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Detection of periodic driving in 
nonautonomous difference equations 

Timothy Sauer 

Abstract. 

An algorithm is proposed for determining the periodic behavior of 
the common driver of a system of nonautonomous difference equations 
from observations of the equation trajectories only. Methods of attrac­
tor reconstruction are used to build a semiconjugacy to a topological 
version of the driver system. The algorithm is described in detail and 
implemented on several examples. 

§1. Introduction 

System identification for nonlinear differential and difference equa­
tions has lagged far behind the linear case, due to the greater complexity 
of the task. Takens' Theorem [10, 1] of 25 years ago was a significant 
initial foray. The ramifications of this result, in an area that has become 
known as attractor reconstruction, continue to be worked out. 

A particular case we will consider in this article is a system of driven 
difference equations of general form 

(1) 
fk(x~-1, · · ·, xLn, dt-d 

g(dt-1, ... 'dt-p) 

We often refer informally to the g system as the "driver" dynamics. 
Assume further that the equations f 1 , ... , Jk, g are unknown to us, and 
that we can only observe the outputs xj, ... , x1 as functions of time. 
We consider the problem of determining the dynamics of g alone. 

Takens' Theorem discusses conditions under which such observations 
allow a topologically accurate reconstruction of the complete system 
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dynamics. Such a reconstruction may not distinguish the g dynamics 
from the rest of the system. Our present goal goes beyond what is 
promised by Takens' Theorem, since our goal is to untangle the dynamics 
of g from the entire system. Moreover, if the theoretical obstructions 
can be overcome, it is reasonable to expect that the goal can be achieved 
with a far smaller data requirement than needed to reconstruct the entire 
system dynamics. 

We will use make use of two recent extensions of Takens' Theorem. 
Stark [9] proved a reconstruction theorem for so-called skew product sys­
tems, in which an autonomous subsystem drives the rest of the system. 
This result was used in [8] to develop a driver reconstruction theorem. 
An algorithm based on this theorem is discussed below, along with two 
examples. In the first example, a set of five one-dimensional chaotic 
logistic maps are driven by a logistic map in a period-six window. The 
output of the five maps is used (without knowledge of the maps gen­
erating the output) to infer the periodicity of the driver. The second 
example demonstrates a similar reconstruction, using period-four forcing 
in a system of three two-dimensional difference equations. 

It is hoped that this inquiry can further the development of compu­
tational techniques for system identification applied to network models 
of difference equations. The original motivation for this research was 
the identification of the dynamics of deep brain structures from simulta­
neous time series collected by surface electrodes. However, the question 
presents itself rather generally, whenever simultaneous driving of multi­
ple, observable systems occurs. 

§2. Background and theoretical results 

To begin, we recall a reconstruction theorem for skew products due 
to Stark [9] (see also Casdagli [2]). 

Theorem 1. (Stark, Jggg) Let D and X be compact manifolds, 
dim(D) = d, dim(X) = k 2: 1. Let m 2: 2d + 2k + 1, and assume 
the periodic orbits of period < 2m of g : D ---'> D are isolated and have 
distinct eigenvalues. Then there exists an open, dense set of C1 functions 
f: D x X---'> X and h: X---'> R for which them-dimensional delay map 
is an embedding. 

The theorem states conditions under which the state space of a sys­
tem consisting of the combined driver and response can, be reconstructed. 
In the present article, the goal is to use the output of several response 
units to separate out the dynamics of the driver from the rest of the 



Detection of periodic driving 303 

dynamics, as a way of breaking the system down into its component 
parts. 

We will refer to the systems in (1) as X 1 , ... , Xk and D, respectively. 
Apply Stark's theorem to each D X xi individually, where D is the 
ergodic attractor of the driving system and Xi is the state space of the ith 
nonautonomous system. According to the theorem, for generic dynamics 
and sufficiently large m, there is a one-to-one correspondence between 
m-tuples (xL ... , x~-m+1) and states of the dynamical attractor Ai in 
D xXi. In particular, as a consequence of the one-to-one correspondence 
guaranteed by Theorem 1, the equality 

(2) (·i i ) (i i ) 
Xt, · · · 'Xt-m+l = Xt'' · · · 'Xt'-m+l 

implies that dt = dt'. This is the key to identifying individual states of 
the driver. 

Due to continuity, (2) need not hold exactly to provide information. 
If the difference is small, say in the Euclidean norm, then dt and dt' 
must also be close. This motivates choosing m sufficiently large so that 
Stark's theorem applies to D X xi fori = 1, ... , k. We choose some E > 0 
and for a given (xL ... , xLm+l), group the set of times t' for which (2) 
holds within E. In this way we form a set of equivalence classes. 

To simplify the collection of the equivalence classes, one may choose 
one of the Xi and work in its delay coordinate space. This space contains 
a one-to-one representation of the attractor Ai in D x Xi, according to 
Stark's theorem. Grouping the equivalence classes gives a quotient space 
of Ai, called D*. Below, we see that D* is a semiconjugacy with the 
dynamics of D. 

There are three functions that can be defined for the set D*. First, 
every equivalence class d* in D* has associated with it a unique din D, so 
define the functions from D* to D by s(d*) =d. The functions is onto, 
meaning that the image of s is all of D. (This follows from the fact that 
the dynamics f is ergodic on D.) Second, there is a natural dynamical 
rule g* from the set D* to itself that is inherited from the dynamics 
on the delay coordinates. The equivalence class g*(d*) is defined to be 
the one the elements of d* are mapped to under the system dynamics 
f1. In addition to the functions s and g*, for each 1 ::::; i ::::; k, the 
function Pi from Ai to D* can be defined by sending each ai E Ai to 
the equivalence class of ai. The following diagram shows the relation 
between the functions Pi, s and the new dynamical system g* on D*. 
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8 Pi 
D D* A 

lg l g* lit 

8 Pi 
D D* Ai 

Because g* is onto, the right half cif the diagram shows that g* 
satisfies the definition of semiconjugacy. The map g* : D* -t D* is said 
to be semiconjugate to the map f : D -t D if there exists an onto map 
8 : D* -t D satisfying g o 8 = 8 o g*, that is, the left side of the diagr!illl 
commutes. The analogous statement about the right side of the diagram 
is also true. The following theorem was introduced in [8]: 

Theorem 2. {Shared Dynamics Reconstruction Theorem.) Assume 
g : D -t D is ergodic, and in addition drives Xi, 1 ~ i ~ k as in {1). 
Choose m large enough and g, Ji generic such that all skew products 
D x Xi are reconstructed in Rm. Define g* : D* -t D* as the map 
induced as above. Then, generically, ( 1) the map g* is semiconjugate to 
g, and {2) for each i, the induced map is semiconjugate tog*. 

Roughly speaking, if g1 is semiconjugate to g2, then g1 "contains" 
the dynamics of g2. The content of the theorem is that according to 
the left hand square of the above diagram, D* captures at least the 
dynamics of the driver D, and may contain more. However, according 
to the right side of the diagram for each i, any extra dynamics in D* 
must be common to all of the Xi, due to part (2) of the theorem. This 
is the meaning of "shared dynamics". 

Next we show how this theorem leads to an algorithm that extracts 
shared dynamics of the Dusing time series data observed from the Xi. 

Shared Dynamics Algorithm. 

Choose m large enough to unfold the dynamics on each D x Xi, and 
use delay coordinates to create the reconstructed attractor Ai, which 
is in one-to-one correspondence with D X xi. Choose one of the xi 
arbitrarily, say X1. The basis of the algorithm is to group together 
points in X1 that lie over the same point in D, the so-called fibers over 
D. According to the theorem, at each time t when the dynamics returns 
to the same point in Xi, the state of d in D is the same. With this 
information, one can search for delay vectors in Xj that are close in 
the delay reconstruction, and return information to X 1 about points 
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over the same driver state d. A neighborhood size c: must be chosen to 
decide the meaning of nearly identical, for this purpose. The degree of 
discretization of the resulting dynamical attractor D* will depend on 
this choice. 

Using this method of associating points to the fibers over D, one 
proceeds through all points of the reconstructed attractor X 1 to fit them 
in an appropriate equivalence class. Choosing representatives for the 
equivalence classes from a chain of overlapping €-neighborhoods retains 
the topological form imposed by the original dynamics. Note that no 
re-embedding is necessary, since the points of D* constitute a subset of 
the reconstructed X1, which has no self-intersections by assumption. 

§3. Examples 

In this section we illustrate the use of the Shared Dynamics Algo­
rithm on two examples. In each case, a system of difference equations 
of form (1) is constructed and the output data Xi are provided to the 
algorithm for analysis. 

Example 1. Consider the system 

x1 
t .\1x;_1 (1 - xL1) + 0.5dt-1 mod 1 

x5 
t .\5xL1(1- xL1) + 0.5dt-1 mod 1 

(3) dt .\odt-1(1- dt-1) 

where .\0 = 3.6266 represents the period 6 window in the logistic bifur­
cation sequence, and .\1 = 3.77, .\2 = 3.775, .\3 = 3.78, A4 = 3.785, .\5 = 
3. 79 are chosen from a chaotic regime. The modulo function was used 
to keep trajectories from moving outside of the basin of the chaotic at­
tractor. 

Figure 1(a) shows the delay coordinate embedding of the recon­
structed attractor A1 of D x X 1, using the embedding dimension m = 3. 
A trajectory of length 3000 time units is shown. The result of the Shared 
Dynamics Algorithm with E = 0.005, the reconstructed driver D*, is 
shown in Figure 1 (b). Each point represents an equivalence class of de­
lay coordinate vectors. The topology and dynamics of the period-six 
attractor from D are efficiently recovered. 
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Fig. 1. (a) Delay coordinate reconstruction of one skew prod­
uct from (3). (b) Reconstructed driver dynamics from 
the algorithm. 
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Example 2. The second example is the system 

x1 
t 

1 [( 1 )2 + ( 1 )2] 1 1 1 a1 - 4 xt-1 Yt-1 - 2xt-1Yt-1 

+ 
1+b1 1-b1 
- 2-xt-1 + - 2-Yt-1 + O:dt-1 

yj 1 [ ( 1 )2 ( 1 )2] 1 1 1 a1 - 4 Xt-1 + Yt-1 - 2xt-1Yt-1 

+ 
-1+b 1 -1-b 1 
--2-xt-1 + --2-Yt-1 

x2 
t 

1 [ ( 2 ) 2 + ( 2 )2] 1 2 2 a2 - 4 xt-1 Yt-1 - 2xt-1Yt-1 

+ 
1+b2 1-b2 
- 2-xt-1 + - 2-Yt-1 + O:dt-1 

y; 1 [( 2 )2 ( 2 )2] 1 2 2 a2 - 4 xt-1 + Yt-1 - 2xt-1Yt-1 

+ 
-1+b 2 -1-b 2 
--2-xt-1 + --2-Yt-1 

x3 
t 

1 [ ( 3 )2 ( 3 )2] 1 3 3 a3 - 4 xt-1 + Yt-1 - 2xt-1Yt-1 

+ 
1+b3 1-b3 
- 2-xt-1 + - 2-Yt-1 + o:dt-1 

y: 1 [( 3 )2 + ( 3 )2] 1 3 3 a3 - 4 Xt-1 Yt-1 - 2xt-1Yt-1 

+ 
-1+b 3 -1-b 3 
--2-xt-1 + --2-Yt-1 

(4) dt ao - dL1 - bodt-2 

where a0 = 0.95, b0 = 0.4 generates a period 4 attractor for the Henon 
map [3], and a 1 = 1.26, a2 = 1.27, a3 = 1.28, b = 0.3 represent chaotic 
trajectories. The drive parameter is a = 0.05. 

Figure 2(a) shows the delay coordinate embedding of the recon­
structed attractor A1 of D X x1, using the embedding dimension m = 3 
and delay coordinate vectors of form (xi,xL1,xL2). These vectors to­
gether with vectors ofform (xLxL1,xL2) fori= 2,3 were used in the 
algorithm. A trajectory of length 2000 time units is shown. The result 
of the Shared Dynamics Algorithm with E = 0.04, the reconstructed dri­
ver D*, is shown in Figure 2(b). Each point represents an equivalence 
class of delay coordinate vectors. The topology and dynamics of the 
period-four attractor from D are efficiently recovered. 

§4. Conclusions 

This article demonstrates a type of signal processing for difference 
equations, the idea being to identify system characteristics from output 
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Fig. 2. (a) Reconstruction of one skew product from (4). (b) 
Reconstructed driver dynamics. 

data. The specific goal in this case is to identify the dynamics of the 
common driver in a system of nonautonomous difference equations. 

The examples provided deal with periodic drivers, such as the pe­
riodic six orbit driving five logistic maps in Example 1. The algorithm 
is not limited to periodic drivers, although the job of identifying the 
result will be more difficult the more complicated the driver dynamics. 
If the driver is chaotic, for example, sophisticated system identification 
methods may be needed to analyze and classify the result. 

In the case of a chaotic system driving other chaotic systems, for 
example, although the algorithm introduced here will work in principle, 
the data requirements may be challenging. For periodic driving, we 
have shown in the examples that a few thousand data points suffice to 
determine the driver. 

This research was supported by the National Science Foundation. 
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