Triple covers of algebraic surfaces and a generalization of Zariski's example

Dedicated to Professor Mutsuo Oka on his sixtieth birthday

Hirotaka Ishida and Hiro-o Tokunaga

Abstract

. Let B be a reduced sextic curve in \mathbb{P}^{2}. In the case when singularities of B are only six cusps, Zariski proved that there exists a non-Galois triple cover branched at B if and only if B is given by an equation of the form $G_{2}^{3}+G_{3}^{2}$, where G_{i} denotes a homogeneous polynomial of degree i. In this article, we generalize Zariski's statement to any reduced sextic curve with at worst simple singularities. To this purpose, we give formulae for numerical invariants of non-Galois triple covers by using Tan's canonical resolution.

§1. Introduction

In this article, all varieties are defined over the field of complex numbers, \mathbb{C}.

Let Σ be a smooth projective surface and let B be a reduced divisor on Σ. A normal projective surface X is called a triple cover of Σ with branch locus B if

- there exists a finite surjective morphism $\pi: X \rightarrow \Sigma$ of degree 3 , and
- the branch locus $\Delta(\pi)=B$

Let X be a triple cover of Σ. We denote the rational function fields of X and Σ by $\mathbb{C}(X)$ and $\mathbb{C}(\Sigma)$, respectively. Under our circumstance, $\mathbb{C}(X)$ is a cubic extension of $\mathbb{C}(\Sigma)$. We say that X is a non-Galois triple

[^0]cover (resp. cyclic triple cover) if the cubic extension $\mathbb{C}(X) / \mathbb{C}(\Sigma)$ is non-Galois (resp. cyclic). For a point $y \in \Sigma$, we call y a total (resp. simple) branch point if $\sharp\left(\pi^{-1}(y)\right)=1$ (resp. $=2$). We call a triple cover $\pi: X \rightarrow \Sigma$ generic if its total branch points are finite (see Definition 2.1 for detail). Note that a generic triple cover is always non-Galois (Remark 2.2).

The first systematic study on triple covers was done by Miranda [11]. Afterward, some have been done by [18, 19, 20], [4] and [16, 17]. Yet non-Galois triple covers are difficult to deal with. For example, a fundamental question as follows still remains as a subtle question:

Question 1.1. Let Σ and B be as above. Give a sufficient and necessary condition for B to be the branch locus of a non-Galois triple cover.

One can see the subtleness of Question 1.1 in Zariski's example ([23]) below.

Example 1.1. Let B be an irreducible plane sextic curve in \mathbb{P}^{2} having only 6 cusps as its singularities. There exists a generic triple cover with branch locus B if and only if there exists a conic passing through all the 6 cusps.

Note that there exists no conic through assigned 6 points if these six points are in general position. In fact, it is known that there exists an irreducible sextic with only 6 cusps as its singularities such that no conic passes through all the six cusps ([12], [24]).

Remark 1.1. Zariski's example is a starting point of the study of so called "Zariski pairs" and there have been many results on it from various points of view (see [1] and its references for details).

Our goal of this article is to generalize Zariski's example to the case when B is a reduced sextic curve having only simple singularities as its singularities. For simple singularities, see [3, Theorem II, 8.1], page 64. To describe the type of singularities, we use the standard notations A_{n}, D_{n} and E_{n}. By abuse of notations, we also use the same notations to describe rational double points on surfaces (see [3], page 87). Let us state our result:

Theorem 1.1. Let B be a reduced sextic curve in \mathbb{P}^{2} with at worst simple singularities. There exists a generic triple cover $\pi: X \rightarrow \mathbb{P}^{2}$ with branch locus B if and only if B is given by an equation of the form

$$
G_{2}^{3}+G_{3}^{2}=0
$$

where $G_{i}=G_{i}\left(X_{0}, X_{1}, X_{2}\right)(i=2,3)$ are homogeneous polynomials of degree i, $\left[X_{0}: X_{1}: X_{2}\right]$ being a homogeneous coordinate of \mathbb{P}^{2}.

Corollary 1.1. Let B be a reduced sextic curve in \mathbb{P}^{2}. Then the following two statements are equivalent:

- B is a (2,3)-torus curve (see Remark 1.2 below).
- There exists a surjective morphism from the fundamental group $\pi_{1}\left(\mathbb{P}^{2} \backslash B, *\right)$ to the symmetric group of 3 letters such that all meridians around irreducible components of B are mapped to elements of order 2

Remark 1.2. (i) A sextic curve given as in Theorem 1.1 is called a (2,3)-torus sextic (see [9]). Such curves are intensively studied by Oka ($[13,14,15]$).
(ii) In Example 1.1, the conic is given by $G_{2}=0$ as above. Hence Theorem 1.1 is a generalization of Example 1.1.
(iii) Note that Corollary 1.1 is a slight generalization of [5, Theorem 4.1.1], as we also consider the case when sextics are reducible.

In order to prove Theorem 1.1, our main tool are formulae for numerical invariants of the minimal resolution of a generic triple cover as follows:

Proposition 1.1. Let $\pi: X \rightarrow \Sigma$ be a generic triple cover with $\Delta(\pi)=B$, where B is a reduced divisor on Σ with at worst simple singularities. We denote the set of total branch points by T. Then:
(i) $T \subseteq \operatorname{Sing}(B)$ and T consists of singular points of type either $A_{3 k-1}(k \in \mathbb{N})$ or E_{6}.
(ii) Put $T=\left\{p_{1}, \ldots, p_{m}, p_{m+1}, \ldots, p_{m+n}\right\}$ in such a way that p_{i} is of type $A_{3 k_{i}-1}$ for $1 \leq i \leq m$, and p_{i} is of type E_{6} for $m+1 \leq i \leq m+n$. Let $\delta:=\sum_{i=1}^{m} k_{i}+2 n$ and we denote the minimal resolution of X by \tilde{X}. Then we have

$$
\begin{aligned}
K_{\tilde{X}}^{2} & =3 K_{\Sigma}^{2}+2 K_{\Sigma} B+\frac{1}{2} B^{2}-\delta \\
e(\tilde{X}) & =3 e(\Sigma)+K_{\Sigma} B+B^{2}-3 \delta \quad \text { and } \\
\chi\left(\mathcal{O}_{\tilde{X}}\right) & =3 \chi\left(\mathcal{O}_{\Sigma}\right)+\frac{1}{4} K_{\Sigma} B+\frac{1}{8} B^{2}-\frac{1}{3} \delta
\end{aligned}
$$

Here $K_{\bullet}, e(\bullet)$ and $\chi\left(\mathcal{O}_{\bullet}\right)$ denote a canonical divisor, the topological Euler number, and the Euler characteristic of a surface •.

We apply the formulae in Proposition 1.1 to the case when $\Sigma=\mathbb{P}^{2}$ and B is a reduced sextic curve, and we obtain $K_{\tilde{X}}^{2}$ and $e(\tilde{X})$. These values play important roles to prove Theorem 1.1.

This article consists of 4 sections. In $\S 1$, we review a theory of triple covers developed in [19]. In $\S 2$, we summarize generic triple covers and their canonical resolutions based on [17]. We prove Proposition 1.1 in $\S 3$ and Theorem 1.1 in $\S 4$.

§2. Non-Galois triple covers over smooth varieties

In this section, we first review the method to deal with non-Galois triple covers developed in [19].

Let Y be a smooth projective variety. Let X be a normal projective variety with a finite morphism $\pi: X \rightarrow Y$. We call X a triple cover of Y if $\operatorname{deg} \pi=3$. Let $\mathbb{C}(X)$ and $\mathbb{C}(Y)$ denote the rational function fields of X and Y, respectively. For a triple cover $\pi: X \rightarrow Y, \mathbb{C}(X)$ is a cubic extension of $\mathbb{C}(Y)$, and it is either a 3-cyclic extension or a non-Galois cubic extension. Let θ be an element of $\mathbb{C}(X)$ such that $(i) \mathbb{C}(X)=$ $\mathbb{C}(Y)(\theta)$ and (ii) the minimal equation of θ is $z^{3}+3 a z+2 b, a, b \in \mathbb{C}(Y)$. Put $L=\mathbb{C}(Y)\left(\sqrt{a^{3}+b^{2}}\right)$ and let K be the Galois closure of $\mathbb{C}(X)$. The following facts are well-known:

- If $\mathbb{C}(X) / \mathbb{C}(Y)$ is cyclic, $K=\mathbb{C}(X)$ and $L=\mathbb{C}(Y)$.
- If $\mathbb{C}(X) / \mathbb{C}(Y)$ is non-Galois, K is a \mathcal{D}_{6}-extension of $\mathbb{C}(Y), \mathcal{D}_{6}$ being the dihedral group of oder 6 given by $\langle\sigma, \tau| \sigma^{2}=\tau^{3}=$ $\left.(\sigma \tau)^{2}=1\right\rangle . L$ is a quadratic extension of $\mathbb{C}(Y)$ and $L=K^{\tau}$, the fixed field of τ.
Define a normal varieties \hat{X} and $D(X / Y)$ to be the K - and L normalizations of Y, respectively, and we denote the induced morphisms by $\hat{\pi}: \hat{X} \rightarrow Y, \alpha(\pi): \hat{X} \rightarrow X, \beta_{1}(\pi): D(X / Y) \rightarrow Y$ and $\beta_{2}(\pi): \hat{X} \rightarrow$ $D(X / Y)$. Note that $\hat{\pi}=\pi \circ \alpha(\pi)=\beta_{1}(\pi) \circ \beta_{2}(\pi)$. Also $(i) \alpha(\pi)$ and $\beta_{1}(\pi)$ are identities if $\mathbb{C}(X) / \mathbb{C}(Y)$ is Galois, while $(i i)$ if $\mathbb{C}(X) / \mathbb{C}(Y)$ is non-Galois, $\alpha(\pi)$ and $\beta_{1}(\pi)$ are degree 2 finite morphisms; and $\beta_{2}(\pi)$ is a degree 3 morphism so that $\mathbb{C}(\hat{X}) / \mathbb{C}(D(X / Y))$ is a cyclic extension.

We call $\pi: X \rightarrow Y$ cyclic for the case (i) and non-Galois for the case (ii) respectively.

For any finite morphism $f: X \rightarrow Y$, we define the branch locus of f, denoted by $\Delta(f)$ or $\Delta(X / Y)$, as follows:

$$
\Delta(f):=\{y \in Y \mid f \text { is not locally isomorphic over } y\}
$$

By the purity of the branch locus [24], $\Delta(f)$ is a reduced divisor on Y if Y is smooth.

Remark 2.1. Since all varieties are projective and defined over \mathbb{C}, varieties can be considered as analytic ones and we do not have to distinguish "algebraic" and "analytic" (see [7]). When we look into the
local structures of covering morphisms, e.g., covering morphisms, resolutions of singularities and so on, we consider them analytically.

Lemma 2.1. Let $\pi: X \rightarrow Y$ be a triple cover. Then $\Delta(X / Y)=$ $\Delta(\hat{X} / Y)$.

For a proof, see [19, Lemma1.4].
Definition 2.1. (i) Let $\pi: X \rightarrow Y$ be a triple cover and let y be a point on Y. We say that π is totally (resp. simply) ramified over y if $\sharp\left(\pi^{-1}(y)\right)=1($ resp. $=2)$. We call such a point y a total (resp. simple) branch point.
(ii) We call a triple cover $\pi: X \rightarrow Y$ "generic" if the set of total branch points has codimension at least 2 .

Let $\pi: X \rightarrow Y$ be a non-Galois triple cover and let $\Delta(\pi)=D_{1}+\ldots+$ D_{r} be the irreducible decomposition of $\Delta(\pi)$. We say that π is simply ramified along D_{i} if there exists a Zariski open set $U_{D_{i}}$ of D_{i} such that π is simply ramified over $y, y \in U_{D_{i}}$. We say that π is totally ramified along D_{i} if any point in D_{i} is a total branch point of π. We decompose $\Delta(\pi)=\Delta_{1}(\pi)+\Delta_{2}(\pi)$ in such a way that π is simply ramified along irreducible components of $\Delta_{1}(\pi)$ and is totally ramified along those of $\Delta_{2}(\pi)$.

Remark 2.2. (i) Our terminology for "generic" is different from those in Miranda [11] and Kulikov-Kulikov [10]. In those article, total branch points are only ordinary cusps, while other kind of singularity are allowed in this article (see Lemma 4.1).
(ii) If $\pi: X \rightarrow Y$ is cyclic (i.e., $\mathbb{C}(X) / \mathbb{C}(Y)$ is cyclic), then the set of total branch points coincides with $\Delta(\pi)$ (Note that the converse of this is not true ([20])). In particular, a generic triple cover is non-Galois.

§3. Generic triple covers of smooth projective surfaces and Tan's canonical resolution

In this section, we give a summary on Tan's canonical resolution of a triple cover. The canonical resolution was first studied by Horikawa in [8] for double covers. For triple covers, it was studied by Ashikaga in [2] for certain special triple covers and by Tan in [17] for general case. We explain Tan's method briefly.

Let $\pi: X \rightarrow \Sigma$ be a triple cover. In [17], Tan shows that there exists a resolution of singularities of $\mu: X^{(n)} \rightarrow X$ given by the following
commutative diagrams,

where q_{i} is the blowing-up at a singular point p_{i} of the branch locus of $\pi^{(i)}, X^{(i)}$ is the normalization of $X^{(i)} \times_{\Sigma^{(i-1)}} \Sigma^{(i)}$ and $\pi^{(i)}$ the natural morphism to $\Sigma^{(i)}$. Let $\Delta_{1}(\pi)$ (resp. $\Delta_{2}(\pi)$) be the divisors as in $\S 1$. Let E_{i} be the exceptional curve of q_{i-1} and \mathcal{E}_{i} the total transform of E_{i} in $\Sigma^{(n)}$. Set $q=q_{0} \circ q_{1} \circ \cdots \circ q_{n-1}$. For a divisor D, we denote the multiplicity of D at p by $m_{p}(D)$. With these notations, $\chi\left(\mathcal{O}_{X^{(n)}}\right)$ and $K_{X^{(n)}}^{2}$ are given as follows:

Theorem 3.1. (Tan [17, Theorem 6.3]) Let $\pi: X \longrightarrow \Sigma$ be a normal triple cover of a smooth projective surface Σ and let $\mu: X^{(n)} \longrightarrow$ X be the resolution of singularities as above. Let m_{i} and n_{i} be integers given by Remark 3.1 below. Then
$\Delta_{1}\left(\pi^{(n)}\right)=q^{*} \Delta_{1}(\pi)-2 \sum_{i=0}^{n-1} m_{i} \mathcal{E}_{i+1}, \Delta_{2}\left(\pi^{(n)}\right)=q^{*} \Delta_{2}(\pi)-\sum_{i=0}^{n-1} n_{i} \mathcal{E}_{i+1}$, and

$$
\begin{aligned}
\chi\left(\mathcal{O}_{X^{(n)}}\right)= & 3 \chi\left(\mathcal{O}_{\Sigma}\right)+\frac{1}{8} \Delta_{1}(\pi)^{2}+\frac{1}{4} \Delta_{1}(\pi) K_{\Sigma}+\frac{5}{18} \Delta_{2}(\pi)^{2}+ \\
& +\frac{1}{2} \Delta_{2}(\pi) K_{\Sigma}-\sum_{i=0}^{n-1} \frac{m_{i}\left(m_{i}-1\right)}{2}-\sum_{i=0}^{n-1} \frac{n_{i}\left(5 n_{i}-9\right)}{18} \\
K_{X^{(n)}}^{2}=3 & K_{\Sigma}^{2}+\frac{1}{2} \Delta_{1}(\pi)^{2}+2 \Delta_{1}(\pi) K_{\Sigma}+\frac{4}{3} \Delta_{2}(\pi)^{2}+4 \Delta_{2}(\pi) K_{\Sigma} \\
& -\sum_{i=0}^{n-1} 2\left(m_{i}-1\right)^{2}-\sum_{i=0}^{n-1} \frac{4 n_{i}\left(n_{i}-3\right)}{3}-n .
\end{aligned}
$$

Remark 3.1. The above integer m_{i} is the greatest integer not exceeding $\left(m_{p_{i}}\left(\Delta_{1}\left(\pi^{(i)}\right)\right)\right) / 2$. Furthermore, n_{i} is computed as follows:

$$
n_{i}= \begin{cases}m_{p_{i}}\left(\Delta_{2}\left(\pi^{(i)}\right)\right)-1 & \text { if } E_{i+1} \subset \operatorname{Supp}\left(\Delta_{2}\left(\pi^{(i+1)}\right)\right) \\ m_{p_{i}}\left(\Delta_{2}\left(\pi^{(i)}\right)\right) & \text { if } E_{i+1} \not \subset \operatorname{Supp}\left(\Delta_{2}\left(\pi^{(i+1)}\right)\right)\end{cases}
$$

We now assume that π is a generic triple cover. In this case, we have $\Delta_{1}(\pi)=B$ and $\Delta_{2}(\pi)=0$. For a point $p \in \operatorname{Sing}(B)$, we set integers $\delta(p, \pi)$ and $\kappa(p, \pi)$ as follows:

$$
\begin{aligned}
& \delta(p, \pi)=\sum_{p_{i} \in N(p, \pi)} \frac{m_{i}\left(m_{i}-1\right)}{2}+\sum_{p_{i} \in N(p, \pi)} \frac{n_{i}\left(5 n_{i}-9\right)}{18}, \\
& \kappa(p, \pi)=\sum_{p_{i} \in N(p, \pi)} 2\left(m_{i}-1\right)^{2}+\sum_{p_{i} \in N(p, \pi)} \frac{4 n_{i}\left(n_{i}-3\right)}{3}+\sharp N(p, \pi),
\end{aligned}
$$

where $N(p, \pi)$ is the set of points, $p_{0}=p, p_{1}, \ldots$, which are infinitely near points lying over p.

Let \widetilde{X} be the minimal resolution of X. There exists a birational morphism $\gamma: X^{(n)} \rightarrow \widetilde{X}$. For any point $p \in \operatorname{Sing}(B)$, let $\epsilon(p, \pi)$ be the number of exceptional curves in $\left(\pi^{(n)}\right)^{-1} q^{-1}(p)$ contracted by γ. Then, we have $\chi\left(\mathcal{O}_{\widetilde{X}}\right)=\chi\left(\mathcal{O}_{X^{(n)}}\right)$ and $K_{\widetilde{X}}^{2}=K_{X^{(n)}}^{2}+\sum_{p \in B} \epsilon(p, \pi)$. By Theorem 3.1, we obtain

$$
\begin{align*}
\chi\left(\mathcal{O}_{\widetilde{X}}\right) & =3 \chi\left(\mathcal{O}_{\Sigma}\right)+\frac{1}{8} B^{2}+\frac{1}{4} B K_{\Sigma}-\sum_{p \in \operatorname{Sing} B} \delta(p, \pi) \tag{1}\\
K_{\widetilde{X}}^{2} & =3 K_{\Sigma}^{2}+\frac{1}{2} B^{2}+2 B K_{\Sigma}-\sum_{p \in \operatorname{Sing} B}(\kappa(p, \pi)-\epsilon(p, \pi))
\end{align*}
$$

§4. Proof of Proposition 1.1

Let Σ be a smooth projective surface and let B be a reduced divisor on Σ with at worst simple singularities. Let $\pi: X \rightarrow \Sigma$ be a generic triple cover branched at B. Let $D(X / \Sigma)$ and \hat{X} be the double cover and the \mathcal{D}_{6}-cover, respectively, determined by X as in the previous section.

Let us start with the following lemma:
Lemma 4.1. (i) The branch locus of $\beta_{1}(\pi)$ is B.
(ii) The branch locus $\Delta\left(\beta_{2}(\pi)\right)$ of $\beta_{2}(\pi)$ is contained in $\operatorname{Sing}(D(X / \Sigma))$.
(iii) Suppose that $\Delta\left(\beta_{2}(\pi)\right) \neq \emptyset$. For any $x \in \Delta\left(\beta_{2}(\pi)\right)$, $\beta_{1}(\pi)(x)$ is a singular point of B whose type is either $A_{3 k-1}$ or E_{6}.
(iv) Let T be the set of total branch points. Then $T=\beta_{1}(\pi)\left(\Delta\left(\beta_{2}(\pi)\right)\right)$

Proof. (i) Since π is generic, $\beta_{1}(\pi): D(X / \Sigma) \rightarrow \Sigma$ is branched along B.
(ii) By Lemma 2.1, $\beta_{1}(\pi)\left(\Delta\left(\beta_{2}(\pi)\right)\right) \subset B$. Suppose that $\beta_{2}(\pi)$ is ramified along some irreducible component D of $\beta_{1}(\pi)^{-1}(B)$. Then the ramification index along $\hat{\pi}^{-1}(D)$ is equal to 6 , and we infer that the stabilizer group at a smooth point of $\hat{\pi}^{-1}(D)$ is a cyclic group of order 6. This contradicts our assumption. Hence $\beta_{2}(\pi)$ is branched at some points, and this implies that $\beta_{2}(\pi)$ is not ramified over any
smooth point of $D(X / \Sigma)$ by the purity of the branch locus. Hence $\Delta\left(\beta_{2}(\pi)\right) \subset \operatorname{Sing}(D(X / \Sigma))$.
(iii) Suppose that $\Delta\left(\beta_{2}(\pi)\right) \neq \emptyset$. Choose any $p \in \Delta\left(\beta_{2}(\pi)\right) . \beta_{2}(\pi)$ is unramified over a small neighborhood except p. Hence the local fundamental group at p contains a normal subgroup of index 3 . Under our assumption for singularities of B, singularities of $D(X / \Sigma)$ are all rational double points. Hence the type of $\beta_{1}(\pi)(p)$ is either $A_{3 k-1}$ or E_{6}.
(iv) Our statement is immediately from the observation:

$$
x \in T \Leftrightarrow \sharp\left(\hat{\pi}^{-1}(x)\right) \leq 2 \Leftrightarrow \beta_{1}(\pi)^{-1}(x) \subset \Delta\left(\beta_{2}(\pi)\right)
$$

Q.E.D.

By Lemma 4.1, we have Proposition 1.1 (i). In what follows, we always assume that

$$
\Delta\left(\beta_{2}(\pi)\right) \neq \emptyset
$$

We put $N T=\operatorname{Sing}(\Delta(\pi)) \backslash \mathrm{T}$.
Now we compute $\delta(p, \pi), \kappa(p, \pi)$ and $\epsilon(p, \pi)$ in the previous section for each $p \in \operatorname{Sing}(B)$. Here are some of facts on the canonical resolution, which we need to compute $\delta(p, \pi), \kappa(p, \pi)$ and $\epsilon(p, \pi)$. For their proof, see [17]

Lemma 4.2. (Tan [17, Corollary 5.3]) The triple cover π is totally ramified over p if and only if there exists an integer i satisfying $p_{i} \in$ $N(p, \pi)$ and $E_{i+1} \subset \operatorname{Supp}\left(\Delta_{2}\left(\pi^{(n)}\right)\right)$.

Lemma 4.3. (Tan [17, Theorem 4.1, Lemma 6.1]) Let $\pi: X \rightarrow \Sigma$ be a triple cover of a smooth algebraic surface Σ. Then:
(1) The intersection multiplicities between $\Delta_{1}(\pi)$ and $\Delta_{2}(\pi)$ at their intersection points are ≥ 2.
(2) If X is smooth, then the self-intersection numbers of irreducible components of $\Delta_{2}(\pi)$ are multiples of three.

Lemma 4.4. (Tan [17, Theorem 4.1]) Let D_{1} and D_{2} be two distinct irreducible components of $\Delta_{2}(\pi)$ and i_{p} an integer satisfying that $q_{i_{p}}$ is a blowing-up at p. We assume that D_{1} meets D_{2} transversely at $p \notin \Delta_{1}(\pi)$. Then, p satisfies either,
(i) $E_{i_{p}+1} \not \subset \operatorname{Supp}\left(\Delta_{2}\left(\pi^{\left(i_{p}+1\right)}\right)\right)$, or
(ii) $E_{i_{p}+1} \subset \operatorname{Supp}\left(\Delta_{2}\left(\pi^{\left(i_{p}+1\right)}\right)\right)$ and the infinitely near points of D_{1} and D_{2} lying over p satisfy the property (i).

First, we consider a singular point p not contained in T. Let i_{p} be an integer as in Lemma 4.4. We may assume that $i_{p}=0$.

Proposition 4.1. If $p \in \operatorname{Sing}(B) \backslash \mathrm{T}$, then $\delta(p, \pi)=0, \kappa(p, \pi)=$ $\sharp N(p, \pi)$ and $\epsilon(p, \pi)=\sharp N(p, \pi)$.

Proof. By Lemma 4.2, we have $E_{i+1} \not \subset \operatorname{Supp}\left(\Delta_{2}\left(\pi^{(i+1)}\right)\right)$ for $p_{i} \in$ $N(p, \pi)$, i.e., $n_{i}=0$. Let $D(X / \Sigma)$ be the double cover introduced in $\S 1$ and let Z be its canonical resolution. Then, $\delta(p, \pi)$ and $\kappa(p, \pi)-\sharp N(p, \pi)$ coincide with $\chi\left(\mathcal{O}_{Z}\right)-\chi\left(\mathcal{O}_{D(X / \Sigma)}\right)$ and $K_{Z}^{2}-K_{D(X / \Sigma)}^{2}$, respectively. (See [4].) Since $D(X / \Sigma)$ is a double cover of Σ branched along B and B has at worst simple singularities, we have $\chi\left(\mathcal{O}_{Z}\right)=\chi\left(\mathcal{O}_{D(X / \Sigma)}\right)$ and $K_{Z}^{2}=K_{D(X / \Sigma)}^{2}$. Thus, we have $\delta(p, \pi)=0$ and $\kappa(p, \pi)=\sharp N(p, \pi)$.

It is obvious that $\left(\pi^{(n-1)}\right)^{*}\left(q^{-1}(p)\right)$ contains $\sharp N(p, \pi)$ exceptional curves contracted by γ. Thus, we obtain $\epsilon(p, \pi)=\sharp N(p, \pi)$. Q.E.D.

Next we consider a singular point $p \in T$. By Lemma 4.1, p is either of type $A_{3 k-1}$ or of type E_{6}. We may assume that q_{0} is a blowing up at p.

Lemma 4.5. Let $p \in T$ be of type $A_{3 k-1}$. Then, the exceptional curve E_{1} of q_{0} is contained in $\Delta_{2}\left(\pi^{(1)}\right)$.

Proof. Suppose that $E_{1} \not \subset \operatorname{Supp}\left(\Delta_{2}\left(\pi^{(1)}\right)\right)$. In the case of $k=1$, the singular point $p \in B$ is resolved by blowing up at p. Hence we infer that $N(p, \pi)=\{p\}$ and $p \notin T$ by Lemma 4.2 , but this contradicts to our assumption. We next consider the cases of $k>1$. Since $E_{1} \not \subset$ $\operatorname{Supp}\left(\Delta_{2}\left(\pi^{(1)}\right)\right), \pi^{(1)}: X^{(1)} \rightarrow \Sigma^{(1)}$ is also a generic triple cover. Let p^{\prime} be the infinitely near point of B lying over p. By Lemma $4.2, \pi^{(1)}$ is totally ramified over p^{\prime}. On the other hand, by the property $m_{p}(B)=2$, we have $E_{1} \not \subset \operatorname{Supp}\left(\Delta_{1}\left(\pi^{(1)}\right)\right)$. Hence, p^{\prime} is a singular point of $\Delta_{1}\left(\pi^{(1)}\right)$ whose type is $A_{3 k-3}$. This contradicts to Lemma 4.1. Hence we have $E_{1} \subset \operatorname{Supp}\left(\Delta_{2}\left(\pi^{(1)}\right)\right)$.
Q.E.D.

The figures in this section show exceptional curves of q and inverse image of these by $\pi^{(n)}$. Thick lines denote exceptional curves in $\operatorname{Supp}\left(\Delta_{2}\left(\pi^{(n)}\right)\right)$ and thin lines denote those in $\operatorname{Supp}\left(\Delta_{1}\left(\pi^{(n)}\right)\right)$. Also broken lines denote exceptional curves not contained in $\operatorname{Supp}\left(\Delta_{1}\left(\pi^{(n)}\right)+\right.$ $\left.\Delta_{2}\left(\pi^{(n)}\right)\right)$. Lines with numbers mean preimages of exceptional curves of q by $\pi^{(n)}$ and the self-intersection numbers of them.

Proposition 4.2. Let $p \in T$ be a singular point of type A_{2}. Then, $\delta(p, \pi)=1 / 3$ and $\kappa(p, \pi)=5$

Proof. By Lemma 4.5, we have $\left(m_{0}, n_{0}\right)=(1,-1)$. Since $N(p, \pi)$ contains the infinitely near point of B lying over p, we may assume
that p_{1} is this point. By the property $m_{p_{1}}\left(\Delta_{1}\left(\pi^{(1)}\right)\right)=1$, we have $E_{2} \subset \operatorname{Supp}\left(\Delta_{1}\left(\pi^{(2)}\right)\right)$, i.e., $\left(m_{1}, n_{1}\right)=(0,1)$.

Since $N(p, \pi)$ contains the infinitely near point of E_{1} lying over p_{1}, we may assume that p_{2} is this point. By the property $m_{p_{2}}\left(\Delta_{1}\left(\pi^{(2)}\right)\right)=2$ and Lemma $4.3(1), E^{(3)} \not \subset \operatorname{Supp}\left(\Delta_{1}\left(\pi^{(3)}\right)+\Delta_{2}\left(\pi^{(3)}\right)\right)$, i.e., $\left(m_{2}, n_{2}\right)=$ $(1,1)$. Since there exist no singular points of the branch locus of $\pi^{(3)}$ which are infinitely near points lying over p, we have $N(p, \pi)=\left\{p, p_{1}, p_{2}\right\}$ (See Figure 1).

Fig. 1. the branch locus of $\tilde{\pi}$ (p is of type A_{2})
Thus, we have $\delta(p, \pi)=1 / 3$ and $\kappa(p, \pi)=5$.
Q.E.D.

Proposition 4.3. Let k be a positive integer and $p \in T$ a singular point of type $A_{3 k-1}$. Then,
(1) if $k=2 l-1$, then $\delta(p, \pi)=(2 l-1) / 3, \kappa(p, \pi)=6 l-1$ and $\epsilon(p, \pi)=$ $4 l$.
(2) if $k=2 l$, then $\delta(p, \pi)=2 l / 3, \kappa(p, \pi)=6 l$ and $\epsilon(p, \pi)=4 l$.

Proof. We have $\left(m_{0}, n_{0}\right)=(1,-1)$ as in the proof of Lemma 4.2. We may assume that p_{1} is the infinitely near point of B lying over p. By the property $m_{p_{1}}\left(\Delta_{1}\left(\pi^{(1)}\right)\right)=2$, we have $E_{2} \not \subset \Delta_{1}\left(\pi^{(2)}\right)$. If we assume that E_{2} is not contained in $\Delta_{2}\left(\pi^{(2)}\right)$, the proper transform of E_{1} in $\Sigma^{(n)}$ is a curve contained in $\Delta_{2}\left(\pi^{(n)}\right)$ with self-intersection -2. It contradicts to Lemma 4.3 (2). Therefore, we obtain $E_{2} \subset \Delta_{2}\left(\pi^{(2)}\right)$, i.e., $\left(m_{1}, n_{1}\right)=(1,0)$.

We may assume that p_{2} is the infinitely near point of E_{1} lying over p_{1}. If p_{2} satisfies the property (ii) in Lemma 4.4, then the selfintersection number of the proper transform of E_{1} in $\Sigma^{(n)}$ is -4. It contradicts to Lemma 4.3 (2). Hence, p_{2} satisfies the property (i) in Lemma 4.4. Therefore, E_{3} is not contained in $\Delta_{2}\left(\pi^{(3)}\right)$, i.e., $\left(m_{2}, n_{2}\right)=$ $(0,2)$.

We may assume that p_{3} is the infinitely near point of $\Delta_{1}\left(\pi^{(2)}\right)$. By the property $m_{p_{3}}\left(\Delta_{1}\left(\pi^{(3)}\right)\right)=2$, we have $E_{4} \not \subset \Delta_{1}\left(\pi^{(4)}\right)$. Let $p^{\prime \prime}$ be the intersection point of the proper transform of E_{2} in $\Sigma^{(4)}$ and E_{4}. If E_{4} is contained in $\Delta_{2}\left(\pi^{(4)}\right)$, then we have $p^{\prime \prime} \in N(p, \pi)$. By Lemma 4.4, $p^{\prime \prime}$ satisfies either the property (i) or (ii). In both cases, the self-intersection number of the proper transform of E_{2} in $\Sigma^{(n)}$ is not divisible by three. It contradicts to Lemma 4.3 (2). Therefore, we have $E_{4} \not \subset \Delta_{2}\left(\pi^{(4)}\right)$, i.e., $\left(m_{3}, n_{3}\right)=(1,1)$.

In the case that $k=2$, we have $N(p, \pi)=\left\{p, p_{1}, p_{2}, p_{3}\right\}$. (See Figure 2).

Fig. 2. the branch locus of $\widetilde{\pi}$ (p is of type A_{5})
Thus, we obtain

$$
\begin{align*}
& \delta(p, \pi)=\frac{2}{3} \tag{3}\\
& \kappa(p, \pi)=6 \tag{4}
\end{align*}
$$

In the case that k is greater than two, let p^{\prime} be the infinitely near point of $\Delta_{1}\left(\pi^{(3)}\right)$ lying over p_{3}. (See Figure 3). Then, we have $N(p, \pi)=$ $\left\{p, p_{1}, p_{2}, p_{3}\right\} \cup N\left(p^{\prime}, \pi^{(4)}\right)$ and

$$
\begin{align*}
& \delta(p, \pi)=\frac{2}{3}+\delta\left(p^{\prime}, \pi^{(4)}\right) \tag{5}\\
& \kappa(p, \pi)=6+\kappa\left(p^{\prime}, \pi^{(4)}\right) \tag{6}
\end{align*}
$$

Fig. 3. the branch locus of $\tilde{\pi}$
By applying the Hurwitz formula to $\left.\pi^{(4)}\right|_{\left(\pi^{(4)}\right)^{-1}}\left(E_{4}\right)$, we see that $\pi^{(4)}$ is totally branched at p^{\prime}. Hence, by applying the equations (5), (6) to p^{\prime} and by using Lemma 4.2 and the equations (3), (4), we have the following equations:

$$
\begin{aligned}
& \delta(p, \pi)= \begin{cases}\frac{2 l-1}{3} & \text { if } k=2 l-1 \\
\frac{2 l}{3} & \text { if } k=2 l\end{cases} \\
& \kappa(p, \pi)= \begin{cases}6 l-5 & \text { if } k=2 l-1 \\
6 l & \text { if } k=2 l\end{cases}
\end{aligned}
$$

Furthermore, it is obvious that all curves in $\left(\pi^{(n)}\right)^{-1}\left(q^{-1}(p)\right)$ are contracted by γ. (See Figure 4.)

Fig. 4. Inverse image of exceptional curves
Therefore, we have

$$
\epsilon(p, \pi)= \begin{cases}4 l & \text { if } k=2 l-1 \\ 4 l & \text { if } k=2 l\end{cases}
$$

Q.E.D.

Proposition 4.4. Let $p \in T$ is a singular point of type E_{6}. Then, we have $\delta(p, \pi)=2 / 3, \kappa(p, \pi)=7$ and $\epsilon_{p}=5$.

Proof. By the property $m_{p}(B)=3, E_{1}$ is contained in $\Delta_{1}\left(\pi^{(1)}\right)$, i.e., $m_{0}=1$ and $n_{0}=0$. We may assume that p_{1} is the infinitely near point of B lying over p. By [17, Corollary 5.3], $\pi^{(1)}$ is totally ramified over p_{1}. Since p_{1} is of type A_{5}, by equations (3) and (4), we have $N(p, \pi)=\{p\} \cup N\left(p_{1}, \pi^{(1)}\right), \delta(p, \pi)=2 / 3$ and $\kappa(p, \pi)=7$. Furthermore, all curves in $\left(\pi^{(n)}\right)^{-1}\left(q^{-1}(p)\right)$ are contracted by φ, i.e., $\epsilon(p, \pi)=5$. (See Figure 5.)

Fig. 5. The branch locus of $\widetilde{\pi}$ and the inverse image of exceptional curves (p is of type E_{6})
Q.E.D.

By equations (1), (2), Propositions 4.3, 4.4 and Noether's formula, we have Proposition 1.1 (ii).

Example 4.1. Let B be a reduced plane curve of degree n in \mathbb{P}^{2} with at worst simple singularities. Suppose that there exists a generic
triple cover $\pi: X \rightarrow \mathbb{P}^{2}$ with $\Delta(\pi)=B$. Note that n is necessarily even in this case. Let \tilde{X} be the minimal resolution of X. Then:

$$
\begin{gathered}
K_{\tilde{X}}^{2}=\frac{1}{2} n^{2}-6 n+27-\delta \\
e(\tilde{X})=n^{2}-3 n+9-3 \delta \\
\chi\left(\mathcal{O}_{\tilde{X}}\right)=\frac{1}{8} n^{2}-\frac{3}{4} n+3-\frac{1}{3} \delta
\end{gathered}
$$

Remark 4.1. Let $\pi: X \rightarrow \Sigma$ be a generic triple cover as before. Since B has at worst simple singularities, $D(X / \Sigma)$ has only rational double points as its singularities. Let

be the canonical resolution, let \hat{X}_{Z} be the $\mathbb{C}(\hat{X})$-normalization of Z and let $g: \hat{X}_{Z} \rightarrow Z$ be the induced cyclic triple cover. By what we have seen in this section, we infer the following:

- Irreducible components of $\Delta(g)$ are those in the exceptional curves for singularities in $\beta_{1}(\pi)^{-1}(T)$.
- $\Delta(g)$ is a disjoint union of \mathbb{A}_{2}-configurations, where $\mathbb{A}_{2^{-}}$configuration means a divisor consisting of two irreducible components C_{1} and C_{2} such that $C_{i} \cong \mathbb{P}^{1}, C_{i}^{2}=-2(i=1,2)$ and $C_{1} C_{2}=1$.
- For each $p \in T$, the number of \mathbb{A}_{2}-configurations arising from p in $\Delta(g)$ is k (resp. 2) if p is of type $A_{3 k-1}$ (resp. E_{6}). In particular, the number of \mathbb{A}_{2}-configurations in $\Delta(g)$ is equal to δ in Proposition 1.1.

§5. Proof of Theorem 1.1

We apply our previous results to the case when $\Sigma=\mathbb{P}^{2}$ and B is a reduced sextic curve with at worst simple singularities. Note that we keep the notations as before. Let us start with the following lemma.

Lemma 5.1. Let $\pi: X \rightarrow \mathbb{P}^{2}$ be a generic triple cover branched at a reduced plane sextic curve B as above. Then δ is either 6 or 9 . If $\delta=6$ (resp. $=9$), the minimal resolution S of \hat{X} is a K3 (resp. an Abelian) surface.

Proof. If $\operatorname{deg} B=6$, then $D\left(X / \mathbb{P}^{2}\right)$ is a $K 3$ surface with rational double points and Z is its minimal resolution. Let \hat{X}_{Z} be the $\mathbb{C}(\hat{X})$ normalization of Z and $g: \hat{X}_{Z} \rightarrow Z$ be the induced cyclic triple cover
as in Remark 4.1. Since Z is simply connected, the branch locus of g is non-empty and consists of disjoint union of \mathbb{A}_{2}-configurations by Remark 4.1. Now our statement follows from [22, Lemma 8.8]. Q.E.D.

Lemma 5.2. Under the assumption of Lemma 5.1, B is a sextic curve with $9 A_{2}$ singularities if $\delta=9$.

Proof. If $N T \neq \emptyset$, then \hat{X} has a rational double point as $\beta_{2}(\pi)$ is unramified over $\beta_{1}(\pi)^{-1}(N T)$. This means that S in Lemma 5.1 contains a rational curve, but this impossible as S is an Abelian surface. Now we show that T consists of $9 A_{2}$ points. Let $x \in T$ be any non A_{2} point. Then by [22, Lemma 9.1], \hat{X} has a rational double point; and S again contains a rational curve. As S is an Abelian surface, this is impossible.
Q.E.D.

By [21], a sextic with $9 A_{2}$ singularities is a $(2,3)$ torus curve. Hence, throughout the rest of this section, we always assume that $\delta=6$. Therefore, by Example 4.1,

$$
K_{\tilde{X}}^{2}=3, \quad e(\tilde{X})=9
$$

Lemma 5.3.

$$
-K_{\tilde{X}} \sim \gamma^{*} \pi^{*} l,
$$

where l is a line in \mathbb{P}^{2}.
Proof. We simply repeat the argument in the proof of [1, Lemma 3.15]. Let x be a general point in $\mathbb{P}^{2} \backslash B$ and let $\gamma_{1}: \tilde{X}_{1} \rightarrow \tilde{X}$ be blowing ups at $(\pi \circ \gamma)^{-1}(x)$. The pencil of lines through x induces an elliptic fibration $\varphi_{x}: \tilde{X}_{1} \rightarrow \mathbb{P}^{1}$ with a section. Since $e\left(\hat{X}_{1}\right)=12$ and $K_{\tilde{X}_{1}}^{2}=0$, we infer that \tilde{X}_{1} is rational surface and φ_{x} is relatively minimal. Hence $K_{\tilde{X}_{1}} \sim-F$, where F is a fiber of φ_{x}. As $\gamma_{1}^{*}\left((\pi \circ \gamma)^{*} l\right) \sim F+E_{1}+E_{2}+E_{3}$, where $E_{i}(i=1,2,3)$ denote the exceptional curves of ρ, we have
$\gamma_{1}^{*}\left((\pi \circ \gamma)^{*} l\right) \sim F+E_{1}+E_{2}+E_{3} \sim-K_{\tilde{X}_{1}}+E_{1}+E_{2}+E_{3} \sim-\gamma_{1}^{*}\left(K_{\tilde{X}}\right)$.
Therefore $(\pi \circ \gamma)^{*} l \sim-K_{\tilde{X}}$.
Q.E.D.

By Lemma 5.3, it follows that \tilde{X} is a smooth rational surface such that $K_{\tilde{X}}$ is big and numerically effective. Put

$$
\bar{X}=\operatorname{Proj}\left(\oplus_{n \geq 0} \mathrm{H}^{0}\left(\tilde{X},-n K_{\tilde{X}}\right)\right) .
$$

Then by [6] p. 61-66, we have

Proposition 5.1. Let $\varphi_{\left|-K_{\tilde{X}}\right|}: \tilde{X} \rightarrow \mathbb{P}^{3}$ be a morphism given by $\left|-K_{\tilde{X}}\right|$. Then $\varphi_{\mid-K_{\tilde{\tilde{X}} \mid}}(\tilde{X})$ is a normal cubic surface with rational double point isomorphic to \bar{X}.

We are now in a position to prove Theorem 1.1. Our proof is almost the same as in [1, Proposition 3.17].

Suppose that B is given by the equation $G_{2}^{3}+G_{3}^{2}=0$ as in Theorem 1.1. Consider the cubic surface X in \mathbb{P}^{3} given by

$$
X: X_{3}^{3}+3 G_{2}\left(X_{0}, X_{1}, X_{2}\right) X_{3}+2 G_{3}\left(X_{0}, X_{1}, X_{2}\right)=0
$$

where $\left[X_{0}: X_{1}: X_{2}: X_{3}\right]$ denotes a homogeneous coordinate system of \mathbb{P}^{3}. By [11, Lemma 5.1], X is smooth in codimension one, and therefore is normal. Let $P=[0: 0: 0: 1]$ and let $p r_{P}: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$ be the projection centered at P. The restriction $p r_{P}$ to X gives a non-Galois triple cover $p r_{P_{\mid X}}: X \rightarrow \mathbb{P}^{2}$. By its defining equation, $\Delta\left(X / \mathbb{P}^{2}\right)=B$. Hence it is a generic triple cover branched at B.

Conversely, if there exists a generic triple cover $\pi: X \rightarrow \mathbb{P}^{2}$ branched at B, we have a normal cubic surface \bar{X} as above. \bar{X} is an image of \tilde{X} by $\phi_{\left|-K_{\bar{X}}\right|}$. Moreover, by Lemma 5.3, one has the following commutative diagram:

where $p r$ denotes the projection centered at a suitable point $\left.P_{0} \in \mathbb{P}^{3} \backslash \bar{X}\right)$. The remaining part of our proof is the same as [1, Proposition 3.17], and we omit it.

References

[1] E. Artal Bartolo, J. I. Cogolludo and H. Tokunaga, A survey on Zariski pairs, In: Algebraic Geometry in East Asia-Hanoi 2005, Adv. Stud. Pure Math., 50, Math. Soc. Japan, 2008, pp. 1-100.
[2] T. Ashikaga, Normal two-dimensional hypersurface triple points and Horikawa type resolution, Tohoku Math. J. (2), 44 (1992), 177-200.
[3] W. P. Barth, K. Hulek, C. A. M. Peters and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, Berlin, 1984.
[4] G. Casnati and T. Ekedahl, Covers of algebraic varieties. I. A general structure theorem, covers of degree 3,4 and Enriques surfaces, J. Algebraic Geom., 5 (1996), 439-460.
[5] A. Degtyarev, Oka's conjecture on irreducible plane sextics, J. London Math. Soc. (2), 78 (2008), 329-351.
[6] M. Demazure, Surfaces de del Pezzo, Lecture Notes in Math., 777, SpringerVerlag, Berlin, 1980.
[7] A. Grothendieck, Revêtements Étales et Groupe Fondamental, Lecture Notes in Math., 224, Springer-Verlag, Berlin, 1971.
[8] E. Horikawa, On deformation of quintic surfaces, Invent. Math., 31 (1975), 43-85.
[9] Vik. S. Kulikov, On plane algebraic curves of positive Albanese dimension, Izv. Ross. Akad. Nauk Ser. Mat., 59 (1995), 75-94.
[10] V. S. Kulikov and Vik. S. Kulikov, Generic coverings of the plane with A D - E-singularities, Izv. Ross. Akad. Nauk Ser. Mat., 64 (2000), 65-106.
[11] R. Miranda, Triple covers in algebraic geometry, Amer. J. Math., 107 (1985), 1123-1158.
[12] M. Oka, Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan, 44 (1992), 211-240.
[13] M. Oka, Geometry of reduced sextics of torus type, Tokyo J. Math., 26 (2003), 301-327.
[14] M. Oka, Alexander polynomial of sextics, J. Knot Theory Ramifications, 12 (2003), 619-636.
[15] M. Oka and D. T. Pho, Classification of sextics of torus type, Tokyo J. Math., 25 (2002), 399-433.
[16] S.-L. Tan, Integral closure of a cubic extension and applications, Proc. Amer. Math. Soc., 129 (2001), 2553-2562.
[17] S.-L. Tan, Triple covers on smooth algebraic varieties, In: Geometry and Nonlinear Partial Differential Equations, Hangzhou, 2001, AMS/IP Stud. Adv. Math., 29, Amer. Math. Soc., Providence, RI, 2002, pp. 143-164.
[18] H. Tokunaga, Construction of triple coverings of a certain type of algebraic surfaces, Tohoku Math. J. (2), 42 (1990), 359-375.
[19] H. Tokunaga, Triple coverings of algebraic surfaces according to the Cardano formula, J. Math. Kyoto Univ., 31 (1991), 359-375.
[20] H. Tokunaga, Two remarks on non-Galois triple coverings, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 13 (1992), 19-33.
[21] H. Tokunaga, Irreducible plane curves with the Albanese dimension 2, Proc. Amer. Math. Soc., 127 (1999), 1935-1940.
[22] H. Tokunaga, Galois covers for \mathfrak{S}_{4} and \mathfrak{A}_{4} and their applications, Osaka J. Math., 39 (2002), 621-645.
[23] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math., 51 (1929), 305328.
[24] O. Zariski, On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. Sci. U.S.A., 44 (1958), 791-796.

Hirotaka Ishida
Ube National College of Technology
2-14-1 Tokiwadai, Ube
755-8555, Yamaguchi
Japan
Hiro-o Tokunaga
Department of Mathematics and Information Sciences
Tokyo Metropolitan University
1-1 Minamiohsawa, Hachoji
192-0397, Tokyo
Japan
E-mail address: ishida@ube-k.ac.jp
tokunaga@tmu.ac.jp

[^0]: Received February 29, 2008.
 Revised July 8, 2008.
 2000 Mathematics Subject Classification. 14E20, 14J17.
 Key words and phrases. Triple cover, cubic surface, torus curve.

