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A note on Fano surfaces of nodal cubic threefolds 

Gerard van der Geer and Alexis Kouvidakis 

Abstract. 

We study the Picard variety of the Farro surface of nodal and 
mildly cuspidal cubic threefolds in arbitrary characteristic by relating 
divisors on the Farro surface to divisors on the symmetric product of 
a curve of genus 4. 

§1. Introduction 

Cubic threefolds have been studied extensively, first by the classical 
geometers starting with Fano [13] and later by Clemens and Griffiths 
[6] and many others. Nodal cubic threefolds were already considered by 
Clemens and Griffiths. In their paper the intermediate Jacobian plays 
a central role. In this note we come back to these nodal threefolds, 
but we let the Picard variety of the Fano surface of lines on the cubic 
threefolds replace the intermediate Jacobian. This has the advantage 
that it works in all characteristics, including characteristic 2. We relate 
divisors on the Fano surface directly to curves on the symmetric product 
of a non-hyperelliptic curve of genus 4. 

We begin by showing that for a canonically embedded non-hyper
elliptic curve C c lP'3 of genus 4 the linear system of cubics passing 
through C maps lP'3 to a cubic threefold with a node or a mild cusp. 
The Fano surface of lines on such a cubic threefold is a non-normal 
surface whose normalization equals Sym2C. We analyze for linear sys
tems on a curve C the associated trace divisors on Sym2C and their 
intersection theory and apply this to divisors on the Fano surface. We 
analyze the Picard variety of the Fano surface. As an application we 
get a variation of the proof by Collino that the general cubic threefold 
is not rational and this variation works also in characteristic 2. We also 
analyze the standard compactification of the Picard variety of the Fano 
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surface, compare the Clemens-Griffiths mapS-+ Pic0 (S) to the Abel
Jacobi map Sym2C -+ Pic0 (C) and derive a formula for the algebraic 
equivalence class of the Abel-Jacobi image of the Fano surface. 

We work over an algebraically closed field k of arbitrary character
istic. 

§2. The nodal and mildly cuspidal cubic threefold 

We start with a non-hyperelliptic curve C of genus 4. The canonical 
map ¢K : C-+ lP'3 has as image a curve of degree 6. There is a unique 
quadric Q in lP'3 passing through ¢ K (C). If Q is smooth then the two 
rulings of Q determine two 1-dimensionallinear systems /D1/ and /D2/ on 
C of degree 3 (g§'s) with D1 +D2 ,...., K. This determines two embeddings 
'Yi : C -+ Sym2C of C into the symmetric product of C, by sending 
P E C to the effective divisor of degree 2 in /Di - P/. The images 'Yl (C) 
and 'Y2(C) are disjoint. If Q is singular then it is of rank 3 and the two 
g§'s on C coincide and we find only one embedding 'Y : C -+ Sym2C 
sending P to the pair P1 + P2 such that P + P1 + P2 is a divisor of the 
unique g§. 

There is a 4-dimensional linear system II of cubic surfaces passing 
through ¢ K (C). This defines a rational map 

sending a point p E lP'3 - ¢ K (C) to the hyperplane { H E II : p E H}. 
Note that II is the projective space of the kernel U of the surjective 
linear map Sym3 (H0 (C,w0 )) -+ H0(C,w~3 ), where we is the relative 
dualizing sheaf of C. The image is a cubic hypersurface X in JP>4. To see 
this, one may restrict p to a general plane T in lP'3 and obtain the map 
given by the cubics passing through six general points, the intersection 
points of ¢ K (C) with T. The image ofT is a Del Pezzo surface of degree 
3 and this is a linear section of X. 

We need a precise description of the map p. Observe that a cubic 
hypersurface containing ¢K(C) that contains also a point of P E Q
¢ K (C) automatically contains Q for reasons of degree. Therefore the 
image of such a point is independent of the choice of P E Q - ¢ K (C) 
and the open part .Q-¢ K (C) of the quadric Q is contracted. But ¢ K (C) 
is blown up to a lP'1-bundle, the projectivized normal bundle of ¢K(C). 
Thus the image X can be obtained by first blowing up lP'3 along ¢K(C) 
and then blowing down the proper transform Q' of Q. So X has one 
singular point Xo, the image of Q'. If Q is smooth then the point x0 is a 
node singularity (type A1). If Q is singular then the point x 0 is a cusp 
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singularity (type A2 if char(k) -:/:- 2). We therefore have the diagram 

X X c IP'4 

""b /p 
]p>3 

where X is the proper transform of IP'3 under the blow up map b along 
<!>K(C) and 7f is the blow down map of the proper transform Q' of the 
quadric surface Q. 

A point P1 + P2 of Sym2 C determines a line £ c IP'3 , namely the line 
connecting </> K ( P1) and </> K ( P2) and we interpret this as the tangent line 
at </>K(Pi) to </>K(C) if P1 = P2. This line is contained in Q if and only 
if(P~,P2) E'Y1(C)U'Y2(C) (resp. 'Y(C)). 

Next we need a precise description of the lines in IP'4 = rrv, in 
particular those that lie on X. A line in IP'4 can be given by a three
dimensional subspace of the 5-dimensional space U. 

A chord L of ¢ K (C) that is not contained in Q determines a line 
in IP'4 , that is, the subspace W of U consisting of elements vanishing in 
two points of the chord different from the intersection points of L with 
¢ K (C). Since the elements of U vanish already in L n ¢ K (C) this means 
that the elements of W vanish on L. The linear system II restricted to 
L has projective dimension 1, hence maps the chord to a line in IP'4 . This 
line is contained in X, and does not pass through x0 . 

The other lines can be obtained as follows. Take a point P E </>K(C). 
The line of a ruling of Q through P determines a point (P~, P2 ) E Sym2C 
with P1 + P2 + P a divisor of a g§ and a line, namely the image of 
the exceptional line over P in the blow-up of IP'3 . Or, differently, the 
corresponding 3-dimensional space of U is the space of cubic surfaces in 
IP'3 containing Q and a hyperplane through P. These are lines through 
the singular point xo. So in case Q is smooth the Fano surface S of 
lines is Sym2C with 'Yl(C) and 'Y2(C) identified. In case Q is singular 
the Fano surface has a cusp singularity along a curve isomorphic to 
C. Its normalization is Sym2C and let v : § = Sym2C ~ S be the 
normalization map. 

We shall identify C with its image </>K(C) c IP'3 . For p E C we 
denote by Ev the exceptional line over p. For s E S we denote by £8 the 
corresponding line in X. To summarize the above description of lines 
on X, we have: if p + q is a point of Sym2 C not on 'Yl (C) U '}'2 (C) then 
fv(p+q) = 7f * (pq), the push forward by the map 7f of the proper transform 
of the secant line pq. If p + q E 'Yi(C) then fv(p+q) = 7r*(E'Y;l(p+q)). 

If X is a cubic threefold with one singularity x which is resolved by 
a quadric of rank 3 such that the tangent cone at x intersects X along a 
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smooth curve not passing through x then we call X mildly cuspidal. In 
(6] (see als_o [9] and [5]) it is proved that every nodal or mildly cuspidal 
cubic in JP>4 is obtained by blowing up JP>3 along a canonically embedded 
non-hyperelliptic curve C of genus 4 and by blowing down the proper 
transform of the unique quadric containing C. This extends without 
problems to characteristic 2. We therefore have, cf. also [5] Corollary 
3.3: 

Proposition 2.1. For a non-hyperelliptic curve C of genus 4 with 
canonical image contained in a smooth quadric (resp. singular quadric) 
the linear system of cubics passing through the canonical image of C 
maps JP>3 to a nodal {resp. mildly cuspidal) cubic in JP>4 . This defines 
an isomorphism between the moduli space M4 - 1-{4 of non-hyperelliptic 
curves of genus 4 and the moduli space of nodal or mildly cuspidal cubic 
three folds in JP>4 . 

§3. The symmetric square of a curve 

For a smooth curve F of genus g and p E F a point of F we define 
the divisor Xp = {p + q : q E F} on Sym2 F (image of a fiber from the 
ordinary product) and we denote by x its class for algebraic equivalence. 
If we denote by jp : F-> Sym2 F the inclusion defined by jp(q) = p + q 
then Xp is the isomorphic image ofF under Jp· We shall write algebraic 
equivalence as ~-

We write ~ = {p + p : p E F} c Sym2 F for the diagonal divisor 
and 8 for its class. We have the intersections on Sym2 F: 

x 2 = 1, x · 8 = 2 and 82 = 4(1- g). 

A divisor (class) A= L:iPi- L:j Qj on F defines a divisor (class) SA= 

L:i Xp; - L:j Xqi on Sym2 F. The map A~ SA is obviously linear in 
A. 

Lemma 3.1. For a smooth curve F of genus g the map O(A) ~ 
O(SA) defines an isomorphism i: Pic0 (F)~Pic0(Sym2 F) with inverse 
map the j; : Pic0 (Sym2 F)-> Pic0 (F) for a fixed p E F. 

Proof. We have j; o i = 1 showing that i is an injection. To show 
that j; is the inverse map to i it suffices to prove that i is onto. The 
result follows from the fact that Pic0 (Sym2 F) and Pic0 (F) have the same 
dimension. This follows from the fact that dim H 1 (Sym2 F, Osym2 F) = g 
as a standard calculation shows. 

Q.E.D. 
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Definition 3.2. For a linear system r of degree d and rank 1 (a 
YJ), we define a trace divisor on Sym2 F of pairs contained in r by 

Tr = {p + q : r 2: p + q}. 

We shall denote linear equivalence by""'· Then we have: 

Lemma 3.3. If A is a degree d divisor on F defining a linear system 
r = IAI which is a YJ then in Pic(Sym2 F) we have 

In particular, the divisor class ~ is divisible by 2 in Pic(Sym2 F), i.e. 
there is a divisor class ~/2 such that . 

Proof. It suffices to prove the result in the case where r is base 
point free YJ· Indeed, otherwise the elements of the YJ have the form 
D +Do, where D is an element of a base point free gLn and Do = 
2::~=1 Pi is the base divisor. Then A""' A'+ Do, where A' is the divisor 
ofthe YLn· Therefore the points of Tr have the form i) points a+b with 
D 2: a+ bfor some DE r', the YLn, and ii) points a+ Pi, some a E F 
and some i with 1 :::; i :::; n. The first are points of Tr' while the latter 
are points of Xp,, i = 1, ... , n. We conclude that Tr = Tr' + 2::~=1 Xp, 
and since sA rv sA' + 2::~=1 Xp, the result for r' implies it for r. 

Assume therefore that r is base point free g~ and let ¢ : F -+ lP'1 be 
the map defined by the g~. Take il> = ¢x¢: FxF-+ lP'1 xlP'1. Let ,8: Fx 
F-+ Sym2 F be the canonical map. We denote by ~JP>l xJP>l (resp. ~FxF) 
the diagonal of lP'1 x lP'1 (resp. F x F). Then il>* ~JP>l xJP>l = ~FxF + ,B*Tr. 
Now, ~JP>l xJP>l is linearly equivalent to f 1 + P, where fi, i = 1, 2, are the 
fibers of lP'1 x lP'1. Let A = a1 + · · · + ad be a fiber divisor of the map 
¢: F-+ lP'1. Then il>*~JP>lxJP>l rv il>*(P + P) = L::=1,8*Xa, = ,B*SA. 
We also have ,8* ~ = 2~FxF· Therefore 

Since ,8* is an injection the result follows. Q.E.D. 

Remark 3.4. Among all divisor classes A on Sym2 F with A~ 8/2, 
the above defined divisor class ~/2 has the characteristic property that 
j;(~/2) = p for every p E F. Indeed, one has j;(~/2) = j;(sA- Tr) = 
A- (A- p) =p. 
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§4. Divisors on Sym2C 

We shall assume for the rest of the paper that Q is smooth, or 
equivalently, that the curve C has two different g§'s, say ID1I and ID2I 
with D 1 + D2 "'K, the canonical divisor of C. The corresponding cubic 
threefold X is then a nodal cubic threefold, see Section 2. Let R1 and 
R2 be the two rulings of Q. If p E C is a point and £i a line in the ruling 
Ri through p then £i cuts out on C a divisor p + Pi + qi in one of the 
two g§'s. The map "fi, see Section 2, sends p to Pi+ qi E Sym2C. We 
shall write Ci for the image curve 'Yi(C) on Sym2C. The map "12"111 : 
C1 --+ C2 sends Pl +q1 E Sym2C to the complementary point P2 +q2. For 
complementary points Pl + q1 E C1 and P2 + q2 E C2 we have Rv(p1 +q1 ) = 
Rv(p2 +q2 )· Therefore the normalization map v : S = Sym2C--+ S glues 
the complementary points of the curves C1 and C2. 

We observe now that ci = TID, I' i.e. ci is a trace divisor on Sym2C, 
and hence by Lemma 3.3 we have 

(1) 

This relation yields the following corollary, cf. also [7]. 

Corollary 4.1. The divisors C1 and C2 are algebraically equivalent 
on Sym2C, but not linearly equivalent. 

Proof. We have SD, ~ 3x, and hence ci ~ 3x- 8/2 which proves 
that cl ~ C2. If we assume that ci "'c2 then SDl -l::i/2"' SD2 -l::i/2, 
and so SD1 "' SD2. But then Lemma 3.1 implies that D 1 "' D2, a 
contradiction since we assumed that D 1 and D 2 define two different 
g§'s. Q.E.D. 

Since the curve Cis not hyperelliptic we have h0 (C, O(K- p- q)) = 2, 
for every p, q E C. We introduce now the following notation: 

Notation 4.2. For p + q E Sym2C we set Dp+q = Tr with r the 
gl defined by K - p- q. 

So Dp+q is the trace divisor on Sym2C corresponding to the projec
tion of the curve C with center the secant line pq. By Lemma 3.3, we 
have 

(2) 

If p + q rJ. cl u c2 then IK - p - qj is base point free and defines a 4 : 1 
map from c to IP'1. If p + q E ci then the linear system IK- p- qj has 
the base point 'Yi-1(p + q). 
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Lemma 4.3. If p + q E C1 then Dp+q = C2 + X'Yi'(p+q) and, 
similarly, if p + q E C2 then Dp+q = C1 + X1':2'(p+q). 

Proof. If p + q E cl then the linear system IK- p- qf has the 
base point 'l':l1(p + q). The elements in IK - p- qf have the form 
D+'l':l1(p+q), where DE IK -p-q-')':11 (p+q)f = IK -D1I = ID2I· 
Then, as in the first paragraph of the proof of Lemma 3.3, we have that 

Dp+q = TfD2 f + X'Yi'(p+q) = C2 + X'Yi'(p+q)· Q.E.D. 

We now compute several intersection numbers on Sym2 C. 

Inters 4.4. [Ci]· [C1] = (3x- b/2) 2 = 9-6- 3 = 0. 

Inters 4.5. [Xp] · [Ci] = x · (3x - b /2) = 2. 
The two points of intersection are p + a, p + b, where a and b are 

defined by '/'i (p) = a+ b. 

Inters 4.6. [Dp+q]· [Ci] = (4x- b/2) · (3x- b/2) = 12-7-3 = 2. 
If p + q ¢'. cl u c2' the two points of intersection are the '/'i (p) and 

'l'i(q). Note therefore that, in this case, the divisor Dp+q intersects the 
curves C1 and C2 in complementary points: '/'l(P) = '1'1'1'21b2(P)) and 
'/'l(q) = '1'1'1'2 1('/'2(q)). This indicates that the divisor Da+b, a+ b ¢'. 
C1 u C2 , is the pull back of a Cartier divisor from S - we will see this 
later in a more rigorous way. If p + q E C1 then, by Lemma 4.3, we 
have that Dp+q = C2 + X'Yi'(p+q) and the points of intersection are 
the two points of intersection of x1'1'(p+q) with ci, that is, the points 

p + '1'11 (p + q) and q + 'l':l1(p + q), see Inters 4.5. 

Inters 4.7. Dp+q · Xa = (4x- b/2) · x = 4- 1 = 3. 
If p + q ¢'. cl u c2 it corresponds to the three points a+ bi, where bi 

are the three additional points of intersection with C of the plane defined 
by the points p, q and a. If p + q E C1 then Dp+q = C2 + X'Yi'(p+q)' 
see Lemma 4.3, and the intersection corresponds to the two points of 
intersection of C2 with Xa, see Inters 4.5, plus the point of intersection 
of X _,( + ) with Xa, i.e. the point '1':1\P + q) +a. ')', p q 

Inters 4.8. [Dp+q]· [Dp'+q'] = (4x- b/2)2 = 16-8-3 = 5. 
If p + q, p' + q' ¢'. cl u c2 it corresponds to the five common secant 

lines to the lines lv(p+q) and lv(p'+q') in X, cf. [6]. If p + q E C1 then 
Dp+q = C2 + X _,( + ) , see Lemma 4.3, and the intersection corresponds ')', p q 

to the sum of the Inters 4.6 and Inters 4. 7. 
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§5. Divisors on the Fano surface 

Let X be again a nodal threefold with S the Fano surface. For each 
8 E S we have the divisor 

Ds = { 8 1 E 8, ls' n ls =/= 0} 

on S as defined in [6]. Let 8 E S so that 8 = v(p + q) for some p + q E 
Sym20, where v: Sym20-+ Sis the normalization map. The following 
proposition relates the divisor Ds on S with the trace divisor Dp+q on 
Sym2 0. 

Proposition 5.1. Let sing(S) be the singular locus of S viewed as 
a W eil divisor on S. We have 

(1) If p + q (J. 01 U 02 then Dv(p+q) = v*Dp+q· 
(2) If p + q E 01 then Dv(p+q) = v*Dp+q = sing( B)+ v*X,;:-l(p+q). 

Similarly, if p + q E 02 then Dv(p+q) = v*DP+q = sing( B)+ 
v*X,;l(p+q). 

Proof. We start by proving the first claim. The points a, b E 0 
belong to the same fiber of the projection to lP'1 defined by the gl = 
/K ~ p- q/ if and only if there is a hyperplane section H on C with 
H 2: p + q +a+ b. This is equivalent to saying that the line ab intersects 
the line pq. If p + q (J. 0 1 U 0 2 then the secant pq corresponds, via the 
rational map p, to the line lv(p+q) = 1r*pq of X. The point p (resp. q) 
of pq corresponds to the intersection Xp (resp. Xq) of lv(p+q) with 1r*EP 
(resp. 1r*Eq). 

Apart from the line 1r*EP (= lv(l'1 (p)) = lv(l'2 (p))), the lines in X 
which intersect the line lv(p+q) at Xp are the lines lv(p+a), where p +a is 
one of three points of intersection of Dp+q with Xp, see Inters 4.7. This 
is because the proper transform of two lines through p passes from the 
same point of Ep if and only if the plane they span contains the tangent 
line TpO. Let Bp = [XpnDp+q]U{'Y1 (p),')'2 (p)} c Dp+q· Then a+b E Bp 
if and only if lv(a+b) is a line in X that intersects lv(p+q) at Xp· Note that 
p + q E Dp+q if and only if the tangents to 0 at p and q are coplanar 
and in this case lv(p+q) intersects itself. This gives a characterization of 
the lines of second type, see [6] Lemma 10.7. Similarly, the set of 8 E S 
such that the line ls intersects the line lv(p+q) at Xq is the image of the 
set Sq = [Xq n Dp+q] U b1(q), /'2(q)} c Dp+q· 

We set U = Dp+q \[Bp U Sq] and let U' be the set of points 8 in the 
divisor Dv(p+q) such that ls intersects the line lv(p+q) at a point different 
from Xpand Xq. We shall show that a+b E U if and only if v(a+b) E U', 
which yields the first claim. We claim that a + b E U if and only if the 
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line ab intersects pq at a point t different than p and q. Indeed, the 
line ab intersects pq since a+ b E Dp+q· As a+ b ¢c Xp + Xq we have 
{a, b} n {p, q} = 0 and so if we assume that the point of intersection is p or 
q then the line ab intersects the curve C at 3 points and hence it is a line 
in a ruling. But then, Inters 4.6 yields that a+b E bi(P), /'i(q), i = 1, 2}, 
a contradiction since a+ b E U. Hence the lines lv(a+b) and lv(p+q) are 
intersecting lines with point of intersection a(t) =1- Xp, Xq. Therefore 
v( a + b) E U' and vice versa. 

The second claim follows easily from Lemma 4.3. The curve sing(S) 
corresponds to lines intersecting lv(p+q) at the singular point of the three
fold and v*X'Y;-l(p+q) corresponds to lines intersecting lv(p+q) at the other 
points. Q.E.D. 

Since for every p + q E Sym2C the divisors Dp+q have algebraic 
equivalence class 4x- 6/2, see relation (2), we have the following corol
lary. 

Corollary 5.2. For every s E S the divisors Ds are algebraically 
equivalent. 

Remark 5.3. Note that for p + q ¢c C1 U C2 the divisor Dp+q has 
an involution which sends the point a + b to the residual point in the 
linear system IK- p- ql. The induced involution on Dv(p+q) is the one 
defined in [6]. 

For a 2-plane V in lP'4 the set of lines in JP'4 meeting V defines a 
Cartier divisor Cv on S. The corresponding divisor class is the pull 
back to S via the natural embedding S-+ Gr(2, 5) of the natural ample 
line bundle on the Grassmannian. Let P1 + Ql E Sym2C, but ¢c C1 U C2 
and choose a generic plane H in JP'3 containing the secant p 1q1 and inter
secting the curve C C lP'3 in four additional distinct points P2, Q2,p3, q3 
different from P1, Q1. We may assume that P2 + Q2, P3 + q3 ¢c C1 U C2 and 
that the lines PiQi, i = 1, 2, 3, meet at three distinct points not on C. 
Therefore, their image under the rational map p are three intersecting 
lines in JP'4 which define a 2-plane V0 . Note that the rational map p em
beds the plane H in a hyperplane of JP'4 but does not send it to a 2-plane 
in lP'4 . Then the plane V0 intersects X in the sum of the three lines 
'2:i=l, 2,3 lv(p;+q;) and hence Cv0 = I:i=l, 2,3 Dv(p;+q;) is a Cartier divi
sor on S. Now, by Proposition 5.1 and Inters 4.6 the divisor Dv(p1 +qi) 
intersects the singular locus of Sat the divisor A= v('yl(Pl) + 'Yl(Ql)), 
while the divisor Dv(pz+qz) + Dv(pa+qa) intersects the singular locus 
of S at the divisor B = v('yl(P2) + /'l(P3) + 1'1(q2) + 1'1(q3)). Since 
SuppA n suppB = 0, the divisor Dv(pl +ql) is a Cartier divisor. Hence, if 
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p+q f{. C1 UC2 then the divisor Dv(p+q) defines a line bundle O(Dv(p+q)) 
on the singular surfaceS. Combining this with Proposition 5.1 we have: 

Corollary 5.4. If s E S- sing(S) so that s = v(p + q) with p + q f{. 
C1 U C2 , then Ds is a Cartier divisor on S and O(Dv+q) = v*O(Ds)· 

Remark 5.5. If s E sing(S) with s = v(p + q) but p + q E C1 U C2, 
then Ds = singS+v*X'Yil(p+q)' i = 1 or 2 (see Proposition 5.1), is not a 
Cartier divisor on S. For example, v*X'Yil(p+q) is not a Cartier divisor 
since for s E C the divisor Xs does not intersect the curves Ci, i = 1, 2, 
at complementary points. 

§6. The Picard variety of the Fano surface 

We now analyze the Picard variety of the Fano surface of our nodal 
cubic threefold. 

Proposition 6.1. The pull back map v* : Pic0 (S) -+ Pic0 (S) is 
onto. 

Proof. By Lemma 3.1 the group Pic0 (S) is generated by the classes 
of divisors of the form Ba-b with a, bE C. Choosing a point c .E C with 
a+ c, b + c f{. C1 u C2 we get by relation (2) and Corollary 5.4 that Ba-b 

is linearly equivalent to 

Q.E.D. 

Remark 6.2. A line bundle L on Sym2C defining an element of 
Pic0 (Sym2 C) restricts to the same line bundle on C1 and C2, that is, 
'Yi(L) ~ 'Y2(L). Indeed, for p E C the intersection of Xv with Ci is si+P, 
ti + p, where 'Yi(P) = Si + ti, see Inters 4.5. Therefore 'Yi(Xv) = Si + ti 
and 'Yi(Sv) ,..._, Di - p because si + ti + p ,..._, Di. So 'Yi(Bp-q) ,..._, q- p 
and since these divisors generate Pic0 (Sym2C) the result follows. Given 
now L we can glue LIC1 with LIC2 to obtain a line bundle on S which 
under v pulls back to L. This proves the surjectivity of Proposition 6.1 
in. a different way. 

Corollary 6.3. The semi-abelian variety Pic0 (S) is isomorphic to 
the Gm -extension of Pic0 (C) given by D 1 - D 2, the difference of the two 
gj 's. 

Proof. The kernel of the surjective map v* : Pic0 (S) -+ Pic0 (S) ~ 
Pic0 (C) is the algebraic torus Gm. More precisely, the fibre over [L] E 
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Pic0 (8) consists of the isomorphis~s 'Yi(L) ~ 'Y2(L). Note that 'Yi(L) 
and 'Y2(L) are isomorphic line bundles on Cas the map 

is given on divisors as I:niPi f---7 I:ni(Dj- Pi) (cf. Remark 6.2), hence 
by multiplication by -1. Let £ be a universal line bundle on Pic0 (C) x 8 
constructed via the Abel-Jacobi map u: 8---+ Pic0 (C) with u(p + q) = 

O(po + qo- p- q) for fixed Po, qo E C. It has the properties £1 (L) x 8 = 
O(SL) and £1Pic°C x {p + q} = O(po + qo - p- q). The line bundle 
(1 x 'Y2)*(£) 0 (1 x 'Y1)*(£)-1 on Pic0 (C) x Cis trivial on each fibre C 
and hence the pull back of a line bundle on Pic0 (C). To determine which 
one, we can restrict to a fibre Pic0 (C) x {p} and then it is seen to equal 
O(D1- D2), since (1 x 'Yj)*(.C)IPic0 (C) x {p} = O(po + qo- 'Yj(p)) = 
O(po + qo- Dj + p)). Hence the IGm-extension is obtained by deleting 
the zero-section from the line bundle O(D1 - D 2 ). Q.E.D. 

Remark 6.4. Note that we do not require isomorphisms of IGm
extensions to be the identity on IGm, hence O(D1- D2) and O(D2- D1) 
define isomorphic extensions. 

As a corollary we now can deduce that the general cubic threefold 
is not rational, cf. [8), but with no assumptions on the characteristic. 

Corollary 6.5. The general cubic threefold is not rational. 

Proof. Let X ---+ B be a cubic threefold over the spectrum of a 
discrete valuation ring such that the generic fibre XTJ is a smooth cubic 
threefold and the special fibre Xs is a nodal cubic threefold. Then 
the Picard variety of the Fano surface S of X is a semi-stable abelian 
variety A of dimension 5 with generic fibre ATJ a principally polarized 
abelian variety and as special fibre As a IGm-extension of Jac(C) given 
by ±(D1- D2). If X were rational then ATJ would be the Jacobian of a 
curve of compact type .. But if D 1 =1- D 2 then D 1 - D 2 is not of the form 
p- q for points p, q E C. Hence As is not a limit of a Jacobian, and thus 
ATJ cannot be a Jacobian. Q.E.D. 

Remark 6.6. If X is mildly cuspidal then Pic0 (S) is an extension 
of Pic0 (C) by an additive group, hence not the Jacobian of a curve of 
compact type. 
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§7. The compactified Jacobian of a one-nodal curve 

Since the Picard group Pica(S) is very similar to the Jacobian of a 
one-nodal curve we first review compactifications of the latter. Refer
ences are [16, 15, 2, 3, 11, 4] for example. 

Let F be a curve with one node xa and let J.t : F ---+ F be the 
normalization, where F is a smooth curve of genus g with J.t-1(xa) 
{ x1, x2 }. Then there is a short exact sequence of algebraic groups 

1 ---+ Gm ---+ Pica (F) ---+ Pica (F) ---+ 0 

and the extension class of this semi-abelian variety is given by the class 
of ±(x1 - x 2 ) E Pica(F)/±1, where we identify Pica(F) with its dual 
abelian variety. We shall write 

There are two ways to compactify G, one by explicitly constructing a 
geometric compactification (the rank-1-compactification), the other one 
by the moduli interpretation. In the case at hand they lead to the same 
result. We begin by defining the compactified Jacobian ac ofF as the 
moduli space of rank 1 torsion-free sheaves on F of degree 0; here the 
degree is defined by deg( M) = x( M) - x( 0 F). It contains G = Pica (F) 
as an open part. 

The direct construction of the compactified Jacobian as a variety 
is obtained as follows. Take the lP'1-bundle P = lP'(L EB 0) with the 
projection q: P---+ J over J where L = O(x1 - x2 ). 

Recall that in order to lift a morphism a : X ---+ J for a variety X to 
a morphism a : X ---+ P one must give an invertible sheaf M on X and 
a surjective map of sheaves T : a*(L EB 0) ---+ M, see [14], Ch. II, Prop. 
7.12. The lP'1-bundle P contains two effective divisors T1 and T2 given 
by lP'(L EB 0) and lP'(O EB 0). There exist two sections ti :Pica( C) ---+ P 
(i = 1, 2) of q with image Ti with h corresponding to the projection 
L EB 0 ---+ L and t 2 to L EB 0 ---+ 0. By deleting T1 and T2 from P one 
gets G back. 

Since O(Ti) Q9 0(1)-1 is trivial on the fibers of q it is the pull back 
of a line bundle Ai on J. One determines A1 by taking the pull back of 
the relation O(TI) Q9 0(1)-1 = q* A1 under t 2 and one finds A1 = 0 and 
similarly one gets A2 = L - 1. In particular we get 

(3) 

The compactification ac is the non-normal variety obtained by glue
ing T1 to T2 over a translation by x1 - x2 . The smooth part can be 
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identified with G and the singular locus~ with Pic-1(F) by associating 
to a line bundle N on F of degree -1 the torsion-free sheaf p,* ( N) of 
rank 1 on F: 

Note that x(F) = x(F) + 1. 
There is a natural action of J by translation on itself and on Pic - 1 (F) 

and this results in an action of G on ac extending the action on itself 
as one easily checks. 

Moreover, for a line bundle A on F the fibre under p,* can be inter
preted as the pairs (A,>.) where >. : Ax1 ~Ax2 • If we choose generators 
for the fibres Ax; the map>. can be identified with a non-zero scalar. Let
ting this scalar go to 0 or infinity gives the two extra points on the fibre 
of ac over A; these have as their images in ~ the points corresponding 
to the torsion-free sheaves p,*(A ® 0( -x1)) and p,*(A ® 0( -x2). 

After choosing a smooth point Po on F with inverse image fJo on F 
we can define an Abel-Jacobi map 

u : F --t J, p --+ O(Po - p) 

and it can be lifted to a map u : F --t P which is given by an invertible 
sheaf M on F and a surjection u*(L EB 0) --t M with M = u*(0(1)). 
We take M = O(x1) S:! O(x2 ) ® u*(L). Then M ® u*(L EB O)v S:! 

O(xl) EB O(x2 ) and this has a canonical section 1 EB 1, giving the desired 
surjection u*(L EB 0) --t M. 

Note that by equation (3) for i = 1, 2 we have u*O(Ti) = O(xi) as 
u*0(1) = O(x1) and u* L - 1 = O(x2 - X1)· It follows that u(F) = 
u(xi) and F - {x1, x2 } is mapped into G under u. Note also that 
q(u(xl)) - q(u(x2)) = u(x1) - u(x2), the class of x1 - x2. Thus the 
morphism u descends to an Abel-Jacobi map u : F --t ac. It has a 
moduli interpretation via the direct construction as follows. The ideal 
sheaf It:. of the diagonal on F x F is a torsion-free sheaf of degree -1 
for the curve F x F~F, with pr the first projection. Then the sheaf 
h ® pr*O(po) defines the morphism u; we refer to [11]. 

We now calculate the algebraic equivalence class of the curve u(F) 
in P. 

Proposition 7.1. The algebraic equivalence class "! of the curve 
u(F) in P is given by 

u(F) ~q*(p) + q*(F) · ry, 

with q : P --t J the projection and TJ the class of 0(1) on P and p a 
point of J. 
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Proof. From equation (3) we have T1 !l:::.ry and T2!l:::.ry-q* (L )!f::.ry. Since 
ry2 = 0 we have 'Y!l:::.q*(a0 ) + q*(a1 )ry with ai a class of dimension ion J 
satisfying ao = q*('Yry) and a1 = q*('Y). We have 

q*('Y) = q*u*1p = u*1F = [F] 

and q* ( 'YTJ) equals the class of a point p and the formula follows. Q.E.D. 

§8. The compactified Picard of the Fano surface 

As we saw in Section 6 the semi-abelian variety Pic0 (S) is isomorphic 
to the Gm-extension of Pic0 (C) with extension class D1- D2. This Gm
extension G can be realized by considering the line bundle L on Pic0 (C) 
associated to the divisor class of D 1 - D 2 and deleting the zero section. 
It is an algebraic group since it can be identified with the theta group 
of L, cf. [15, 12]. 

Just as in the preceding section there are two ways for compactifying 
G: one by considering the moduli of rank 1 torsion-free sheaves on S 
and secondly by glueing two sections of the lP'1-bundle defined by G (the 
rank-1-compactification). The result is the same. 

We consider the corresponding lP'1-bundle q : P = lP'(L EB 0) ----+ 

Pic0 (C). The lP'1-bundle Pcontains two effective divisors T1 and T2 given 
by lP'(L EB 0) and lP'(O EB 0); There exist two sections ti : Pic0 (C) ----+ P 
(i = 1, 2) of q with image Ti. Then t1 corresponds to the projection 
L EB 0 ----+ L and h to L EB 0 ----+ 0. Since O(Ti) ® 0(1)-1 is trivial on 
the fibers of q it is the pull back of a line bundle Ai on Pic0 (C) and one 
determines A1 ~ 0 by pulling O(T1) ® 0(1)-1 under t2, and similarly 
A2 ~ L - 1. We thus get as in equation (3) 

(4) O(T1) = 0(1), 

We construct a non-normal variety Gc by glueing T1 with T2 by a trans
lation over D1- D2 in Pic0 (C). It contains Gas a open subvariety and 
the singular locus E is isomorphic to Pic0 (C). 

We may interpret G alternatively as a Gm-extension ofPic0 (Sym2C) 
= Pic0 (S). Then we have the following interpretation for the compact
ification Gc obtained here, cf. [2], Section 3. We consider the moduli 
space of rank 1 torsion-free sheaves of Os-modules on S of first Chern 
class 0. If N is such a sheaf then outside the singular locus sing( B) the 
sheaf N is locally free. Along sing(S) we have that N ~ Os,sing(S) or 
N ~ v*(Os)lsing(S). 

Let c = 3x- 8/2 be the class (for algebraic equivalence) of C1 and 
C2 on S = Sym2C. Recall that vis the normalization map v: S----+ S. 
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For a line bundle N in Pic-c(Sym2C) the direct image v*(N) is a torsion 
free sheaf of rank 1 of first Chern class 0 which is not locally free. So 
our situation is very similar to the one of one-nodal curves and we have 
a morphism 

v* : Pic-c(Sym2C) -+ :E 

that is an isomorphism. We have a natural action of G on cc extending 
the action on itself. On :E this action is compatible with the action of 
Pic0 (S) ~ Pic0 (C) on Pic-c(Sym2C) 

We also have Abel-Jacobi maps here. If we pick a base point Po+ qo 
on Sym2C we have the map 

p + q t-t O(po + qo - p- q). 

As in the case of the compactified Jacobian there is a lift of u to a map 
u : Sym2C -+ P given by a surjection u*(L EB 0) -+ M with M an 
invertible sheaf on Sym2C. In fact, take M = O(C1) = O(C2) 0 L. 
Then we have 

and this has a canonical section 1 EB 1 defining u*(L EB 0) -+ M. This 
choice of M is dictated by the fact that we want u-1(Ti) = Ci, and 
u*(L) = O(C1 - C2) and moreover that u*(0(1)) should be equal toM. 
Note that the restriction of u on Sym2C- C1- C2 is the map defined by 
the canonical rational section 1 of the divisor C1- C2. Moreover, if P1 + 
q1, P2 + q2 are complementary points on the curves C1, C2 respectively, 
see Section 4, then qu(p1 + q1)- qu(p2 + q2) = u(p1 + q1- P2- q2) = 
O(D1 - D2). This implies that the map u descends to an Abel-Jacobi 
map u : S -+ cc. 

Finally we calculate the class of u(Sym2C) in P modulo algebraic 
equivalence. 

Proposition 8.1. Let 'Y = u(Sym2C). Then the algebraic equiva
lence class of 'Y in P is given by 

1 
'Y = q*[C] + "2q*[C * C]· ry, 

where C * C is the Pontryagin product and 'f} the class of 0(1). 

Proof. As above we have [T1] = 'f} and since L = O(D1 - D2) it is 
algebraically equivalent to 0, hence by relation ( 4) we have [T2] = 'f} too. 
We can write our class 'Y as q* ( a1) + q* ( a2) · 'f} with ai a dimension i cycle 
on Pic0 (C). We have a2 = q*('Y) = q*u*1sym2C = u*1sym2C = ![C * C] 
and q,('Y · ry) = [C]. The result follows. Q.E.D. 
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§9. The Clemens-Griffiths map 

For smooth Fano surfaces it is natural to consider the map 

where so is a fixed base point in S, see [6]. This map embeds S into 
Pic0 (S). There is an analogue of this map for the singular Fano surface 
S. We choose Po + qo E Sym2C - C1 - C2 and let so = v(po + qo) E 
8-sing(S). We consider the incidence variety I= {(s, t) with t E D8 } C 

S x S. If 7ri : S x S-+ Sis the i-projection then I -ni D80 C S x S ~ S 
is a family of Cartier divisors overS- sing( B), see Proposition 5.1, and 
therefore this defines a map u0 : S- sing(S) -+ Pic0 (S). 

Lemma 9.1. Let q : Pic0 (S) = G -+ Pic0 (C) be the natural pro
jection and v : Sym2C-+ S the normalization map. Then we have the 
equality of maps 

q 0 Uo 01/ = u: Sym2C- cl- c2-+ Pic0 (C}. 

Proof. Let i: Pic0 (Sym2C)-+ Pic0 (C) be the natural isomorphism 
given in 3.1. Then by Corollary 5.4 we have 

q o Uo o v(p + q) = iv*(Dv(p+q)- D 80 ) = i(Dp+q- Dp0 +q0 ). 

By relation (2) we have 

Dp+q- Dpo+qo rv [BK-p-q- A/2]- [BK-p0 -q0 - A/2] rv Bpo+qo-p-q• 

and the result follows by the definition of i. Q.E.D. 

The above lemma basically says that u0 is a lift to G = Pic0 ( S) of 
the usual Abel-Jacobi map u: Sym2C-+ Pic0 (C). The next proposition 
shows that it coincides with the generalized Abel-Jacobi map u. 

Proposition 9.2. Let u0 : S-sing(S)-+ Pic0 (S) = G with u0 (s) = 
O(Ds- D80 ) be the Clemens-Griffiths map for the singular Fano surface. 
Then uo coincides with u on S- sing(S), with u the Abel-Jacobi map 
defined in section 8. 

Proof. Recall that the restriction to Sym2C- C1- C2 ofthe lifting 
u of the Abel-Jacobi map u is given by the canonical rational section 
of O(C1 - C2) on Sym2C, as we saw in the preceding section. For 
p + q E Sym2C not On cl nor on c2 and s = v(p + q) we have seen that 
the divisor Dp+q- Dpo+qo on Sym2C descends to the Cartier divisor 
D s - D so on S. The image uo ( s) for s E S- sing( S) is given by the class 
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of the pull back L = v*O(Ds- D 80 ) and an isomorphism 'YiL ~ 'Y2L 
on C. Let 1 be the canonical rational section of 0( Dp+q - Dvo+qo). 
The pull back Lis isomorphic to O(Dp+q- Dvo+qo) and the glueing is 
given by the ratio 'Y2(1)hi(1) of the two sections. To determine now 
the embedding uo : S- sing(S) ----t G = Pic0 (S) we have to carry out 
the above construction for the family of Cartier divisors I - ni D 80 c 
S x S ~ S overS- sing(S) which defines the map u0 . 

Let V = {(p+q, r+8) with p+q E Dr+s} C Sym2 C x Sym2 C. Note 
that (v x v)*V = I, see Proposition 5.1. Take 1 x 'Yi : Sym2C x C ----t 

Sym2 C x Sym2 C and we have 

(1 X 'Yi)*(V- niDpo+qo)i{P + q} XC= P + q- Po- qo, 

(see Inters 4.6) and 

(1 X 'Yi)*(V- niDvo+qo)ISym2 C X {p} = Dv:+v:'- Dvo+qo· 

with p~ + p~' = 'Yi(p). Let 1 be the canonical rational section of O(V). 
Then 'Y2(1)hi(1) is up to a non-zero multiplicative scalar the canonical 
rational section 1 of O(A) with A the divisor 

A= (1 X 'Y2)*(V -niDvo+qo)- (1 X 'Yl)*(V -niDvo+qo) 

on Sym2C x C. But AI{P + q} x Cis the zero divisor for every p + q E 

Sym2C. Hence A is the pull back from Sym2C of the divisor AISym2C x 
{p} = Dv;+v~-Dvi +v~ = C1 -C2, see Lemma 4.3. Therefore the section 
'Y2(1)hi(1) which gives the glueing overS -sing(S) is (up to a non-zero 
scalar) the pull back of the canonical rational section of 0( C1 - C2) and 
hence the result. Q.E.D. 

§10. The limit of the Clemens-Griffiths map 

Assume that we have a family X ----t ~' with ~ the spectrum of a 
discrete valuation ring (or an open unit disc in the complex case) with 
generic fibre X 17 , a smooth cubic threefold and special fibre X 0 , a nodal 
cubic threefold. Let S ___, ~ be the corresponding family of Fano surfaces 
with S0 the non-normal Fano surface of X 0 . We may assume that the 
family S ----t ~has a section u: ~ ----t S with u(O) E So- sing(So). 

The map s1) X s1) ----t Pic0 S1) given by (8,8 1) ----t [Ds -Dsr] has 
generic degree 6 and has as image a divisor e that defines a principal 
polarization. 

We consider the correspondence I1) on s1) X !J.n s1) given by pairs 
( 8 1, 8 2) with 8 2 E D 81 • This gives us a relatively effective divisor V over 
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STJ via the projection on the second factor STJ. In turn this defines an 
embedding ¢TJ : STJ--+ Pic0 (STJ/ ATJ) that sends s to Ds- Da· The family 
¢TJ is a fiat family as it is irreducible and the base ATJ is !-dimensional. 
We consider the rank-1-compactification of the relative Picard variety 
with special fibre ac and let F be the fiat limit of ¢TJ(STJ) in the special 
fibre. 

Proposition 10.1. The flat limit F of the Fano surface coincides 
with the Abel-Jacobi image u(So). 

Proof. In characteristic 0 it is well-known that the cohomology 
class of the fibre ¢TJ(STJ) is e3 /3!, with e the polarization class on the 
Picard variety. In positive characteristic we can lift the hypersurface 
X to characteristic 0 and deduce the result from this. Hence the coho
mology class of the limit F c ac is eJ/3! where e0 is the limit of the 
polarization. If T : p --+ QC is the normalization map then the claSS of 
T* eo is equal to q* t;, + 'f/, where t;, is the polarization on Pic0 (C) and 'f/ as 
in Proposition 8.1, cf. [15]. Note that (T*e0 ) 3 /3! = q*t;,3 /3! + q*t;,2 /2! · rJ 
because ry2 = 0 in cohomology, which is exactly the cohomology class of 
u(So), see Proposition 8.1. 

Let S* be the subscheme of S obtained by removing the singular 
points of S0 • The correspondence ITJ extends to I* on S* in a natural 
way by adding the points ( s1, s2) E So x So with s1 E D 82 and the map ¢TJ 
extends also naturally to ¢* : S* --+ Pic0 ( S j A) using the section a. Then 
¢TJ(STJ) c ¢*(S*) and hence ¢*(S0) is contained in the limit F. Note that 
S0 = So-sing(So) and ¢*(S0) = uo(So-sing(So) = u(So-sing(So)), see 
Proposition 9.2. Hence u(S0 ) is contained in F and hence is a component 
of F. But since F and u(So) are effective cycles and have the same 
homology class they should be equal, as the intersection number of eJ 
with F- u(So) otherwise would be positive since e0 is ample. See also 
[10] Sections 7 and 8. 

Q.E.D. 

Acknowledgements. The second author thanks the Korteweg-de Vries 
Instituut van de Universiteit van Amsterdam, where part of this work 
was done, for its support and hospitality. 

References 

[ 1 ) A. Altman and S. Kleiman, Foundation of the theory of Fano schemes, 
Compositio Math., 34 (1977), 3-47. 

[ 2 ] A. Altman and S. Kleiman, Compactifying the Picard scheme, Adv. in 
Math., 35 (1980), 5Q-112. 



Note on Fa no· surfaces of nodal cubic three folds 45 

3 A. Altman and S. Kleiman, Compactifying the Picard scheme. II, Amer. 
J. Math., 101 (1979), 10-41. 

4 L. Caporaso, A compactification of the universal Picard variety over the 
moduli space of stable curves, J. Amer. Math. Soc., 7 (1994), 589-660. 

5 S. Casalaina-Martin and R. Laza, The moduli space of cubic three
folds via degenerations of the intermediate Jacobian, J. Reine Angew. 
Math., 633 (2009), 29-65; arXiv:0701.5329. 

[ 6 ] H. Clemens and Ph. Griffiths, The intermediate Jacobian of the cubic 
threefold, Ann. of Math. (2), 95 (1972), 281-356. 

[ 7 ] A. Collino, A property of two curves on the symmetric product of a 
general curve of genus four, Boll. Un. Mat. Ital. A (5), 13 (1976), 
346-351. 

[ 8 ] A. Collino, A cheap proof of the irrationality of most cubic threefolds, 
Boll. Un. Mat. Ital. B (5), 16 (1979), 451-465. 

[ 9 ] A. Collino and J. P. Murre, The intermediate Jacobian of a cubic three
fold with one ordinary double point; an algebraic-geometric approach 
(I) and (II), Indag. Math., 40 (1978), 43-45 and 56-71. 

[ 10] 0. Debarre, Minimal cohomology classes and Jacobians, J. Algebraic 
Geom., 4 (1995), 321-335. 

[ 11] E. Esteves, M. Gange and S. Kleiman, Autoduality of the compactified 
Jacobian, J. London Math. Soc. (2), 62 (2002), 591-610. 

[ 12] G. van der Geer and B. Moonen, Abelian Varieties, preliminary ver
sion of a manuscript available at http:/ /staff.science.uva.nl;-bmoonen 
/boek/BookAV .html. 

[ 13] G. Fano, Sul sistema oo2 di rette contenuto in una varieta cubica generale 
dello spazio a quattro dimensioni, Atti R. Ace. Sc. Torino, XXXIX 
(1904), 778-792. 

[ 14] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977. 
[ 15] D. Mumford, On the Kodaira dimension of the Siegel modular variety, 

Lecture Notes in Math., 997 (1983), 348-375. 
[ 16] D. Mumford, Tata lectures on Theta II, Progr. Math., 43, Birkhiiuser, 

1984. 

Gerard van der Geer 
Korteweg-de Vries Instituut, Universiteit van Amsterdam 
Postbus 94248, 1090 GE Amsterdam, The Netherlands 
E-mail address: geer@science. uva. nl 

Alexis Kouvidakis 
Department of Mathematics, University of Crete 
GR-71409 Hemklion, Greece 
E-mail address: kouvid@m.ath. uoc. gr 




