Advanced Studies in Pure Mathematics 55, 2009 Noncommutativity and Singularities pp. 299–308

Lagrangian fibrations and theta functions

Yuichi Nohara

Abstract.

It is known that holomorphic sections of an ample line bundle L (and its tensor power L^k) on an Abelian variety A are given by theta functions. Moreover, a natural basis of the space of holomorphic sections is related to a certain Lagrangian fibration of A. We study projective embeddings of A given by the basis for L^k , and show that moment maps of toric actions on the ambient projective spaces, restricted to A, approximate the Lagrangian fibration of A for large k. The case of Kummer variety is also discussed.

§1. Introduction

Let (X, ω) be a symplectic manifold of dimension 2n. A Lagrangian fibration is a map $\pi : (X, \omega) \to B$ such that its general fiber $\pi^{-1}(b)$ is a Lagrangian submanifold (i.e. $\omega|_{\pi^{-1}(b)} = 0$ and dim $\pi^{-1}(b) = n$). We allow Lagrangian fibrations to have degenerate fibers. Any Lagrangian fibration is locally given by a completely integrable system. In particular, if the fibers are compact, general fibers are Lagrangian tori.

For a polarized Kähler manifold (X, L), our interest is a relation between a Lagrangian fibration of X and a basis of the space $H^0(X, L)$ of holomorphic sections. A typical example is the case of toric varieties. For a polarized toric variety (X, L) of complex dimension $n, H^0(X, L^k)$ has a basis consisting of Laurent monomials $z^I = z_i^{i_1} \cdots z_n^{i_n}$. Let $\pi : X \to \mathbb{R}^n$ be the moment map of a natural torus action and denote the moment polytope of X by $\Delta = \pi(X) \subset \mathbb{R}^n$. Then each monomial corresponds to a lattice point in Δ :

$$I = (i_1, \dots, i_n) \in k\Delta \cap \mathbb{Z}^n \longleftrightarrow z^I \in H^0(X, L^k).$$

This relation can be interpreted in terms of geometric quantization. Geometric quantization is a method to associate, for a symplectic manifold, a vector space (or a representation of a certain group or Lie algebra) which

Received August 2, 2007.

is called the space of wave functions. This vector space is constructed from a line bundle L with a unitary connection such that its curvature is proportional to the symplectic form, and an additional structure which is called a "polarization"¹. A complex structure is an example of such polarizations, and the corresponding vector space is the space $H^0(X, L^k)$ of holomorphic sections. On the other hand, a Lagrangian fibration gives another polarization. If X is compact, then the vector space for this polarization is identified with the space formally spanned by Lagrangian fibers satisfying the Bohr–Sommerfeld condition of level k. We say that a fiber $\pi^{-1}(b)$ satisfies the Bohr–Sommerfeld condition of level k if the restriction $L^k|_{\pi^{-1}(b)}$ of L^k has trivial holonimies. In the toric case, it is easy to see that $\pi^{-1}(b)$ satisfies the Bohr–Sommerfeld condition of level k if and only if $b \in \Delta \cap \frac{1}{k}\mathbb{Z}^n$

A similar relation can be observed for Abelian varieties. Let $A = \mathbb{C}^n / \Omega \mathbb{Z}^n + \mathbb{Z}^n$ be an Abelian variety with a Kähler form

(1)
$$\omega_0 = \frac{\sqrt{-1}}{2} \sum g_{ij} dz^i \wedge d\bar{z}^j = -\sum dx^i \wedge dy^i,$$

where Ω is an $n \times n$ symmetric matrix with positive definite imaginary part Im $\Omega = (g_{ij})^{-1}$, and $z = \Omega x + y$. Then ω_0 is the first Chern form $c_1(L, h_0)$ of a Hermitian line bundle $(L, h_0) \to A$. In this case, holomorphic sections of L^k are given by *theta functions*. We consider the following Lagrangian fibration

$$\pi: A \longrightarrow T^n$$
, $z = \Omega x + y \longmapsto y$.

Then $H^0(A, L^k)$ has a basis $\{s_b\}_b$ indexed by k-torsion points $b \in \frac{1}{k}\mathbb{Z}^n/\mathbb{Z}^n$ of T^n (see [5]). This is also interpreted in terms of geometric quantization.

Proposition 1.1 (Weitsman [14]). A fiber $\pi^{-1}(b)$ of π satisfies the Bohr–Sommerfeld condition of level k if and only if $b \in \frac{1}{k}\mathbb{Z}^n/\mathbb{Z}^n$. In particular, the space of wave functions for the Lagrangian fibration π is isomorphic to $H^0(A, L^k)$.

This relation can be also understood in terms of mirror symmetry for Abelian varieties. A mirror partner \hat{A} of A is given by dualizing the torus fibers of $\pi : A \to T^n$. Since the dual torus parametrizes flat line bundles on a torus fiber of π , the line bundle L^k defines a Lagrangian

¹In the context of geometric quantization, a polarization means a Lagrangian distribution on the complexified tangent bundle, not an ample line bundle.

section S_k of the dual torus fibration $\hat{\pi} : \hat{A} \to T^n$. We identify T^n with the zero section S_0 of $\hat{\pi}$. Then $\pi^{-1}(b)$ satisfies the Bohr–Sommerfeld condition of level k if and only if $b \in S_0 \cap S_k$. The following is a part of the mirror symmetry for Abelian varieties.

Theorem 1.2 (Polischuk–Zaslow [9], Fukaya [4]). The Floer homology $HF(S_0, S_k)$ of S_0 and S_k is given by

$$HF(S_0, S_k) = \bigoplus_{b \in \frac{1}{k} \mathbb{Z}^n / \mathbb{Z}^n} \mathbb{C}[b],$$

and $s_b \mapsto [b]$ gives an isomorphism

$$H^0(A, L^k) = \operatorname{Hom}(L^0, L^k) \cong HF(S_0, S_k).$$

In these notes, we study the Lagrangian fibration of A using projective embeddings given by the basis $\{s_b\}_b$. Before that, we go back to the toric case. We consider the projective embedding $\iota_k : X \hookrightarrow \mathbb{CP}^{N_k} = \mathbb{P}H^0(X, L^k)^*$ defined by monomials. Let

$$\mu_k: \mathbb{CP}^{N_k} \longrightarrow \Delta_k \subset \operatorname{Lie}(T^{N_k})^*$$

be the moment map of a natural T^{N_k} -action, where Δ_k is the moment polytope of \mathbb{CP}^{N_k} . Since the embedding is torus equivariant, the restriction $\pi_k = \mu_k \circ \iota_k : X \to \Delta_k$ of μ_k to X is invariant under the T^n -action. In particular, $\pi_k : X \to \Delta_k$ is also a moment map of X. However, the situation is not so simple in the case of Abelian varieties. Let $\iota_k : A \to \mathbb{CP}^{k^n-1}$ be the projective embedding given by $\{s_b\}_b$, and consider the restriction π_k of the moment map of \mathbb{CP}^{k^n-1} . Then π_k is not a Lagrangian fibration, since the moment map image B_k of A is a 2n-dimensional object. Nevertheless, π_k looks "close" to π for large k. In fact π_k is invariant under the translations

$$\Omega x + y \longmapsto \Omega(x + a) + y, \quad a \in \frac{1}{k} \mathbb{Z}^n / \mathbb{Z}^n.$$

We see in this article that

Theorem 1.3. $\{\pi_k\}$ converges to π as maps between compact metric spaces.

The precise statement is given in the next section. The case of Kummer varieties is discussed in Section 3.

\S **2.** The case of Abelian varieties

Let $A = \mathbb{C}^n / \Omega \mathbb{Z}^n + \mathbb{Z}^n$ be an *n*-dimensional Abelian variety, and $L \to A$ a principal polarization defined by

$$L = (\mathbb{C}^n \times \mathbb{C}) / \sim ,$$

where

$$(z,\zeta) \sim (z+\lambda,\zeta \exp\left(\pi^t \bar{\lambda}(\operatorname{Im}\Omega)^{-1}z + \frac{\pi}{2}^t \bar{\lambda}(\operatorname{Im}\Omega)^{-1}\lambda + \pi\sqrt{-1}^t \lambda_1 \lambda_2\right))$$

for $\lambda = \Omega \lambda_1 + \lambda_2 \in \Omega \mathbb{Z}^n + \mathbb{Z}^n$. Then L is symmetric, i.e. $(-1)_A^* L \cong L$, where

 $(-1)_A: A \longrightarrow A, \quad z \longmapsto -z$

is the inverse morphism.

Remark 2.1. The choice of L is not essential. In fact, any other principal polarization can be obtained as a pull-back of L by some translation on A. We remark that the symmetricity condition is necessary when we consider the case of Kummer varieties.

Let ω_0 be the standard Kähler metric defined in (1). Then ω_0 represents the first Chern class $c_1(L)$ of L. We fix a Hermitian metric h_0 on L such that $c_1(L, h_0) = \omega_0$ (such h_0 is unique up to constant multiples). Let T^f and T^b be *n*-dimensional tori $\mathbb{R}^n/\mathbb{Z}^n$, and identify A with $T^f \times T^b$ by $\Omega x + y \leftrightarrow (x, y)$. Then the projection

 $\pi: A \longrightarrow T^b, \quad \Omega x + y \longmapsto y$

is a Lagrangian fibration with respect to ω_0 .

For each $k \in \mathbb{N}$, we denote the subgroup of k-torsion points in T^b by

$$T_k^b = \frac{1}{k} \mathbb{Z}^n / \mathbb{Z}^n = \{b_i\}_{i=1,\ldots,k^n} \subset T^b.$$

Then the collection of

$$s_{b_i}(z) = Ck^{-\frac{n}{4}} \exp\left(\frac{\pi}{2}k^t z (\operatorname{Im}\Omega)^{-1}z\right) \vartheta \begin{bmatrix} 0\\ -b_i \end{bmatrix} (k^{-1}\Omega, z), \quad b_i \in T_k^b,$$

gives an orthonormal basis of $H^0(A, L^k)$ with respect to the L^2 -inner product, where

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (\Omega, z) = \sum_{l \in \mathbb{Z}^n} \exp\left(\pi \sqrt{-1}^t (l+a) \Omega(l+a) + 2\pi \sqrt{-1}^t (l+a) (z+b)\right),$$

302

and C is a constant depending only on Ω (and h_0) (see [6] for a proof). An important property for our purpose is that s_{b_i} becomes concentrated on the fiber $\pi^{-1}(b_i)$ as $k \to \infty$. More precisely,

Lemma 2.2. s_{b_i} has the following asymptotic behavior

(2)
$$s_{b_j}(z) = Ck^{\frac{n}{4}} \exp\left(\frac{\pi k}{2} t z (\operatorname{Im} \Omega)^{-1} z\right)$$
$$\cdot \exp\left(\frac{\pi k}{\sqrt{-1}} t (z - b_j) \Omega^{-1} (z - b_j)\right) (1 + \phi)$$

with

$$|\phi| = O\left(rac{1}{\sqrt{k}}
ight)\,,\quad |d\phi| = O(1)\,.$$

See Lemma 2.2 in [7] or the proof of Lemma 4.2 in [6]. We consider a projective embedding of A given by $\{s_b\}_b$:

$$\iota_k: A \hookrightarrow \mathbb{CP}^{k^n - 1}, \ z \mapsto \left(\vartheta \begin{bmatrix} 0 \\ -b_1 \end{bmatrix} (k^{-1}\Omega, z) : \dots : \vartheta \begin{bmatrix} 0 \\ -b_{k^n} \end{bmatrix} (k^{-1}\Omega, z) \right).$$

Recall that the moment map of a natural torus action on \mathbb{CP}^{k^n-1} is given by

$$\mu_k: (Z^1:\cdots:Z^{k^n}) \longmapsto \frac{1}{\sum |Z^i|^2} \left(|Z^1|^2, \ldots, |Z^{k^n}|^2 \right) ,$$

where $(Z^1 : \cdots : Z^{k^n})$ is the homogeneous coordinate of \mathbb{CP}^{k^n-1} , and the dual $(\text{Lie } T^{k^n-1})^*$ of the Lie algebra of T^{k^n-1} is identified with

$$\left\{ (\xi_1, \ldots, \xi_{k^n}) \in \mathbb{R}^{k^n} \mid \sum \xi_i = 1 \right\}.$$

We set $B_k := \mu_k(\iota_k(A))$ and $\pi_k := \mu_k \circ \iota_k : A \to B_k$ as above. We denote the restriction of the normalized Fubini–Study metric to X by

$$\omega_k := \frac{1}{k} \iota_k^* \omega_{\rm FS} \, .$$

Then ω_k also represents $c_1(L)$.

As we remarked in the previous section, we have dim $B_k = \dim_{\mathbb{R}} A = 2n$, while dim $T^n = n$. We thus compare $\pi : (A, \omega_0) \to T^b$ and $\pi_k : (A, \omega_k) \to B_k$ as maps between metric spaces. For that purpose, we need to define distances on T^b and B_k . We define a metric on T^b in such a way that $\pi : (A, \omega_0) \to T^b$ is a Riemannian submersion. The distance

Y. Nohara

on B_k is induced from a metric on the moment polytope Δ_k . The metric on Δ_k is also defined in such a way that

$$\mu_k: \left(\mathbb{CP}^{N_k}, \frac{1}{k}\omega_{\mathrm{FS}}\right) \longrightarrow \Delta_k$$

is a Riemannian submersion in the interior of Δ_k . Now we can state our main theorem.

Theorem 2.3 ([6]). The sequence of maps $\pi_k : (A, \omega_k) \to B_k$ converges to $\pi : (A, \omega_0) \to T^b$ in the following sense.

- (i) $\{\omega_k\}$ converges to ω_0 in the C^{∞} -topology as $k \to \infty$. In particular, the sequence $\{(A, \omega_k)\}$ of Riemannian manifolds converges to (A, ω_0) with respect to the Gromov-Hausdorff distance.
- (ii) $\{B_k\}$ converge to T^b as $k \to \infty$ with respect to the Gromov-Hausdorff distance.
- (iii) $\{\pi_k\}$ converges to π as maps between metric spaces.

Before proceeding to the proof, we recall definitions of the Gromov-Hausdorff convergence and the convergence of maps. First we recall a definition of the *Hausdorff distance*. Let Z be a metric space and $X, Y \subset Z$ two subsets. We denote the ε -neighborhood of X in Z by $B(X, \varepsilon)$. Then the Hausdorff distance between X and Y is given by

$$d_{\mathrm{H}}^{\mathbb{Z}}(X,Y) = \inf \left\{ \varepsilon > 0 \mid X \subset B(Y,\varepsilon), \ Y \subset B(X,\varepsilon) \right\}.$$

For metric spaces X and Y, the Gromov-Hausdorff distance between X and Y is defined by

 $d_{\rm GH}(X,Y) = \inf\{d_{\rm H}^Z(X,Y) \mid X, Y \hookrightarrow Z \text{ are isometric embeddings}\}.$

Next we recall the notion of convergence of maps (see also [8]). Let $f_k: X_k \to Y_k$ and $f: X \to Y$ be maps between metric spaces. Suppose that X_k and Y_k converge to X and Y respectively with respect to the Gromov-Hausdorff distance. Then, by definition, there exist isometric embeddings $X, X_k \to Z$ and $Y, Y_k \to W$ into some metric spaces Z and W such that X_k (resp. Y_k) converges to X (resp. Y) with respect to the Hausdorff topology in Z (resp. W). We say that $\{f_k\}$ converges to f if, for every sequence $x_k \in X_k$ converging to $x \in X$ in Z, $f_k(x_k)$ converges to f(x) in W.

Outline of the proof. (i) is a direct consequence of the following theorem.

304

Theorem 2.4 (Ruan [10], Zelditch [15]). Let (X, ω) be a compact Kähler manifold and $(L, h) \to X$ a Hermitian line bundle such that $\omega = c_1(L, h)$. For each $k \gg 1$, we take a basis $\{s_0, \ldots, s_{N_k}\}$ of $H^0(X, L^k)$ and consider a projective embedding $\iota_k : X \hookrightarrow \mathbb{CP}^{N_k}$ given by $\{s_i\}$. Set $\omega_k = (1/k)\iota_k^*\omega_{FS}$. If the basis is orthonormal with respect to the L^2 inner product for each $k \gg 1$, then, for each q, there exists a constant $C_q > 0$ independent of k such that

$$\left\|\omega - \omega_k\right\|_{C^q} \le \frac{C_q}{k} \,.$$

For the proof of (ii), we decompose $T\mathbb{CP}^{N_k}$ into the horizontal and vertical components:

(3)
$$T_p \mathbb{CP}^{N_k} = T_{\mathbb{CP}^{N_k}/\Delta_k, p} \oplus (T_{\mathbb{CP}^{N_k}/\Delta_k, p})^{\perp}$$
$$\xi = \xi^V + \xi^H,$$

where $T_{\mathbb{CP}^{N_k}/\Delta_k,p} = \ker d\mu_k$ is the tangent space to the fiber of μ_k and $(T_{\mathbb{CP}^{N_k}/\Delta_k,p})^{\perp}$ is its orthogonal complement with respect to the Fubini–Study metric. Similarly we decompose the tangent space of A:

(4)
$$T_z A = T_{A/T^b,z} \oplus (T_{A/T^b,z})^{\perp},$$

where $(T_{A/T^b,z})^{\perp}$ is the orthogonal complement of $T_{A/T^b,z} = \ker d\pi$ with respect to ω_0 . Then the metrics on Δ_k and T^b are the restrictions of ω_k and ω_0 on the horizontal subspaces, respectively. Since we know from (i) that ω_0 and ω_k are "close" for large k, it suffices to show that also the decompositions (3) and (4) are "close".

Lemma 2.5. (i) If $\xi \in T_{A/T^b,z}$, then

$$\left| d\iota_k(\xi)^H \right| \leq \frac{C}{\sqrt{k}} |\xi| \,.$$

(ii) If $\eta \in (T_{A/T^b,z})^{\perp}$, then

$$\left| d\iota_k(\eta)^V \right| \leq \frac{C}{\sqrt{k}} |\eta| \, .$$

This lemma follows from the asymptotic behavior (2) of theta functions. By using the above estimates, we have

$$d_{\mathrm{GH}}(T^b, B_k) \le \frac{C}{\sqrt{k}}$$
.

Y. Nohara

In fact, we can show that the composition

$$\varphi_k = \pi_k \circ \sigma_0 : T^{\mathsf{o}} \longrightarrow B_k$$

of the zero section $\sigma_0: T^b \to A$ and π_k is "almost isometric" (a (C/\sqrt{k}) -Hausdorff approximation (see [3] for the definition)).

(iii) easily follows from the proof of (ii).

\S **3.** The case of Kummer varieties

Let (A, L) be a polarized Abelian variety as above. The Kummer variety of A is an orbifold defined by

$$X = A/(-1)_A.$$

Since L is symmetric, there is a line bundle $M \to X$ satisfying

 $p^*M \cong L^2$,

where $p: A \to X$ is the natural projection. From the fact that p^* : $\operatorname{Pic}(X) \to \operatorname{Pic}(A)$ is injective, we have $p^*M^k \cong L^{2k}$. It is easy to see that $p^*: H^0(X, M^k) \to H^0(A, L^{2k})$ is injective and the image is spanned by

 $s_{b_i} + s_{-b_i}, \quad b_i \in T_{2k}^b$

(see [1] and [11]). We identify $H^0(X, M^k)$ with its image in $H^0(A, L^{2k})$. Note that

$$N_k + 1 := \dim H^0(X, M^k) = 2^{n-1}(k^n + 1).$$

Let ω be an orbifold Kähler metric induced from the flat metric $2\omega_0$ on A. Then $[\omega] = c_1(M)$. Moreover we have a Lagrangian fibration

$$\pi: (X, \omega) \to B = T^b/(-1)$$

induced by $\pi: A \to T^b$. We set

$$t_{i} = \begin{cases} \frac{1}{\sqrt{2^{n}}} (s_{b_{i}} + s_{-b_{i}}), & \text{if } b_{i} \in T_{2k}^{b} \backslash T_{2}^{b}, \\ \\ \frac{1}{\sqrt{2^{n-1}}} s_{b_{i}}, & \text{if } b_{i} \in T_{2}^{b}. \end{cases}$$

Then $\{t_i\}$ is an orthonormal basis of $H^0(X, M^k)$.

We denote by $\iota_k : X \to \mathbb{CP}^{N_k}$ a projective embedding given by $\{t_i\}, \pi_k : X \to B'_k$ the restriction of the moment map of \mathbb{CP}^{N_k} , and $\omega_k = \frac{1}{k} \iota_k^* \omega_{\text{FS}}$. Then the same theorem holds for X.

306

Theorem 3.1 ([7]). The sequence of maps $\pi_k : (X, \omega_k) \to B'_k$ converges to $\pi : (X, \omega) \to B$ as $k \to \infty$ in the following sense.

- (i) $\{(X, \omega_k)\}$ converges to (X, ω) as $k \to \infty$ with respect to the Gromov-Hausdorff distance.
- (ii) $\{B'_k\}$ converge to B with respect to the Gromov-Hausdorff distance.
- (iii) $\{\pi_k\}$ converges to π as maps between metric spaces.

Outline of the proof. (i) follows from an orbifold version of Theorem 2.4:

Theorem 3.2 (Dai–Liu–Ma [2]). Let (X, ω) be a compact Kähler orbifold of dimension $n \geq 2$ and $(M,h) \to X$ an orbifold Hermitian line bundle with $c_1(M,h) = \omega$. For $k \gg 1$, we consider a projective embedding $\iota_k : X \to \mathbb{CP}^{N_k}$ given by an orthonormal basis of $H^0(X, M^k)$, and set $\omega_k = \frac{1}{k} \iota_k^* \omega_{FS}$ as above. Then there exist constants C_q , $\delta > 0$ such that

$$\left\|\omega - \omega_k\right\|_{C^q, z} \le C_q \left(\frac{1}{k} + k^{\frac{q}{2}} e^{-k\delta r(z)^2}\right),$$

where $\|\cdot\|_{C^{q},z}$ is the C^{q} -norm at $z \in X$, and r(z) is the distance between z and the singular set Sing (X) of X.

(ii) Note that each singular fiber is isomorphic to $T^n/(-1)$ and appears on the singular set $\operatorname{Sing}(B) = T_2^b/(-1)$ of B. For each $b \in \operatorname{Sing}(B)$, we denote the $\sqrt{(1/\delta k)\log k}$ -neighborhood of the singular fiber $\pi^{-1}(b)$ by

$$N_{b,k} = \left\{ z \in X \ \left| \ d(z, \pi^{-1}(b)) \le \sqrt{\frac{\log k}{\delta k}} \right\},\right.$$

where δ is the constant in Theorem 3.2, and set

$$X(k) = X \setminus \bigcup_{b \in \operatorname{Sing}(B)} N_{b,k}.$$

Then we can show that $\pi(N_{b,k})$ and $\pi_k(N_{b,k})$ are small for large k (their diameters can be bounded by $O\left(\sqrt{(1/k)\log k}\right)$). Thus the neighborhoods of singular fibers do not affect the Gromov-Hausdorff convergence. On the other hand, we have the same estimates as in Lemma 2.5 on X(k). Hence we can apply the arguments for A to this situation.

Y. Nohara

References

- Th. Bauer, Projective images of Kummer surfaces, Math. Ann., 299 (1994), 155–170.
- X. Dai, K. Liu and X. Ma, On the asymptotic expansion of Bergman kernel, C. R. Math. Acad. Sci. Paris, 339 (2004), 193–198.
- [3] K. Fukaya, Hausdorff convergence of Riemannian manifolds and its applications, In: Recent Topics in Differential and Analytic Geometry, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990, pp. 143–238.
- [4] K. Fukaya, Mirror symmetry of Abelian varieties and multi-theta functions, J. Alg. Geom., 11 (2002), 393–512.
- [5] D. Mumford, Tata lectures on theta. I, Progress in Math., 28, Birkhäuser, 1983.
- [6] Y. Nohara, Projective embeddings and Lagrangian fibrations of Abelian varieties, Math. Ann., 333 (2005), 741–757.
- [7] Y. Nohara, Projective embeddings and Lagrangian fibrations of Kummer varieties, Internat. J. Math., to appear.
- [8] P. Petersen, Riemannian Geometry, Graduate Texts in Math., 171, Springer-Verlag, New York, 1998.
- [9] A. Polishchuk and E. Zaslow, Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys., 2 (1998), 443–470.
- [10] W.-D. Ruan, Canonical coordinates and Bergman metrics, Comm. Anal. Geom., 6 (1998), 589–631.
- [11] R. Sasaki, Bounds on the degree of the equations defining Kummer varieties, J. Math. Soc. Japan, 33 (1981), 323–333.
- [12] A. Strominger, S. Yau and E. Zaslow, Mirror symmetry is T-duality, Nuclear Phys. B, 479 (1996), 243–259.
- [13] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., 32 (1990), 99–130.
- [14] J. Weitsman, Quantization via real polarization of the moduli space of flat connections and Chern–Simons gauge theory in genus one, Comm. Math. Phys., 137 (1991), 175–190.
- [15] S. Zelditch, Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices, 6 (1998), 317–331.

Mathematical Institute Tohoku University Aoba, Sendai, 980-8578 Japan

E-mail address: nohara@math.tohoku.ac.jp