1.10).

If C; CC*, then B1+P2< B3 and ((C,x.), (C*, z.)) is an element of
3 = {((él vV C_Q,.Z‘e), (C_l vV éz vV C',xe)) : (C_l vV C_g,xe)eﬁ} C Zl,

where Z C M consists of the pairs (31, 32)-curves meeting a (83—031—02)-
curve with the B2-component carrying the marked point e. Here, S is the
union of the last components of the (85— (1 —fa, 1, O2)-curves and the
middie components of {31, B2, B3—61—F=)-curves. By reasoning analogous
to Case 1A in Section 1.3.4, each of the former contributes —1 to the
homological intersection number, while each of the latter contributes 0.

We obtain the 83> 81+ 2 case of the term C(ﬁllzﬁ)zﬁ3 in (1.10).

Case 1A’ (|ICUC*|=3, C*¢C, Ca¢C*): Here B3> (1 and (CUC*, ) is
a (B3—p1, b1, B2)-curve with the marked point lying on the node joining
the last two components. Each such pair ((C,z.), (C*,z.)) is a regular
element of Z, contributing 1 to the homology intersection number. We

obtain the (3 > 1 case of the term Cgll)ﬁz s, in (1.10).
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£ ( (

B3=p2: Contr. 0 B3> f2: Contr. 1A B3>pP1: Contr. 14’ B1 <Pz <pr-+pa:
Contr. 1B
B3~ —B3 o
e/
\l\ ‘
& B Ps= B1+B2—B3

=0(1+02: Contr. 0 [3>0B1+0F2: Contr. 1A (B3 <fB2: Contr. 1B B2 < B3<P1+062:

Contr. 1B

B2 B2

€
[

P B1 A 3 — 51— bs 61— B3

B3 =p1: Contr. 0 B3>01+82: Contr. 1A [33<fB2: Contr. 1B B3 <fB1: Contr. 1B’

Fig. 6. Excess contributions for the meeting number mg, g, 3, -
The labels refer to the cases described in Section 1.3.5. The
marked point e corresponds to the (former) node joining the
P2 and (B3 curves. For the curves of types 1A and 1B, ¢
indicates the new node on the (leftover) (8;, 32)-curve. The
thicker lines represent the multiple component(s). The excess
loci corresponding to Contr. 0 are 2-dimensional. The loci
corresponding to Contr. 1A’ and 1B’ are 0-dimensional. The
remaining loci are 1-dimensional.

Case 1B (ICUC*| =3, C* CcC, C* ¢ C1): If C* =Cy or C* = C,
((C,ze), (C*,z.)) is an element of one of the spaces S defined in Case 0
above. Hence, we can assume that C* #Cy,C. If C* C Co, then (2 > 3
and ((C,z.), (C*,x.)) is an element of

={((CrveC* Vv, z.),(C" ze)): (CLvC* V(' z.)eZ} C 2,
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where Z C M is the locus of the pairs (8, 82)-curves with the second
component broken into two. As in Case 1B of Section 1.3.4, S is the
union of the middle components of (31, 83, 82 — B3)-curves and the last
components of (B, B2 — B3, B3), with each curve contributing —1 to the
homological intersection number. The contribution accounts for the 5 <
B2 case of the term Cézl)ﬂz g, in (1.10).

If C* ¢ Cy, then B1462> s and ((C,z.), (C*, .)) is an element of
S = { ((él VGV C',xe), (C_l \% C_z,xe)) : (C_l VCy V C',Z’e) G—Z—} c Z,

where Z C M is the locus of the pairs (81, 82)-curves with one of the
components broken into two. Here, S is the union of the middle compo-
nents of (81, B3—PB1, B1+HB2—0s)-curves, if B3 > B1, and the last components
of (B1+ 02— Ps, 83— B2, B2)-curves, if B3 > (B2. Each of the latter curves
contributes —1 to the homological intersection number, while each of
the former contributes 0. We obtain the (3 < (2 case of the term Cglzﬁ)z Bs
in (1.10).

Case 1B’ (ICUC*|=3, C*CCy): If C*=Cy, then ((C,z), (C*,z.)) is an
element of the space S defined in Case 0’ above. Hence, we can assume
that C*#Cy. Then, 81> 83 and ((C,x.), (C*, z.)) is an element of

S={((C"VC* Vs, z.),(C* x.)): (C'VC* Vo) EZ} C 2/,

where Z C M is the locus of the pairs of 1-marked (81, 2)-curves rep-
resented by a (61— 83, 05, B2)-curve in X with the marked point on the
node of the last two components. Each such pair ((C,z.), (C*,x.)) is
a regular element of Z, contributing 1 to the homological intersection

number and accounting for the 83 < 81 case of the term Cgl)ﬁz g, in (1.10).

§2. Genus 1 counts

2.1. Overview

For each § € Hy(X), N1 is the number of automorphism-weighted
stable C*°-maps
u: X-—X

from prestable curve of genus 1 to X of degree § solving a perturbed
Cauchy—-Riemann equation,

(2.1) Ou+v(u) =0,
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for a small generic multi-valued perturbation v, see Section 1.3 of [21] for
more details. If X is an ideal Calabi-Yau n-fold, 9%, (X, B) decomposes
into strata Z7 which each have well-defined contribution to Ni g in
following sense:

For every stratum Zr, there exist Cr(8) € Q, €, €

R*, and a compact subset K, of Z7 with the following

property. For every compact subset K of Zr and an

open neighborhood U of K in the space of stable C°-

maps, there exist an open neighborhood U, (K) of K and

e,(U)€(0,¢,), respectively,* such that

E{o+tv}HO)NU| =cr(B) ifte(0,6,(U)), K,CKCUCU,(K).

While there are many different strata, it turns out that Cr(8) #0 only
for strata of the three simplest types.

If X is an ideal Calabi—Yau n-fold, there are finitely many genus 1
curves in each homology class of X. Furthermore, every genus 1 curve
C in X is embedded and super-rigid: if A/ is the normal bundle of C and

u: B —C

is an unramified cover, then H°(3,u*N) = 0. Hence, H(Z,u*N) =0
and for every deZ+

Zapy= |J T d
(c1=5/d

is a finite set of isolated regular points of 9%, (X, 8). Each such point u
contributes |1/Aut(u)| to6 N1 g. If n1 g is the number of genus 1 curves
in the homology class 3, then

o(d)

(2.2) Ca,p/a)(B) = g B/

where o{d) is the number of degree d unbranched covers of a genus 1
curve by connected genus 1 curves. The integral number n; g/4 is zero
unless d|8, or equivalently, 3/d is an integral homology class.

The remaining elements u: X — X of 9, (X, 3) are maps to genus
0 curves in X. They split into strata Z7 indexed by combinatorial data
described in Section 2.2. We will call a stratum Z7 basic if either of the
following conditions holds:

40U, (K) depends on K, while ¢, (U) depends on U.
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(B1) the domain X of every element [¥,u] of Z7 is a nonsingular
genus 1 curve, or
(B2) the domain X of every element [X,u] of Z7 is a union of a
nonsingular genus 1 curve £p and a P! and u is constant on
Yp.
In both cases, the restriction of u to the non-contracted component must
be a d:1 cover of a curve in the homology class 3/d, for some d € Z™".
We will write Teq(8/d, d) and Tgn(8/d, d) for the corresponding types of
strata (B1) and (B2), with eff and gh standing for effective and ghost
(principal component).

Theorem 2.1. Suppose X is an ideal Calabi-Yau 5-fold.
(i) If Zr is a stratum of M1 (X, B) consisting of maps to rational
curves in X and is not basic, C1(8)=0.
(it) For BeHi(X) and d€Z,
(2.3)

d—1 1
Cra(p.) (@) = == Crue(B): Cru(e.a)(df) = 5 Cru(,1)(B)-

In Section 2.3, we will prove
1 — J—
C4) (8 =57 [ (et - E(Hy).
24 Sz,

On the other hand, the space Hg = _DJ—ZS(X ,B) consists of regular maps
to X. Thus, the contribution to N; g is given by the right side of equa-
tion (2.15) in [23]:

Crnan)(B) = 2—14 ( - nﬂ(lc(jib +

DO |

Z 3162 (Qpl +¢2|§ )) :

Bi+B2=0
B1,B2€H (X)
Comparing the above identity with (2.4), we find that
(2.5)
— _— e(X) 1
/__ (202('/\/13) '—C%(Mﬁ)) = —nﬁ(l — 1/)) + —2— Z nB, 82 (¢1+¢2|§ )
Mg B1+B2=0

B1,82€H (X)

We calculate the left side in terms of the Gromov—Witten invariants of
X by expanding the right side via the equations of Section 1.

Our proof of Theorem 2.1 applies also in dimensions 3 and 4. In
particular, the result provides a direct explanation of the 1/d-scaling in
the latter case discovered by other means in Section 2 of [10]. Many
aspects of the proof are applicable in dimensions 6 and higher as well.
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2.2. Preliminaries

Let X be an ideal Calabi-Yau 5-fold. The strata of 9t (X, 3) con-
sisting of maps to rational curves can be described by decorated graphs

T = (Ver,Edg,?, 8, k,i*),

where

(D1) T"=(Ver,Edg) is a connected graph containing either exactly

one loop or a distinguished vertex, but not both,
(D2) B = (Bi)icm] is an m-tuple of elements of H(X), with m €
{1,2,3},

(D3) 9: Ver — Z2° is a map, k: 0"1(Z*) — [m] is a surjective

- map,

(D4) i*e{x}U[m].
The irreducible components and the nodes of the domain ¥ of every
element [, u] of Z7 correspond to the sets Ver and Edg respectively. If
v € Ver is not the distinguished vertex of I', the corresponding component
¥, of ¥ is a P!. Otherwise, X, is nonsingular of genus 1. If v € Ver,
the restriction of u to X, is constant if 9(v) =0. If 9(v) #0, u|g, is a
9(v):1 cover of the component C(,) of C. If ? does not vanish identically
of the loop in the graph (Ver, Edg) or on the distinguished vertex, i* is
set to . If 0 vanishes identically on the loop or on the distinguished
vertex, the corresponding components of ¥ are mapped by u to a point
on the i*-component of C. Since u is continuous, Z7 =0 unless x satisfies
certain combinatorial conditions.®

Given a generic deformation of v of the d-operator as in (2.1) and
sufficiently small ¢ € R*, we will determine the number of solutions [%, u]
of

(2.6) ou + tv(u) =0,

with u close to the stratum Z7. The assumption that v is generic implies
that all solutions of (2.6) are maps from nonsingular genus 1 curves. The
arguments follow [19, 20]. In particular, the gluing construction for Zr
will be performed on a family of representatives (2, u) for the elements
[X,u] in Z7, see Section 2.2 of [20]. Our treatment here is less explicit
in order to streamline the discussion.

5The strata Zr as defined above intersect if m > 2 and ? vanishes on the
loop or the distinguished vertex of (Ver, Edg). The issue can be easily addressed
by allowing ¢* to take values in {*}U[m]J{(1,2),(2,3)}. However, equation (2.6)
will be shown to have no solutions near Z7 for a good choice of v if m > 2, so
further discussion is not needed.
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For the rest of Section 2, we fix a decorated graph 7 as above. We
define

18] = Z/@i € H(X).

With notation as in Section 1.1, let
Mg =M34(X,8) and Mg =D 4(X, ).

We denote by Mg 1 and ﬂ@_,l the spaces of pairs (C, z) such that C e Mg

and z €C is a nonsingular point of C in the first case and C € M—g and
z €C is any point of C in the second case. B

Let & — Mg be a family of deformations in X of curves in Mg.
In other words, the fiber S¢ of S over C€ Mg contains C and

dimSc = dili_,B_Ll —- dln’lMé =m
. There is a fibration
(2.7) e 1 S¢ — Accm!

giving the universal family of deformations of C. If m =1, then S =
Mg 1- f m=3, S is a small neighborhood of Mg, in M|5| 1-

If ev: Mg — X is the evaluation map at the marked point, the
bundle

(2.8) Q=ev*TX /TS — Mg,
extends naturally over f/l_;_m so that there is an exact sequence
(2.9) 0— f*TMg — Q — Ng — 0,

where f : Mﬁ 1— Mﬁ is the forgetful map and Mﬁl is the normal
bundle to the family of simple curves of class |(|.

Similarly to Section 3.3 in [12], we choose a family of “exponential”
maps ‘
(2.10)
exp’: TX — X such that expS(v) € S¢ ifz € C, v € TySe, |v| < §(C),

for some § € C*°(Mg; RT). Below we will place additional assumptions
“on exp© as needed.

For an ideal Calabi—Yau n-fold with n > 6, the above stratification
would need to be refined further based on the deviation of the normal
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bundles of curves in Mg from balanced splitting. The arguments in
Sections 2.3-2.5 below apply to the strata with balanced splitting with
minor changes. The main change here is that the map ev is no longer an
immersion, and one would need to pass to a blowup of —M—ﬁJ to obtain
analogues of the vector bundle Q and the short exact sequence (2.10).
The strata with unbalanced splittings need to be treated separately,
with the conclusion that they do not contribute to the genus 1 Gromov—
Witten invariants under certain assumptions on X.

2.3. ‘Strata with ghost principal component I

Here we describe the contribution to Vi . from a stratum Z; con-
sisting of maps u: ¥ — X that are constant on the principal, genus-
carrying, component(s) Xp of X. We show Z7 does not contribute
to N1 . unless Z7 is of type (B2).

For each meZ™, let T/l_l,m be the moduli space of stable curves of
genus 1 with m marked points. Let E —>T/l—1,m be the Hodge line bundle
of holomorphic differentials. For each i € [m], denote by L; — M m
the universal tangent line bundle at the i** marked point. Let

5; € T (M, m, Hom(L;, E*))

be the homomorphism induced by the natural pairing of tangent and
cotangent vectors at the ith marked point. Denote by

eff A
Ml’m, 1,m C Ml,m

the subspaces consisting of nonsingular curves and of curves C with no
bubble components (C is either a nonsingular genus 1 curve or is a circle
of rational curves).

Let L; — ﬁo,l(X ,3) be the universal tangent line bundle at the
marked point. Denote by

Dy € F(ﬁo)l(x, ﬁ), Hom(Ll, ev’{TX))

the natural homomorphism induced by the derivative of the map at the
marked point. For meZ*, let

M0,m) (X, B) = {(b)icpm) € H Mo, (0} (X, Bi): B; € Hy(X), Z Bi=p,
i=1 i=1
evo(bi) =evo(bi/) Vi, i'e [m]}
There is a well-defined evaluation map

evo: Mo.my(X, B8) — X, (b:)icim)] — evo(bi),
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which is independent of the choice of ¢. Let

it Miom) (X, 8) — || Do 10y (X, 62)
Bi€H (X)

be the projection onto the it* component. Denote by
E):n?(f)lim) (X7 /6) c gjt—(o,m) (X7 ﬂ)

the subset consisting of the tuples (u;);e[m] such that for each i € [m] the
restriction of u; to the domain component carrying the marked point 0
is not constant.

The stratum Z7 admits a decomposition

(2.11) Zr = (ZTJ:- X Z7.pB X 3773)/57,13,

where Z7 p is a stratum of M’ffm , for some mp € Z*, Zr g is a stratum
of im‘(?gf, mB)(X ,B) for some mp €Z", and Z7 pp is a product of moduli
spaces of irreducible stable genus 0 curves. The stratum Z7 p consists of
curves of a fixed topological type, while the elements of Z7 g are tuples
of stable maps from domains of fixed topological types so that the image
of the restriction of the map to each component is of a specified homology
class and multiplicity. The requirement that
Zrp C M‘iﬂ and Zr B C mt?g:mB)(X, B)

ymM P
implies that the decomposition (2.11) is well-defined. Let
mp,mB: Z1,Pp X Z7,PB X 27, — ZT,P, 2T,B

denote the projection maps. The quotient is by the automorphism
groups Sy, of the data.

If X is an ideal CY 5-fold, 27, g is smooth. The cokernels of the
linearizations Dy, of the H-operator along Z7 form the obstruction bundle

(212) D:DPB@’T(EDB :WI*)]E*®7TEBV3TX@7TBDB,

where O p — Z7 p is the obstruction bundle associated with the moduli
space 'm_t(o,m) (X,B). Let 5 €T'(Z71, D) be the section induced by v: 7(b)
is the projection of v(b) to the cokernel of D,. We write

vpp,v € I'(27,9p8),T(21,9B)

for the two components of .
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There is a natural projection map
721 — Mg,
sending 75([E,u]) to (u(X),u(Xp)). Denote by
vpp € T(2r, mpE* @77 Q)
the image of Upp under the natural projection map. Let
Vg ﬂl,mp - /T/t_m

be the forgetful map, dropping all but the first marked point. The
restriction of the bundle

(2.13) WIE* ®7T§Q _*’—M—l,l X./\_A—EJ
to any boundary stratum Zr contains a subbundle Or such that
(2.14) 1kOr —dim 2r > rk (IfE*®@m3Q) — dim (My,1 xMg1) =0

and {(fomp) x (7 Oﬂ’B)}*D[‘ is a quotient of the cokernel bundle over
a boundary stratum of Z7. Thus, we can choose a section g of (2.13)
with all zeros transverse and contained in Mj ; x Mg and such that
there exists v as above satisfying B

vpp = {(forp) x (WOWB)}*E@_.

It is shown in the next section that the contribution of Zr to Ny
comes from 7p51(0). Thus, if Z7 p & My mp, then 755(0) is empty
for a good choice of v by (2.14) and the stratum Z71 does not contribute
to N1.. Otherwise, 7p 5 ' (0) is the preimage of a finite subset in M 1 x
Mag,1. It decomposes into connected components

(2.15) 75 1(0) = ] Zce
(Cx)ema(pz (0))

where C is a f-curve and z is a nonsingular point of C. Then, Cr(5) is
the number of zeros of a map ¢y, from the vector bundle F of gluing
parameters to O over each of the components Z¢ ;. The projection of
¢y in the decomposition (2.12) onto npE®T,Se/T5C is essentially the
same ag the projection of tv, which we denote by t7. Since 7 is a section
of a trivial bundle over Z¢ ., it can be chosen not to vanish if m > 1.
Thus, C7(8) =0 if m>1. On the other hand, the second component of
4, with respect to the decomposition (2.12) is essentially tog. It does
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not vanish on 735 (0) for dimensional reasons if m = 1, but [Ver| > 2.
Thus, Cr(8)=0 if 7 is not basic.

Finally, if 7" is basic, the principal component of every element of
Zc.4 is a fixed nonsingular genus 1 curve X p with one special point 24
and

Zen ~ Mo (Py, d),

where Mo 1 (P1,d) C Mo,1 (P!, d) is the subspace of elements [X, u] such
that ¥ is nonsingular and ev,([Z, u])=p for a fixed peP. Let

D € ['(My,1 xD 1 (P, d), Hom(n} L1 @73 L1, i E* ®@mjeviTP'))
be given by
(2.16) D(vRw) = s1(v) @ D1(w).

The first component of ¢, with respect to the decomposition (2.12) is

essentially
(2.17)
FZTFTL1IZ1®7T;L1 — Opg "—‘]E%P(@Tmc, U—>©(U)+tl7p3.

Let Y be the universal curve over ﬁo,l (IP’l, d), with structure map 7 and
evaluation map ev:

(2.18) Y—" > pt

|-
Mo,1 (P, d).
The restriction of 7g to Up5*(0) is a section of
Op = R'mev. (0O(=1) ® O(-1)) — My,1 (P}, d).
Thus, by the Aspinwall-Morrison and divisor formulas, as in Section 1.1
in [10],
(2.19) “|754(0)] = 315.
On the other hand, 7y is a section of
B @ 13 (f*TMp & Nj) — My x Mg,

see (2.8). Therefore,
(2.20)

1
*op5(0)] = -

51 | (Frea(Mp)evier(Ng) + f*er(Mp) ca(Np)).
Mg,
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Since (2.17) has a unique zero in every fiber of F' over 735 (0)N75"(0)
and the restriction of N to a fiber of f is of degree —2, equations (2.19)
and (2.20) imply
(2.21)

1

Crnisn(@8) = i ( [ 2a) = [ i)

We have proved the second scaling identity in (2.3). The equation
1 — —
02 Cren(®) = g1 [ 20y - A(M,)
Meg

is obtained from (2.21) from relations (1.14) and (1.15).

2.4. Strata with ghost principal component IT
We continue with the setup of Section 2.3. For each [X,,, u] € Z7, denote
by X0 C ¥, the largest union of irreducible components of ¥, that
contains the principal component(s) of ¥, and on which u is constant.
The topological types of %, and X are independent of the choice of
[Zu, ’U,] €Zr.

The bundle of gluing parameters (or smoothing of the nodes) over
F — Z7 is a direct sum of line bundles (up to a quotient by a finite
group). Let F? C F be the subspace of smoothings with all components
nonzero, smoothings that do not leave any nodes. If ve FE is sufficiently
small, there is a C'°°-map

Qv Xy — D,

where ¥, is the domain of u and X, is a genus 1 Riemann surface with
thin necks replacing the nodes of ¥, see Section 2.2 of [18]. This map
determines Riemannian metrics and weights on ¥, which induce the L¥-
and LP Sobolev norms, || ---|lvp,1 and || -+ |lv,p, With p> 2, appearing
below, see Section 3.3 in [18]. These norms are equivalent to the ones
used in Section 3 of [11]. Let X{ =¢;(X?).

We take the approximately holomorphic map corresponding to v €
F, to be

Uy =UOQy: Dy — X.

The map satisfies
(2.23) ngvl‘v,p < C(u)|v|P.
Let
D,: T(0)=T(Zy,urTX) — I (0)=T'(Z,, T* %' @ui T X)
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be the linearization of the d-operator at u,, defined using the Levi-Civita
connection of a Kéhler metric gx ., on X. As in Sections 2 and 4.1 in [20],

we can construct splittings
(2.24)
I'(v) =T (v) ® T4 (v) and T} (v) = T} () @ T (v) @ TS (v),

and isomorphisms
(2.25) Ry: Opp @105 — TV pp(v) @ T 5(v)

with the following properties:

(G1) Dy : Ty (v) — F?;l(v) is an isomorphism with the norm of
the inverse bounded independently of v € F? (but depending
on [X,u]),

(G2) the elements of I‘(i’;l pp(v) are supported on a small neighbor-
hood of 39,

(G3) if 71'(1’;113 5 [0 (V) — I‘(l’_lp p(v) is the projection in the second
decomposition (2.24),

(2.26) 725 Dokl o < C@W)IEllu,p,1, VE € T(0),
(G4) if |[Ver|=2 (and thus Z7 is basic),
(2.27) 750Uy = RyDv,

with D as in (2.16),

(G5) every map 4: X — X, where X is a smooth genus-one Riemann
surface, that lies in a small neighborhood of Z7 can be written
uniquely as @=exp,, § for small vEF' 0 and €Ty (v).

Let
74t T (w) — T% (v) and 7{’;13: %) — 1"(1’;13 (v)

be the component projections in the second decomposition (2.24).
The relation (2.6) for 4=exp, ¢ is equivalent to

(2.28) Ouy + D€ + trn, 4+ Ny(€) + N, (€) =0,
with N, and N, ,, satisfying

INu(€) = No(@),,,, < C@) (I€llo.pa+ 1€ op ) [[E=E 1, 5.1
[N00(€) = N ()], < C@)[E=E],

v,p

(2.29)
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if ve F?. For a good choice of identifications,
(2.30) T2 s Nug =0, V& € T'(v).
By the Contraction Principle and (G1), the equation
ml! (Buy + Dok + try + No(€) + Ny (€)) = 0

has a unique small solution &, (v) €'y (v). By (2.23), it satisfies

(2.31) € )],y 51 < C@)(l0/P+1).

Thus, the number of solutions of (2.6) near Z7 is the number of solutions

of the equation
(2.32)
Oy +Dyly, (V) +ty+Ny (€0 (V) +EN, o (€ (V) =0 € I‘g’;lPB (v)@Fg’;lB (v).

This is an equation on ve F? with |v| <&(u) for some § € C®(Z;RT).
For each [E,u] € Z7, let C, = u(X) and S, = S¢,,, see the end of
Section 2.2. The pregluing map u, satisfies

Up(By) C Cy C Sy

We can choose the splittings (2.24) so that they restrict to splittings
for vector fields and (0, 1)-forms along u,, with values in T'S,, and (G1)
holds when restricted to T'S,. If exp,, £ is defined using the “exponen-
tial” exp®«, the operators D, and N, in (2.28) preserve TS, as well.
Therefore,

(2.33)

o(v) € T(Bv, upTSy), Dubo(v), Ny (éo(v)) € T(Z,, T*E0 @uiTS,).

On the other hand, by (G1) and (2.29),

(2.34) €6 (v) = oV, ,, < Clult,

if v € F,, is sufficiently small. Taking the projection 7Ti‘; pp of (2.32) to
THE*@7*(Q, we thus find that any solution v € F,, of (2.32) satisfies

|75W)|| < e(t,v)

for some function €: Rx F® — R+ approaching 0 as (¢, v) approaches 0.
Therefore, all solutions of (2.6) lie in a small neighborhood of 735 *(0) C
Zr, as claimed in Section 2.3.
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If m=1, for a good choice of R, on 759p
(2:35) (0,1-)),, =0, V€L (S, T* S @uiTS,), n- €T 15(v). °

Taking the projection of (2.32) onto I‘(l’;lB (v) and using (2.29), (2.33),
(2.34), and (2.35), we obtain

(2.36) tvg(u) + tn(t,v) =0,

for some 7(t, v) approaching 0 as (t,v) approaches 0. Since u is d:1 cover
of the smooth curve C,,, the dimension of the projection of 735 *(0) onto
the third component in the decomposition (2.11) is of dimension at most
2d—2mp." Since the rank of Op is 2d—2, (2.36) has no solutions for
a generic choice of v unless Z7 is described by (B2) of Section 2.1. If
Z7 is of type (B2), the number of solutions of (2.32) is the same as the
number of small solutions of

(2.37) Dv +tpp(u) +n(t,v) =0 € E*®Tysp)Cu
veEmLi®msLily, u € T5g(0)NTEM(0) € My 1 xMy1(PL;d),

with the error term 7(t, v) satisfying
It 0], » < ett,v) (t+ 1ol

see (2.26), (2.27), (2.29), and (2.31). If v is generic, D; and thus D are
nowhere zero on the finite set 755 *(0)N75'(0). By the same rescaling
and cobordism argument as in Section 3.1 of [19], the number of small

solutions of (2.37) is the same as the number of solutions of
Dvu + l7pB(’u) =0, v E WTLl@ﬂ-;Ll|;7$B_1(0)ﬂl7§1(0)‘

There is one solution for each of the elements of 735 *(0)N75*(0). This
concludes the consideration of the m=1 case.

We will next show that (2.32) has no solution if m>1. Let Z¢ , be
as in (2.15). Since z is a nonsingular point of C, on a neighborhood U
of z in C there is an orthogonal decomposition

(2.38) TSelu =TClu ® NC|y.

6In this case, O is isomorphic to the cokernel of a d-operator on N 8-
"This is the dimension of the space of degree-d covers of P! by mp copies
of P1. The dimension is less than 2d—2mp unless Z7 B is the main stratum of

ﬁ(O,'mB)(X1 /8)
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We can assume that the “exponential” map expC satisfies
(2.39) 7 (expS v) = dmel|ov, Yy € U, v € T,Sc, |v| <4,

with 7¢ as in (2.7). For any [¥,u] € Z7 in a small neighborhood of
Zc .z, let W, =u~1(U) be an open neighborhood of X in $y. We can
assume that every element n of 1“‘1*} (V) is supported in W, =¢;1(W,.),
whenever v € F? is sufficiently small. With D¥ denoting the formal
adjoint of D,, with respect to the inner-product (-, )+ 2, let

(2.40)
Ii_(v) = {€ely(v): {& D;R,n))=0,YnEE],, QNy(s)Cu} C T'(v),
I'pi(v) = {DjRun: n€RS, ®NyzpCu} C DT p5(v) C T(v).

An explicit expression for D} R,n is given in the proof of Lemma 2.2 in
[19]. Section 2.3 of [19] implies that we can take

(2.41) Fi(v) =Ty (v) T4 (v).

In particular, the proof of Lemma 2.6 shows that the limits of the spaces
T4+ (v) as v—0 are orthogonal to the limits of the spaces I' - (v). The
decomposition (2.41) is L2-orthogonal by (2.40) and

(2.42) I€llo.p,1 < C(W)l€llv,2, Y€ € Ty (v),

see the proof of Lemma 2.2 in [19].

Let & (v) and &, (v) be the components of &, (v) with respect to the
decomposition (2.41). Denote by #(u) €EEf &Ny (x,)Cu the projection of
v(u) to By &Ny (s ,)Cu- Since 7 is a section of a trivial bundle near Z¢ ,,
we can assume that it has no zeros on Z¢ ;. In the next paragraph we
will show

(2.43) les @), , < Cat.

Assuming this is the case, we project both sides of (2.32) onto
Ry (B, @ Nu(ze)Cu) € T2 pp(v)

and take the preimage under R,. Since the projections of du, and
Ny(§4v(v)) vanish, using the first equation in (2.40), (2.43), (2.27), and
(2.29), we obtain

to(u) +n(t,v) =0

with n(t, v) satisfying

Int, U)”u,z < e(t,u)t.
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However, this is impossible if ¢ and v are sufficiently small (“small”
depending continuously on u), since 7 has no zeros over Z¢ ;.
We now verify (2.43). Let

€ (v)=mc, oexp,, &w(V): Ty — C™7Y, &L (v) = dme, 0 &5 (v).
Since &;,(v) is supported on W, by (2.39)
(2.44) (€h(),&x (), = (4 (v),65(v)),, V2z€T,.
By (2.39), we also have
(2.45) Eolw, = EFlw, + & lw, -

Since (2.32) is equivalent to (2.6) for & =exp, & (v),
(2.46) 10¢0, ()], , < Clu)t.

Since the operator

L2(8,,C™ 1) — LP(8,, T*E3Cm HaC™ 1, € - (55, / gdwlzv),
is an isomorphism with the norm of the inverse bounded independently
of v (but depending on u), (2.46) implies that

(2.47) Hét,,(v) — At,,(v)” < C(u)t

U’p)l -

for some Ay, (v) € C™~1. Since & (v) is supported on W, by (2.39)

and (2.40), i
<<££I;/(v)a Aty(v)>>v,2 = 0.
Thus, by (2.44), (2.45), and (2.47),

et )], = 6L @), [,.» < 1 @) = Au@Dlw, [, 5
< || () = Aw@)]], , < C'(w),

v,p,1 —

The estimate (2.43) now follows from (2.42).

Finally, we comment on the choices made in (2.24) and (2.25).
Choosing the splittings (2.24) so that (G1) and (G5) hold is essentially
equivalent to choosing approximate kernel and cokernel for D,, that vary
smoothly with v. This is easily accomplished in many possible ways, in-
cluding via the construction in Section 3 of [11]. In order to ensure that
(G2)—(G4) hold, R, on Dpp is constructed by pushing harmonic forms
on X p over a small neighborhood of 3?2, see Section 2.2 of [19]. Finally,
in order to obtain (2.30), define exp, ~and parallel transport using a
Kéhler metric which is flat near u(Xp), as in Section 2.1 of [19].
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2.5. Strata with effective principal component

We determine here the contribution to Nj . from a stratum Zr
consisting of maps u: ¥ — X that are not constant on the principal,
genus-carrying, component(s) Xp of ¥. We show that Z7 does not
contribute to Ny . unless Z7 is of type (B1).

Let © — Z+ and F — Z7 be the obstruction bundle and the
bundle of gluing parameters as before. The projection map ev*TX — Q
induces a surjective homomorphism '

(2.48) 9D — O

where D‘L|[E,u] is the cokernel of the d-operator on Q induced by the 0-
operator Dy on T'X . By a gluing and obstruction bundle analysis similar
to Section 2.4, Cr(x) is the number of zeros of a bundle map

QOt,,IF—>D

over Z7 for t sufficiently small. As in the previous case, all zeros of s,
arise from the zeros of

pt=rto v,
where 7 €I'(Z7; O) is the section induced by v. The homomorphism (2.48)
extends to a surjective homomorphism from the cokernel bundles over Z7.
In the next two paragraphs, we show that O+ — Z7 contains a trivial
C*-subbundle unless |Ver| = 1. Therefore, C7(x) =0 if Z7 is not of
type (B1).

Suppose first that (Ver, Edg) contains a loop L C Ver and & is not
constant on L. Then, the image of the principal components Xp of
any element [¥, u] of Z7 contains at least two curves in X. Then, O+
contains a pull-back of the bundle

E* @ f*TMg @ s*"Njg — My x Mg,

where s: Mz — Mg 1 is the bundle section taking each curve C to one of
the nodes. The bundle contains a trivial C*°-subbundle for dimensional
reasons.

We next consider the remaining cases. Let P € [m] be the component
of the curves in —/\7@_ containing the image of the principal component

Y p of any element [X, u] of Z7. Denote by ﬂg’l Cﬂg,l the component
consisting of the curves Cp, with C€ Mg. If X is an ideal Calabi-Yau 5-
fold and m>1 (implying C#Cp), the restriction of N, g to Cp ~P! splits
as either O® 0O or O®O(—1). If m=1, the splitting is O(-1)dO(—1).
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Case 1: m>1 and the restriction of j\/’@ to Cp splits as O @& O. Here,
Q[?Wf;l = f*Q for a bundle Q —f/ﬁg. Since the restriction of

£%Q to u(S p) is trivial, O+ contains the subbundle E*® f*Q,
where E— 90t; (X, 3) is the Hodge line bundle. The subbundle
is a pull-back of the bundle

E* ®Q ——>H1,1 X m—g,

which contains a trivial C*°-subbundle for dimensional reasons

"~ by (2.8).
Case 2: m>1 and the restriction of Vg to Cp splits as O®O(—1). Here,
legl contains a subbundle f*Q’ of co-rank 1 for a bundle

Q — —Mg. Since the restriction of f*@Q’ to u(Xp) is trivial,
O+ contains the subbundle E* @ f*Q’, which is a pull-back of
the bundle

E* [ QI —_ ﬂl,l X X/l-g

Thus, the subbundle admits a section s such that s~1(0) is con-
tained in the union of the spaces MM (C;, A;) taken over finitely
many _ﬂ_—curves C;. Since the restriction of ./\/'] g to Cp contains
O(-1), D+ also contains a line subbundle is isomorphic to
evy L, where ev,, : Zr — X is the evaluation map sending
[, u] to the value of u at a node of ¥ taken to a node of Cp.
The restriction of this subbundle to s71(0) is trivial.

Case 3: m = 1.. Here, 91 = O is a bundle of the same rank as the
dimension of 9t (Mg 1, d) for some d€Z*. Thus, if Z7 is not
the main stratum of 9 (Mg,1,d), the restriction of O+ to Zr
contains a trivial C'*°-subbuindle.

It remains to consider the case Z7 = Z7_ 3,4y With |Ver|=1. Then,
1, 18 a generic section of

O =91 =E* @ f*TMps @ Rlrmev* Ny — D0y (M1, d),

where ﬁ?(ﬂﬂ,l, d) C 9 (Mg,1,d) is the closure of the space of maps
with smooth domains, 7 is the structure map for the universal curve over
M1 (Mpg,1,d), and ev is the corresponding evaluation map, see (2.18).
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Thus,
(2.49)
Crag(.0)(AB) = (e(E © f*TMpg)e(R mev*Ng), T (Mp,1, d))
= (c2(Mg), Mg) ) e(R'm.ev* (O(-1)@0O(-1)))
I (P, d)

— (A frer (Mg)e(RMmaev* Np), 7t (Mg 1, d)),

where A=c; (E). Using the Atiyah-Bott Localization Theorem of [2] as
in Section 27.5 of [8], we find

(2.50) /ﬁ?(]?l,d) ¢(R'm.ev (0(~1)@0(~1))) = %2:_21 s

In the next paragraph, we will obtain

(A frer (M) e(R mev ), 5T (Mp,1, d))

2.51 d— M
(2.51) _ m?l /_M c2(Np) frer (M)
B,1

Along with (2.49), (2.50), and (2.21), we conclude the first identity
in (2.3).

With 9o2(Mg1,d) C Mo 2(Mg,1,d) denoting the locus of maps
with nonsingular domains, let

mo’lzz(mﬁ’l, d) = {bemog(m—ﬁ,l, d): evy (b) =evy (b)}

Denote by ﬁg,lﬂ(-ﬂg,l,d) the closure of MY _5(Mgy,d) in
—ﬁo,g(ﬂ,&l,d). Let

A (Mg,1,d) € Iy (Mg, d)

8The space ﬁ?(?l, d) is singular, and thus [2] is not generally appli-
cable. However, with the setup of Section 27.5 in [8], the restrictions of
e(R*m.ev* (O(~=1)®0O(—1))) to all fixed loci, with the exception of the sim-
plest 1-edged ones, vanish. Furthermore, ﬁ?(]?l, d) is smooth along the 1-edged
fixed loci. Therefore, the usual Atiyah-Bott localization formula applies. The
normal bundles to the only contributing loci are the same as the normal bundles
in the desingularization M2 (P*, d) of M7, (P, d) constructed in [17] and described
in Section 1.4 in [17].



Enumerative geometry of Calabi—Yau 5-folds 283

be the subspace consisting of the stable maps [¥, u] such that the princi-
pal component ¥p of ¥ is singular. There is a natural node-identifying

immersion 0 e o
t: My 1-9(Mp,1,d)/S2 — A, (Mpg,1,d),

which is an embedding outside of a divisor. Note
e(R'mev*Ng) = ca(Np) e(R ' meev* Nj).
If Ay Cf/l—l,l is the locus of the nodal elliptic curve,
A= %Al € H*(My,).
Therefore,
(Afra (—.A_/l_,@)e(Rle*eV*Nﬁ),ﬁ?(-j\—/—i—gyhd)>

1 _ -
= 57 (fer(Mp) ca(Ng)e(RimeviN3), Mg 1y (M1, d))

(2.52) _ 511<c2(N:3)f*61 (-j\—/lﬁ),mﬂ,l>

X /_ e(R'm.ev*(O(-1)@0O(-1))).
3,122 (B3,d)

Using the localization as in Section 27.5 of [8] once again, we find

/ﬁg g ST (O @O() = =

Along with (2.52), this identity implies (2.51).

§3. Local P2

3.1. Gromov—Witten invariants
‘We consider here the local Calabi—Yau 5-fold given by the total space

(3.1) X =0(-1)®0(-1)® O(-1) — P2,

There are only two primary Gromov—Witten invariants in each degree
d:
No,a = Noa(H?, H?) and Nyg,

9Similarly to the situation discussed for (2.50), ﬁg’lﬂ (P}, d) has singular-
ities but is nonsingular along the only fixed locus to which e(Rm,ev* (O(—1)®
O(-1))) restricts non-trivially.
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where H is the hyperplane class in H?(X,Z) = H?(P%,Z). We com-
pute both Gromov-Witten invariants by localization'® and then state a
conjectural formula found by Martin for the integer counts ny 4.

Lemma 3.1. For deZ™,

(=1 (=1)?
NO,d d and 1,d 8d
Proof. Let (a,b,c) be the weights of the torus action on the vector
space C3. The weights of the torus action on TP? at the fixed points are

then

P=1,0,0]: b—a,c—a,
P,=[0,1,0]: a—b,c—b,
P;=]0,0,1]: a—c,b—c.

We choose linearizations on the 3 bundles O(—1) with the following
weights at the fixed points:

O(-1) O(-1) O(-1)

P 0 a—b a—c
P b—a 0 b—c
Py c—a c—b 0.

In order to compute the numbers Ny 4, we choose the points P; and
P, for the insertions and integrate over

ﬁ = {bEﬁg’z(Pz, d): eVl(b)=P1, eV2(b)=P2}.
By the choice of the weights and the points, there is a unique fixed locus
with non-zero contribution, see Section 27.5 in [8] for a similar situation.
The locus consists of the d-fold cover u of the line

Pl,=P P,

branched over only P; and P, and with the marked points 1 and 2
mapped to P, and Ps, respectively. The weights of the fibers of the

101 the genus O case, the moduli space Mg 2(IP?, d) is a nonsingular stack
and the usual Atiyah-Bott localization formula applies. In the genus 1 case, the
virtual localization formula of [7] is used.
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relevant bundles at the fixed locus are given by
H'(wO(-1)): D@Dl pyd-1
H'(wrO(-1)): G b — gyt
HO(-1): (-1 [ (o~ Yorjetrt)

e _1yd—1(g_1\12 _ B
T : L_l%(%_‘i_)ll(a_b)%d—l) ngi (c_ (d Tda—}-rb) ,

see Section 27.2 in [8]. The number Ny 4 is the ratio of the product of
the first three expressions and the last expression, divided by d for the
stack automorphism factor.

We next compute the number N; 4. There are now 6 fixed loci with
nonzero contribution: the three d-fold Galois covers of the three lines
together with a choice of vertex for the contracted elliptic component.
By symmetry, the contribution of the d-fold cover of P}, with the con-
tracted component at P; determines the other cases. The weights of the
fibers of the relevant bundles at the d-fold cover of P}, are given by

HY(wO(-1)): L@l pyd-1(_y)
HY(uwr0(-1)):  ELE@=Dig_ gyi-1(q —p— )
H'(wo(-1):  (-1)* [ (- =2p) (a—c - )

Obs(P?) : (b—a—-XN(c—a—N)
T (B?d): GHA (a2 [ (o - et (e —y),

where ) is the first chern class of the Hodge line bundle E ———).7\/1_1, 1. The
contribution of the locus to Ny 4 is the ratio of the product of the first
four expressions and the last expression, divided by the stack factor d,
and integrated over K/l—m,

_(=1D%c-a
Cont(a,b) = i o
Symmetrizing over a, b, and ¢, we obtain Ny 4. ' Q.ED.

By Lemma 3.1 and the n=2 case of (0.2), the genus 0 counts for X
are given by
1, ifd=1;
Nno,d = no,d(Hz, HZ) =< —1, ifd=2;
0, ifd>3.
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Using the algorithm of Section 1.2, we have computed the genus 1 count
ny,q for X for d<200. All are integers.

3.2. Martin’s conjecture
Recall the definition of the Mobius u-function,
p:Zt — {0, £1},
(d) = (=1)", if d is the product of r distinct primes,
N 0, otherwise.

Define a sign function S(d) and an absolute value function V(d) as fol-
lows:

u(d/4), if d=4 (mod8),

21 Bol o ifd=k, 2 [k,
V(d) = —— x IR AT if d=2k, 2 Jk,
2k2+1, if d=4k, 2 Jk.

S(d) = {u(d), if d % 4 (mod8),

Conjecture 2 (G. Martin). For every d€Z™, the genus 1 degree d
count for the local Calabi-Yau 5-fold P? is given by

(3.2) n1g = SA)V(d).

If 8|d, then S(d) vanishes and a definition of V'(d) is not required for
(3.2). As our method for computing the numbers n1,q from np g and Ny g
is completely explicit and the starting data is fairly simple, a verification
of Conjecture 2 by elementary identities may be possible. Unfortunately,
the algorithm involves a significant number of simultaneous recursions.!*

Geometric consequences are eagily obtained from the conjecture.
For example, since ny 4 is predicted to vanish whenever 8|d, we expect
Calabi-Yau 5-folds obtained from suitably generic deformations of the
local P2 geometry to contain no embedded elliptic curves of degrees di-
visible by 8. Is there a simple symplectic reason for this?
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