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The quantum Knizhnik-Zamolodchikov equation 
and non-symmetric Macdonald polynomials 

Masahiro Kasatani and Yoshihiro Takeyama 

Abstract. 

We construct special solutions of the quantum Knizhnik-Zamolo­
dchikov equation on the tensor product of the vector representation 
of the quantum algebra of type AN-l· They are constructed from 
non-symmetric Macdonald polynomials through the action of the affine 
Heeke algebra. 

§1. Introduction 

In the present paper, we construct special solutions of the quantum 
Knizhnik-Zamolodchikov ( qKZ) equation from non-symmetric Macdon­
ald polynomials. 

The qKZ equation, derived by Frenkel and Reshetikhin [FR], is the 
system of difference equations satisfied by matrix elements of the vertex 
operators in the representation theory of the quantum affine algebra. In 
this paper we consider the qKZ equation on the tensor product of the 
vector representation of the quantum algebra Uq(slN ): 

G(z1, ... ,pzm, ... , Zn) 

(p I ) R (p I ) (ITN -1 hj) 
= Rm,m-1 · Zm Zm-1 ~ · · m,l Zm Zl X j=l ~j m 

xRn,m(znlzm)-1 •.• Rm+l,m(Zm+llzm)-1 

xG(z1, ... 'Zm, ... 'Zn)· 

Here G(z1, ... 'Zn) is an unknown function taking values in v0 n, where 
V ~ c_N is the vector representation. The operator R(z) is the R­
matrix (see (2.2) below), hj (j = 1, ... , N -1) is the basis of the Cartan 
subalgebra of slN, and p, 11:1 , ... , ll:N-1 are parameters of the equation. 
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The indices of the operators in the right hand side signify the positions of 
the components in V 0 n where the operator acts. The value e determined 
by p = q2(NH) is called a level of the qKZ equation. 

There are some methods to construct solutions of the qKZ equation. 
One of them is to use multiple integrals of the hypergeometric type 
[Mi, VT, MTT]. This works for anyparametersp, ~1, ... , ~N-1 such that 
the multiple integrals converge. Another method is the bosonization of 
vertex operators. For the integrable irreducible highest weight Uq(izN )­
modules of level one, the bosonization is constructed by Koyama [Ko]. 
By using it, Nakayashiki calculated the matrix element of the vertex 
operators [N]. It gives by definition a solution to the qKZ equation of 
level one, where the parameters ~b ... , ~N-1 are determined from the 
highest weight. 

Recently Di Francesco and Zinn-Justin constructed a polynomial 
solution in the case of level one [DZ] by using the representation theory 
of the affine Heeke algebra (AHA). In a similar manner Kasatani and 
Pasquier obtained a solution of the qKZ equation of level -1/2 associ­
ated with Uq(-;,2) [KP]. In this paper we generalize these results to the 
case of Uq(;,N) and other levels. 

Let us give a sketch of our construction of solutions. We use the spin 
basis instead of the path basis in the construction of [DZ] and [KP]. Ex­
pand the unknown function G(z1 , ... , Zn) into a linear combination of 
the tensor products v€1 0 · · · 0 v€n, where { v€}~(/ is the standard basis 
of V. We consider the set of functions which appear in the expansion as 
coefficients. The qKZ equation can be described as a condition of con­
straint for the functions. In this paper we consider a stronger condition 
than the qKZ equation itself, and call a set of functions satisfying the 
condition a qKZ family (see Definition 3.3 below). 

The defining condition of a qKZ family is described in terms of the 
action of the AHA on the space of functions. The generators of the AHA 
consist of two sets of elements Ti (1 ::;::: i ::;::: n- 1) and J:j (1 ::;::: j ::;::: n) 
satisfying some relations (see Definition 3.1 below). The actions of Ti 
and J:j are given by the Demazure--Lusztig operator and the q-Dunkl 
operator, respectively. From a viewpoint of the representation theory, a 
qKZ family is a set of vectors which move to each other by the action 
of the generators of the AHA. Moreover, if one vector is known, then all 
the vectors are determined through the action of the AHA. Hence the 
linear span of the vectors of a qKZ family determines a cyclic module of 
the AHA. 

Now we return to the description of our construction of solutions. 
From the definition, a qKZ family contains a joint eigenfunction of the 
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q-Dunkl operators Yj. Moreover, it is also an eigenfunction of some of 
the Demazure-Lusztig operators Ti. We prove that such an eigenfunc­
tion, conversely, generates a qKZ family. Thus construction of a qKZ 
family is reduced to that of an eigenfunction of the q-Dunkl operators 
and the Demazure-Lusztig operators. As is well known, non-symmetric 
Macdonald polynomials [Ma] are such eigenfunctions. Therefore we can 
construct special solutions of the qKZ equation from non-symmetric 
Macdonald polynomials. 

Cherednik [C] and Kato [Kat] unveiled the relation between the qKZ 
equation and the eigenvalue problem of the Macdonald type: a certain 
linear combination of the coefficients in a solution of the qKZ equation 
gives a symmetric joint eigenfunction of the q-Dunkl operators (see [Mi] 
for the explicit formula in the case of n = N). Our construction is 
consistent with this result because symmetric Macdonald polynomials 
can be obtained as linear combinations of non-symmetric ones. 

The plan of this paper is as follows. First we recall the definition of 
the qKZ equation in Section 2. In Section 3 we give the definition of qKZ 
family, and prove that a qKZ family is constructed from a joint eigen­
function of the q-Dunkl operators and some of the Demazure-Lusztig 
operators. In Section 4 we give explicitly the construction explained 
above of solutions of the qKZ equation in the case where the level is 
generic or a value of the form ~- N, where k and r are positive in­
tegers such that 1 :::; k :::; min{n- 1, N}, r ~ 2, and k + 1 and r- 1 
are coprime. Then the parameters l'i:l, ... , ""N-1 are determined from the 
eigenvalues of the non-symmetric Macdonald polynomial for the q-Dunkl 
operators. Here it should be noted that in the latter case we need to 
specialize the two parameters in non-symmetric Macdonald polynomials, 
some of which are proved to be well-defined in [Kas]. 

In this paper, we focus on giving the statements and we do not give 
any proof. For more details, see [KT], on which most of this paper is 
based. 

§2. The quantum Knizhnik-Zamolodchikov equation 

Let V = EB!"'~(/C v€ be the N -dimensional vector space. We regard 
Vas the vector representation of the quantum algebra Uq(slN ). Define 
the linear operator R(z) acting on V02 by 

R(z) (v€1 ® v€2 ) = L R(z):~:~ v€~ ® v€~' 
E~ ,E~ 
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where 

R( )ii 1 R(z)ij = (1- z)q' R(z)ji = 1- q2 zB(i>j) (i--t- j) 
z ii = ' tJ 1 - q2 z tJ 1 - q2 z r 

and R(z)~f1, = 0 otherwise. Here 

(2.1) B(P) = { 1 if P is true, 
0 if P is false. 

Throughout this paper we assume that 

O<q<l. 

Then the R-matrix R(z) is given as follows [DO]: 

(2.2) R(z) := r(z)R(z). 

Here r(z) is the normalization factor 

The matrix R(z) is nothing but the image in End(V02 ) of the universal 
R-matrix R'(z) of the quantum affine algebra Uq(;,N) in the sense of 
Appendix 1 in [IIJMNT]. 

The qKZ equation is the following system of difference equations for 
an unknown function G(z1, ... 'Zn) taking values in v 0 n: 

(2.3) G(z1, ... ,pzm, ... , Zn) 
R ( I ) R ( I ) (TIN-1 hi) 

m,m-1 PZm Zm-1 · · · m,1 PZm Z1 X j=1 /';j m 

xRn,m(znl Zm)- 1 ... Rm+1,m(Zm+ll Zm)- 1 G(z1, ... 'Zm, ... 'Zn) 

for m = 1, ... , n. Here Rm,1(z) is the operator acting on the tensor 
product of the m-th and the l-th components in V 0 n as the R-matrix 
R(z) 1. The operator (IJ1 "'7i)m acts on the m-th component, where 
h1 (j = 1, ... , N- 1) is the basis of the Cartan subalgebra of slN. The 
action of hj on V is given by 

1Note the order of indices: R21 (z) = P R(z) P =I R 12 (z), where P is the 
transposition P( u ® v) := v ® u 
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The complex numbers K 1 , ... , KN _ 1 are parameters of the qKZ equation. 
For the sake of simplicity, hereafter we assume that the difference step 
pis a positive real number. When p = q2(N+£) the number f is called a 
level. 

§3. qKZ family 

3.1. Affine Heeke algebra 

Let us summarize the basic facts about the affine Heeke algebra. We 
use the notation in [MN]. 

Definition 3.1. The affine Heeke algebra 1i';.ff of type GLn is an 
associative q tll2 ) -algebra generated by Ti ( i = 1, ... , n- 1) and Yj (j = 
1, ... , n) satisfying the following relations: 

(Ti- t 112 )(Ti + c 112 ) = 0 (1:::; i:::; n- 1), 

TiTi+1Ti = Ti+1TiTi+1 (1 :::; i :S n- 2), 

TiTJ = TJTi (li- jl > 1), Y;Yj = YjY; (1 :S i,j :S n), 
Y;,TJ = TJY;, (j =I i- 1, i), TiY;,+1Ti = Y;, (1 :::; i:::; n- 1). 

Define a E H';.ff by 

Note that the right hand side above does not depend on the value i. The 
algebra H';.ff is generated by Ti (i = 1, ... , n- 1) and a. 

Denote the Laurent polynomial ring with n variables by 

Pn = C[zt\ ... , z;= 1]. 

Let i:; (i = 1, ... , n- 1) and w be the linear operators on Pn defined by 

t 1/2 - t-1/2 
~ 1/2 
Ti := t Ti + I h- 1), 

Zi Zi+1- 1 
(3.1) 

(3.2) (wf)(z1, ... , Zn) := f(PZn, Zl, ... , Zn-1)· 

Here Ti is the permu!_ation of the variables Zi and zi+ 1 , and p is a param­
eter. The operator Ti is called the Demazure-Lusztig operator. We will 
identify the parameter p with the difference step p in the qKZ equation. 

Proposition 3.2. The linear map 1r : H';.ff -----* End(Pn) defined by 

7r(Ti) = fi (i = 1, ... , n- 1) and 1r(a) = w gives a representation of 
1i';.ff. 
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The operator 

~ ~ ~ ~-1 ~-1 

Yj := 1f(Yj) = Tj · · · Tn-1wT1 · · · Tj-1 

is called q-Dunkl operator. 

3.2. qKZ family 
Hereafter we assume that 

n;:::N;::: 2. 

Let d0 , ..• , dN- 1 be positive integers satisfying L_f=-r/ dj = n. Denote 
by Id0 , .•. ,dN-l the set of n-tuples E = (E1, ... , En) satisfying 

(0:::; j:::; N -1). 

Now we give the definition of qKZ family: 

Definition 3.3. A set of Laurent polynomials 

is called a qKZ family of sign (±) with exponents (co, ... , CN-d if it 
satisfies the following conditions: 

• 
• 
• 

I1 c = E· then 'T-f = ±t±112 f 'l. t+l; 'l. •.. ,Ei,Ei+l,··· ... ,Ei,Ei+lJ···' 

If Ei > Ei+1, then nt. .. ,<;,<i+l,··· = J. .. ,<i+l,<i,···· 

wfEn 1El, ... ,En-l == C€n!El,···,€n' 

Here the operators n (i = 1, ... ,n- 1) and w are defined by (3.1) and 
(3.2), respectively. 

In the rest of this subsection we show that a solution of the qKZ 
equation can be constructed from a qKZ family. 

Let f = {f<1, ... ,<n} be a qKZ family with exponents (co, ... , CN-1)· 

Now we determine two parameters a and (3, and a function h(z) accord­
ing to the sign of f as follows. If the sign off is plus, we define a, f3 
by 

N-1 
pa = (II Cj)-1/N q-(n+l)(1/N-1) 1 

pf3 = q2(1/N-1) 1 

j=O 

and take a solution h(z) of the difference equation 
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Similarly, in the case where the sign of f is minus, we determine a, (3 
and h(z) by the following formulas: 

N-1 

(3.3) pOi.= ( -1t-1 (II Cj)-1/N q-(n+1)(1+1/N), p{3 = q2(1+1/N), 

j=O 

3 4 h(p-1 z) = (z; q2N)cxo(q2N z; q2N)= 
( · ) h(z) (q2(N+l)z;q2N)cxo(q-2z;q2N)= · 

Now let us construct a solution of the qKZ equation. Define the 
function K(z1, ... , Zn) by 

n 

(3.5) K(z1, ... , Zn) := II z::+f3a II h(zb/ Za)· 
a=1 1~a<b~n 

and the v®n_valued function F(z1, ... 'Zn) by 

(e1 , ... ,fn)Eld0 , ... ,dN _ 1 

Set 

(3.6) G(z1, ... , Zn) := K(z1, ... , Zn)F(z1, ... , Zn)· 

Proposition 3.4. Let f = {f,1 , ... ,,n} be a qKZ family of sign (±) 
with exponents (co, ... ,CN-1)· Then G(z1, ... ,zn) is a solution of the 
qKZ equation whose parameters q and lij (j = 1, ... , N- 1) are deter­
mined by q = ±t±1/ 2 and 

j-1 N-1 

(3.7) lij =II cz · (II cz)-ifN. 
l=O l=O 

3.3. Equivalence to the eigenvalue problem 
We can construct a qKZ family from a joint eigenfunction of q-Dunkl 

operators 'Pi and some Demazure-Lusztig operators 't. 
Let us introduce some notation. We often use the short notation 

r: = (r:1, ... , En) to specify an element of Id0 , ... ,dN_1 • An element A = 
(.X1, ... , An) E zn is called dominant (or anti-dominant) if .X1 2: · · · 2: An 
(or .X1 ::::; · · · ::::; An, resp.). The symmetric group Sn acts on zn by 
a .X:= (A,,.-1(1), ... , \,.-1(n))· We denote the orbit of .X E zn by Sn.X. 

Definition 3.5. For .X E zn, we denote by .X+ (.X-) the unique 
dominant (anti-dominant) element in Sn.X, respectively. We denote by 
wt (w,X) the shortest element in Sn such that wt .x+ =A (w,X A= .x-), 
respectively. 
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For w E Sn we denote its length by £(w). Let w = Si 1 • • · Sirn be a 
reduced expression, where Si is the transposition Si = (i, i + 1). Then 
we set Tw := Ti1 • • • Tirn. This does not depend on the choice of reduced 
expression of w. 

Now we are in position to give the main theorem which plays a key 
role in the next section: 

Theorem 3.6. Fix positive integers do, ... , dN -1 satisfying do + 
... +dN-1 =nand set o = (Qdo,1d1 ,··· ,(N -1)dN- 1 ). Suppose that 
E = E(z1 , ... , zn) is a solution to the following eigenvalue problem: 

(3.8) 

(3.9) 

XiE (1 5:. Vj 5:. n) 

±t±1/ 2 E if Oi = oi+ 1· 

Here the sign in the right hand side (3.9) should be independent on i. 
Set fE := (Tw; )-1 E forE E Id0 , ... ,dN_ 1 • Then {!E} is a qKZ family of 

sign(±) with exponents Ci = Xdo+·+di(±t±1 / 2 )di- 1 (0 5:. i 5:. N -1). 

Remark 3. 7. The consistency of the eigenvalue problem (3.8) and 
(3.9) implies that the eigenvalues Xi should satisfy Xi = t±1Xi+1 if oi = 
oi+1 . Hence all the eigenvalues Xi can be recovered from the exponents 
Ci. 

Remark 3.8. For any qKZ family {fE} of sign(±), fs is a solution 
to (3.8) and (3.9). Namely, the problem of finding a qKZ family is 
equivalent to the eigenvalue problem. 

§4. Construction of special solutions 

From the result in the foregoing sections we can construct special 
solutions of the qKZ equation as follows. Find a solution E to the 
eigenvalue problem (3.8) and (3.9). Setting fE = (T - )- 1 E, we obtain w. 
a qKZ family f = {!E} of sign (±) according to the sign ± in the right 
hand side of (3.9). Define the parameters a, f3 and take a function h(z) 
as explained in Section 3.2. Using these ingredients above we define 
G(z1 , ... , zn) by the formula (3.6). Then from Proposition 3.4 G is a 
solution of the qKZ equation with parameter q = ±t±1/ 2 . Thus the first 
step of our construction is to solve the eigenvalue problem (3.8) and 
(3.9), and we can find a solution in terms of non-symmetric Macdonald 
polynomials. 

In the following we use the wording "the eigenvalue problem of sign 
(±)" to refer the eigenvalue problem (3.8) and (3.9) where the sign in 
the right hand side is ±, respectively. 
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4.1. Non-symmetric Macdonald polynomials 

For A = (A1, 0 0 0, An) E zn, we set z>. = z;' 0 0 o z~n 0 We introduce 
the dominance order ;::: on the set zn: 

~ 
def 

"'j \ . > "'j . £ 1 < 0 < L..i=1 /\' _ L..i=l p,, or any _ J _ n, 

and a partial order >-: 

~ 
def 

Definition 4.1. For A = (A1 , 0 0 0, An) E zn, the non-symmetric 
Macdonald polynomial E>. = E>.(z1, 0 0 0, zn; t,p) with two parameters t 
and p is a Laurent polynomial satisfying 

( 401) 

where p(A) := wt p, P := (n21' n23' 0 0 0 '- n21 )o 

Let us recall the action of fi on E>. following [Kas]o Put 

fi(A) := tp(>.)H,-p(>.);p>.i+,->., o 

(402) 

(403) 
~. _ -1/2 (tfi(A)- 1)(r1 fi(A)- 1) _ t 112 - r 112 

T,E>.- t (!i(A) _ 1)2 Es,>. J,(A) _ 1 E>.o 

The parameters t and p are called generic if 

For generic parameters, E>. is well-defined for any A E zn 0 
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4.2. Generic case 

First we consider the case where the parameters t and p are generic. 
From the properties (4.1) and (4.2), the non-symmetric polynomials give 
solutions of the eigenvalue problem of sign ( + ). Hence we can get solu­
tions of the qKZ equation: 

Proposition 4.2. Suppose that the parameters t and p are generic. 
Let d0 , ... , dN- 1 be positive integers satisfying "E,f=_-r/ dj = n and set 
8 = (Odo, 1 d1, ... , (N -1)dN-l ). Take A E zn such that Ai = Ai+1 if 8i = 
8i+l· Then the non-symmetric Macdonald polynomial E;. is a solution 
of the eigenvalue problem of sign ( +), and we obtain a solution of the 
qKZ equation from it by setting ti/2 = q. The parameters,..~, ... , ,..N-1 

in the qKZ equation are determined by (3.7) from the exponents 

We note that in the case where do=···= dN-1 = 1 the requirement 
(3.9) becomes empty. Hence any non-symmetric Macdonald polynomial 
is also a solution to the eigenvalue problem of sign (-) in this special 
case, and we obtain the following proposition: 

Proposition 4.3. Suppose that the parameters t and p are generic. 
In the case where do = · · · = dN-1 = 1, and hence n = N; any 
non-symmetric Macdonald polynomial E;. creates a solution of the qKZ 
equation. The parameters ,..~, ... , ,..N-1 are determined by (3.7), where 
Ci = (-1)n-1q-2p(>.)i+1p>.i+ 1 • 

Remark 4.4. When we determine ,..i 'sand a by (3.7) and (3.3) in 
practice, the branch of (Ili ci) 1/N should be chosen suitably. In the situ­
ation described in Proposition 4.3 the exponent Ci is a value of the form 
( -1)n-1c,;, where ci is a positive real number. Then we set (Ili e;) 1/N = 

( -1)n-1(Ili C.:) 1/N and determine ,..i 'sand a. In Theorem 4.6 below the 
situation is the same, and we take the same branch. 

4.3. Specialized case 

In Proposition 4.3 we saw that any non-symmetric Macdonald poly­
nomial gives a solution to the eigenvalue problem of sign (-), but this 
is a very special case. In order to solve this problem in general, we 
need to find an eigenfunction of the Demazure-Lusztig operator with 
the eigenvalue -t-112 , and this is not the situation in (4.2). However, 
if fi(A) =tin (4.3), then E;. becomes such an eigenfunction. It should 
be noted that the relation fi(A) = t implies that the parameters t and p 
are not generic. In the rest of this paper we consider this kind of case. 
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Let k and r be integers such that 1 ::; k ::; min { n - 1, N}, r 2': 2, 
and k + 1 and r - 1 are coprime. We assume that t, p are not roots of 
unity and take a specialization tk+ 1pr- 1 = 1. To be more precise we 
specialize t and p as follows: 

( 4.4) t = ur-1, p = u-(k+l) 

where u is not a root of unity. We will set q = -t-112 and take u = 
2 2(k+1) 

q- r-1. Then we have p = q r-1 and the level of the qKZ equation is 
equal to k+l - N. 

r-1 

We call>..= (>..1, ... , >..n) E zn admissible if 

>..t - >..i+k 2': r- 1 for any 1 :S: i ::; n- k, and 

>..t- >..t+k = r- 1 only if wt(i) < wt(i + k). 

The following statement is a corollary of Theorem 3.11 in [Kas]: 

Lemma 4.5. For any admissible >.. E zn, the non-symmetric Mac­
donald polynomial E>-. is well-defined under the specialization (4.4). If 
>.. E zn is admissible and SiA is not admissible, then TiE>-. = -c112 E)... 

Let m and l be integers satisfying n = km + l and 0 ::; l :S: k -
1. Let (d(0l, ... ,d(k-1)) be a permutation of ((m + 1)1,mk-l). Note 

that 2::=~~~ d(j) = n. Take a dominant element a = (a1, ... , ak) E zk 
satisfying 

(4.5) 

a1 - ak :S: r- 1 and w;; ((m + 1)1, mk-l) = (d(o), ... , d(k-1)), 

where w;; E Sk (see Definition 3.5). Now define>.. E zn by 

>..i = ai for 1 :S: i :S: k, and 

>..i - Ai+k = r - 1 for 1 :S: i :S: n - k. 

Then >.. is admissible. For simplicity, we write w = w;; and define 
Jt E Sn>.. by 

f.l = (>..w-1(1)' Aw-1(1)+k' Aw-1(1)+2kl· · · 'Aw- 1(1)+b1k' 

Aw- 1(2)' Aw-1(2)+k' Aw-1(2)+2k' · · · 'Aw-1(2)+b2 k, 

... ' 

where bi := m- 8(w- 1 (j) > l) (see (2.1) for the definition of O(P)). 
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Example. Set n = 13 and k = 5, and consider the case of 

(d(O), d(1), d(2), d(3), d(4)) = (3, 2, 2, 3, 3). 

Then the condition (4.5) for a dominant a = (a1, ... , a5) E 71} implies 
that a 1 2: a2 > a3 = a4 = a5. Now suppose that r = 6 and take 
a= (13, 10, 9, 9, 9). Then A and f.L are given by 

A= (13, 10, 9, 9, 9, 8, 5, 4, 4, 4, 3, 0, -1), 

f.L = (9, 4, -1, 9, 4, 9, 4, 10, 5, 0, 13, 8, 3). 

Now let (d0 , ••• ,dN_1 ) be a subdivision of (d(o), ... ,d(k-1)), that 
is, di > 0 and di1 + · · · + diH 1 -1 = d(j) for some 0 = io < i1 < · · · < 
ik-1 < ik = N. It is easy to see that f.L is also admissible and Sif.L 
is not admissible if Oi = oi+1, where 0 = (odo,1d1 ,··· ,(N -1)dN-l). 
From Lemma 4.5, E,_, is a solution of the eigenvalue problem of sign (-). 
Therefore we get the following theorem (see Remark 4.4). 

Theorem 4.6. The non-symmetric Macdonald polynomial E,_, with 
the specialization (4.4) and t 112 = -q-1 creates a solution of the qKZ 
equation of level ~~i-N. The parameters~~, ... , ~N-1 are determined 
by ( 3. 7) from the exponents Ci = ( -1) n-1 qAi , where 
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