Generalized Q-functions and UC hierarchy of B-type

Yuji Ogawa

Abstract

. We define a generalization of Schur's Q-function for an arbitrary pair of strict partitions, which is called the generalized Q-function. We prove that all the generalized Q -functions solve a series of non-linear differential equations called the UC hierarchy of B-type (BUC hierar$c h y$). We furthermore investigate the BUC hierarchy from the viewpoint of representation theory. We consider the Fock representation of the algebra of neutral fermions and establish the boson-fermion correspondence. Using this, we discuss the relationship between the BUC hierarchy and a certain infinite dimensional Lie algebra.

§1. Introduction

The universal (rational) character [7] is a generalization of Schur function, which plays a significant role in representation theory of the general linear groups. It is well known that the Schur function gives an irreducible character of any polynomial representation of $G L_{n}(\mathbb{C})$. On the other hand, any irreducible rational representation can be described by means of the universal character.

The Schur functions are known to satisfy the bilinear KP hierarchy (Kadomtsev-Petviashvili, [10]), which is one of the most fundamental example of infinite dimensional integrable systems. Recently, T. Tsuda proposed an extension of the KP hierarchy, called the UC hierarchy [12]. A remarkable result revealed in [12] is that all the universal characters are solutions of the UC hierarchy. A connection to an infinite dimensional Lie algebra (denoted by $\mathfrak{g l}(\infty) \oplus \mathfrak{g l}(\infty)$ in [12]) was also discussed by using the language of "charged free fermions".

From the viewpoint of infinite dimensional Lie algebras [5], the KP and UC hierarchies correspond to Lie algebras of A-type [4, 12]. From

Received February 8, 2007.
Revised July 14, 2008.
Key words and phrases. Schur's Q-functions, BKP hierarchy, universal characters, UC hierarchy.
this point of view, the BKP hierarchy, which is one of the variants of the KP hierarchy, corresponds to a Lie algebra of B-type [1, 2, 4]. As was shown by Y.You [13], the bilinear BKP hierarchy has polynomial solutions called Schur's Q-functions, which originally arise in the study of projective representations of the symmetric and alternating groups $[3,11]$.

In [9], motivated by the facts mentioned above, we proposed a generalization of Schur's Q-function called generalized Q-function. The generalized Q-function is defined for any pair of "strict" partitions, while the Schur's Q-function is defined for any single strict partition; see $\S 2$. It was shown that all the generalized Q-functions are solutions of a series of non-linear differential equations. This system of differential equations is called the $U C$ hierarchy of B-type (or BUC hierarchy) since it may be considered as a B-type analogue of the UC hierarchy.

This note is an exposition of the paper [9], in which we investigated the generalized Q-functions and the BUC hierarchy.

This note is organized as follows. In $\S 2$, we recall the definition of Schur's Q-functions and then define the generalized Q-functions in terms of Pfaffians. In $\S 3$, we express the generalized Q-function by means of vertex operators (Theorem 3). Using this expression, we prove that all the generalized Q-functions satisfy certain quadratic relations called bilinear identities (Theorem 5). The bilinear identities are transformed to an infinite number of Hirota bilinear equations of infinite order; it is this system we call the BUC hierarchy. In §4, we introduce neutral fermions and consider the Fock representation. This representation is given an explicit realization, so-called boson-fermion correspondence, in the polynomial algebra with infinite variables (Theorem 7). By making use of this correspondence, we see that a certain infinite dimensional Lie algebra acts on the whole space of polynomial solutions of the BUC hierarchy as infinitesimal transformations (Theorem 10).

$\S 2 . \quad$ The generalized Q-functions

2.1. Strict partitions

A sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ of non-negative integers is called a strict (or distinct) partition if $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{r} \geq 0$. We may write any strict partition as $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 r}\right)$ by adding $\lambda_{2 r}=0$ (if necessary). For example, $(1,0),(2,0),(3,2,1,0)$ and so on.

2.2. Schur's Q-functions

We recall briefly the definition of Schur's Q-functions [3, 8]. Let $\boldsymbol{x}=\left(x_{1}, x_{3}, x_{5}, \ldots\right)$ be infinite variables and define the formal power
series $\xi(\boldsymbol{x}, z)=\sum_{n \geq 1} x_{2 n-1} z^{2 n-1}$. We define elementary Q-functions $q_{n}(\boldsymbol{x})(n \in \mathbb{Z})$ by the generating functional expression:

$$
\sum_{n \in \mathbb{Z}} q_{n}(\boldsymbol{x}) z^{n}=e^{\xi(\boldsymbol{x}, z)}
$$

Explicitly, $q_{0}(\boldsymbol{x})=1, q_{n}(\boldsymbol{x})=0(n<0)$, and

$$
q_{n}(\boldsymbol{x})=\sum_{k_{1}+3 k_{3}+5 k_{5}+\cdots=n} \frac{x_{1}^{k_{1}} x_{3}^{k_{3}} x_{5}^{k_{5}} \cdots}{k_{1}!k_{3}!k_{5}!\cdots} \quad(n>0)
$$

For each $m, n \in \mathbb{Z}$, we define

$$
q_{m, n}(\boldsymbol{x})=q_{m}(\boldsymbol{x}) q_{n}(\boldsymbol{x})+2 \sum_{k \geq 1}(-1)^{k} q_{m+k}(\boldsymbol{x}) q_{n-k}(\boldsymbol{x})
$$

which satisfy $q_{m, n}(\boldsymbol{x})+q_{n, m}(\boldsymbol{x})=2(-1)^{m} \delta_{m+n, 0}$ for all $m, n \in \mathbb{Z}$.
For each strict partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 r}\right)$, define the matrix M_{λ} whose (i, j)-th entry is $q_{\lambda_{i}, \lambda_{j}}(\boldsymbol{x})$ if $i \neq j$ and 0 if $i=j$. By the relation for $q_{m, n}(\boldsymbol{x})$ just written above, M_{λ} is a skew-symmetric matrix. The Schur's Q-function $Q_{\lambda}(\boldsymbol{x})$ associated with a strict partition λ is defined by Pfaffian for $M_{\lambda}[3,8]$:

$$
\begin{equation*}
Q_{\lambda}(\boldsymbol{x})=\operatorname{Pf}\left[M_{\lambda}\right] . \tag{1}
\end{equation*}
$$

Recall that the Pfaffian of a skew-symmetric matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq 2 r}$ is defined by

$$
\operatorname{Pf}[A]=\sum_{\substack{i_{1}<i_{3}<\cdots<i_{2 r-1} \\
i_{1}<i_{2}, \ldots, i_{2 r-1}<i_{2 r}}} \operatorname{sgn}\left(\begin{array}{cccc}
1 & 2 & \cdots & 2 r \\
i_{1} & i_{2} & \cdots & i_{2 r}
\end{array}\right) a_{i_{1} i_{2}} a_{i_{3} i_{4}} \cdots a_{i_{2 r-1} i_{2 r}} .
$$

For $\emptyset=(0)$, we put $Q_{\emptyset}(\boldsymbol{x})=1$. Note that $Q_{\left(\lambda_{1}, \lambda_{2}\right)}(\boldsymbol{x})=q_{\lambda_{1}, \lambda_{2}}(\boldsymbol{x})$.

2.3. Definition of generalized Q -functions

Let us introduce more variables $\boldsymbol{y}=\left(y_{1}, y_{3}, y_{5}, \ldots\right)$ and put

$$
r_{m, n}(\boldsymbol{x}, \boldsymbol{y})=q_{m}(\boldsymbol{y}) q_{n}(\boldsymbol{x})+2 \sum_{k \geq 1}(-1)^{k} q_{m-k}(\boldsymbol{y}) q_{n-k}(\boldsymbol{x})
$$

which satisfy $r_{m, n}(\boldsymbol{x}, \boldsymbol{y})=r_{n, m}(\boldsymbol{y}, \boldsymbol{x})$. For any pair of strict partitions $[\lambda, \mu]=\left[\left(\lambda_{1}, \ldots, \lambda_{2 r}\right),\left(\mu_{1}, \ldots, \dot{\mu_{2 s}}\right)\right]$, we define the matrix $N_{\lambda, \mu}$ with $r_{\mu_{2 s-i+1}, \lambda_{j}}(\boldsymbol{x}, \boldsymbol{y})$ on the (i, j)-th entry $(1 \leq i \leq 2 s, 1 \leq j \leq 2 r)$. Moreover, we put the matrix \bar{M}_{μ} whose (i, j)-th entry is $q_{\mu_{2 s-j+1}, \mu_{2 s-i+1}}(\boldsymbol{y})$ if $i \neq j$ and 0 if $i=j$.

Definition 1 ([9]). The generalized Q-function $Q_{[\lambda, \mu]}(\boldsymbol{x}, \boldsymbol{y})$ for any pair of strict partitions $[\lambda, \mu]$ is defined by Pfaffian of the form:

$$
Q_{[\lambda, \mu]}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{Pf}\left[\begin{array}{cc}
\bar{M}_{\mu} & N_{\lambda, \mu} \tag{2}\\
-N_{\lambda, \mu}^{\mathrm{T}} & M_{\lambda}
\end{array}\right]
$$

where $N_{\lambda, \mu}^{\mathrm{T}}$ denotes the transpose of $N_{\lambda, \mu}$.
We have the Schur's Q-function as a special case of (2):

$$
Q_{[\lambda, \emptyset]}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{Pf}\left[M_{\lambda}\right]=Q_{\lambda}(\boldsymbol{x}) .
$$

Similarly, $Q_{[\emptyset, \mu]}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{Pf}\left[\bar{M}_{\mu}\right]=Q_{\mu}(\boldsymbol{y})$.
Example 1. If $[\lambda, \mu]=[(m, 0),(n, 0)]$, then

$$
Q_{[(m, 0),(n, 0)]}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{Pf}\left[\begin{array}{cccc}
0 & \bar{q}_{n, 0} & r_{0, m} & r_{0,0} \\
\bar{q}_{0, n} & 0 & r_{n, m} & r_{n, 0} \\
-r_{0, m} & -r_{n, m} & 0 & q_{m, 0} \\
-r_{0,0} & -r_{n, 0} & q_{0, m} & 0
\end{array}\right]=r_{n, m}
$$

where we have denoted $q_{m, n}=q_{m, n}(\boldsymbol{x}), \bar{q}_{m, n}=q_{m, n}(\boldsymbol{y})$ and $r_{m, n}=$ $r_{m, n}(\boldsymbol{x}, \boldsymbol{y})$ for simplicity.

If we set the degree of each variables as $\operatorname{deg} x_{n}=n, \operatorname{deg} y_{n}=-n$, then $Q_{[\lambda, \mu]}(\boldsymbol{x}, \boldsymbol{y})$ has homogeneous degree $|\lambda|-|\mu|$, where $|\lambda|=\sum \lambda_{i}$.

Example 2. If $[\lambda, \mu]=[(2,1),(1,0)]$, then

$$
Q_{[(2,1),(1,0)]}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{Pf}\left[\begin{array}{cccc}
0 & \bar{q}_{1,0} & r_{0,2} & r_{0,1} \\
\bar{q}_{0,1} & 0 & r_{1,2} & r_{1,1} \\
-r_{0,2} & -r_{1,2} & 0 & q_{2,1} \\
-r_{0,1} & -r_{1,1} & q_{1,2} & 0
\end{array}\right]
$$

Since $r_{0,1}=x_{1}, r_{1,1}=x_{1} y_{1}-2, r_{0,2}=x_{1}^{2} / 2$ and $r_{1,2}=x_{1}^{2} y_{1} / 2-2 x_{1}$, this Pfaffian yields $\left(x_{1}^{3} / 6-2 x_{3}\right) y_{1}-x_{1}^{2}$, which has homogeneous degree $|\lambda|-|\mu|=2$.

Another equivalent definition of $Q_{[\lambda, \mu]}(\boldsymbol{x}, \boldsymbol{y})$ given below is sometimes convenient (see [9]).

Theorem 2. The generalized Q-function has the following expression in terms of Schur's Q-functions:

$$
\begin{equation*}
Q_{[\lambda, \mu]}(\boldsymbol{x}, \boldsymbol{y})=Q_{\lambda}\left(\boldsymbol{x}-2 \widetilde{\partial}_{\boldsymbol{y}}\right) Q_{\mu}\left(\boldsymbol{y}-2 \widetilde{\partial}_{\boldsymbol{x}}\right) \cdot 1 \tag{3}
\end{equation*}
$$

where $\widetilde{\partial}_{\boldsymbol{x}}$ stands for $\left(\partial_{x_{1}}, \partial_{x_{3}} / 3, \partial_{x_{5}} / 5, \ldots\right)\left(\partial_{x_{n}}=\partial / \partial_{x_{n}}\right)$.
Notice that the formula (3) resembles a similar relation between the Schur function and the universal character (see [12], Lemma 4.7).

§3. The UC hierarchy of B-type

In this section, we introduce a series of non-linear differential equations satisfied by the generalized Q-functions.

3.1. Vertex operators

We start with the following two types of linear differential operators:

$$
\begin{aligned}
& X(z)=X\left(z ; \boldsymbol{x}, \boldsymbol{y}, \partial_{\boldsymbol{x}}, \partial_{\boldsymbol{y}}\right)=e^{\xi\left(\boldsymbol{x}-2 \widetilde{\partial}_{\boldsymbol{y}}, z\right)} e^{-2 \xi\left(\widetilde{\partial}_{\boldsymbol{x}}, z^{-1}\right)} \\
& \bar{X}(z)=\bar{X}\left(z ; \boldsymbol{x}, \boldsymbol{y}, \partial_{\boldsymbol{x}}, \partial_{\boldsymbol{y}}\right)=e^{\xi\left(\boldsymbol{y}-2 \widetilde{\partial}_{\boldsymbol{x}}, z\right)} e^{-2 \xi\left(\widetilde{\partial}_{\boldsymbol{y}}, z^{-1}\right)}
\end{aligned}
$$

with a non-zero complex number z. In physics, the operators of these types are called vertex operators. If we expand the vertex operators as

$$
X(z)=\sum_{n \in \mathbb{Z}} X_{n} z^{n} \quad \bar{X}(z)=\sum_{n \in \mathbb{Z}} \bar{X}_{n} z^{n}
$$

then the coefficients $X_{n}=X_{n}\left(\boldsymbol{x}, \boldsymbol{y}, \partial_{\boldsymbol{x}}, \partial_{\boldsymbol{y}}\right), \bar{X}_{n}=\bar{X}_{n}\left(\boldsymbol{x}, \boldsymbol{y}, \partial_{\boldsymbol{x}}, \partial_{\boldsymbol{y}}\right)$ $(n \in \mathbb{Z})$ are well defined operators on $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]$. These operators have the following important properties; see [9] for the proofs.

Theorem 3. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{2 r}\right), \mu=\left(\mu_{1}, \ldots, \mu_{2 s}\right)$ be arbitrary strict partitions. Then we have the formula

$$
\begin{equation*}
Q_{[\lambda, \mu]}(\boldsymbol{x}, \boldsymbol{y})=X_{\lambda_{1}} \cdots X_{\lambda_{2 r}} \bar{X}_{\mu_{1}} \cdots \bar{X}_{\mu_{2 s}} \cdot 1 \tag{4}
\end{equation*}
$$

Lemma 4. We have the relations

$$
\begin{aligned}
& X_{0} \cdot 1=\bar{X}_{0} \cdot 1=1 \quad X_{n} \cdot 1=\bar{X}_{n} \cdot 1=0 \\
& {\left[X_{m}, X_{n}\right]_{+}=\left[\bar{X}_{m}, \bar{X}_{n}\right]_{+}=2(-1)^{m} \delta_{m+n, 0}}
\end{aligned} \quad\left[X_{m}, \bar{X}_{n}\right]=0 .
$$

3.2. The bilinear identities

Consider the bilinear relations for an unknown function $\tau=\tau(\boldsymbol{x}, \boldsymbol{y})$:

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}}(-1)^{n} X_{n} \tau \otimes X_{-n} \tau=\sum_{n \in \mathbb{Z}}(-1)^{n} \bar{X}_{n} \tau \otimes \bar{X}_{-n} \tau=\tau \otimes \tau \tag{5}
\end{equation*}
$$

or equivalently in terms of the vertex operators:

$$
\begin{equation*}
\oint X(z) \tau \otimes X(-z) \tau \frac{d z}{2 \pi i z}=\oint \bar{X}(z) \tau \otimes \bar{X}(-z) \tau \frac{d z}{2 \pi i z}=\tau \otimes \tau \tag{6}
\end{equation*}
$$

where the contour integral means an algebraic operation $\oint z^{n} \frac{d z}{2 \pi i z}=\delta_{n, 0}$. Hereafter we call (5) or (6) bilinear identities.

We have now the following theorem.

Theorem 5. The generalized Q-function for any pair of strict partitions satisfies the bilinear identities.

Proof. This theorem is obtained by using Theorem 3, Lemma 4, along with a fact that a constant 1 satisfies the bilinear identities.
Q.E.D.

3.3. Hirota bilinear equations

The bilinear identities can be converted to an infinite number of $\mathrm{Hi}-$ rota bilinear equations for τ. Recall that for any polynomial $P(D)$ (possibly formal power series) in $D=\left(D_{x_{1}}, D_{x_{3}}, D_{x_{5}}, \ldots, D_{y_{1}}, D_{y_{3}}, D_{y_{5}}, \ldots\right)$, the Hirota bilinear equation $P(D) \tau \cdot \tau=0$ is defined by setting

$$
P(D) \tau \cdot \tau=\left.P(\partial) \tau(\boldsymbol{x}+\boldsymbol{a}, \boldsymbol{y}+\boldsymbol{b}) \tau(\boldsymbol{x}-\boldsymbol{a}, \boldsymbol{y}-\boldsymbol{b})\right|_{\boldsymbol{a}=\boldsymbol{b}=0}
$$

where $\partial=\left(\partial_{a_{1}}, \partial_{a_{3}}, \partial_{a_{5}}, \ldots, \partial_{b_{1}}, \partial_{b_{3}}, \partial_{b_{5}}, \ldots\right)$. By virtue of a calculus on "Hirota differentials" (cf.[5], Ch.14), the bilinear identities (6) can be transformed to

$$
\begin{array}{r}
\sum_{n, m \geq 0} q_{n}(2 \boldsymbol{a}) q_{n+m}\left(-2 \widetilde{D}_{\boldsymbol{x}}\right) q_{m}\left(-2 \widetilde{D}_{\boldsymbol{y}}\right) e^{\left\langle\boldsymbol{a}, D_{\boldsymbol{x}}\right\rangle+\left\langle\boldsymbol{b}, D_{\boldsymbol{y}}\right\rangle} \tau \cdot \tau \\
=e^{\left\langle\boldsymbol{a}, D_{\boldsymbol{x}}\right\rangle+\left\langle\boldsymbol{b}, D_{\boldsymbol{y}}\right\rangle} \tau \cdot \tau
\end{array}
$$

$$
\begin{array}{r}
\sum_{n, m \geq 0} q_{n}(2 \boldsymbol{b}) q_{m}\left(-2 \widetilde{D}_{\boldsymbol{x}}\right) q_{n+m}\left(-2 \widetilde{D}_{\boldsymbol{y}}\right) e^{\left\langle\boldsymbol{a}, D_{\boldsymbol{x}}\right\rangle+\left\langle\boldsymbol{b}, D_{\boldsymbol{y}}\right\rangle} \tau \cdot \tau \tag{7}\\
=e^{\left\langle\boldsymbol{a}, D_{\boldsymbol{x}}\right\rangle+\left\langle\boldsymbol{b}, D_{\boldsymbol{y}}\right\rangle} \tau \cdot \tau
\end{array}
$$

where

$$
\widetilde{D}_{\boldsymbol{x}}=\left(D_{x_{1}}, D_{x_{3}} / 3, D_{x_{5}} / 5, \ldots\right)
$$

and

$$
\left\langle\boldsymbol{a}, D_{\boldsymbol{x}}\right\rangle=\sum_{n \geq 1} a_{2 n-1} D_{x_{2 n-1}}
$$

The equations (7) may be regarded as an extension of the bilinear BKP hierarchy. Indeed, if τ is independent of \boldsymbol{y}, then the first equation of (7) reduces to a bilinear form of the BKP hierarchy [1, 2]

$$
\sum_{n \geq 1} q_{n}(2 \boldsymbol{a}) q_{n}\left(-2 \widetilde{D}_{\boldsymbol{x}}\right) e^{\left\langle\boldsymbol{a}, D_{\boldsymbol{x}}\right\rangle} \tau \cdot \tau=0
$$

while the second equation reduces to a trivial identity.

To obtain a single bilinear equation from (7), expand (7) as a multiple Taylor series with respect to \boldsymbol{a} and \boldsymbol{b}. For example, from the coefficient of $\boldsymbol{a}^{0} \boldsymbol{b}^{0}$ of the first equation, one obtains

$$
\sum_{n \geq 1} q_{n}\left(-2 \widetilde{D}_{\boldsymbol{x}}\right) q_{n}\left(-2 \widetilde{D}_{\boldsymbol{y}}\right) \tau \cdot \tau=0
$$

which is a Hirota bilinear equation of infinite order. All the equations obtained from (7) in such a way are, in fact, differential equations of infinite order, as in the case of the UC hierarchy [12].

Definition 6. A whole system of the Hirota bilinear equations included in (7) is called the UC hierarchy of B-type or the BUC hierarchy.

§4. The BUC hierarchy and representation theory

In this section, we consider the Fock representation of the algebra of neutral fermions and establish the boson-fermion correspondence (Theorem 7,8) without proofs. We then give a Lie algebraic description of the BUC hierarchy.

4.1. Neutral fermions and fermionic Fock space

Let \mathcal{A} be an associative algebra over \mathbb{C} generated by neutral fermions $\phi_{m}, \bar{\phi}_{m}(m \in \mathbb{Z})$ with defining relations:

$$
\left[\phi_{m}, \phi_{n}\right]_{+}=\left[\bar{\phi}_{m}, \bar{\phi}_{n}\right]_{+}=(-1)^{m} \delta_{m+n, 0} \quad\left[\phi_{m}, \bar{\phi}_{n}\right]=0
$$

Note that $\phi_{0}^{2}=\bar{\phi}_{0}^{2}=1 / 2$ and the latter relation is a "commutative" relation.

The Fock representation is an irreducible representation of \mathcal{A} generated by the vacuum vector $|0\rangle$ satisfying

$$
\phi_{n}|0\rangle=\bar{\phi}_{n}|0\rangle=0 \quad \text { for } \quad n<0
$$

The representation space denoted by \mathcal{F} is called the fermionic Fock space, which is an infinite dimensional vector space spanned by the basis elements

$$
\left\{\phi_{m_{1}} \cdots \phi_{m_{r}} \bar{\phi}_{n_{1}} \cdots \bar{\phi}_{n_{s}}|0\rangle \mid m_{1}>\cdots>m_{r} \geq 0, \quad n_{1}>\cdots>n_{s} \geq 0\right\} .
$$

The dual Fock space \mathcal{F}^{*} is defined in a parallel way, i.e., \mathcal{F}^{*} is generated by the dual vacuum vector $\langle 0|$ satisfying

$$
\langle 0| \phi_{n}=\langle 0| \bar{\phi}_{n}=0 \quad \text { for } \quad n>0
$$

There exists indeed a unique non-degenerate bilinear form $\langle\rangle:, \mathcal{F}^{*} \otimes$ $\mathcal{F} \rightarrow \mathbb{C}$ denoted by $\langle\underline{0}| a \otimes b|0\rangle \longmapsto\langle 0| a \cdot b|0\rangle \stackrel{\text { def }}{=}\langle a b\rangle$, such that $\langle 1\rangle=1$, $\left\langle\phi_{0}\right\rangle=\left\langle\bar{\phi}_{0}\right\rangle=\left\langle\phi_{0} \bar{\phi}_{0}\right\rangle=0$. The quantity $\langle a\rangle$ is said to be the vacuum expectation value of a.

4.2. The boson-fermion correspondence

The Fock representation has an explicit realization in the polynomial algebra with infinite variables. Let $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}, q, \bar{q}]$ be a polynomial algebra in $\boldsymbol{x}, \boldsymbol{y}, q, \bar{q}$, and \mathcal{I} an ideal generated by $q^{2}-1 / 2$ and $\bar{q}^{2}-1 / 2$. The bosonic Fock space is defined by

$$
\mathcal{B}=\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}, q, \bar{q}] / \mathcal{I}=\bigoplus_{i, j=0,1} \mathbb{C}[\boldsymbol{x}, \boldsymbol{y}] q^{i} \bar{q}^{j}
$$

The "boson-fermion correspondence" states that the fermionic Fock space can be identified with the bosonic Fock space.

Theorem 7. There exists a linear isomorphism $\sigma: \mathcal{F} \cong \mathcal{B}$.
A concrete form of σ can be constructed in the following way. For each $m \in 2 \mathbb{Z}+1$, we put

$$
H_{m}=\frac{1}{2} \sum_{j \in \mathbb{Z}}(-1)^{j+1} \phi_{j} \phi_{-j-m} \quad \bar{H}_{m}=\frac{1}{2} \sum_{j \in \mathbb{Z}}(-1)^{j+1} \bar{\phi}_{j} \bar{\phi}_{-j-m}
$$

It is straightforward to check that $\left[H_{m}, H_{n}\right]=\left[\bar{H}_{m}, \bar{H}_{n}\right]=m \delta_{m+n, 0} / 2$ and $H_{n}|0\rangle=\bar{H}_{n}|0\rangle=0(n>0)$. We introduce the operator, called Hamiltonian, with variables $(\boldsymbol{x}, \boldsymbol{y})$:

$$
H(\boldsymbol{x}, \boldsymbol{y})=\sum_{n}\left\{\left(x_{n}-\frac{2}{n} \frac{\partial}{\partial y_{n}}\right) H_{n}+\left(y_{n}-\frac{2}{n} \frac{\partial}{\partial x_{n}}\right) \bar{H}_{n}\right\}
$$

Multiplication of $H(\boldsymbol{x}, \boldsymbol{y})$, as well as $e^{H(\boldsymbol{x}, \boldsymbol{y})}$, on \mathcal{F} is well-defined, so that we can define the linear map $\sigma: \mathcal{F} \rightarrow \mathcal{B}$ by

$$
\begin{equation*}
\sigma(|\nu\rangle)=\sum_{i, j=0,1} 2^{i+j} q^{i} \bar{q}^{j}\left\langle\phi_{0}^{i} \bar{\phi}_{0}^{j} e^{H(\boldsymbol{x}, \boldsymbol{y})} \mid \nu\right\rangle \cdot 1 \tag{8}
\end{equation*}
$$

which yields the isomorphism of Theorem 7. An image of σ can be calculated by means of a formula (11) given below.

We next describe the action of \mathcal{A} on the bosonic Fock space. Define the generating sums of the neutral fermions

$$
\phi(z)=\sum_{n \in \mathbb{Z}} \phi_{n} z^{n} \quad \bar{\phi}(z)=\sum_{n \in \mathbb{Z}} \bar{\phi}_{n} z^{n}
$$

Then we have

Theorem 8. Let $|\nu\rangle \in \mathcal{F}$. We have the following correspondence of operators:

$$
\begin{equation*}
\sigma(\phi(z)|\nu\rangle)=q X(z) \sigma(|\nu\rangle) \quad \sigma(\bar{\phi}(z)|\nu\rangle)=\bar{q} \bar{X}(z) \sigma(|\nu\rangle) \tag{9}
\end{equation*}
$$

Let $|\nu\rangle=\phi_{\lambda_{1}} \cdots \phi_{\lambda_{r}} \bar{\phi}_{\mu_{1}} \cdots \bar{\phi}_{\mu_{s}}|0\rangle$ where $\lambda_{1}>\cdots>\lambda_{r} \geq 0$ and $\mu_{1}>\cdots>\mu_{s} \geq 0$. By virtue of Theorem 8, we have the formula

$$
\begin{equation*}
\sigma(|\nu\rangle)=q^{r} \bar{q}^{s} X_{\lambda_{1}} \cdots X_{\lambda_{r}} \bar{X}_{\mu_{1}} \cdots \bar{X}_{\mu_{s}} \cdot 1 \tag{10}
\end{equation*}
$$

here notice that $\sigma(|0\rangle)=1$. From Theorem 3, the right hand side can be written in terms of the generalized Q-functions as follows:

$$
\begin{equation*}
\sigma(|\nu\rangle)=q^{r} \bar{q}^{s} Q_{\left[\left(\lambda_{1}, \ldots, \lambda_{r}\right),\left(\mu_{1}, \ldots, \mu_{s}\right)\right]}(\boldsymbol{x}, \boldsymbol{y}) \tag{11}
\end{equation*}
$$

If we notice that $\mathcal{F}_{0,0}=\sum \mathbb{C} \phi_{\lambda_{1}} \cdots \phi_{\lambda_{2 r}} \bar{\phi}_{\mu_{1}} \cdots \bar{\phi}_{\mu_{2 s}}|0\rangle$ (summed over all $\lambda_{1}>\cdots>\lambda_{2 r} \geq 0, \mu_{1}>\cdots>\mu_{2 s} \geq 0$), is a subspace of \mathcal{F} isomorphic to $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]$ by Theorem 7 , we deduce from (11) the following corollary.

Corollary 9. A whole set of the generalized Q-functions forms a linear basis of $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]$.

4.3. The bilinear identities as an orbit equation

Let us consider any element of the form

$$
\sum_{i, j \in \mathbb{Z}}\left(a_{i j}: \phi_{i} \phi_{-j}:+\bar{a}_{i j}: \bar{\phi}_{i} \bar{\phi}_{-j}:\right)+c \quad(c \in \mathbb{C})
$$

where $a_{i j}, \bar{a}_{i j}$ are assumed to be subject to $a_{i j}=\bar{a}_{i j}=0(|i-j| \gg 0)$, and we have put : $\phi_{m} \phi_{n}:=\phi_{m} \phi_{n}-\left\langle\phi_{m} \phi_{n}\right\rangle$ (similarly for $\bar{\phi}$). It is easy to see that the bracket operation between such elements gives again an element of this form, i.e., the set of such elements forms a Lie algebra, which we denote by \mathfrak{g}.

We define the (formal) Lie group associated to \mathfrak{g} :

$$
\boldsymbol{G}=\left\{e^{X_{1}} \cdots e^{X_{k}} \mid X_{i} \in \mathfrak{g}: \text { locally nilpotent }\right\}
$$

The Fock representation of \mathfrak{g} gives rise to a representation of \boldsymbol{G} on \mathcal{F}. Clearly, $\mathcal{F}_{0,0}$ (defined in the previous subsection) is an invariant subspace. Let us consider $\boldsymbol{G}|0\rangle \subset \mathcal{F}_{0,0}$, i.e., a \boldsymbol{G}-orbit of the vacuum vector. In general, a non-zero $|\nu\rangle \in \mathcal{F}_{0,0}$ lies in $G|0\rangle$ if and only if $|\nu\rangle$ satisfies the following bilinear relations on $\mathcal{F}_{0,0} \otimes \mathcal{F}_{0,0}$:

$$
\left\{\begin{array}{l}
\sum_{n \in \mathbb{Z}}(-1)^{n} \phi_{n}|\nu\rangle \otimes \phi_{-n}|\nu\rangle=Q|\nu\rangle \otimes Q|\nu\rangle \tag{12}\\
\sum_{n \in \mathbb{Z}}(-1)^{n} \bar{\phi}_{n}|\nu\rangle \otimes \bar{\phi}_{-n}|\nu\rangle=\bar{Q}|\nu\rangle \otimes \bar{Q}|\nu\rangle
\end{array}\right.
$$

(cf. $[6,13]$ in case of the BKP hierarchy). Here Q, \bar{Q} are linear operators on \mathcal{F} defined via $\sigma Q \sigma^{-1}=q, \sigma \bar{Q} \sigma^{-1}=\bar{q}$, respectively, which satisfy the properties $Q|0\rangle=\phi_{0}|0\rangle, \bar{Q}|0\rangle=\bar{\phi}_{0}|0\rangle$ and $Q^{2}=\bar{Q}^{2}=1 / 2$.

We are now in a position to state the following theorem.
Theorem 10. Let $\tau \in \mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]$. Then τ satisfies the bilinear identities (5) if and only if there exists a $g \in \boldsymbol{G}$ such that

$$
\begin{equation*}
\tau=\sigma(g|0\rangle)=\left\langle e^{H(\boldsymbol{x}, \boldsymbol{y})} g\right\rangle \cdot 1 \tag{13}
\end{equation*}
$$

Proof. This theorem is obtained by noting that (12) is equivalent to the bilinear identities (5) by the correspondence (9). Q.E.D.

We have thus shown that a G-orbit of the vacuum vector in the fermionic Fock space can be identified with a whole space of polynomial solutions of the BUC hierarchy, and in particular (13) gives a general formula for the polynomial solutions.

References

[1] E. Date, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. II. Vertex operators and τ functions, Proc. Japan Acad. Ser. A Math. Sci., 57 (1981), 387-392.
[2] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type, Phys. D, 4 (1982), 343-365.
[3] P. N. Hoffman and J. F. Humphreys, Projective Representations of the Symmetric Groups, Oxford, 1992.
[4] M. Jimbo and T. Miwa, Soliton equations and infinite dimensional Lie algebras, Publ. RIMS, Kyoto Univ., 19 (1983), 943-1001.
[5] V. G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge, 1990.
[6] V. G. Kac and J. van de Leur, The geometry of spinors and the multicomponent BKP and DKP hierarchies, CRM Proc. Lecture Notes, 14, (1998), 159-202.
[7] K. Koike, On the decomposition of tensor products of the representations of the classical groups: By means of the universal characters, Adv. Math., 74 (1989), 57-86.
[8] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford, 1995.
[9] Y. Ogawa, Generalized Q-functions and UC hierarchy of B-type, submitted.
[10] M. Sato, Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold, Kokyuroku RIMS, Kyoto Univ., 439 (1981), 30-46.
[11] J. R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. Math., 74 (1989), 87-134.
[12] T. Tsuda, Universal characters and an extension of the KP hierarchy, Comm. Math. Phys., 248 (2004), 501-526.
[13] Y. You, Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups, Adv. Ser. Math. Phys., 7 (1989), 449-464.

Department of mathematics
Fundamental Sciences and Technologies
Keio University
Hiyoshi 3-14-1
Kohoku-ku, Yokohama
Japan
E-mail address: y-ogawa@math.keio.ac.jp

