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On periodic points of 2-periodic dynamical systems 

Joao Ferreira Alves 

§1. Introduction and statement of the result 

Motivated by a recent extension of Sharkovsky's theorem to peri
odic difference equations [1) (see also [4)), here we show that kneading 
theory can be useful in the study of the periodic structure of a 2-periodic 
nonautonomous dynamical system. 

Sirice the notions of zeta function and kneading determinant will 
play a central role in this discussion, we start by recalling them. 

Let X be a set and f : X -t X a map. For each n E z+, denote by 
r the nth iterate of f' defined inductively by 

f 1 = f and r+l = f o r, for all n E z+. 
In what follows we assume that each iterate of f has finitely many fixed 
points. The Artin-Mazur zeta function of f is defined in [3) as the 
invertible formal power series 

where 

r ( ) """#Fix(r) n 
'>f z = exp ~ z , 

n 
n2:1 

Fix(r) = {x EX: r(x) = x}. 

Naturally, this definition is a particular case of a more general definition, 
necessary for our purposes. 

Let f : Y -t X be a map, with Y C X. In this case the nth iterate 
of f is the map r : Yn -t X defined inductively by: 

Y1 = Y,/1 = f 
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and 

We define 

where 
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Yn+l = f-n(Y), r+l =for, for all n E z+. 

r ( ) L#Fix(r) n 
.,f z = exp z ' 

n 
n:O::l 

Fix(r) = {x E Yn: r(x) = x} 

Problems concerning rationality and analytic continuation of (J are often 
considered. In some interesting cases (J is a rational function of z. 
Notice that in such case, there exist a1, ... , ak, b1, ... , bk E C such that 

and consequently 

k 
(1) #Fix(r) = 2:: ai- bi, for all n;::: 1. 

i=l 

Milnor and Thurston in [5] studied the Artin-Mazur zeta function 
of a continuous piecewise monotone map f : [a, b] ---+ [a, b] introducing 
a so called kneading determinant of f, Dt(z), the determinant of a 
finite matrix, N J(z), called kneading matrix, with entries in Z[[z]] and 
depending upon the orbits of the turning points off; they established 
a fundamental relation between Dt(z) and (J(z). We illustrate this 
relation in the two following examples, without going into full details. 

Example 1. Let I= [a, b] c ~ be a compact interval. A continuous 
map f : I ---+ I is called piecewise monotone if there exist points (called 
turning points off) a= co < c1 < · · · < Ck-1 < Ck = b such that: f is 
strictly monotone in [Ci, ci+l]; and f has a local extrema at Ci· 

As an example lets E ]1, 2], and f: [-1, 1]---+ [-1, 1] be the contin
uos map defined by f(x) = s -1- s lxl. The simplest case occurs when 
s = 2, in thiscase we do not need kneading theory to conclude that 

Ct(z) = 1 ~ 2z and #Fix(r) = 2n, for all n;::: 1. 

The situation is much more complex when s E ]1, 2[. Following [2] we 
consider a modified kneading determinant of f given by 

Dt(z) = (1- z) L knzn, 
n:O::O 
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where the sequence kn E { -1, 0, 1} is defined by 

ko =land kn = -sign(r(o))kn-1,/or n ~ 1. 

Thus, Dt(z) depends upon the orbit of the turning point 0, and, as a 
consequence of the Milnor- Thurston's identity 

-1 1 
(J(z)=Df (z)= (1-z)L: k zn' 

n:O::O n 

we may conclude that (J(z) is rational if and only if the sequence kn 

is eventually periodic. For example let s = 1±2v'5 . Since f ( 0) > 0, 
P(O) < 0 and P(O) = 0, we have Dt(z) = 1- 2z + z3 and 

1 1 
(J(z) = z3- 2z + 1 (1- z)(l- 1-2v'5z)(l- 1±2v'5 z)' 

and by (1} 

(1- J5)n (1 + J5)n #Fix(r) = 1 + 2 + - 2- , for all n ~ 1. 

Example 2. It is possible to generalize the notion of kneading de
terminant for a continuous piecewise monotone map 

As in the previous situation, this determinant depends upon the orbits of 
the turning points of f and there exists a fundamental relation between 
Dt(z) and (J(z). 

As an example, let a E ]0, 1[ and f: [-1, -a] U [a, 1]----+ lR be the con
tinuos map defined by f(x) = 1-2lxl. A modified kneading determinant 
of f is given by 

Dt(z) = (1- z) L krizn, 
n:O::O 

where the sequence kn E { -1, 0, 1} is defined by 

ko = 1 and kn+1 = E(jn+1 (a))kn, for n ~ 0, 

and E : lR ----+ { -1, 0, 1} is the step function defined by 

{ 
1 ifx E ]-1,-a[ 

E(x)= -lifxE]a,l[ 
0 otherwise 
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As a consequence of Milnor Thurston's main identity we have 

-1 1 
(J(z) = Df (z) = (1- z)"" k zn · 

L..m;;::o n 

Consider the particular case a = l· We have f(a) = ~' P(a) = 
-~ < 0, JS(a) = 0, thus D 1(z) = 1- 2z + z3 and 

1 1 
(J(z) = z3- 2z + 1 = (1- z)(1- l-2V5 z)(1- ¥z)' 

and by {1} 

#Fb<(f") ~ I + c -2 y'5)" + (I +2 y'5) n 

As mentioned above, our goal is to show that kneading theory can 
be useful to study the periodic structure of a periodic nonautonomous 
dynamical system. In this paper we shall restrict the discussion to 2-
periodic dynamical systems. As in the autonomous case, we shall need 
a preparation theorem, which is actually a generalization of (1). First, 
we need to introduce some notation. 

In what follows, by a dynamical system on a set X we mean a pair 

F={fo,h} 

of self mappings in X. Given x E X, the orbit of x is the sequence 
{ Xn} :'=o on X defined by 

xo = x, x1 = fo(x), x2 = h (fo(x)), ... 

or more precisely 

(2) { fo(xn) ifn is even 
Xo. = x and Xn+l = f ( ) f 

1 Xn i n is odd 

The point x is called periodic, with period p(x) E z+, if the orbit of x 
is a periodic sequence with period p(x). The set whose elements are the 
periodic points ofF is denoted by Perp. For each positive integer, n, 
we also define 

Perp(n) = {x E Perp: p(x) divides n}. 

We will assume that Perp(n) is a finite set for all positive integer n. 
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Observe that, even in the simplest cases, there exists a relevant 
difference between the numbers 

#Perp(n) and #Fix(r). 

Indeed, as the following example shows, even when the set X is finite, we 
can not guarantee the existence of complex numbers at, ... , ak, bt, ... , bk 
such that 

k 

(3) #Per!f'(n) = I: a~- b~, for all n ~ 1. 
i=t 

Example 3. Let X = {0, 1} and define the maps fo : {0, 1} ---t 

{0, 1} and ft: {0, 1} ---t {0, 1} by fo(O) = fo(1) = 0 and ft(O) = ft(1) = 
1. We have 

#p ( ) = { 0 if n is odd erp n 1 ;; . 
ZJ n zs even 

Consequently, the formal power series 

"' #Perp(n) n 1 
exp L..t z = --=== 

n~t n J1-z2 

is not rational, and therefore do not exist complex numbers satisfying 
(3). 

Nevertheless, it can be shown that, if the set X is finite, then there 
are complex numbers at, ... , ak, bt, ... , bk, Ct, ... , Ck, dt, ... , dk such that 

(4) { 

k 

I:ai- bi if n is odd 
#Perp(n) = ikt 

I:ci- di if n is even 
i=t 

This fact rises the following problem. IfF = {f0 , ft} is a dynamical 
system on an infinite set X, under which conditions cart we guarantee the 
existence of complex numbers verifying ( 4)? Our main theorem concerns 
this problem. For that purpose, we need to introduce the maps 

go : Xo c X ---t X 
x ---t fo(x) ' 

where 
Xo = {x EX: fo(x) = ft(x)}, 

and 
9t =Ito fo. 
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Theorem 4. Let F = {fo, ft} be a dynamical system on X. If 
(g0 (z) and (g1 (z) are rational, and a1, ... , ak, b1, ... , bk, ClJ ... , ck, d1, ... ,dk 
are complex numbers such that 

then we have 

'go(z) = Ilk 1- biz ( ) Ilk 1- diz 
., and (gl z = ··=1 1 - c.z ' i=l1- aiz . . 

k 
"an- b"!L.. • • 
i=1 

k n n 

"c?- d? L.. • • 
i=1 

if n is odd 

ifn is even 

This general result has a relevant consequence in the context of 
interval maps. Let fo and It be continuous piecewise monotone self
maps of a compact interval I C ~- Furthermore, assume that the set 

Xo = {x E I: fo(x) = ft(x)} 

has finitely many connected components. Notice that under these con
ditions both maps g0 and g1 are continuous piecewise monotone, and 
thus we can use the old results on kneading theory to study the zeta 
functions of go and g1 . 

Example 5. Let fo: [-1, 1]--t [-1, 1] be defined by fo(x) = 1-2lxl, 
and let It : [-1, 1]--t [-1, 1] be any continuous expanding map such that: 
ft is increasing on [-1,0] and decreasing on [0, 1]; ft(x) = fo(x), for 
x E { -1, 0, 1 }. Under these conditions, it is easy to see that (g1 (z) do 
not depend upon It. As a matter of fact 

The study of (g0 ( z) is much more interesting because it depends on Xo. 
The simplest case occurs when X 0 = { -1,0, 1}. In this case we have 

and from Theorem 4 

1 
(go(z) = -1-, -z 

#Perp(n) = { ;n 
ifn is odd 
ifn is even 
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Of course the situation is more complex if the set Xo is infinite. As an 
example, assume that Xo = [-1, -~] U {0} U [~, 1]. We have then (see 
Example 2} 

and from Theorem 4 

{ 1 + ( l-2V5) n + ( 1+2V5) n if n is odd 
#Perp(n) = 

2n if n is even 

§2. Proof of Theorem 4 

Let us begin by recalling some facts on generating functions. For 
any sequence { sn} ~=l C C let us define the formal power series 

S(z) = exp 2::: Sn zn. 
n~l n 

It is well-known that: 
i) The generating function S(z) is a rational function of z if and only if 
there exist a1, ... ,ak;bb···,bk E C such that 

(5) 

ii) For any a1 , ... , ak; b1 , ... , bk E C the identity (5) holds if and only if 

k 

Sn = 2::: ar - br, for n ~ 1. 
i=l 

So, for any map f: X____. X, we may write: (J(z) is rational if and only 
if there exist a1, ... , ak; b1, ... , bk E C such that 

(6) 

which is equivalent to 

k 
(7) #Fix(r) = l:::ai- br, for n ~ 1. 

i=l 

We can now prove Theorem 4. Let F = {fo, /I} be a dynamical sys
tem on X. If the zeta functions (90 (z) and (91 (z) are both rational, then 
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by (6) there are complex numbers a1, ... , ak, b1, ... , bk, c1, ... , ck, d1, ... , dk 
such that 

and by (7) 

k k 

#Fix(g0) = I: a~- b~ and #Fix(g]:) = I:c~- d~, n 2: 1. 
i=l i=l 

So, the theorem will follow from the identity 

(8) { 
Fix(g()) if n is odd 

Perp(n) = . n/2) . . · F1x(g1 1f n IS even 

In order to prove (8), let x E X and {xi}:0 be the orbit of x. 
Assume first that n is even. In this case we have by (2) 

Xo = x and Xkn =(!I o fo)kn/2 (x) = g~n/2 (x), fork 2: 1. 

So, we can write 

Xkn = xo, for all k 2: 1 if and only if g~n/2 (x) = x, for all k 2: 1, 

and therefore Perp(n) = Fix(g~/2 ). 
For n odd, if x E Perp(n), then the period p(x) is odd, and: 

fo(xj) = Xj+l = Xl+j+p(x) = fi(xj+p(x)) = fi(xj), if j is even; 

fi(xj) = Xj+l = Xl+j+p(x) = fo(Xj+p(x)) = fo(xj), if j is odd, 

which shows that 

{xi}:o C Xo = {x EX: fo(x) = fi(x)}. 

Therefore 
Xi= JJ(x) = gb(x), fori 2: 1 

and consequently 
gg(x)(x) = Xp(x) = Xo =X. 

This proves the inclusion PerF ( n) c Fix(g()). Since the inclusion Fix(g()) 
C Perp(n) is immediate it follows Fix(g()') = Perp(n), as requested. 

Acknowledgments. The author wishes to thank to Saber Elaydi the 
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