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Abstract. 

Let B be a reduced sextic curve in 11"2 • In the case when sin
gularities of B are only six cusps, Zariski proved that there exists a 
non-Galois triple cover branched at B if and only if B is given by an 
equation of the form G~ + G~, where Gi denotes a homogeneous poly
nomial of degree i. In this article, we generalize Zariski's statement 
to any reduced sextic curve with at worst simple singularities. To this 
purpose, we give formulae for numerical invariants of non-Galois triple 
covers by using Tan's canonical resolution. 

§1. Introduction 

In this article, all varieties are defined over the field of complex 
numbers, C. 

Let E be a smooth projective surface and let B be a reduced divisor 
on E. A normal projective surface X is called a triple cover of E with 
branch locus B if 

• there exists a finite surjective morphism 1r : X ----> E of degree 
3, and 

• the branch locus ~(1r) = B 

Let X be a triple cover of E. We denote the rational function fields 
of X and E by C(X) and C(E), respectively. Under our circumstance, 
C(X) is a cubic extension of C(E). We say that X is a non-Galois triple 
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cover (resp. cyclic triple cover) if the cubic extension <C(X)/<C(~) is 
non-Galois (resp. cyclic). For a point y E ~. we call y a total (resp. 
simple) branch point iq (1r-1 (y)) = 1 (resp. = 2). We call a triple cover 
1r : X -+ ~ generic if its total branch points are finite (see Definition 
2.1 for detail). Note that a generic triple cover is always non-Galois 
(Remark 2.2). 

The first systematic study on triple covers was done by Miranda 
[11]. Afterward, some have been done by [18, 19, 20], [4] and [16, 17]. 
Yet non-Galois triple covers are difficult to deal with. For example, a 
fundamental question as follows still remains as a subtle question: 

Question 1.1. Let ~ and B be as above. Give a sufficient and 
necessary condition for B to be the branch locus of a non-Galois triple 
cover. 

One can see the subtleness of Question 1.1 in Zariski's example ([23]) 
below. 

Example 1.1. Let B be an irreducible plane sextic curve in lP'2 

having only 6 cusps as its singularities. There exists a generic triple 
cover with branch locus B if and only if there exists a conic passing 
through all the 6 cusps. 

Note that there exists no conic through assigned 6 points if these 
six points are in general position. In fact, it is known that there exists 
an irreducible sextic with only 6 cusps as its singularities such that no 
conic passes through all the six cusps ([12], [24]). 

Remark 1.1. Zariski's example is a starting point of the study of 
so called "Zariski pairs" and there have been many results on it from 
various points of view (see [1] and its references for details). 

Our goal of this article is to generalize Zariski's example to the case 
when B is a reduced sextic curve having only simple singularities as its 
singularities. For simple singularities, see [3, Theorem II, 8.1], page 64. 
To describe the type of singularities, we use the standard notations An, 
Dn and En. By abuse of notations, we also use the same notations to 
describe rational double points on surfaces (see [3], page 87). Let us 
state our result: 

Theorem 1.1. Let B be a reduced sextic curve in lP'2 with at worst 
simple singularities. There exists a generic triple cover 1r :X-+ lP'2 with 
branch locus B if and only if B is given by an equation of the form 

G~ +G~ =0, 
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where Gi = Gi(Xo, X~, X2) ( i = 2, 3) are homogeneous polynomials of 
degree i, [Xo: X1: X2] being a homogeneous coordinate of!J1'2 • 

Corollary 1.1. Let B be a reduced sextic curve in IJ1'2 • Then the 
following two statements are equivalent: 

• B is a (2,3)-torus curve (see Remark 1.2 below). 
• There exists a surjective morphism from the fundamental group 

1r1 (!J1'2 \ B, *) to the symmetric group of 3 letters such that all 
meridians around irreducible components of B are mapped to 
elements of order 2 

Remark 1.2. (i) A sextic curve given as in Theorem 1.1 is called a 
(2, 3)-torus sextic (see [9]). Such curves are intensively studied by Oka 
([13, 14, 15]). 

(ii) In Example 1.1, the conic is given by G2 = 0 as above. Hence 
Theorem 1.1 is a generalization of Example 1.1. 

(iii) Note that Corollary 1.1 is a slight generalization of [5, Theorem 
4.1.1], as we also consider the case when sextics are reducible. 

In order to prove Theorem 1.1, our main tool are formulae for nu
merical invariants of the minimal resolution of a generic triple cover as 
follows: 

Proposition 1.1. Let 1r : X ~ ~ be a generic triple cover with 
~(1r) = B, where B is a reduced divisor on ~ with at worst simple 
singularities. We denote the set of total branch points by T. Then: 

(i) T ~ Sing(B) and T consists of singular points of type either 
A3k-1 (k EN) or E6· 

(ii) PutT= {p~, ... ,pm,Pm+b ... ,Pm+n} in such a way that Pi is 
of type A3k;-l for 1 :$ i :$ m, and Pi is of type E6 form+ 1 :$ i :$ m+n. 
Let 8 := 2::;:1 ki + 2n and we denote the minimal resolution of X by X. 
Then we have 

2 2 1 2 
Kx = 3K~ +2K~B+ 2,B -8, 

e(X) = 3e(~) + K~B + B 2 - 38 and 
1 1 2 1 

x(Ox) = 3x(0~)+ 4K~B+BB - 38. 

Here K., e(•) and x(O.) denote a canonical divisor, the topological Euler 
number, and the Euler characteristic of a surface •. 

We apply the formulae in Proposition 1.1 to the case when~= !J1'2 

and B is a reduced sextic curve, and we obtain K~ and e(X). These 
values play important roles to prove Theorem 1.1. 
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This article consists of 4 sections. In §1, we review a theory of triple 
covers developed in [19]. In §2, we summarize generic triple covers and 
their canonical resolutions based on [17]. We prove Proposition 1.1 in 
§3 and TheoremJ.1 in §4. 

§2. Non-Galois triple covers over smooth varieties 

In this section, we first review the method to deal with non-Galois 
triple covers developed in [19]. 

Let Y be a smooth projective variety. Let X be a normal projective 
variety with a finite morphism 1r : X --+ Y. We call X a triple cover of 
Y if deg1r = 3. Let <C(X) and <C(Y) denote the rational function fields 
of X andY, respectively. For a triple cover 1r: X--+ Y, C(X) is a cubic 
extension of C(Y), and it is either a 3-cyclic extension or a non-Galois 
cubic extension. Let (} be an element of <C(X) such that (i) <C(X) = 
C(Y) ( 0) and ( ii) the minimal equation of(} is z3 + 3az + 2b, a, b E C(Y). 
Put L = C(Y)( Ja3 + b2) and let K be the Galois closure of C(X). The 
following facts are well-known: 

• If C(X)/C(Y) is cyclic, K = C(X) and L = C(Y). 
• If <C(X)/C(Y) is non-Galois, K is a V6-extension of C(Y), V6 

being the dihedral group of oder 6 given by (a, T I a 2 = T 3 = 
(aT)2 = 1). Lis a quadratic extension of <C(Y) and L = KT, 
the fixed field of T. 

Define a normal varieties X and D (X/ Y) to be the K- and £
normalizations of Y, respectively, and we denote the induced morphisms 
by ir: X--+ Y, a(1r) :X--+ X, {31 (1r): D(X/Y)--+ Y and f32(1r) :X--+ 
D(X/Y). Note that ir = 1r o a(1r) = {31 (1r) o {32(1r). Also (i) a(1r) and 
{31 (1r) are identities if C(X)/<C(Y) is Galois, while (ii) if <C(X)/C(Y) is 
non-Galois, a(1r) and {31 (1r) are degree 2 finite morphisms; and {32(1r) is 
a degree 3 morphism so that C(X)/<C(D(X/Y)) is a cyclic extension. 

We call 1r : X --+ Y cyclic for the case (i) and non-Galois for the 
case (ii) respectively. 

For any finite morphism f : X --+ Y, we define the branch locus of 
j, denoted by f}.(j) or f}.(X/Y), as follows: 

f}.(j) := {y E Y I f is not locally isomorphic over y}. 

By the purity of the branch locus [24], !}.(!) is a reduced divisor on Y 
if Y is smooth. 

Remark 2.1. Since all varieties are projective and defined over C, 
varieties can be considered as analytic ones and we do not have to dis
tinguish "algebraic" and "analytic" (see [7]). When we look into the 
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local structures of covering morphisms, e.g., covering morphisms, reso
lutions of singularities and so on, we consider them analytically. 

Lemma 2.1. Let 1r :X -4 Y be a triple cover. Then A(X/Y) = 
A(X/Y). 

For a proof, see [19, Lemma1.4]. 

Definition 2.1. (i) Let 1r : X -4 Y be a triple cover and let y be 
a point on Y. We say that 1r is totally (resp. simply) ramified over y if 
U(1r- 1 (y)) = 1 (resp. = 2). We call such a pointy a total (resp. simple) 
branch point. 

(ii) We call a triple cover 1r : X -4 Y "generic" if the set of total 
branch points has codimension at least 2. 

Let 1r : X -4 Y be a non-Galois triple cover and let A(1r) = D1 + ... + 
Dr be the irreducible decomposition of A(1r). We say that 1r is simply 
ramified along Di if there exists a Zariski open set U D; of Di such that 
1r is simply ramified over y, y E U D•. We say that 1r is totally ramified 
along Di if any point in Di is a total branch point of 1r. We decompose 
A(1r) = A1(1r) + A2(1r) in such a way that 1r is simply ramified along 
irreducible components of A1 ( 1r) and is totally ramified along those of 
A2(1r). 

Remark 2.2. (i) Our terminology for "generic" is different from those 
in Miranda [11] and Kulikov-Kulikov (10]. In those article, total branch 
points are only ordinary cusps, while other kind of singularity are allowed 
in this article (see Lemma 4.1). 

(ii) If 1r : X -4 Y is cyclic (i.e., C(X)/C(Y) is cyclic), then the set 
of total branch points coincides with A(1r) (Note that the converse of 
this is not true ([20])). In particular, a generic triple cover is non-Galois. 

§3. Generic triple covers of smooth projective surfaces and 
Tan's canonical resolution 

In this section, we give a summary on Tan's canonical resolution of 
a triple cover. The canonical resolution was first studied by Horikawa 
in [8] for double covers. For triple covers, it was studied by Ashikaga in 
[2] for certain special triple covers and by Tan in (17] for general case. 
We explain Tan's method briefly. 

Let 1r : X -4 E be a triple cover. In [17], Tan shows that there 
exists a resolution of singularities of f..L: x<n) -4 X given by the following 
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commutative diagrams, 

X=X(o) ~X(l) l-'1 X(2) l-'2 1-'n-1 x<n) f--- f--- f---

1r=1r(O) 1 1r(1) 1 1r(2) 1 11r(n) 

l: = z:Co) qo z:(ll q1 z:C2l q2 Qn-1 z:Cn) f--- f--- f--- f---

where qi is the blowing-up at a singular point Pi of the branch locus of 
7r(i), X(i) is the normalization of X(i) X :t;(i-1) z:(i) and 7r(i) the natural 
morphism to z:<il. Let ~1 (n) (resp. ~2 (n)) be the divisors as in §1. 
Let Ei be the exceptional curve of qi- 1 and £i the total transform of 
Ei in z:(n). Set q = qo o q1 o · · · o qn-1· For a divisor D, we denote the 
multiplicity of D at p by mv(D). With these notations, x(Ox<nl) and 
K~(n) are given as follows: 

Theorem 3.1. (Tan [17, Theorem 6.3]) Let n: X ----+ l: be a 
normal triple cover of a smooth projective surface l: and let p,: x<nl ----+ 

X be the resolution of singularities as above. Let mi and ni be integers 
given by Remark 3.1 below. Then 

n-1 n-1 
~1(1r(n)) = q* ~l (n)- 2 L mi£i+l, ~2(1r(n)) = q* ~2(n)- L ni£i+l, 

i=O i=O 

and 

Remark 3.1. The above integer mi is the greatest integer not ex
ceeding ( mp, ( ~1 ( nCil))) /2. Furthermore, ni is computed as follows: 

if Ei+l c Supp(~2 (n(i+ 1 l)) 

if Ei+l ct Supp(~2 (n<H 1 l)). 

We now assume that 1r is a generic triple cover. In this case, we have 
~1(n) = B and ~2(n) = 0. For a point p E Sing(B), we set integers 
8(p,n) and "'(p,n) as follows: 
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6(p, 7r) = L mi(mi- 1) 
+ L ni(5ni - 9) 

2 18 
PiEN(p,K) PiEN(p,K) 

K,(p, 7r) = L 2(mi- 1)2 + L 4ni(ni- 3) + rtN(p, 7r), 
3 

PiEN(p,K) PiEN(p,K) 

where N(p, 1r) is the set of points, p0 = p,p1 , ..• , which are infinitely 
near poin_!s lying over p. 

Let X be the minimal resolution of X. There exists a birational 
morphism T X(n) ---> X. For any point p E Sing( B), let E(p, 1r) be 
the number of exceptional curves in (7r(n))-1q-1(p) contracted by 'I· 

Then, we have x(O_x) = x(Oxcnl) and K} = Kicnl + 2:pEB E(p, 1r). By 
Theorem 3.1, we obtain 

(1) 6(p, 7r), 

(2) 2 2 1 2 K- = 3K.., + -B + 2BK~-
X "-' 2 L (K,(p, 7r)- E(p, 7r)) 

p ESingB 

§4. Proof of Proposition 1.1 

Let I; be a smooth projective surface and let B be a reduced divisor 
on I; with at worst simple singularities. Let 1r : X ---> I; be a generic 
triple cover branched at B. Let D(XjL;) and X be the double cover and 
the V6-cover, respectively, determined by X as in the previous section. 

Let us start with the following lemma: 

Lemma 4.1. (i) The branch locus of {31 (1r) is B. 
(ii) The branch locus !::.(,82(1r)) of ,82(1r) is contained in Sing(D(X jL;)). 
(iii) Suppose that !::.(,82(1r)) =f. 0. For any x E !::.(,82(7r)), ,81(1r)(x) 

is a singular point of B whose type is either A3k-1 or E6. 

( iv) LetT be the set of total branch points. Then T = ,81 ( 1r) ( !::.(,82 ( 1r))) 

Proof. (i) Since 1r is generic, ,81 (1r) : D(XjL;) ---> I; is branched 
along B. 

(ii) By Lemma 2.1, ,81(7r)(!::.(,82(7r))) C B. Suppose that ,82(1r) 
is ramified along some irreducible component D of ,81 (1r)- 1 (B). Then 
the ramification index along it- 1(D) is equal to 6, and we infer that 
the stabilizer group at a smooth point of it- 1 (D) is a cyclic group of 
order 6. This contradicts our assumption. Hence ,82 (1r) is branched 
at some points, and this implies that ,82 (1r) is not ramified over any 
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smooth point of D(X/L-) by the purity of the branch locus. Hence 
~(!32(n)) c Sing(D(X/L-)). 

(iii) Suppose that ~(!32(1r)) '1- 0. Choose any p E ~(!32(n)). !32(n) 
is unramified over a small neighborhood except p. Hence the local fun
damental group at p contains a normal subgroup of index 3. Under 
our assumption for singularities of B, singularities of D(X/L-) are all 
rational double points. Hence the type of ;31 ( 1r) (p) is either A3k-1 or 
E5. 

( iv) Our statement is immediately from the observation: 

Q.E.D. 

By Lemma 4.1, we have Proposition 1.1 (i). In what follows, we 
always assume that 

~(!32(n)) '1- 0. 
We put NT= Sing(~(n)) \ T. 

Now we compute 8(p, n), K(p, n) and t::(p, n) in the previous section 
for each p E Sing( B). Here are some of facts on the canonical resolution, 
which we need to compute 8(p, n), K(p, n) and t::(p, n). For their proof, 
see [17] 

Lemma 4.2. (Tan [17, Corollary 5.3]) The triple cover 1r is totally 
ramified over p if and only if there exists an integer i satisfying Pi E 

N(p, n) and Ei+1 C Supp(~2 (nCnl)). 

Lemma 4.3. (Tan [17, Theorem 4.1, Lemma 6.1]) Let n: X----> L, 

be a triple cover of a smooth algebraic surface 'E-. Then: 
(1) The intersection multiplicities between ~1 (n) and ~2 (n) at their 

intersection points are 2: 2. 
(2) If X is smooth, then the self-intersection numbers of irreducible 

components of ~2(1r) are multiples of three. 

Lemma 4.4. (Tan [17, Theorem 4.1]) Let D1 and D2 be two dis
tinct irreducible components of ~2 (n) and ip an integer satisfying that 
qip is a blowing-up at p. We assume that D 1 meets D 2 transversely at 
p ~ ~1 ( 1r). Then, p satisfies either; 

(i) Eip+1 ¢_ Supp(~2(7r(ip+ 1 l)), or 

(ii) Eiv+1 C Supp(~2 (n(ip+ 1l)) and the infinitely near points of D1 
and D2 lying over p satisfy the property (i). 

First, we consider a singular point p not contained in T. Let ip be 
an integer as in Lemma 4.4. We may assume that ip = 0. 
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Proposition 4.1. Ifp E Sing(B) \ T, then c5(p,n) = 0, 11,(p,n) = 
ijN(p,n) and E(p,n) = UN(p,n). 

Proof. By Lemma 4.2, we have Ei+l ¢.. Supp(~2(7r(i+l))) for Pi E 
N(p, n), i.e., ni = 0. Let D(X/I'..) be the double cover introduced in §1 
and let Z be its canonical resolution. Then, c5(p, n) and 11,(p, n)-UN(p, n) 
coincide with x(Oz) - x(On(X/~)) and K~- K'b(xf~)' respectively. 
(See [4].) Since D(X/I'..) is a double cover of I'., branched along B and 
B has at worst simple singularities, we have x(Oz) = x(On(X/~)) and 
K~ = K'fy(X/~). Thus, we have c5(p, n) = 0 and 11,(p, n) = UN(p, n). 

It is obvious that (n(n-l))*(q-1(p)) contains ijN(p,n) exceptional 
curves contracted by 'Y· Thus, we obtain E(p, n) = UN(p, n). Q.E.D. 

Next we consider a singular point pET. By Lemma 4.1, pis either 
of type A 3k-l or of type E6 . We may assume that q0 is a blowing up at 
p. 

Lemma 4.5. Let p E T be of type A3k-l· Then, the exceptional 
curve E1 of qo is contained in ~2(1r(ll). 

Proof Suppose that E 1 ¢.. Supp(~2(n(1l)). In the case of k = 1, 
the singular point p E B is resolved by blowing up at p. Hence we 
infer that N(p, n) = {p} and p (j_ T by Lemma 4.2, but this contradicts 
to our assumption. We next consider the cases of k > 1. Since E1 ¢.. 
Supp(~2 (7t( 1 l)), n(1): X(l) --+ I'_,(l) is also a generic triple cover. Let p1 

be the infinitely near point of B lying over p. By Lemma 4.2, n(l) is 
totally ramified over p'. On the other hand, by the property mv(B) = 2, 
we have E 1 ¢.. Supp(~1 (n( 1l)). Hence, p' is a singular point of ~1 (n(ll) 
whose type is A3k-3 . This contradicts to Lemma 4.1. Hence we have 
E1 c Supp(~2(n(ll)). Q.E.D. 

The figures in this section show exceptional curves of q and in
verse image of these by n(n). Thick lines denote exceptional curves 
in Supp(~2 (n(n))) and thin lines denote those in Supp(~1(1r(n))). Also 
broken lines denote exceptional curves not contained in Supp(~1 ( 7r( n)) + 
~2 (n(n))). Lines with numbers mean preimages of exceptional curves of 
q by n(n) and the self-intersection numbers of them. 

Proposition 4.2. Let p E T be a singular point of type A2. Then, 
c5(p, n) = 1/3 and 11,(p, n) = 5 

Proof. By Lemma 4.5, we have (mo, no) = (1, -1). Since N(p, n) 
contains the infinitely near point of B lying over p, we may assume 
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that p1 is this point. By the property mp1 (~ 1 (1r(ll)) = 1, we have 
E 2 C Supp(~1 (1rC2l)), i.e., (m1, n1) = (0, 1). 

Since N(p, 1r) contains the infinitely near point of E1 lying over Pl, 
we may assume that p2 is this point. By the property mp2 (~1(1rC2l)) = 2 
and Lemma 4.3 (1), E(3l r/. Supp(~1 (1rC3l) + ~2 (1rC3l)), i.e., (m2, n2) = 

(1, 1). Since there exist no singular points of the branch locus of 1rC3l 
which are infinitely near points lying over p, we have N(p, 1r) = {p, Pl, P2} 
(See Figure 1). 

__/ P1 -~-~ p=po~-~ E, j -,---

E2 E3 
Fig. 1. the branch locus of 7r (p is of type A2 ) 

Thus, we have o(p,1r) = 1/3 and "'(p,1r) = 5. Q.E.D. 

Proposition 4.3. Let k be a positive integer and p E T a singular 
point of type A3k-1· Then, 
(1) if k = 2[-1, then O(p, 1r) = (2l-1)/3, K,(p, 1r) = 6[-1 and E(p, 7r) = 
4l. 
(2) if k = 2[, then O(p, 1r) = 2[/3, K,(p, 7r) = 6[ and E(p, 7r) = 4[. 

Proof. We have (m0 , no) = (1, -1) as in the proof of Lemma 4.2. 
We may assume that p 1 is the infinitely near point of B lying over p. 
By the property mp,(~1 (7r(ll)) = 2, we have E 2 r/. ~1 (1rC 2 l). If we 
assume that E 2 is not contained in ~2 (1rC 2l), the proper transform of 
E 1 in I;(n) is a curve contained in ~2 (1rCnl) with self-intersection -2. It 
contradicts to Lemma 4.3 (2). Therefore, we obtain E 2 C ~2(1rC2l), i.e., 
(m1,nl) = (1,0). 

We may assume that p2 is the infinitely near point of E1 lying 
over p 1 . If p2 satisfies the property (ii) in Lemma 4.4, then the self
intersection number of the proper transform of E 1 in I;(n) is -4. It 
contradicts to Lemma 4.3 (2). Hence, p 2 satisfies the property (i) in 
Lemma 4.4. Therefore, E 3 is not contained in ~2 (1rC 3l), i.e., (m2, n2) = 
(0, 2). 

We may assume that p3 is the infinitely near point of ~1 ( 1rC2l). By 
the property mp3 (~ 1 (7rC3l)) = 2, we have E4 r/. ~1 (1rC4l). Let p" be the 
intersection point of the proper transform of E 2 in I;C4l and E4 . If E4 

is contained in ~2 (1rC4l), then we have p" E N(p, 1r). By Lemma 4.4, p" 
satisfies either the property (i) or (ii). In both cases, the self-intersection 
number of the proper transform of E 2 in I;(n) is not divisible by three. 
It contradicts to Lemma 4.3 (2). Therefore, we have E4 r/. ~2 (1rC4l), i.e., 
(m3, n3) = (1, 1). 
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In the case that k = 2, we have N(p, 1r) 
Figure 2). 

><- --7E-E1 - --p;J- - --:- Pa ---:- 7v, 
Pl * '"* Tl 

p=po 

E2 Ea E4 

Fig. 2. the branch locus of 7r (pis of type A5 ) 

Thus, we obtain 

(3) 

(4) 

2 
6(p,7r) = 3' 
,(p, 7r) = 6. 

In the case that k is greater than two, let p' be the infinitely near 
point of 6.1 (1r<3l) lying over p3 . (See Figure 3). Then, we have N(p, 1r) = 

{p, P1, P2, P3} U N(p',1r<4l) and 

(5) 

(6) 

c5(p,7r) = ~ + c5(p',7r(4)), 

K,(p,7r) = 6 + K,(p',7r(4)). 

~ -1- ~ -1-----J,... 
...._ ••• ......__ I I ---t- (if p is of type A6l-4) 

-~--1 -~--~ -~--

or 
--1... -1-----l- -+-

-~--1 

1 I I T (if pis of type A61 _ 1 ) 
-1 --1 -r---j'" 

....,_ ... .....__ 

Fig. 3. the branch locus of 7r 

By applying the Hurwitz formula to 1r(4) lc1!"<4J)-1 (E4), we see that 
1r(4) is totally branched at p'. Hence, by applying the equations (5), (6) 
top' and by using Lemma 4.2 and the equations (3), (4), we have the 
following equations: 

8(p, 7r) = { 
2!-1 if k = 2l-1 -3-

.1!.. if k = 2l 3 

,(p, 7r) = { 
6l- 5 if k = 2l- 1 

6l if k = 2l 
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Furthermore, it is obvious that all curves in (7r(nl)- 1 (q- 1 (p)) are 
contracted by 'I- (See Figure 4.) 

----1- -I
I 

----1- -1-- -+ -~-----~- + ~1 -1 -uu-1 
I I I T --=------ -3 -6. • • -3 -6 -3 -3 
-- -- 7r 

I 1 I 1 _ 1 -1 -1 

(pis of type A6z-1) 

Fig. 4. Inverse image of exceptional curves 

Therefore, we have 

{ 
4l 

E(p, 1r) = 4{ 

if k = 2l- 1 

if k = 2l 

Q.E.D. 

Proposition 4.4. Let p E T is a singular point of type E6. Then, 
we have 8(p, 1r) = 2/3, K(p, 1r) = 7 and Ep = 5. 

Proof. By the property mv(B) = 3, E1 is contained in b.1(1rC1l), 
i.e., m 0 = 1 and n0 = 0. We may assume that p 1 is the infinitely near 
point of B lying over p. By [17, Corollary 5.3], 1r(1) is totally ramified 
over p 1 . Since P1 is of type A5 , by equations ( 3) and ( 4), we have 
N(p, 1r) = {p}UN(p1 , 1r(1l), 8(p, 1r) = 2/3 and K(p, 1r) = 7. Furthermore, 
all curves in (7r(n))- 1 (q- 1 (p)) are contracted by <p, i.e., E(p,7r) = 5. (See 
Figure 5.) 

p=po~- ~E1 

Fig. 5. The branch locus of iF and the inverse image of exceptional curves 

(p is of type E6) Q.E.D. 

By equations (1), (2), Propositions 4.3, 4.4 and Noether's formula, 
we have Proposition 1.1 (ii). 

Example 4.1. Let B be a reduced plane curve of degree n in IP'2 

with at worst simple singularities. Suppose that there exists a generic 
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triple cover 1r: X--+ JID2 with ~(rr) =B. Note that n is necessarily even 
in this case. Let X be the minimal resolution of X. Then: 

K'2.. = .!n2 - 6n + 27- 6 
X 2 ' 

e(X) = n2 - 3n + 9-36, 

x(Ox) = kn2 - ~n + 3- ~6. 

Remark 4.1. Let 1r: X --+ :E be a generic triple cover as before. Since 
B has at worst simple singularities, D(X/:E) has only rational double 
points as its singularities. Let 

D(X/:E) ~ Z 

fh(1r) 1 lt 
I; ~I; 

be the canonical resolution, let Xz be the C(X)-normalization of Z and 
let g : Xz --+ Z be the induced cyclic triple cover. By what we have seen 
in this section, we infer the following: 

• Irreducible components of ~(g) are those in the exceptional 
curves for singularities in fh ( 1r) -l (T). 

• ~(g) is a disjoint union of A2-configurations, where A2- con
figuration means a divisor consisting of two irreducible com
ponents C1 and C2 such that Ci ~ J!Dl, Cf = -2(i = 1, 2) and 
c1c2 = 1. 

• For each pET, the number of A2-configurations arising from 
pin ~(g) is k (resp. 2) if pis of type A 3k-l (resp. E 6 ). In 
particular, the number of A2-configurations in ~(g) is equal to 
6 in Proposition 1.1. 

§5. Proof of Theorem 1.1 

We apply our previous results to the case when :E = JID2 and B is 
a reduced sextic curve with at worst simple singularities. Note that we 
keep the notations as before. Let us start with the following lemma. 

Lemma 5.1. Let 1r : X --+ JID2 be a generic triple cover branched 
at a reduced plane sextic curve B as above. Then 6 is either 6 or 9. If 
6 = 6 (resp. = 9), the minimal resolution S of X is a K3 (resp. an 
Abelian) surface. 

Proof. If deg B = 6, then D(X/JID2 ) is a K3 surface with rational 
double points and Z is its minimal resolution. Let Xz be the C(X)
normalization of Z and g : Xz --+ Z be the induced cyclic triple cover 
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as in Remark 4.1. Since Z is simply connected, the branch locus of 
g is non-empty and consists of disjoint union of A2-configurations by 
Remark 4.1. Now our statement follows from [22, Lemma 8.8]. Q.E.D. 

Lemma 5.2. Under the assumption of Lemma 5.1, B is a sextic 
curve with 9A2 singularities if 5 = 9. 

Proof. If NT -1- 0, then X has a rational double point as fh(1r) 
is unramified over (31 (7r)-1 (NT). This means that S in Lemma 5.1 
contains a rational curve, but this impossible as S is an Abelian surface. 
Now we show that T consists of 9A2 points. Let x E T be any non A2 
point. Then by [22, Lemma 9.1], X has a rational double point; and 
S again contains a rational curve. As S is an Abelian surface, this is 
impossible. Q.E.D. 

By [21], a sextic with 9A2 singularities is a (2, 3) torus curve. Hence, 
throughout the rest of this section, we always assume that 5 = 6. There
fore, by Example 4.1, 

Ki = 3, e(X) = 9. 

Lemma 5.3. 

where l is a line in IP'2 . 

Proof. We simply repeat the argument in the proof of [1, Lemma 
3.15]. Let x be a general point in IP'2 \ B and let ')'1 : X 1 ---+ X be blowing 
ups at (1r o 1')-1 (x). The pencil of lines through x induces an elliptic 
fibration 'Px : X1 ---+ IP'1 with a section. Since e(X1) = 12 and K'l:. = o, x1 
we infer that X1 is rational surface and 'Px is relatively minimal. Hence 
K x 1 rv -F, where F is a fiber of 'Px· As "Yr((7ro"Y)*Z) rv F+E1 +E2 +E3 , 

where Ei (i = 1, 2, 3) denote the exceptional curves of p, we have 

Therefore ( 1r o 1') * l rv - K x. Q.E.D. 

By Lemma 5.3, it follows that X is a smooth rational surface such 
that K x is big and numerically effective. Put 

- . 0 -
X= ProJ(EBn~oH (X, -nKx)). 

Then by [6] p. 61-66, we have 
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Proposition 5.1. Let 'PI-Kxl : X --+ JP>3 be a morphism given by 

1- K xI· Then 'PI-K x 1 (X) is a normal cubic surface with rational double 
point isomorphic to X. 

We are now in a position to prove Theorem 1.1. Our proof is almost 
the same as in [1, Proposition 3.17). 

Suppose that B is given by the equation G~ + G~ = 0 as in Theo
rem 1.1. Consider the cubic surface X in JP>3 given by 

X: Xi+ 3G2(Xo,X1,X2)X3 + 2G3(Xo,X1,X2) = 0, 

where [Xo: X1 : X2 : X3) denotes a homogeneous coordinate system of 
JP>3. By [11, Lemma 5.1), X is smooth in codimension one, and therefore 
is normal. Let P = [0 : 0: 0: 1) and let prp : JP>3 ---t JP>2 be the projection 
centered at P. The restriction prp to X gives a non-Galois triple cover 
prp1x: X--+ JP>2. By its defining equation, ~(X/JP>2 ) =B. Hence it is a 
generic triple cover branched at B. 

Conversely, if there exists a generic triple cover 1r : X --+ JP>2 branched 
at B, we have a normal cubic surface X as above. X is an image of X by 
4>1-Kxl· Moreover, by Lemma 5.3, one has the following commutative 
diagram: 

X <1>1-K.xl p3 \{Po} 

jp>2 jp>2' 

where pr denotes the projection centered at a suitable point Po E JP>3\X). 
The remaining part of our proof is the same as [1, Proposition 3.17), and 
we omit it. 
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