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Abstract. 

An analogue of Serre fibrations 
for C* -algebra bundles 

Siegfried Echterhoff, Ryszard Nest 
and Herve Oyono-Oyono 

We study an analogue of Serre fibrations in the setting of C*­
algebra bundles. We derive in this framework a 1eray~Serre type spec­
tral sequence. We investigate a class of examples which generalise on 
one hand principal bundles with a n-torus as structural group and on 
the other hand non-commutative tori. 

§1. Introduction 

A Serre fibration in topology is a continuous map p : Y --+ X which 
satisfies the Homotopy Lifting Property: for any continuous map h : 
Zx{O}--+ Y and any homotopy H: Zx [0, 1]--+ X such that HaL= poh, 
where L: Z x {0} '---* Z x [0, 1] is the inclusion, there exists a continuous 
map fi: Z x [0, 1]--+ Y such that the following diagramme commutes: 

If the space X is path connected, then all fibres Yx = p-1 (x) for x 
in X are homotopically equivalent and a Serre fibration behaves like a 
"locally trivial fibre bundle up to homotopy". The aim of this paper is 
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to investigate an analogue of Serre fibration in the setting of C* -algebra 
bundles. Although the fibres of these bundles are quite irregular, they 
are locally trivial in a K-theoritical sense and we shall call these fibra­
tions K -fibrations. As we shall see, numerous examples of K-fibrations 
are provided, using the Baum-Connes conjecture, by crossed products 
of C*-algebra bundles over X by certain C0 (X)-linear actions of groups. 
Our main motivation for introducing K-fibrations was the study of Non­
Commutative Principal Torus (NCP) bundles. For a path connected 
base space X, K-fibrations give rise to an action of the fundamental 
group n 1 (X) on the K-theory of the fibre and this action provides an 
invariant we shall fully describe for NCP 1l'2-bundles. This invariant 
allows to detect which NCP 1l'n-bundle are RKK-equivalent to a "com­
mutative" one, i.e to an algebra C0 (Y) where Y is a principal1l'n-bundle 
over X. In the case n = 2, we obtain a classification of NCP 1l'2 -bundles, 
up to RKK-equivalence and to a "twisting by a commutative principal 
torus bundle". As it is the case for usual Serre fibrations, we can de­
rive from a K-fibration a Leray-Serre spectral sequence. Using this, 
we obtain a complete description of the NCP torus bundles which are 
RKK-equivalent to a "trivial" one, i.e. to C0 (X x 'lfn). 

§2. Preliminaries on C*-algebra bundles 

By a C* -algebra bundle with base a locally compact space X, we 
shall mean a C0 (X)-algebra, i.e., a C*-algebra A which is equipped 
with a non-degenerate *-homomorphism <I> A : C0 (X) ---. ZM(A), 
where ZM(A) denotes the centre of the multiplier algebra M(A) of 
A. Throughout this paper we shall simply write h · a for <I>(h)a if 
hE Co(X) and a EA. The fibre Ax of A over x EX is then defined as 
Ax= A/Ix with Ix = {h · a;h E Co(X \ {x}) and a E A}. If a E A, we 
set a(x) :=a+ Ix E Ax. The elements a E A can be viewed in this way 
as sections of the bundle (Ax)xEX· The function x f--' lla(x)ll is then 
always upper semi-continuous and vanishes at infinity on X. Moreover, 
we have 

llall = sup lla(x)ll for all a EA. 
xEX 

In what follows, we shall often write A(X) for A, to indicate that we 
view A as a C*-algebra bundle over X. If A(X) and B(X) are two C*­
algebra bundles, a morphism 1}1 : A(X) ---. B(X) is said to be fibre-wise 
if it is Co(X)-linear, i.e w(f ·a)= f · w(a) for all fin C0 (X) and a in 
A. Notice that in this case 1}1 induces *-homomorphisms Wx :Ax ---.Ex 
such that Wx(a(x)) = w(a)(x) for all a in A(X). Let Aut A(X) be 
the set of fibre-wise automorphisms of A(X). If G is a locally compact 
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group, then a fibre-wise action of G on A( X) is simply a group morphism 
a: G---+ Aut A( X). A fibre-wise action a induces actions ax on the fibres 
Ax for all x EX and the full crossed product A(X) ><l 0 G is again a C*­
algebra bundle over X with structure map given by the composition 

Co(X) !4 ZM(A) <--t ZM(A ><l G), and with fibres Ax ><l 0 ., G (the same 
holds for reduced crossed products if G is exact). 

If A = A(X) is a 0*-algebra bundle, Y is a locally compact 
space and f : Y ---+ X is a continuous map, then Co(X) ---+ Cb(Y) = 
M(Co(Y)); g ~--+go f provides a 0*-algebra bundle structure of Co(Y) 
over X and the pull-back f* A= f* A(Y) of A( X) along f is defined as 
the balanced tensor product 

f* A:= Co(Y) ®c0 (x) A. 

The obvious inclusion of Co(Y) into ZM(f* A) turns f*A into a 0*­
algebra bundle over Y. In particular, if Z ~ X is a locally compact 
subset of X 1 the pull-back A(Z) := iZ.A of A(X) along the inclusion 
map iz : Z---+ X becomes a C0 (Z)-algebra which we call the restriction 
of A to Z. If Y is a closed subset of X, then we have a short exact 
sequence 

0 ---+ A(X \ Y) ---+ A(X) ---+ A(Y) ---+ 0. 

Furthermore, if A( X) and B(X) are C* -algebra bundles, then ev­
ery fibre-wise morphism W : A(X) ---+ B(X) gives rise to a fibre-wise 

, morphism f*W: f* A(Y)---+ f* B(Y) such that f*W"(h Q9 a)= h Q9 w(a). 

§3. Non-commutative principal torus bundles 

We introduce in this section our toy example of K -fibrations which 
generalises classical principal 'li'n bundles to the non-commutative set­
ting. Let q : Y ---+ X be a principal 1l'n-bundle with locally compact 
base space X. Then 0 0 (Y) is a C* -algebra bundle over X with fibres 
C(q- 1 ( {x} )) ~ C('li'n). The given action of 'li'n on Y induces a fibre-wise 
action of 'li'n on C0 (Y) and Green's theorem [6] implies that 

Co(Y) ><l 'li'n ~ Co(X, /C). 

This leads to the following definition of NCP 1I'n-bundles: 

Definition 3.1. A (possibly) non-commutative principal 1I'n-bundle 
(or NCP 1I'n-bundle) with locally compact base space X is a separable 

1 Recall that a subset of a locally compact space is locally compact in the 
relative topology if and only if it is open in its closure. 
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C*-algebra bundle A(X) equipped with a fibre-wise action a : 'll'n ---* 

Aut A(X) such that 

A(X) >4a 'll'n ~ Co(X,K) 

as C*-algebra bundles over X. 

The most prominent example of a NCP torus bundle is certainly 
the Heisenberg bundle, i.e the C*-group algebra of the discrete Heisen-

berg group H 2 = { ( g b T); n, m, k E Z }· The C*-algebra C*(H2) is 

the universal C*-algebra generated by three unitaries U, V and W sat­
isfying the relations VU = WUV, UW = WU and VW = WV. Since 
the unitary W is central in C*(H2), the isomorphism C*(W) ~ C('ll') 
implements a canonical C* -algebra bundle structure with base space 1l' 
on C*(H2). The fibre at z = e2i1rO is canonically isomorphic to the 
non-commutative torus Ae. It is straightforward to check that there is 
a fibre-wise action (32 : 'll'2 -:> Aut C*(H2)(1I') given on the generators 
by fJ2(z1,z2)U = z1U, f32(z1,z2)V = z2V and fJ2(Z1,Z2)W = W for all 
(zl, Z2) E 'Jl'2. 

Proposition 3.2. C*(H2) together with the action (32 is a NCP 
'Jl'2 -bundle with base 1l'. 

Let us first remark that the non-commutative 2-tori Ae differ 
substantially for different values of (): they are simple for irrational () 
and Morita equivalent to C('ll'2) for rational (). Hence the Heisenberg 
bundle is quite irregular in any classical sense. Nevertheless, all NCP 
1l'n-bundles are locally trivial in a K-theoretical sense. This shows 
up if we change from the category of C* -algebra bundles over X with 
fibre-wise *-homomorphisms to the category RKKx of C*-algebra 
bundles over X with morphisms given by the elements of Kasparov's 
group RKK(X; A(X), B(X)). We refer to (8] for the definition of 
the RKK-group RKK(X; A(X), B(X)) for two C*-algebra bundles 
A(X) and B(X). We only· recall here that the cycles are given by 
the usual cycles (E, ¢, T) for Kasparov's bivariant K-theory group 
KK(A(X),B(X)) with the extra requirement that the representation 
¢ of A(X) on the B(X)-Hilbert module E is Co(X)-linear. Moreover 
A(X) and B(X) are said to be RKK-equivalent if there exists an 
invertible class tin RKK(X; A(X), B(X)). Isomorphic bundles A(X) 
and B(X) in this category are precisely the RKK-equivalent bundles. 
The first observation we can make is the following 

Theorem 3.3 ((4, Section 3]). Any NCP 1l'n-bundle A( X) is locally 
RKK-trivial. This means that for every x EX there is a neighbourhood 
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Ux of x such that the restriction A(Ux) of A( X) to Ux is RKK-equivalent 
to the trivial bundle Co(Ux, Ax)· In particular A(Ux) and Co(Ux, Ax) 
have the same K -theory. 

Having this result, it is natural to ask the following questions: 

Question 1: Suppose that A(X) and B(X) are two non-commutative 
1l'n-bundles with base X. Under what conditions is A(X) RKK­
equivalent to B(X)? 

Actually, in this paper we will only give a partial answer to the above 
question. But we shall give a complete answer, at least for (locally) path 
connected spaces X, to 

Question 2: Which non-commutative principal 1l'n-bundles are RKK­
equivalent to a "commutative" 1l'n-bundle? 

and 

Question 3: Which non-commutative principal 1I'n-bundles are RKK­
equivalent to a "trivial" 1I'n-bundle? 

These questions were the main motivations for introducing K­
fibrations. As we shall see in Section 5, for each K-fibration A(X) 
with X path connected, there is a canonical action of the fundamental 
group 1r1 (X) on the K-theory of the fiber Ax. In the case of NCP torus 
bundles, this action detects the "non-commutativity" of the bundle. In 
particular, the action is trivial for all commutative principal 1I'n-bundles. 
Together with earlier results of [2, 3], this allows to give the general 
answer to Question 2 and, in the case n = 2, to Question 1 up to a 
twisting with commutative principal 1l'n-bundles. To go further, we 
shall derive in Section 6 from every K-fibration a Leray-Serre spectral 
which gives a new K-theoretical invariant to distinguish the total spaces 
of 1l'n-bundles with a given base space X. As an application, we obtain 
the answer to Question 3. 

§4. K-fibrations, KK-fibrations 

The definition of a K-fibration is motivated from the following prop­
erty of NCP torus bundles: 

Proposition 4.1 ([4, Section 3]). Let ~ be a contractible compact 
space and let A(~ x X) be a NCP 1I'n-bundle over~ x X. Then for any 
element z of~' the evaluation map 

ez : A(~ X X) ~ A( { z} X X) 



214 S. Echterhoff, R. Nest and H. Oyono-Oyono 

gives an invertible class [ez] E RKK(X;A(~ x X),A({z} x X)). 

In particular the class of the evualation e2 : A(~ x X) ---+A( {z} x X) 
is invertible in KK(A(~xX), A( {z} xX)). Since the pull-back of a NCP 
torus bundle is again a NCP torus bundle, applying this to X= {*},we 
see that every NCP torus bundle is a KK-fibration in the sense of the 
following definition: 

Definition 4.2. A C*-algebra bundle A( X) is called a KK-fibration 
(resp. K -fibration) if for every compact contractible space ~' any con­
tinuous map f : ~ ---+ X and any z E ~' the evaluation map ez : 
f* A(~) ---+ At(z) is a KK-equivalence (resp. induces an isomorphism 
K*(f* A(~)) ~ K*(At(zJ)). 

It is clear that every locally trivial C*-algebra bundle A( X) is a KK­
fibration. In particular, since being a KK-fibration is invariant under 
tensorising by the C* -algebra JC of compact operators on a separable 
Hilbert space, we see that a continuous trace algebra with spectrum X 
is a KK-fibration. 

Numerous examples of K-fibrations and of KK-fibrations can be 
built from these elementary examples with help of the Baum-Connes 
conjecture (in its strong version) by taking crossed product by a fibre­
wise action of a group. Recall that a group G satifies the strong Baum­
Connes conjecture if there exists 

• a locally compact space X equipped with a proper action of G 
and a C*-algebra bundle A(X) with base X equipped with an 
action of G such that g(4> ·a) = g(4>) · g(a) for every gin G, 4> 
in C0 (X) and a in A(X); 

• an element x in KKG(<C,A(X)) and an element y in 
KKG(A(X), <C), such that x ®A(X) y = 1 in KKG(<C, <C). 

This implies that the Baum-Connes assembly map 

from the topological K-theory of G with coefficient in any G-algebra B 
into the K-theory of the reduced crossed product B ><lr G is always an 
isomorphism. If B is a fixed G-algebra, then we say that G satisfies the 
Baum-Connes conjcture for B, if the assembly map is an isomorphism 
for this particular B. Then using the going-down technics developped 
in [1] together with [10, Theorem 9.3], we can prove 

Proposition 4.3 ([5]). Suppose that A(X) is a separable C* -algebra 
bundle with base a locally compact space X and let a : G ---+ Aut A( X) 
be a fibre-wise action of the second countable locally compact group G 
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on A. Assume that for each compact subgroup K of G the C* -algebra 
bundle A(X) ><J K is a K-fibration. Then the following are true: 

(i) If G is exact and satisfies the Baum-Connes conjecture for 
f*(A) for all continuous f : D. ---* X, where D. is a com­
pact contractible space (in particular, if G satisfies the strong 
Baum-Connes conjecture), then A ><lr G is a K -fibration. 

(ii) If G satisfies the strong Baum-Connes conjecture, then A ><J G 
is a K -fibration. 

(iii) If G satisfies the strong Baum-Connes conjecture and A ><J K is 
a K K -fibration for every compact subgroup K <:;; G, then A ><J G 
is a K K-fibration. If, in addition, G is exact, then A ><J r G is 
a K K -fibration, too. 

As a consequence, since amenable groups are exact and satisfy the 
strong Baum-Connes conjecture by [7], we get 

Theorem 4.4 ([5]). Suppose G is an amenable group which acts 
fibre-wise on the C*-algebra bundle A( X). Then: If A(X) ><J K is a 
K-fibration (resp. KK-fibration) for all compact subgroups K of G, 
then A(X) ><J G is a K-fibration (resp. KK-fibration). 

Corollary 4.5. If A(X) is a K-fibration (resp. KK-fibration) then 
the same is true for A(X) ><1 zn or A(X) ><1 ffi?.n for every fibre-wise action 
a: zn,ffi?.n---* Aut(A(X)). 

§5. The K-theory group bundle 

If X is a locally compact space, an (abelian) group bundle with base 
space X is a family Q = (Gx)xEX of abelian groups, together with group 
isomorphisms c'Y : Gx ---* Gy for each continuous path 1 : [0, 1] ---* X 
from x to y, such that 

(i) If 1 and 1' are homotopic paths from x to y, then c'Y = c'Y'· 
(ii) If 1 1 : [0, 1]---* X and 12 : [0, 1] ---*X are paths from y to z and 

from x to y, respectively, then 

where 11 o 12 : [0, 1] ---* X is the usual composition of paths. 

In particular, if X is path connected, then all groups Gx are isomorphic 
and we get a canonical action of the fundamental group n 1 (X) on each 
fibre Gx. 

A morphism¢: Q---* Q' between two group bundles Q = (Gx)xEX 
and Q' = (G~)xEX with base X is a family ¢ = (cPx)xEX of group 
homomorphisms cPx : Gx---* G~ which commutes with the maps c'Y. 
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Proposition and Definition 5.1 ([4]). Suppose that A( X) is a K­
fibration. For any path 1: [0, 1] ---+X with starting point x and endpoint 
y, let ey : K*(Ax) ---+ K*(Ay) denote the composition 

Then K*(A) := (K*(Ax))xEX together with the above defined maps c7 

is a group bundle over X which we call the K-theory group bundle 
associated to A(X). 

If A(X) and B(X) are two K-fibrations, then any class ~ E 
RKK(X, A(X), B(X)) gives rise to a morphism of group bundles 
~* : K*(A) ---+ K*(B) given pointwise by right Kasparov product with 
the evaluation ~(x) E KK(Ax, Bx) of~ at x. Moreover if~ is invertible, 
then ~* is an isomorphism of group bundles. 

Let us describe the action of 1r1 ('][') ~ Z on the fiber at z = 1 of the 
K-theory group bundle associated to the Heisenberg bundle C*(H2)(']['). 
The fiber at z = 1 is isomorphic to C('Jr2). Since the unitaries U and 
V are global sections of C*(H2) and since [U(1)] and [V(1)] are gen­
erators for K 1(C*(H2))1 ~ K1(C('Jr2)), it turns out that the action of 
1r1 ('Jr) ~ Z on K 1 ( C (']['2)) ~ Z2 is trivial, and hence that the group 
bundle K1(C*(H2)) = (K1(C*(H2)z))zE'f is trivial. To describe the ac­
tion on the even part, we equip K 0 (C('Jr2)) ~ Z2 with the basis ([1], ,6), 
where ,6 is the Bott element of K 0 (C(']['2)). It is then shown in [4] that 
the action of the generating loop [0, 1] ---+ 'Jr; t ---+ e2i1rt of 1r1 ('][') ~ Z on 

K 0 (C('Jr2)) ~ Z2 is given on this basis by the matrix (~ i). 
§6. Leray-Serres spectral sequence 

In this section, we want to explain the analogue for K-fibrations of 
the classical Leray-Serre spectral sequence. It is well known in alge­
braic topology, that one can use group bundles as local coefficients for 
simplicial cohomology on the base space. Our aim is then to show that 
a K-fibration A(X) on a finite dimensional simplicial complex X gives 
rise to a spectral sequence with E2-term isomorphic to the cohomology 
of X with local coefficients in the K-theory group bundle K(A). 

Let X be a finite dimensional simplicial complex with skeleton Xo ~ 
X1 ~ · · · ~ Xn =X and let A(X) beaK-fibration with base space X. 
For p in Z we set Ap := A(Xp) and Ap,p-1 = A(Xp \ Xp_1) (where 
Xp = 0 if p < 0 and Xp = X if p 2: n). Then we have short exact 
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sequences 
0 ---+ Av,v-1 ---+ Av ---+ Av-1 ---+ 0 

with associated long exact sequences 

217 

Op,q-lK (A ) Lp,qK (A ) ]p,qK (A ) Op,qK (A ) Lp,q+l 
••• ----7 q p,p-1 ----7 q p ----7 q p-1 ----7 q+1 p,p-1 ----7• •• 

Let us define Ap,q = Kq(Av) and Ef'q = Kq(Ap,p-1) for p and q in Z. 
Then we get the exact couple 

j EB(p,q)EZ2Ap,q __________ .,.. EB(p,q)EZ2 Ap,q' 

~ ~ 
ffi Ep,q 
W(p,q)EZ2 1 

where ~ = EB(p,q)EZ2 ~p,q, j = EB(p,q)EZ2 )p,q and a = EB(p,q)EZ2 ap,q• 
From this exact couple we can derive by the general procedure (which, 
for example, is explained in [9]) a spectral sequence { Ef•q, dr} such that 

h d E p,q K (A ) Lp,q K (A ) Op+l,q • we ave 1 : 1 = q p,p-1 ---+ q p ---+ 

K (A ) E p+1,q+1 
q+1 . p+1,p = 1 ; 

• the higher terms are derived from this iteratively by E~:;!1 = 
(kerdr/ imdr)p,q; 

• this process stabilizes eventually with E~p-q FJ / Fi+1 
where 

F: := ker (Kq(A(X))---+ Kq(Av)). 

Since FJ = Kq(A) for p < 0 and FJ = {0} for p ~ n, the spectral 
sequence converges to Kq(A). 

Theorem 6.1 ([5]). Suppose that A( X) is a K -fibration over the 
finite simplicial complex X. Then the E 2 -term of the above described 
spectral sequence is given by E~,q ~ HP(X,Kq(A)), the cohomology of 
X with local coefficients in the K-theory group bundle K.(A(X)). 

Remark 6.2. 

• The case A(X) = C(X) is the classical Atiyah-Hirzebruch 
spectral sequence for the K-theory of X. 

• If A(X) and B(X) are RKK-equivalent, then the spectral 
sequences associated to A(X) and B(X) are isomorphic and 
this isomorphism is given on the E 2-term by the isomorphism 
of the group bundles K(A) ~ K(B) which is induced by the 
RKK-equivalence. It follows that the spectral sequence is an 
invariant for RKK-equivalence of K-fibrations. 
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§7. RKK-equivalence for NCP 1l'n-bundles 

In this section we want to explain how we obtain answers to Ques­
tions 2 and 3 of Section 3 and a partial answer to Question 1 in the 
case n = 2 by using the invariants introduced in the previous sections. 
We start by giving an alternative definition of NCP torus bundles using 
Takesaki-Takai duality. If A(X) is a NCP 1l'n-bundle, then the crossed 
produ~ A(X) ~a 'll'n ~ C0 (X, K) is equipped with the dual action a of 
zn ~ 'Jl'n, and then the Takesaki-Takai duality theorem asserts that 

A(X) ""M Ca(X,K) ~& zn 

as C*-algebra bundles over X, where ""M stands for 1l'n-equivariant 
C0 (X)-Morita equivalence, the dual action a being also fibre-wise. Con­
versely, if (3 : zn ____, Aut C0 (X, K) is any fibre-wise action, then the 
Takesaki-Takai duality theorem implies that 

A(X) = C0 (X, K) ~f3 zn 

together with the dual (fibre-wise) action Jj of 'll'n ~ Zn is a NCP 'll'n­
bundle. In consequence, up to a suitable notion of Morita equivalence, 
the NCP 1l'n-bundles are precisely the crossed products C0 (X, K) ~f3 zn 
for some fibre-wise action (3 of zn on C0 (X, K) and equipped with the 
dual 1l'n-action. 

Using this alternative definition, the results of [2, 3] provide a 
complete classification of NCP 1l'n-bundles up to 1l'n-equivariant Morita 
equivalence. To explain this classification we need to introduce the 
following higher dimensional generalisation of the Heisenberg bundle: 
let Hn be the group generated by {h, ... , fn} and {gij; 1 ~ i < j ~ n} 
with relations fd1 = 9iififi and 9ij is central for all 1 ~ i < j ~ n. 
Then C* (Hn) is the universal C* -algebra generated by the unitaries 
U1, ... , Un and {Vi,}; 1 ~ i < j ~ n} with relations Ui · U1 =Vi,}· U1 · Ui 
and Vi,j are central for 1 ~ i < j ~ n. Since the central unitaries 
{Vi,j; 1 ~ i < j ~ n} generate n(n2-l) copies of 11', the C*-algebra 
C*(Hn) is equipped with a canonical C*-algebra bundle structure with 

n(n-1) 
base space 1!'-2-. 

Consider the fibre-wise action f3n : 'll'n ----; Aut C*(Hn) (']['n(n2- 1)) 

given on generators by f3n(Zl, ... , Zn)(Ui) = ZiUi, f3n(Zl, ... , Zn)(Vij) = 
Vi}. As in the case n = 2, we get 

Lemma 7.1. C*(Hn) together with the action f3n is a NCP 'JI'n_ 
bundle with base '][' n(n2-l) • 
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As we shall see, C*(Hn) can be viewed as the "universal" NCP-'ll'n­
bundle. In order to achieve the classification, we need to introduce an 
action of principal 1I'n-bundles on NCP 'll'n-bundle. If q : Y _, X is a 
(commutative) principal 1l'n-bundle and A(X) is an NCP torus bundle, 
then we define Y *A( X) = q* A(Y)1I'n, where q* A(Y)1I'n denotes the 
fixed point algebra of q* A(Y) = Co(Y) ®co(X) A(X) with respect to 
the diagonal action of 'll'n, where we equip Y with the action 'll'n x Y _, 
Y; (z, y) ~---+ z-1 · y. The action of C0 (X) on either factor induces a C*­
algebra bundle structure over X on Y * A and one can check that the 
action q* a : 'll'n _, Aut q* A(Y) restricts to a well defined action Y * a 
on Y *A( X) so that Y *A( X) becomes also a NCP torus bundle. This 
action generalises the fibre-wise product of principal 'll'n-bundles. 

We are now able to state the classification result of [3] (see also [4, 
Section 2]). 

Theorem 7.2. Let X be a second countable locally compact space. 
Then the set of '1I'n-equivariant Morita equivalence classes of NCP 'll'n­
bundles over X is classified by the set of all pairs ([q : Y _, X], f) 
with [q : Y _, X] the isomorphism class of a (commutative) principal 

n(n-1) 
'll'n-bundle q : Y _, X and f : X _, '[' 2 a continuous map. Given 
these data, the corresponding equivalence class of NCP '1I'n-bundles is 
represented by the algebra 

A(Y,f)(X) := Y * f*(C*(Hn))(X). 

It is worth to mention that the K-theory group bundle of a NCP 
torus bundle is invariant under the action of a principal 1l'n-bundle [4, 
Lemma 4.5], i.e if q : Y _, X is a principal 1l'n-bundle and A(X) is a 
NCP 'll'n-bundle, then K(Y * A) and K(A) are canonicaly isomorphic 
(in particular, the K-theory group bundle of a "commutative" principal 
1I'n-bundle is trivial). Using this remark, we get 

Lemma 7.3 ([4]). Let A(X) be a NCP '1I'n-bundle with base X and 
classifying data ([q : Y _, X], f). Assume that x is an element of X 
such that f(x) = 1. Then the action of '/ E 1r1 (X) on K 1 (C('ll'2 )) is 
trivial and the action on K0 (C('TI'2 )) is given on the generators [1],/3 
by the matrix 

(!, "!)) 
1 ' 

where (!,'I) is the winding number of fog : 'li' _, 'li' for any representing 
loop g: 'll' _,X of "f· 

A similar (but more technical) result also holds for higher dimen­
sional NCP torus bundles and as a consequence we obtain 
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Corollary 7.4. The K -theory group bundle of a NCP torus bundle 
A(X) with path connected base space X is trivial if and only if the as­
sociated continuous map f of the classification data is homotopic to a 
constant map. 

In view of Proposition 4.1, homotopies of NCP torus bundles induce 
RKK-equivalences. Together with the above corollary, this gives the 
answer to Question 2. 

Theorem 7.5 ([4]). Let A(X) be any NCP 1'n-bundle with path 
connected base space X. Then A(X) is RKK-equivalent to a "commu­
tative bundle" p : Y ~ X (or rather C0 (Y)(X)) if and only if the 
K -theory bundle of A(X) is trivial. 

For n = 2, we have a more accurate result. 

Theorem 7.6 ([4]). Let A(X) and B(X) be NCP 1'n-bundles 
with path connected base space X. Then the following assertions are 
equivalent : 

(i) There exist principal1'n-bundles q1 : Y1 ~X and q2 : Y2 ~X 
such that Y1 *A and Y2 * B are RKK-equivalent. 

(ii) The group bundles JC(A) and JC(B) are isomorphic. 

It is a well known fact in algebraic topology that a principal 1fn_ 
bundle is trivial if and only if the differential d2 of the E 2-term of the 
Leray-Serre spectral sequence vanishes. This result admits the following 
generalisation to NCP torus bundles: 

Theorem 7. 7 ([5]). The NCP-torus bundle A( X) is RKK­
equivalent to the trivial bundle X x 'Jfn if and only if the K -theory 
group bundle is trivial and the map 

in the Leray-Serre spectral sequence associated the the K -fibation A(X) 
is trivial for all p. 

Let us remark that if the K-theory group bundle of A( X) is trivial, 
then HP (X, JC* (A)) is canonically ismorphic to HP (X, K * (Ax)) for any 
x in X. 
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