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Generalized Q-functions and UC hierarchy of B-type

Yuji Ogawa

Abstract.

We define a generalization of Schur’s Q-function for an arbitrary
pair of strict partitions, which is called the generalized Q-function. We
prove that all the generalized Q-functions solve a series of non-linear
differential equations called the UC hierarchy of B-type (BUC hierar-
chy). We furthermore investigate the BUC hierarchy from the view-

. point of representation theory. We consider the Fock representation of
the algebra of neutral fermions and establish the boson-fermion corre-
spondence. Using this, we discuss the relationship between the BUC
hierarchy and a certain infinite dimensional Lie algebra.

§1. Introduction

The universal (rational) character [7] is a generalization of Schur
function, which plays a significant role in representation theory of the
general linear groups. It is well known that the Schur function gives an
irreducible character of any polynomial representation of GL,{(C). On
the other hand, any irreducible rational representation can be described
by means of the universal character.

The Schur functions are known to satisfy the bilinear KP hierarchy
(Kadomtsev—Petviashvili, [10]), which is one of the most fundamental
example of infinite dimensional integrable systems. Recently, T. Tsuda
proposed an extension of the KP hierarchy, called the UC hierarchy [12].
A remarkable result revealed in [12] is that all the universal characters
are solutions of the UC hierarchy. A connection to an infinite dimen-
sional Lie algebra (denoted by gl(oo) @ gl(oo) in [12]) was also discussed
by using the language of “charged free fermions”.

From the viewpoint of infinite dimensional Lie algebras [5], the KP
and UC hierarchies correspond to Lie algebras of A-type [4, 12]. From
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this point of view, the BKP hierarchy, which is one of the variants of
the KP hierarchy, corresponds to a Lie algebra of B-type [1, 2, 4]. As
was shown by Y.You [13], the bilinear BKP hierarchy has polynomial
solutions called Schur’s Q-functions, which originally arise in the study
of projective representations of the symmetric and alternating groups
[3, 11].

In [9], motivated by the facts mentioned above, we proposed a gen-
eralization of Schur’s Q-function called generalized @-function. The gen-
eralized Q-function is defined for any pair of “strict” partitions, while
the Schur’s Q-function is defined for any single strict partition; see §2. It
was shown that all the generalized Q-functions are solutions of a series
of non-linear differential equations. This system of differential equations
is called the UC hierarchy of B-type (or BUC hierarchy) since it may be
considered as a B-type analogue of the UC hierarchy.

This note is an exposition of the paper [9], in which we investigated
the generalized Q-functions and the BUC hierarchy.

This note is organized as follows. In §2, we recall the definition of
Schur’s Q-functions and then define the generalized Q-functions in terms
of Pfaffians. In §3, we express the generalized Q-function by means of
vertex operators (Theorem 3). Using this expression, we prove that
all the generalized Q-functions satisfy certain quadratic relations called
bilinear identities (Theorem 5). The bilinear identities are transformed
to an infinite number of Hirota bilinear equations of infinite order; it
is this system we call the BUC hierarchy. In §4, we introduce neutral
fermions and consider the Fock representation. This representation is
given an explicit realization, so-called boson-fermion correspondence, in
the polynomial algebra with infinite variables (Theorem 7). By making
use of this correspondence; we see that a certain infinite dimensional
Lie algebra acts on the whole space of polynomial solutions of the BUC
hierarchy as infinitesimal transformations (Theorem 10).

§2. The generalized Q-functions

2.1. Strict partitions

A sequence A = (A1, A2,..., ) of non-negative integers is called
a strict (or distinct) partition if Ay > A > -+ > A > 0. We may
write any strict partition as A = (A1, Aa, ..., A2r) by adding A, =0 (if
necessary). For example, (1,0), (2,0), {3,2,1,0) and so on.

2.2. Schur’s Q-functions

We recall briefly the definition of Schur’s Q-functions [3, 8]. Let
x = (x1,23,%5,...) be infinite variables and define the formal power



Generalized Q-functions 311
series &(x, 2)= anl Ton-12*""1. We define elementary Q-functions
gn(x) (n € Z) by the generating functional expression:

> o =)
nez
Explicitly, go(z) =1, gn(z) =0 (n < 0), and
ki ks ks
x x x ..
I T SR = .
UL

For each m,n € Z, we define

G (@) = G (@) (@) + 2 ) (1) g1 () gk (@)
E>1

which satisfy ¢mn(€) + gn,m(€) = 2(—1)"0m4n,o for all m,n € Z.

For each strict partition A = (A1, Az, . .., A2 ), define the matrix M)
whose (i, j)-th entry is gx,,»,(x) if i # j and 0 if ¢ = j. By the relation
for ¢m n(x) just written above, M) is a skew-symmetric matrix. The
Schur’s Q-function Qx(x) associated with a strict partition X is defined
by Pfafian for M) [3, 8):

(1) Qa(x) =Pf[M,].

Recall that the Pfaffian of a skew-symmetric matrix A = (a;;)1<i,j<or
is defined by

1 2 - 2r
Pf[A] = Z sgn ( i i . ) QiyipOigiy *** Qigy 1dom-

. . 2 - 2r
11 <e3<--<igr_1
11 <12, l2r—1 <f2r

For § = (0), we put Qg(z) = 1. Note that Q(x, x,) (%) = qr,, 2 ().

2.3. Definition of generalized Q-functiohs
Let us introduce more variables y = (y1,¥3,¥s,--. ) and put

Tmn (T, Y) = qm(Y)qn(T) +2 D (1) gk (y)gn—r ()
E>1

which satisfy rp, n(2,y) = rn,m(y,x). For any pair of strict partitions
Aul = [(A,-5A20), (1, - - -5 p2s)], we define the matrix N, with
Thze—ir1,); (2, Y) on the (4, 7)-th entry (1 < i < 2s, 1 < j < 2r). More-
over, we put the matrix M, whose (i,7)-th entry is qu,, .1 uss—ir1 (¥)
ifi%jand 0ifi=j.
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Definition 1 ([9]). The generalized Q-function Q. (z,y) for any
pair of strict partitions [A, u] is defined by Pfaffian of the form:

2) Qpr (@, y) = PE My N
( M\ & Y) = _N;\I:u M,y

where N denotes the transpose of Ny .
Au N

We have the Schur’s Q-function as a special case of (2):
Qpgy(,y) = PI[M] = Qx(z).

Similarly, Qyg,.(z,y) = Pf []\7[#] = Qu(y).
Ezample 1. If [\, ] = [(m,0), (n,0)], then

0 n,0 Tom 70,0
— €70,n 0 Tnm  Tn,0 _
Q[(m,o),(n,o)](w7 y) =Pt —Tro,m —Tnm 0 qm,0 = Tn,m
—T0,0 —Tno 40,m 0

where we have denoted ¢m.n = ¢m.n(€), Gmn = gmn(y) and rpp =
Tm.n{(z,y) for simplicity.

If we set the degree of each variables as degz,, = n,degy, = —n,
then Q[ ,(x,y) has homogeneous degree |A| — |u|, where [A| = > \;.

Ezample 2. If [\, p] = [(2,1), (1,0)], then

0 dio To2 To,1
do,1 0 1,2 Tl
—102 —T12 0 g1
—r9,1 —Ti,1 Q2 O

Ql2.1),(1,0)(xz,y) = Pf

Since 191 = %1, 71,1 = T1Y1 — 2, To2 = z2/2 and ri2 = z2y, /2 — 2z,
this Pfaffian yields (z$/6 — 223) y1 — 3, which has homogeneous degree
Al = [ul = 2.

Another equivalent definition of Q[ ,(x,y) given below is some-
times convenient (see [9]).

Theorem 2. The generalized Q)-function has the following expres-
ston in terms of Schur’s Q-functions:

(3) Qo (@, y) = Qa(e —20,)Qu(y — 20a) - 1
where 8, stands for (Opyy0u4/3,0:5/5,...) (Bs, = 8/0;,).

Notice that the formula (3) resembles a similar relation between the
Schur function and the universal character (see [12], Lemma 4.7).
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83. The UC hierarchy of B-type

In this section, we introduce a series of non-linear differential equa-
tions satisfied by the generalized Q-functions.

3.1. Vertex operators
We start with the following two types of linear differential operators:

X(2) = X (2@, Y, g, Oy) = 6@ 202) =202 27
X(2) = X (22, Y, 0, 0y) = e£V=200:2) =202

with a non-zero complex number z. In physics, the operators of these
types are called vertex operators. If we expand the vertex operators as

X(@)=) Xnz"  X(z)=) Xp2"

neEZ n€eZ

then the coefficients X, = X, (2, y,05,0y), Xn = Xn(x,y,0z,0y)
(n € Z) are well defined operators on Clx,y]. These operators have
the following important properties; see [9] for the proofs.

Theorem 3. Let A = (A1,..., ), pb = (U1,...,p2s) be arbitrary
strict partitions. Then we have the formula

(4) Q[)‘y,‘](w,y) =X X, Xy 'Xuzs -1
Lemma 4. We have the relations
Xo-1=Xp-1=1 Xn-1=X,-1=0 n<O0;
[Xims Xnl+ = [Xms Xnl+ = 2(=1)"0mtno  [Xm, Xa] =0.
3.2. The bilinear identities

Consider the bilinear relations for an unknown function 7 = 7(x, y):

B) D ()Xr@X 7= (1) KT ®X T =7®7T
ne€Z neL

or equivalently in terms of the vertex operators:

dz . - dz
(6) f X()r® X(~2)7 3o = § K@ 9 X2 g = 707
where the contour integral means an algebraic operation § 2" z‘sz = 0n,0-

Hereafter we call (5) or (6) bilinear identities.
We have now the following theorem.
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Theorem 5. The generalized Q-function for any pair of strict par-
titions satisfies the bilinear identities.

Proof. This theorem is obtained by using Theorem 3, Lemma 4,
along with a fact that a constant 1 satisfies the bilinear identities.
Q.E.D.

3.3. Hirota bilinear equations

The bilinear identities can be converted to an infinite number of Hi-
rota bilinear equations for 7. Recall that for any polynomial P(D) (pos-
sibly formal power series) in D = (Dy,, Dgy, Das,. - ., Dyyy Dyg, Dys). - ),
the Hirota bilinear equation P(D)7 -7 = 0 is defined by setting

PDYr-1=PO)r(x+a,y+br(c—ay— b)la:b:O

where 8 = (04,,043,0ags- - Oby» Obss Obg, - .- ). By virtue of a calculus
on “Hirota differentials” (cf.[5], Ch.14), the bilinear identities (6) can be
transformed to

> 00(20)4nsm(~2D0) gim(—2Dy el P+ 0P 7

n,m>0
— e<a7Dm>+<baDy)7— -T
(7)
> Gn(26)gm(~2Dz) Gugm(—2Dy) €@ P+ O L7
n,m>0
— e<a’7Dw>+<va’y)«T - T
where
Dy = (Dy,, Dy, /3, Dy /5,...)
and

<a’7 -DCD> = Z a2n—1DCL‘2n¥1'

n>1

The equations (7) may be regarded as an extension of the bilinear
BKP hierarchy. Indeed, if 7 is independent of y, then the first equation
of (7) reduces to a bilinear form of the BKP hierarchy [1, 2]

Z qn(2a)qn(_2ﬁm) 6<a’Dm>T =0

n>1

while the second equation reduces to a trivial identity.
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To obtain a single bilinear equation from (7), expand (7) as a mul-
tiple Taylor series with respect to a and b. For example, from the
coefficient of a®b® of the first equation, one obtains

Z qn(—25m)qn(—2l~)y)r =0

n>1

which is a Hirota bilinear equation of infinite order. All the equations
obtained from (7) in such a way are, in fact, differential equations of
infinite order, as in the case of the UC hierarchy [12].

Definition 6. A whole system of the Hirota bilinear equations in-
cluded in (7) is called the UC hierarchy of B-type or the BUC hierarchy.

§4. The BUC hierarchy and representation theory

In this section, we consider the Fock representation of the algebra of
neutral fermions and establish the boson-fermion correspondence (The-
orem 7, 8) without proofs. We then give a Lie algebraic description of
the BUC hierarchy.

4.1. Neutral fermions and fermionic Fock space

Let A be an associative algebra over C generated by neutral fermions
®ms dm (M € Z) with defining relations:

[(i)ma ¢n]+ = [(vgm, Q_Sn]+ = (_‘1)m6m+n,0 [¢ma(l§n] = 0.

Note that ¢2 = ¢2 = 1/2 and the latter relation is a “commutative”
relation.

The Fock representation is an irreducible representation of A gener-
ated by the vacuum vector |0) satisfying

n)|0) = dnl0) =0  for n<O.

The representation space denoted by F is called the fermionic Fock
space, which is an infinite dimensional vector space spanned by the basis
elements

{bmy -+ Pmo by - P, |0) [y > - >mp >0, ng>--->mn, >0},

The dual Fock space F* is defined in a parallel way, i.e., F* is
generated by the dual vacuum vector (0| satisfying

O|¢r, = (O]¢p, =0  for n>0.
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There exists indeed a unique non-degenerate bilinear form (, ) : 7* ®
F — C denoted by (0]a ® b|0) — (0la - b|0) %' (ab), such that (1) =1,

(o) = {¢o) = (¢ ¢ ) = 0. The quantity (a) is said to be the vacuum
expectation value of a.

4.2. The boson-fermion correspondence

The Fock representation has an explicit realization in the polynomial
algebra with infinite variables. Let Clz,y, ¢, g] be a polynomial algebra
in , y, q, g, and T an ideal generated by ¢ — 1/2 and §* — 1/2. The
bosonic Fock space is defined by

B=Clr,y,q,d/I= @ Clx,yld'q’
4,j=0,1
The “boson-fermion correspondence” states that the fermionic Fock space
can be identified with the bosonic Fock space.
Theorem 7. There exists a linear isomorphism o : F = B.

A concrete form of o can be constructed in the following way. For
each m € 2Z + 1, we put

. _ 1 o
Hypo= =3 (-1"¢i¢ 5 m  Hp= 5 D G AR -
JEZ JEZ
It is straightforward to check that [Hp, Hn] = [Hm, Hy) = MOmn,0/2

and H,|0) = H,[0) = 0 (n > 0). We introduce the operator, called
Hamiltonian, with variables (z, y):

wew=S{(e- 1) o2 )

n

Multiplication of H(z,y), as well as e(®¥) on F is well-defined, so
that we can define the linear map o : F — B by

(8) a(lv))= > 2" ¢ ¢ (¢h e ™V ) -1
1,j=0,1

which yields the isomorphism of Theorem 7. An image of o ¢an be
calculated by means of a formula (11) given below.

We next describe the action of .A on the bosonic Fock space. Define
the generating sums of the neutral fermions

$(2) = n2"  B2) =D fn".
neZ neZ

Then we have
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Theorem 8. Let |v) € F. We have the following correspondence of
operators:

©)  o¢@) =aX(@)o(lv)) o (d(2)lv) = X (2)a (V).

Let [v) = ¢a, -+ P, Py -+ Pu.|0) where Ay > -+ > A\ > 0 and
#1 > - > ps > 0. By virtue of Theorem 8, we have the formula

(10) o(Iv) =q"¢Xn, - Xo, Xy, -+ Xy, - 1

here notice that o(|0)) = 1. From Theorem 3, the right hand side can
be written in terms of the generalized Q-functions as follows:

(11) a(|V) = TRy, x) (ur )] (T3 Y).

If we notice that Fo,o = Y. Chxr, - Py, Pus * * - P |0) (Summed over all
AL > o> Ao 20, gy > -+ > pgs 2> 0), is a subspace of F isomorphic
to Clz, y] by Theorem 7, we deduce from (11) the following corollary.

Corollary 9. A whole set of the generalized Q-functions forms a
linear basis of Clz, y].

4.3. The bilinear identities as an orbit equation
Let us consider any element of the form

Z(aij Z¢i(ﬁ_jt+@ij :(f),'d)_jl) +c (CE(C)

3,jEZ
where a,;, 4;; are assumed to be subject to a;; = @;; = 0 (] — j| > 0),
and we have put :mdn: = Pmdn — (Pmdy) (similarly for ¢). It is easy
to see that the bracket operation between such elements gives again an
element of this form, i.e., the set of such elements forms a Lie algebra,
which we denote by g.

We define the (formal) Lie group associated to g:

G={eX* ... eX*|X; € g : locally nilpotent} .

The Fock representation of g gives rise to a representation of G on
F. Clearly, Fyo (defined in the previous subsection) is an invariant
subspace. Let us consider G|0) C Fy g, i.e., a G-orbit of the vacuum
vector. In general, a non-zero |v) € Fy lies in G|0) if and only if |v)
satisfies the following bilinear relations on Fy o ® Fo,o:

2(_1)71(]5””/) ® ¢—nIV> = Q‘V> ®Q|V>

nez
(12) > (-1)"6al) @ d-nlv) = Q) ® Q)

nez
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(cf.[6, 13] in case of the BKP hierarchy). Here Q, Q are linear operators
on F defined via 0Qo~! = q, Qo' = @, respectively, which satisfy the
properties Q|0) = ¢o[0), Q|0) = o|0) and Q* = Q% =1/2.

We are now in a position to state the following theorem.

Theorem 10. Let 7 € Clz,y]. Then 7 satisfies the bilinear identi-
ties (5) if and only if there exists a g € G such that

(13) T = a(g|0)) = (e#@¥)g) - 1.

Proof. This theorem is obtained by noting that (12) is equivalent
to the bilinear identities (5) by the correspondence (9). Q.ED.

We have thus shown that a G-orbit of the vacuum vector in the fermionic
Fock space can be identified with a whole space of polynomial solutions
of the BUC hierarchy, and in particular (13) gives a general formula for
the polynomial solutions.
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