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Abstract. 

A group is said to be bounded if it has a finite diameter with 
respect to any hi-invariant metric. In the present paper we discuss 
boundedness of various groups of diffeomorphisms. 

§1. Introduction and main results 

1.1. The main phenomenon 

A group G is said to be bounded if it is bounded with respect to any 
hi-invariant metric (that is, as a metric space, it has a finite diameter). 

A conjugation-invariant norm v : G -+ [0; +oo) is a function which 
satisfies the following axioms: 

(i) v(l) = 0; 
(ii) v(f) = v(f- 1 ) Iff E G; 

(iii) v(fg) :::; v(f) + v(g) 'Vf, g E G; 
(iv) v(f) = v(gfg- 1 ) 'Vf,g E G; 
(v) v(f) > 0 for all f =f. 1. 

Thus a group is bounded iff every conjugation-invariant norm is 
bounded. 

Convention: In this paper we work only with conjugation­
invariant norms, so by default a norm is a conjugation-invariant 
norm. 

If one drops condition (v), vis said to be a pseudo-norm. It can imme­
diately .be converted into a norm by adding 1 to all elements except the 
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unity. Hence a group is unbounded if it admits an unbounded pseudo­
norm. Observe that on a simple group every non-trivial pseudo-norm 
is automatically a norm: Indeed, the set of all elements with vanishing 
pseudo-norm forms a normal subgroup. Hence in the sequel condition 
(v) can be dropped everywhere when we deal with simple groups such 
as various groups of smooth diffeomorphisms.d 

Two norms on a group are called equivalent if their ratio is bounded away 
from 0 and oo. The trivial norm, which exists on any group, equals 1 
on every element except the identity. 

Given a connected manifold M, denote by Diff0 (M) the identity 
component of the group of c= smooth compactly supported diffeomor­
phisms. This group is simple due to a theorem by Thurston [34]. The 
central phenomenon discussed in this paper is as follows: in all known 
to us examples any norm on Diff0 (M) is equivalent to the trivial one. 
Below we confirm this phenomenon for spheres, all closed connected 
three-manifolds and the annulus. However we have neither a proof nor a 
counter-example for closed surfaces of genus ;:::: 1 and the Mobius strip. 

1.2. Setting the stage 

1.2.1. Conjugation-generated norms. Many interesting norms come 
from the following construction: Let G be a group, and let K C G be 
a symmetric subset, that is x E K whenever x- 1 E K. We say that 
the set K conjugation-generates (or, for brevity, c-generates) G if every 
element hE G can be represented as a product 

(1) 

where each h; is conjugate to some element h; E K: h; = a;h;ai 1 , 

a; E G. In this case define a norm qK(h) as the minimal N for which such 
a representation exists. We shall say that the norm qK is c-generated 
by the subset K. If K is finite, G is said to be finitely c-generated. For 
instance, every simple group G is finitely c-generated by K = { x, x- 1 } 

with an arbitrary x =f. 1. 
Note that the norm qK has the following extremal property: for any 

norm q bounded on K there is a constant >. such that q :::; >.qK. Hence, 
if K is finite, the group G is bounded if and only if qK is bounded. 

dA group is called simple if it has no non-trivial normal subgroups. In 
the 1970-ies, simplicity of various interesting groups of diffeomorphisms was 
established by highly non-trivial methods in works of Herman [16], Thurston 
[34], Mather [21, 22], Banyaga [2]. We refer to Banyaga's book [3] for a detailed 
discussion. 
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Example 1.1. Groups SL(n, JR) for n ~ 2 and SL(n, Z) for n ~ 3 
are finitely c-generated by the set K of all elementary matrices whose 
off-diagonal term equals ±1. Moreover we claim that the number of 
terms in the decomposition (1) is bounded by a constant which does not 
depend on h. 

In the case of SL(n, JR) the claim follows from an appropriate version 
of the Gauss elimination process. 

As for SL(n, Z), denote by£ the set of all elementary matrices whose 
only non-zero off-diagonal element equals to 1. There exists N = N(n) E 

N so that every element from SL(n, Z) can be written as a product of 
:s; N matrices of the form EP, where E E £ and p E Z (in other words, 
SL(n, Z) possesses a bounded generation by elements from£), see [9, 37]. 
The claim readily follows from the fact that each EP = [A, BP] for some 
A, B E £. Let us prove this identity: let Eij (where i =I j) denotes 
the elementary matrix from £ whose only non-zero off-diagonal element 
stands in the i-th raw and j-th column. Without loss of generality, put 
i = 1,j = 3. Then Ef3 = [E12, E~3 ] as required. 

It follows from the claim that the "extremal" norm QK is bounded, 
and hence the groups in question are bounded in view of extremality of 

QK· 

Example 1.2. The commutator length. Given a group G, de­
note by G' its commutator subgroup. The norm on G' c-generated by 
the set of all simple commutators [a, b] = aba-lb- 1 is called the com­
mutator length and is denoted by clc. This norm has a long history and 
has been intensively studied in various contexts, see e.g. [5]. 

1.2.2. The role of the commutator subgroup. The next observations 
suggest that the commutator subgroup plays a significant role in the 
study of boundedness. 

Proposition 1.3. If H 1 (G) ·- G/G' is infinite then G is un­
bounded. 

In particular, an abelian group is bounded if and only if it is finite. 

Note that unbounded norms maybe non-extendable from a normal 
subgroups to the ambient group. Consider, for instance, the group 
Af f(Z) of transformations of the real line of the form u f--+ EU + z 
withE= ±1 and z E Z. It can be considered as an extension of Z (the 
group of integer translations) by an element t of order 2 (the reflection 
over the origin) and with one additional relation tz = z- 1t. Thus Z is a 
normal subgroup of index 2 in Af f(Z). Of course, Z has an unbounded 
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norm, while Af f(7L) admits no unbounded norms since tis conjugate to 
tz2n (by zn) for all integers n. However, the situation changes when one 
deals with the commutator length on the commutator subgroup: 

Proposition 1.4. Let G be any group. If the commutator length 
on G' is unbounded then G itself is unbounded. 

Propositions 1.3 and 1.4 are proved in Section 1.2.5 below. 
1.2.3. Stably unbounded norms. Given a conjugation-invariant norm 

v on a group G, we define its stabilization by 

v(r) 
Vxo (f) = lim -- . 

n---~ooo n 

Let us emphasize that stabilization of a norm is not in general a norm. 
An unbounded norm v is called stably unbounded if v00 (f) =f. 0 for some 
f E G. 

For instance, an infinite abelian torsion group is unbounded by 
Proposition 1.3 but never stably unbounded. 

Example 1. 5. Consider a group 7L2 of all finite words over { 0, 1} 
with componentwise addition mod 2 (that is, a direct sum of countably 
many copies of 7L2 ). This group admits no stably unbounded norms 
since the order of every element is 2. On the other hand, the length of a 
word is an unbounded norm. There is a natural action of 7L2 on 7L x 7L2 : 

the i-th generator swaps (i, 0) and (i, 1). Thus the norm in our example 
can be interpreted as "the size of support". 

Open Problem. Does there exist a group that does not admit a 
stably unbounded norm and yet admits a norm unbounded on some 
cyclic subgroup? 

1.2.4. Stable commutator length and quasi-morphisms. In what fol­
lows we shall focus on the stable commutator length. Let G be any 
group. The commutator length clc on G' is stably unbounded if and 
only if G admits non-trivial homogeneous quasi-morphisms [5]. Recall 
that a function r : G ----> R is called a quasi-morphism if there exists 
C > 0 so that 

lr(ab)- r(a)- r(b)l ~ C 'Va, bEG. 

A quasi-morphism is called homogeneous if r( an) = nr( a) for all a E G 
and n E 7L. A quasi-morphism is called non-trivial if it is not a morphism. 

Convention: In this paper we deal with homogeneous quasi­
morphisms only, so by default quasi-morphism means a homo­
geneous quasi-morphism. 
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Example 1.6. G = SL(2, Z) carries an abundance of quasi-mor­
phisms (cf. e.g. [4]) and hence the commutator norm on SL(2, Z) is 
stably unbounded. Thus G is unbounded in view of Proposition 1.4, in 
contrast with SL(n, .Z) for n 2 3 (see Example 1.1 above). 

Introduce the class 9 of groups G with finite H 1 (G) = G/G' (we wish to 
rule out conjugation-invariant stably unbounded norms coming from the 
first homology, see Proposition 1.3 above). Note that various interesting 
groups of diffeomorphisms are simple (see footnote in Section 1.1 above) 
and hence belong to this class. 

Open Problem. Does there exist a finitely presented group G E g 
whose commutator length is unbounded but stably bounded? 

Open Problem. Does there exist an unbounded finitely presented 
group which admits no unbounded quasi-morphisms? 

A. Muranov informed us that he has an example of a finitely generated, 
but not finitely presented, group from g whose commutator length is 
unbounded but stably bounded. The existence of an infinitely generated 
group with this property readily follows from Muranov's work [26], who 
constructed a sequence of simple groups Gi, i E N of finite commutator 
length diameter ni, where ni ----> oo. The infinite direct product G = 
Il Gi is as required. 

A mystery related to the notion of stable unboundedness is as follows. 

Open Problem. Does there exist a group G E g whose commu­
tator length is stably bounded, but which admits a stably unbounded 
norm? In other words, does the existence of a stably unbounded norm 
on G yields existence of non-trivial quasi-morphisms? In fact, we do not 
know even a single example of a group from g that admits no non-trivial 
quasi-morphisms but carries a norm that is unbounded on some cyclic 
subgroup. 

Here is a (somewhat artificial) example of groups for which existence of a 
stably unbounded norm yields existence of non-trivial quasi-morphisms. 
Start with an arbitrary group G E 9 and set G to be the extension of 
G x G by an element t so that 

t 2 = 1, and t(g1,g2)C1 = (g2,g1) 'ig1,g2 E G. 

Proposition 1. 7. The group G lies in 9 for every G E 9. 

Proposition 1.8. Suppose that for some G E Q, the group G admits 
a stably unbounded norm. Then G admits a non-trivial quasi-morphism. 
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1.2.5. Quasi-norms. 

Definition 1.9. Let G be a group. We say that a Junction 
q : G ___, [0; +oo) is a a quasi-norm (for brevity, a q-norm) if: 

(i) q is quasi-subadditive: there is a constant c such that 

q(ab) ~ q(a) + q(b) + c; 

(ii) q is quasi-conjugation-invariant: there is a constant c such that 

(iii) q is unbounded. 

One can see that in fact the existence of a q-norm implies the ex­
istence of an unbounded norm: This norm can be constructed by (i) 
symmetrization: taking the maximum of the norm of a and a- 1 for each 
a, (ii) redefining the norm of a to be the maximum of norms of its conju­
gates b-1ab, and (iii) by adding a sufficiently large constant to the norm 
of all elements excluding the identity. 

Hence a group is unbounded if it admits a q-norm; in other words, 
the existence of unbounded norms and q-norms are equivalent. However 
q-norms are often defined in a more natural way: A motivating example 
is provided by the absolute value of a non-trivial homogeneous quasi­
morphism. Another advantage of q-norms is that they behave nicely 
under epimorphisms: 

Lemma 1.10. The pull-back of a q-norm under an epimorphism is 
a q-norm. In particular, if a group G admits a homomorphism onto an 
unbounded group, G itself is unbounded. 

This follows immediately from the definitions and discussion above. Let 
us apply the lemma for proving results stated in 1.2.2: 

Proof of Proposition 1.3: 

STEP 1: Let us show that any infinite abelian group G admits an un­
bounded norm. 

If G is finitely generated, than by the classification theorem it has a 
Z as a direct factor, and hence it admits an epimorphism onto Z. Thus 
G admits an unbounded norm by Lemma 1.10. 

For a countably generated G, let us enumerate its generators g1 , 

g2, .... Define the norm of g to be the smallest k such that g lies in the 
subgroup generated by g1 , g2 , ... , gk. This norm is unbounded. 

In general, any infinite abelian group contains an infinite finitely 
or countably generated subgroup, and the above construction provides 
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us with a norm on this subgroup H. Now choose any element g from 
G \Hand consider a subgroup H' generated by the union of Hand g. 
Combining the easily verifiable fact that the norm extends from H to 
H' with Zorn's lemma completes the proof. 

STEP 2: Assume now that GIG' is infinite. By Step 1, it admits an 
unbounded norm. Look at the epimorphism G --+ GIG'. Applying 
Lemma 1.10 we conclude that G is unbounded. • 

Proof of Proposition 1.4: If [G, G] has infinite index, look at the 
epimorphism G --+ H := GIG'. The group His an infinite abelian group, 
thus by Proposition 1.3 H is unbounded, and hence G is unbounded in 
view of Lemma 1.10. 

Otherwise, if H is finite, one can check that the commutator norm 
can be extended from the commutator to the whole group (even though 
in general q-norms cannot be extended from finite index subgroups, see 
an example above). Indeed, pick a (finite!) setS of representatives from 
cosets of G'. Then every element of G can be uniquely written as hs 
where h E G', s E S. Define a q-norm of such an element g = hs by 
q(g) = cla(h). The approximate conjugation invariance of this norm 
follows from the fact that conjugation can be written as a multiplication 
by a commutator (and hence it changes the norm by at most 1). To 
prove the approximate triangle inequality, note that for g1 = h1s1 and 
gz = hzsz 

Write 
s1s2 = h(s1, sz)t(s1, sz), 

where h(s1 , s2) E G' and t(s1, s2) E S. Thus 

q(g1gz) = cla(h1hz[h2 1, s1]h(s1, sz)). 

Put C = maxs,,s 2 ES cla(h(s1, sz)). Applying the triangle inequality for 
the commutator length, we get 

Thus q is indeed a q-norm. • 
1.2.6. Fine norms. A norm v on G is called fine if 0 is a limit point 

of v( G). Otherwise the norm is called, following a suggestion by Yehuda 
Shalom, discrete. For instance, conjugation-generated norms assume 
integer values only and hence are discrete. On the other hand a hi­
invariant Riemannian metric on a compact Lie group gives rise to a 
bounded fine norm on the group. 
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1.2. 7. Meager groups. A norm v on a group is not equivalent to the 
trivial norm if it is either unbounded or fine. A group G is called meager 
if every conjugation-invariant norm on G is equivalent to the trivial one 
(i.e. is bounded and discrete). 

1.3. Norms on diffeomorphism groups 
1.3.1. Smooth diffeomorphisms. In this section we present the main 

results of the paper which deal with norms on groups Diff0 (M), where 
M is a smooth connected manifold. We start with the case of closed 
manifolds. 

Theorem 1.11 (Main Theorem). 
(i) The group Diff0 (M) does not admit a fine conjugation-invari­

ant norm for all connected manifolds M. 
(ii) The group Dijj0 (Sn) is meager (where sn is a sphere); 
(iii) The group Diff0 (M) is meager for any closed connected 

3-dimensional manifold M. 

After the first draft of this paper appeared, T.Tsuboi [35] generalized 
this result and, remarkably, established meagerne13s of Dif fo(M) for all 
odd-dimensional closed manifolds. 

Let us give two important examples of conjugation-invariant norms on 
Diffo(M). 

Example 1.12. The commutator length: Since Diff0 (M) is a 
simple group [34] it coincides with its commutator subgroup and hence 
the commutator length (see Example 1.2) is a well-defined invariant 
norm on Diff0 (M). Introduce the commutator length diameter eld(M) E 

N U oo as maxcl(f) over all f E Diffo(M). 

Theorem 1.13. 
(i) For the sphere, cld(Sn) :=:; 4; 

(ii) For any closed connected 3-dimensional manifold M, 
cld(M) :::; 10. 

Example 1.14. The fragmentation norm: Every element f E 
Diff0 (M) can be represented as a finite product of diffeomorphisms sup­
ported in an embedded open ball (this is the famous fragmentation 
lemma, see e.g. [3]). The fragmentation norm frag(f) is the mini­
mal number of factors required to represent an element f E Diff0 (M). 
Clearly, frag is an conjugation-invariant norm on Diffo(M). The next 
result shows that the fragmentation norm is responsible for meagerness 
of Diffo(M). 
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Proposition 1.15. The group Diff0 (M) is meager if and only if the 
fragmentation norm is bounded. 

Open Problem. Is the fragmentation norm bounded for the case 
of closed surfaces? 

Let us now turn to open manifolds. 

Definition 1.16. We say that a smooth connected open manifold 
M is portablee if it admits a complete vector field X and a compact 
subset M 0 withthe following properties: 

• M 0 is an at tractor of the flow xt generated by X: for every 
compactsubsetK C MthereexistsT > Osothat xr(K) C Mo. 

• There exists a diffeomorphism (} E Diffo ( M) so that 
B(Mo) n Mo = 0. 

The set M 0 is called the core of a portable manifold M. 

For instance, any manifold M which splits as P x ~n, where P is a 
closed manifold, is portable. Indeed, the vector field X (p, z) = - z fz 
and the compact Mo = P x {lzl ~ 1} satisfy the conditions above. 
Furthermore, M is portable if it admits an exhausting Morse function 
with finite number of critical points so that all the indices are strictly 
less than ~ dim M. This implies, for example, that every 3-dimensional 
handlebody is a portable manifold. 

The next result is the main "local" block in the proof of Theorem 1.11 ( ii) 
and (iii). 

Theorem 1.17. The group Diff0 (M) is meager provided M is 
portable. 

For instance, any norm on Diff0 of an open ball is bounded. Together 
with Theorem l.ll(i) this immediately yields Proposition 1.15. Fur­
thermore, Diffo of a 2-dimensional annulus is meager (as well as for any 
product~ x M). However, it is still unknown whether the same holds 
for the open Mobius band! 

Our next result deals with the commutator length diameter of a portable 
manifold. 

Theorem 1.18. For a portable manifold M, cld(M) ~ 2. 

eThis notion is a mock version of subcritical Liouville manifolds in symplec­
tic topology. 
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1.3.2. Volume-preserving and symplectic diffeomorphisms: examples 
and problems. In contrast to groups Diff0 , the identity components of 
groups of compactly supported volume preserving and symplectic diffeo­
morphisms, as well as their commutator subgroups, are never meager: 
they admit a fine norm. 

Example 1.19. The size-of-support norm: The counterpart of 
Example 1.5 above for diffeomorphism groups is as follows. Consider 
the identity component Diff0 (M, vol) of the group of compactly sup­
ported volume-preserving diffeomorphisms of a smooth manifold M of 
dimension > 0. Define the norm of a diffeomorphism as the volume of its 
support. This norm is necessarily fine, and it is unbounded whenever the 
volume of M is infinite. However this norm is never stably unbounded: 
in fact, it is bounded on all cyclic subgroups. 

In some situations, stably unbounded norms on the commutator sub­
group of Diff0 (M, vol) can be "induced" from the fundamental group of 
M even when the volume of M is finite: 

Example 1.20. Suppose that M is a closed manifold equipped 
with a volume form. Suppose that H := 1r1 (.i\1) has trivial center. Then 
the commutator length on the commutator subgroup of Diff0 (M, vol) 
is stably unbounded provided the commutator length on H' is stably 
unbounded, see [15, 29]. 

However, in dimension ~ 3 no unbounded norms on volume-preserving 
diffeomorphisms are known so far in the cases when the manifold has 
simple topology and finite volume. 

Open Problem. Assume that n ~ 3. Does the identity compo­
nent of the group of volume preserving diffeomorphisms of the sphere 
sn admit an unbounded conjugation-invariant norm? Does the iden­
tity component of the group of compactly supported volume preserv­
ing diffeomorphisms of the ball of finite volume admit an unbounded 
conjugation-invariant norm? 

In the symplectic category, interesting norms inhabit the group Ham( M, w) 
of compactly supported Hamiltonian diffeomorphisms of a symplectic 
manifold (M, w). 

Example 1.21. The Hofer norm on Ham(M,w) ([17], see also 
[28]) is fine. Its unboundedness is a long-standing conjecture in sym­
plectic topology. Nowadays it is confirmed for various symplectic mani­
folds including for instance surfaces, complex projective spaces with the 
Fubini-Studi symplectic form and closed manifolds with 1r2 = 0. Further, 
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the Hofer norm on groups of Hamiltonian diffeomorphisms is known to 
be stably unbounded for various closed symplectic manifolds. However 
it is unbounded, but not stably unbounded, for the standard symplectic 
vector space ~zn (Sikorav, [33]). 

Example 1.22. The commutator length on Ham(M,w) is known 
to be stably unbounded for various symplectic manifolds (see [4, 12, 13, 
7, 15, 30, 31]) including all surfaces and complex projective spaces of 
arbitrary dimension. 

Example 1.23. The group Ham(~2n) admits the Calabi homo­
morphism (the average Hamiltonian) to R The kernel of the Calabi 
homomorphism coincides with the commutator subgroup of Ham(~2n), 
which is known to be simple [2]. This group is stably bounded with re­
spect to the commutator length. This is proved by D. Kotschick in [18]. 
Alternatively, this readily follows from the algebraic packing inequality 
given by Theorem 2.7 below. In contrast to this, the commutator length 
on [Ham( B 2n), Ham( B 2n)], where B 2n is the standard symplectic ball, 
is stably unbounded, see [4]. 

Example 1.24. A somewhat less understood example is the frag­
mentation norm (cf. Example 1.14 above). Let (M,w) be a closed sym­
plectic manifold and let U C M be an open subset. The Hamiltonian 
fragmentation lemma (see [2]) states that every Hamiltonian diffeomor­
phism f can be written as a product h 1 o ... o hN, where each h; is 
conjugate to an element from Ham(U). Define the fragmentation norm 
fragu(f) as the minimal number of factors in such a decomposition. Us­
ing methods of [14], one can show that for certain symplectic manifolds 
fragu is unbounded on Ham(M) provided the subset U is displaceable 
by a Hamiltonian diffeomorphism (e.g. U is a ball of a small diameter). 
Let us elaborate this statement. 

First of all recall [32, 27, 25] that for elements of the universal cover 

~(M) of the group of Hamiltonian diffeomorphisms one can define 
spectral invariants which come from Floer homology of the action func­
tional. Denote by Ji: ~(M) ---+~the asymptotic spectral invariant as 
defined in [14]. For various interesting symplectic manifolds Ji descends 
to a function Jk on Ham(M). This is for instance the case for symplectic 
manifolds with 1r2 ( M) = 0 (due to M. Schwarz [32]) and for standard 
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complex projective spaces (see [13]). f We continue discussion on the 
fragmentation norm assuming that ji does descend to f-L· 

Second, if U is displaceable, Theorem 7.1 in [14] guarantees that 

(2) IJ.L(¢'lf;)- J.L(¢)- J.L('lf!)l ::::; min(fragu(¢), fragu('!f!)) 

for all¢, 'If; E Ham(M). At this point there is a dichotomy which roughly 
speaking depends on the algebraic structure of the quantum homology 
ring of ( M, w): 

PossiBILITY 1: The left hand side of (2) is a bounded function on 
Ham(M) x Ham(M), and thus J.L is a quasi-morphism on Ham(M). For 
instance, this is the case for the complex projective spaces [13]. 

POSSIBILITY 2: The left hand side of (2) is unbounded, and thus a 

fortiori the fragmentation norm on Ham(M) is unbounded. For instance 
this is the case for the standard symplectic tori (IR.2n jz2n, dp 1\ dq). 

Let us explain why Possibility 2 holds for the two-torus: Take a pair of 
disjoint meridians Land K on the torus. Let <P, '.!! be two smooth cut off 
functions on the torus with disjoint supports which equal 1 near L and 
K respectively. Let { ¢t} and { 'lf;t} be the Hamiltonian flows generated 
by <P and '.!!. A standard calculation in Floer homology shows that the 
left hand side of (2) with¢= r/Jt, 'If; = '!f!t goes to infinity as t ___, oo. This 
proves unboundedness of the Hamiltonian fragmentation norm fragu 
for the 2-torus. 

We conclude with an open problem. In spite of the fact that the 
complex projective spaces enjoy Possibility 1 above, the question on 
unboundedness of the Hamiltonian fragmentation norm in this case is 
widely open even for CP1 = S 2 . 

ORGANIZATION OF THE PAPER: In the next section we introduce alge­
braic packing and displacement technique which is used for the proof 
of the main results stated in the introduction. As an illustration, we 
deduce there Theorem l.ll(i) and Proposition 1.8. Theorems 1.17 and 
1.18 are proved in Section 3.1. These theorems, combined with topolog­
ical decomposition technique (which is standard in the case of spheres, 
and less trivial in the case of three-manifolds) are applied to the proof of 
Theorems l.ll(ii),l.13{i) in Section 3.2 and of Theorems l.ll(iii),l.13(ii) 
in Section 3.3. 

fin general, ji may descend to Ham(.l\1!) and may not. We refer to a recent 
paper [23] by D. McDuff for new results and a detailed discussion of the current 
state of art in this problem. We thank D. McDuff for an illuminating discussion 
on this topic. 
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§2. Algebraic tools: packing and displacement 

Here we present the algebraic tools used for proving Theorems 1.11 
(i), 1.17 and 1.18. We use a number of tricks which imitate displacement 
of supports of diffeomorphisms and decomposition of diffeomorphisms 
into products of commutators in a more general algebraic setting. The 
tricks of this nature appear in the context of transformation groups at 
least since the beginning of 1960-ies (see e.g. [1]). The system of notions 
introduced below in parts imitates and extends the one arising in the 
study of Hofer's geometry on the group of Hamiltonian diffeomorphisms. 
Note also that various interesting results on infinitely displaceable sub­
groups were obtained in a recent work of D. Kotschick [18]. 

2.1. Algebraic packing and displacement energy 

Let G be any group. We say that two subgroups H 1 , Hz c G com­
mute if h1h2 = hzh1 for all h1 E H 1, h2 E Hz. We denote by Conj<P 
the automorphism of G given by g ~ ¢g¢-1. A subgroup H C G is 
called m-displaceable (where m ~ 1 is an integer) if there exist elements 
¢o := 1, ¢1, ... , cPm E G so that the subgroups Conj</J, (H), Conj<PJ (H) 
pair-wise commute for all distinct i, j E {0; ... ; m }. A subgroup H is 
called strongly m-displaceable if in the previous definition one can choose 
¢k 's to be consecutive powers of the same element ¢ E G: cPk = ¢k. In 
this case we shall say that ¢ m-displaces H. 

Note that form= 1 both notions coincide, and, for brevity, we refer 
to a 1-displaceable subgroup as to displaceable. 

Introduce two numerical invariants related to the above notions. 
The algebraic packing number p( G, H) = m + 1, where m is the maximal 
integer such that H is m-displaceable. This is a purely algebraic invari­
ant. The second quantity involves a conjugation-invariant norm, say v 
on G. Define the order m displacement energy g of H with respect to v 
as em(H) = inf v(¢) where the infimum is taken over all ¢ E G which 
m-displace H. We put em(H) = +::xJ if His not strongly m-displaceable. 

While speaking on displaceability, we tacitly assume that the sub­
group H is non-abelian. Indeed, every abelian subgroup H is m-displace­
able by 1 for every mEN and hence em(H) = 0. 

Example 2.1. Let M be a smooth connected manifold. Put G = 
Diff0 (M). Take any open ball B C M. Let H be the subgroup of G 

gThis notion is an algebraic counterpart of the symplectic displacement 
energy introduced by Hofer in [17]. 
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consisting of all diffeomorphisms supported in B. Choose any diffeo­
morphism ¢ E Diff0 (M) which displaces B: B n ¢(B) = 0. Then H 
commutes with Conjq,(H), soH is displaceable. 

Theorem 2.2. Let H c G be a strongly m-displaceable subgroup of 
G. Assume that G is endowed with a conjugation-invariant norm v. 

(3) 

(i) For every element x E H' with clH(x) = m the following in­
equalities hold: 

v(x) ~ 14em(H) 

and 

(4) cla(x) ~ 2; 

(ii) In the case clH(x) = 1, that is x = [f, g] for some f, g E H, we 
have that 

(5) v(x) ~ 4e1(H); 

Corollary 2.3. Assume that an element FE G m-displaces H for 
every m;:::: 1. Then cla(h) ~ 2 for all hE H'. 

This follows immediately from inequality ( 4). 

Theorem 2.2(ii) is proved in [11]. The argument is very short: indeed, 
assume that Conjq,(H) commutes with H. Then [f, g] = [f · cpf-1¢-1 , g]. 
Using bi-invariance of v we get that 

v([f, g]) ~ 2v([f, ¢]) ~ 4v( ¢) . 

Taking the infimum over all ¢displacing H we get inequality (5). The 
proof of Theorem 2.2(i) is more involved, see Section 2.2 below. 

Let us give some sample applications of Theorem 2.2. First, we 
deduce from inequality (5) the fact that the group Diff0 (M) does not 
admit a fine norm. 

Proof of Theorem l.ll(i): Assume on the contrary that Diff0 (M) 
admits a fine norm, say v. Take any ball B C M and pick two non­
commuting diffeomorphisms f and g supported in B. For any E·> 0 take 
h E Diff0 (M) with 0 < v(h) < E. Note that since h :/:- 11 there exists a ball 
C c M so that h displaces C. Since all balls in M are isotopic, there is 
a diffeomorphism 'ljJ E Diff0 (M) with '1/J(C) =B. Therefore¢:= 'ljJh'ljJ- 1 
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displaces B, and hence ¢> displaces the subgroup Diff0 (B) c Diff0 (M). 
Applying inequality (5) we get that 

v([f,g]):::; 4v(¢) = 4v(h) < 4c. 

Sending E to zero, we conclude that v([f, g]) = 0, a contradiction with 
the non-degeneracy of a norm. • 

Next, we apply Theorem 2.2 to proving that for a class of groups 
introduced in Section 1.2.4 existence of stably unbounded norms yields 
existence of quasi-morphisms. 

Proof of Propositions 1. 7 and 1.8: First of all note that every 
element h E G can be uniquely written in the following normal form: 
either h = (g1 ,g2) or h = (g1 ,g2 )t. This readily yields Proposition 
1.7. Second, we claim that it suffices to show that G has a non-trivial 
homogeneous quasi-morphism, say r. Indeed, put r(h) = r(g1 ) + r(g2), 
where h is in the normal form as above. A straightforward analysis 
shows that f is a (not necessarily homogeneous!) quasi-morphism on G. 
For instance, if h = (hr, h2)t and f = (fr, h) then hf = (hrh h2fr)t 
and hence 

lr(hf)- r(h)- r(f) I :::; lr(hrh)- r(hr)- r(h) I+ lr(h2Jr)- r(h2) -r(fr) I 

and hence is uniformly bounded. The other cases are considered simi­
larly. Finally note that the stabilization rDO(h) := limn->DO r(hn)/n does 
not vanish on h = (g, 1) provided r(g) # 0. Since foo is a homogeneous 
quasi-morphism, the claim follows. 

Let v be a stably unbounded norm on G. Assume that v=(w) > 0 
for some wE G. 
CASE 1: w = (gr,g2). Put w1 = (g1 , 1) and w2 = (1,g2). We claim that 
either V=>J(wr) > 0 or v=(w2) > 0. Indeed, wk = w}w~ and hence 

which yields the claim. 

CASE 2: w = (gr,g2)t. Put wr = (grg2, 1) and w2 = (1,g2gr). We claim 
that either v= ( wr) > 0 or l/00 ( w2 ) > 0. Indeed, w2k = w}w~ and hence 

which yields the claim. 

Looking at elements w1 and tw2t above we conclude that there exists 
an element u = (g, 1) with v00 (u) > 0. Replacing, if necessary, u by its 
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power we can assume that g E G' (here we use that H 1 (G) is finite). De­
note by H c G the subgroup consisting of all elements of the form (!, 1) 
where f E G. Clearly, His isomorphic toG and u E H'. Furthermore, 
t displaces H. Thus inequality (5) yields that 

v(z)::; 4v(t) · clH(z) Vz E H'. 

Substituting z = uk, dividing by k and passing to the limit as k --+ oo 
we get that 

0 < v00 (u)::; 4v(t) · sclH(u). 

Thus sclc(g) sclH(u) > 0. Therefore Bavard's theorem [5] yields 
existence of a non-trivial homogeneous quasi-morphism on G. • 

2.2. Inequalities with commutators 

Here we prove Theorem 2.2(i). For an element FE G, we say that 
g EGis an F-commutator if g = Conj1.[F,h] for some f,h E G. Note 
that the inverse of an F-commutator is again an F-commutator. 

Fix F E G such that the subgroups 

pair-wise commute. We shall show that every element x from the com­
mutator subgroup H' with clH(x) = m can be represented as a product 
of seven F-commutators. Note that given a conjugation-invariant norm 
von G, for every F-commutator g we have v(g) ::; 2v(F). Thus we shall 
get that v(x)::; 14v(F), which yields inequality (3). 

We shall consider products TI~ Conjpi (g;), where g; E H, i = 
0, ... , m. Since Hi's pair-wise commute, the product of such elements 
TI~ Conjpi (h) and TI~ Conjpi (g;) can be computed component-wise: 
it equals TI~ Conjpi(f;g;). 

Lemma 2.4. Let a collection of g; E H, i = 0, 1, ... , m be such that 
TI~ g; = 1. Then the product g = TI~ Conjpi(g;) is an F-commutator. 

Proof. We will show that g = [ F, </> - 1] where </> = TI~- 1 Conj pi ( </>;), 
{ </>;}~0 1 is a collection of elements of H which will be defined later. We 
set <l>m = 1 for convenience of notation. 

Note that [F, ¢-1] = Conjp(¢-1 )</>and Conjp(¢-1 ) equals the prod­
uct n~-1 Conjpi+l (</>i 1 ) = n;n Conjp•(¢;_\) whose terms lie in HI, ... , 
Hm. Hence 

m 

[F,¢-1] = Conjp(¢-1)¢ = </>o ·IT Conjp•(¢i_:\¢;) 
1 
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and the equation [F, ¢- 1] = g is equivalent to the system 

¢o =go 

¢01¢1 = g1 

¢11¢2 = g2 

The solution of this system is ¢k = TI~ gi, k = 0, 1, ... , m. The equation 
¢m = 1 is satisfied by the assumption TI gi = 1. • 

Lemma 2.5. Let g1,g2 , ... ,gm be a collection of elements of H. 
Then g = TI~ gi equals an F -commutator times the product 
TI;" Conjp,(gi)· 

Proof. Introduce gb = g and g~ = g-; 1 . Note that TI~ g~ = 1. Then 
apply the previous lemma. • 

Lemma 2.6. Any commutator from H is a product of two 
F -commutators. 

Proof. Consider a commutator [f, g] with f, g E H. Then by 
Lemma 2.4, the elements 

(fg)Conjp(g- 1 )Conjp2 (f- 1) 

and 
(f- 1 g- 1 )Conjp(g)Conjp2 (f) 

are F-commutators. Their product is [f, g]. • 

End of the proof of Theorem 2.2(i): Consider h = IJ~[fi,gi] with 
j;,gi E H. By Lemma 2.5, h equals an F-commutator times a product 
e := TI;" Conjpi ([J;, gi]). The latter in its turn is equal to the commuta­
tor of two products ¢ := TI;" Conjpi (fi) and 1/J := TI;" Conjpi (gi) since 
the subgroups Hi and Hj commute for i =/= j. This proves inequality ( 4). 

Applying again Lemma 2.5 we have that ¢ = fx and 1/J = gy where 
f = fm···h and g = gm···g1 and x, yare F-commutators. We write 

Since f, g E H, we have by Lemma 2.6 that [f, g] equals a product of 
two F-commutators. Hence e is a product of six F-commutators and 
therefore h is a product of seven F-commutators. As we explained in 
the beginning of this section, this completes the proof of the theorem.• 
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2.3. Packing and distortion of subgroups 

Let G be a group and H c G a subgroup. Consider the embedding 
of metric spaces (H', clH) f-+ (G', cla). Obviously cla(w) ::; clH(w) for 
all w E H'. It turns out that, after stabilization, this inequality can be 
refined provided H is m-displaceable in G: the larger m is, the stronger 
H' is distorted in G' with respect to the stable commutator lengths. 

Theorem 2. 7. 

1 
sclc(w)::; p(G, H) sclH(w) 'iw E H'. 

Example 2.8. Let G = Sp(2n, R) ~he universal cover of the 

linear symplectic group and let H = Sp(2, R) c G. Here we fix the 
splitting JR2n = JR2 EB JR2n-2 . The monomorphism Sp(2, JR) --+ Sp(2n, JR) 
which sends a matrix A to A EB 12n-2 induces the isomorphism of the 
fundamental groups 1r1 (Sp(2,1R)) = 1r1 (Sp(2n,JR)) = Z, and hence H 
naturally embeds into G. Let (p1 ,q1 , ... ,pn,Qn) be the standard sym­
plectic coordinates on JR2n. Denote by 11 the symplectic transformation 

which permutes (p1 , q1 ) and (p1, q1 )-coordinates. Write J; for a lift of 
Ii to G. Then the subgroups Conji1 (H) pairwise commute, and hence 
p(G, H) 2 n. Denote bye E H the generator of the center of H. One 
can show (see Remark 2.11 below) that 

(6) sclH(e) = n · sclc(e) . 

Thus the inequality in Theorem 2.7 yields p(G, H) ::; n. We conclude 
that p( G, H) = n and the inequality is sharp. 

Example 2. 9. Let ( M, w) be a symplectic manifold, and let U c M 
be an open subset. Let G = Ham(M,w) and let H = Ham(U,w). In 
this case the algebraic packing number p( G, H) has a simple geometric 
meaning: It equals to the geometric packing number Pgeam ( M, U) which 
is defined as the maximal number of diffeomorphisms from G which take 
U to pairwise disjoint subsets of M. In the case when U is a standard 
symplectic ball the geometric packing number was intensively studied in 
the framework of the symplectic packing problem (see [6] for a survey). 
For instance, assume that M and U are 2n-dimensional symplectic balls. 
In the case n = 1 the geometric packing number is simply the integer 
part of the ratio of the areas. In the case n = 2 the situation is more 
complicated: For instance, if the ratio of volumes of A1 and U lies in the 
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interval (8; (1 + 1/288) · 8), the geometric packing number equals 7 (see 
[24]). It would be interesting to explore the sharpness of the inequality 
in Theorem 2.7 in these examples. 

The proof of Theorem 2.7 is based on the following observation (thanks 
to Sasha Furman for help). For a subgroup H c G write Q(H) for the 
set of homogeneous quasi-morphisms on H modulo morphisms, and for 
cp E Q(H) put 

II1>IIH = sup ¢([x, y]) . 
x,yEH 

Proposition 2.10. Let H 1 , ... , HN be subgroups ofG so that H; and 
Hj commute fori =1- j. Put K = H 1 · ... · HN. Then for every 1> E Q(K) 

N 

llc/JIIK = L llc/JIIHi . 
i=l 

Proof of Proposition 2.10: Take any x, y E K and write 

X= XI ..... XN, y = Yl ..... YN' 

where X;, y; E H;. Then 

Since the commutators in the right hand side pair-wise commute we get 
that for every quasi-morphism¢ E Q(K) 

N 

1>([x, y]) = L 1>([x;, y;]) . 
i=l 

Since pairs x;, y; can be chosen in an arbitrary way we get the desired 
equality. • 

Proof of Theorem 2.7: Suppose that p(G,H) ~ N. Then there 
exist elements 91 = 1, 92 , ... , 9N so that subgroups H; := 9;H9i 1 pair­
wise commute. For every ¢ E Q(G) we have llc/JIIHi = llc/JIIH· Put 
K = H 1 · ... · HN. Applying Proposition 2.10 we have 

(7) llc/JIIc ~ II1>IIK = Nllc/JIIH. 

Denote by Q*(H) the set of non-trivial quasi-morphisms from Q(H), 
and by Q*(G, H) the set of quasi-morphisms from Q*(G) which restrict 
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to a non-trivial quasi-morphism on H. Apply now Bavard's theorem [5]: 
given wE H' we have 

1 ¢(w) 1 ¢(w) 
sclH(w) =- sup -- > - sup --

2 ¢EQ.(H) llc/JIIH - 2 ¢EQ.(G,H) llc/JIIH 

Using inequality (7) above and applying the same Bavard's theorem we 
have 

1 ¢(w) 
> N·- sup --

2 ¢EQ.(G,H) llc/JIIc 
(8) 

1 ¢(w) 
N ·- sup -11 -~, 11 = Nsclc(w). 

2 ¢EQ.(G) '+' G 

The equality in the middle follows from the fact that for 
¢ E Q*(G) \ Q*(G, H) and wE H' one has ¢(w) = 0. Using inequality 
(8), we readily complete the proof. • 

Remark 2.11. Denote by Gn the universal cover of the group 
Sp(2n, JR.) and by en E Gn the generator of 7Tl (Sp(2n, JR.)) with Maslov 
index 2. The group Gn carries unique homogeneous quasi-morphism f.Ln 
with f.Ln(en) = 1 (see [4]). Put 

I ·- IIJ.Lnllcn 
n .- IIJ.L1IIc, . 

One can show that In = n. The only known to us proof of this innocently 
looking fact is surprisingly involved: it can be extracted from [8] (thanks 
to A. Iozzi and A. Wienhard for illuminating consultations). By the 
above-cited theorem due to Bavard 

sclc,(el) -I 
sclcn(en) - n' 

which proves equality (6) above. 

§3. Topological arguments 

3.1. Portable manifolds 

Let M be a portable manifold. We shall use notations of Definition 
1.16. 

Lemma 3.1. There exists a neighborhood U of the core M 0 of M 
and a diffeomorphism ¢ E Diff0 (M) so that the sets ¢i(U), i 2: 1 are 
pair-wise disjoint. 
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Proof. Choose a sufficiently small neighbourhood U of the core so 
that O(U) n Closure(U) = 0. Put V = O(U) and consider the vector field 
Y = O*X on M. Note that V is an attractor of Y. In particular there 
exists T > 0 large enough so that the closure of Y" (U U V) is contained 
in V. Cutting off Y" outside a sufficiently large compact set, we get 
that there exists a diffeomorphism ¢ E Diff0 (M) so that 

Closure cp(U U V) C V. 

Observe that ¢i(U) c ¢i-1(V) \ ¢i(V). Thus the sets qi(U), i ~ 1 are 
pair-wise disjoint. • 

Proof of Theorem 1.17: Let v be any conjugation-invariant norm on 
Diffo(M). It suffices to show that v is bounded. 

We shall use notations of Definition 1.16 of a portable manifold. 
Look at the neighborhood U of the core and at the diffeomorphism ¢ 
from Lemma 3.1. Note that¢ m-displaces the subgroup Diff0 (U) for any 
m. Take any diffeomorphism h E Diff0 (U). Since the group Diff0 (U) is 
perfect, it follows from inequality (3) that v(h) :::; 14v(¢). 

Further, take any diffeomorphism f E Diff0 (M). The first item of the 
Definition 1.16 guarantees that forT > 0 large enough X" (support f) C U. 
Applying the ambient isotopy theorem, we can find a diffeomorphism 
'ljJ E Diff0 (M) with 'lj;(supportf) CU. Thus '1/Jf'lj;- 1 lies in Diff0 (U). We 
conclude that 

v(f) = v('lj;f'lj;-1):::; 14v(¢) 

which implies that v is bounded. This completes the proof. • 

Proof of Theorem 1.18: The proof above shows that the diffeomor­
phism ¢ m-displaces the subgroup H := Diff0 (U) for any m. Corol­
lary 2.3 above implies that cla(h) :::; 2 for all h E Diff0 (U), where 
G = Diff0 (M). But every element f E G is conjugate to an element 
from H. Thus cld(M):::; 2. • 

Remark 3.2. Theorem 1.17 admits the following straightforward 
generalization. Let G be any group acting by homeomorphisms on a 
topological space X. Assume that there exist two disjoint open subsets 
U, V C X and an. element ¢ E G which satisfy the following two easily 
verifiable properties: 

(i) Closure cp(U U V) C V ; 
(ii) For every finite collection of elements 'I/J1, ... , '1/Jk c G there ex­

ists h E G so that 
k 

h( U support('I/Ji)) CU. 
i=1 
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Then any invariant norm on G is bounded on the commutator subgroup 
G'. 

3.2. Spheres 
Lemma 3.3. Every diffeomorphism f E Diff0 (Sn) can be written 

as f = gh where g E Diff0 (Sn \ {z}) and hE Diff0 (Sn \ {w}) for some 
points z, wE sn. 

Since sn \{point} = ffi.n is a portable manifold, Theorem l.ll(ii) follows 
from Theorem 1.17 and Theorem 1.13(i) follows from Theorem 1.18. 

Proof of Lemma 3.3: This fact is standard: Let {ft}, t E [0; 1] be 
a path in Diff0 (Sn) with fo = 1 and h = f. Choose a sufficiently 
small closed disc D c sn so that X : = Ut ft (D) =I- sn. Pick a point 
z ¢:_ X. Since sn \ { z} is diffeomorphic to ffi.n, there exists a path {gt} 
of diffeomorphisms from Diff0 (Sn \ {z}) such that go= 1,gtiD =!tiD· 
Pick a point win the interior of D. Note the path {g;-1 ft} is compactly 
supported in sn \ { w }. Thus the diffeomorphisms g := g1 and h := g- 1 f 
are as required in the lemma. • 

3.3. Three-manifolds 

Here we prove Theorem l.ll(iii). By a graph in a manifold we mean 
a piecewise smoothly embedded graph. By a smooth isotopy of a graph 
we mean an isotopy which extends to a smooth isotopy of its tubular 
neighborhood. We shall use without a special mentioning the following 
fact (see e.g. [20]): any smooth compactly supported diffeomorphism ¢> 
of an open handlebody U is isotopic to the identity through compactly 
supported diffeomorphisms, that is f E Diff0 (U). 

Lemma 3.4 (Fundamental Lemma). Let r and K be two disjoint 
graphs and M. Let ft : r ----+ M, t E [0; 1] be a smooth isotopy with 
fair= 1 and fl(r) nK = 0. Then there exist a diffeomorphism h of M 
supported in a ball and a diffeomorphism ¢> E Diff0 (M \ K) so that 

hlr = hocf>lr · 

Let us prove the theorem assuming the lemma. 

Proof of Theorem l.ll(iii): Take any norm von Diff0 (M). A graph 
is called the H eegard graph if its complement is diffeomorphic to an 
open handlebody. Every three-manifold contains a Heegard graph (for 
instance, a neighborhood of the 1-skeleton of a triangulation of M). 
Choose a pair of disjoint Heegard graphs L and K in M. Fix a suffi­
ciently small tubular neighborhood U of L. Since U, M \ K and M \ L 
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are open handlebodies and therefore are portable, Theorem 1.17 implies 
that the norm v, when restricted to Diff0 of these submanifolds, does 
not exceed some constant C > 0. We shall assume also that the same 
inequality holds for the restriction of v to Diff0 of any ball in M (we use 
here that all balls are pair-wise isotopic and portable). 

We shall show that 

(9) v(f) :s; 5C 

for every f E Diffo(M) with f(U)nK = 0. Note that this yields the same 
inequality for every f. Indeed, perturbing K to K' by a small ambient 
isotopy of M and shrinking U to U' by an ambient isotopy of M we can 
always achieve that f(U') n K' = 0. But the subgroups Diff0 (U') and 
Diffo(M \ K') are conjugate in Diffo(M) to Diff0 (U) and Diff0 (M \ K) 
respectively, and hence the restriction of the norm v to these subgroups 
is bounded by the same constant C which yields inequality (9). From 
now on we assume that f(U) n K = 0. 

Let N C U \ L be any embedded graph so that the induced homo­
morphism 1r1 (N) ----+ 1r1 (U \ L) is a surjection. Put r = L UN, and apply 
the Fundamental Lemma. We get a diffeomorphism h supported in a 
ball, and a diffeomorphism ¢ E Diff0 (M \ K) so that fir = h o ¢1r . 
Denote 7/J = (h¢ )- 1 f and observe that 7/Jir = 1. 

In particular, 7/J fixes L. We wish to correct 7/J and get a diffeomor­
phism fixing a neighborhood of L. This is the point where the graph 
N enters the play. More precisely, we claim that there exist diffeomor­
phisms ~, (J E Diffo ( U) and rJ E Diffo ( M \ L) so that 7/J = ~ ry(J. Indeed, 
since 7/J fixes L, there exists a sufficiently small tubular neighborhood 
V c U of L and a diffeomorphism (J E Diff0 (U) so that 7/J0- 1 (V) = V. 
Put T := 7/J0- 1 . Since u \ L retracts to av and 7/J fixes N we conclude 
that T induces the identity isomorphism of 'lrl ( 3V). It is well known (see 
e.g. [36, 19, 20]) that therefore riv : V ----+ V is isotopic to the identity. 
Hence there exists a diffeomorphism ~ E Diff0 (U) which coincides with 
Ton V, and so ry := ~- 1 T is supported in M \ L. The claim follows. 

Finally, write 

f = h¢7/J = h¢~ry(J . 

Note that h E Diff0 (B) where B is a ball, and hence v(h) :s; C where 
the constant C was chosen in the beginning of the proof. Furthermore, 
¢ E Diffo(M\K), ~' (J E Diff0 (U) and ryE Diff0 (M\L). Thus v(f) :s; 5C 
which proves inequality (9). This completes the proof. • 

Proof of Theorem 1.13(ii): In the proof above we represented every 
diffeomorphism from Diff0 of a closed connected three-manifold M as a 



244 D. Burago, S. Ivanov and L. Polterovich 

product of 5 diffeomorphisms from Diff0 of portable manifolds. Applying 
Theorem 1.18 we get the desired estimate cld(M) ::; 10. • 

Proof of Lemma 3.4: The proof is divided into several steps. 

STEP 1: Let r, L c M be disjoint embedded graphs, and ft : r -+ M 
be a smooth isotopy. Put ft := ft(f). We say that the crossing point 
y = f T (X) E r T n L is generic if the points X and y lie in smooth interior 
parts of r and L respectively and 

Introduce two modifications of the isotopy ft at a generic crossing point. 

TYPE I MODIFICATION (REMOVING THE CROSSING POINT): Here we 
assume that Lis a segment with the endpoints A and Bandy= r rnL 
is a generic crossing point. Choose E > 0 small enough so that y is the 
only crossing point on the time interval I := [T - E; T + E]. Choose 
a sufficiently small neighborhood U of L. Let h 8 , s E I be a path in 
Diffo(U)sothaths = loutsideasmallneighborhoodofs = T,h 8 (L) C L 
and hs(B) = B for all s, and h7 shrinks L so that y rf:. h7 (L). Replace 
the piece {ft}tEI of the original isotopy by {f~}tEI where f~ = ht" 1ft. 

Note that ft n ht(L) = 0, and hence r~ n L = 0, for all t E I. 

TYPE II MODIFICATION (DECOMPOSITION): Here f and L are arbitrary 
graphs, andy = fr(x) E r T n Lis a generic crossing point. Choose E > 0 
small enough so that y is the only crossing point on the time interval 
I:= [T- 2E; T + 2E]. There exists a neighborhood E of y diffeomorphic 
to a Euclidean cube 

Q = {(u, v, w) E lR3 1 lui, lvl, lwl < 2E} 

so that L n Q is the vertical segment { u = v = 0, w E [ -2E; 2E]} and 
ft n Q is the segment Ct-T := { u = t- T, v E [-2E; 2E], w = 0} fortE I. 
Thus the isotopy r t inside Q is given by the motion of the segment C-2E 

in the ( u, v )-plane in the direction of the u-axis. In this picture, the 
crossing point y is the origin. 

Let us agree on the following wording: Suppose that two curves a 0 

and a 1 in the ( u, v )-plane are given by the graphs { u = F0 ( v)} and 
{u = F1(v)} of smooth functions F0 ,F1 : [-2E;2E]-+ JR. The linear 
isotopy between a 0 and a1 is formed by graphs of (1 - s )Fo + sF1, 
s E [0; 1]. 

The modification we are going to describe is local. Fix a smooth cut­
off function p: [-2E; 2E] -+ [0; 3E/2] which is supported in a very small 
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neighborhood of 0 and which satisfies p(O) = 3E/2. Denote {3± = C±E· 

Consider the curve 

a= {u = -E + p(v),v E [-2E; 2E],w = 0}. 

Modify the original isotopy on the time interval I' := [T - E; T + E] as 
follows: first make a linear isotopy from {3- to a, and then a linear 
isotopy from a to (3+. We extend the curves appearing in the process of 
this isotopy outside Q by appropriate r t 's and make an obvious change 
of time in order to fit into the time interval I'. 

The following features of the modified isotopy are crucial for our 
further purposes. The isotopy from {3- to a can be realized by an isotopy 
of diffeomorphisms of M supported in a ball B C Q. The isotopy from 
a to (3+ does not hit L and hence can be extended to an ambient isotopy 
of M which is fixed near L. 

STEP 2: After these preliminaries, we pass to the situation described 
in the formulation of the lemma: Let r, K be two disjoint graphs in M 
and let ft : r--+ M, t E [0; 1] be a smooth isotopy with ft(r) n K = 0. 
After a small perturbation of the isotopy with fixed end points we can 
assume that the following conditions hold: 

(C1) The set 

{(x, t) E r X [0; 1]1 ft(x) E K} 

consists of N pairs (xi, ti), i = 1, ... , N so that {xi} are distinct points 
of r, 0 < h < ... < t N < 1 and Yi = it; ( x) are distinct generic crossing 
points. 

(C2) The curves 'Yi := Ut(Xi)}tE[O;l] are pairwise disjoint embedded 
segments. 

(C3) For each i, the isotopy ft : r \{xi}--+ M crosses 'Yi generically. 

We shall remove the latter crossings using the Type I modification (see 
Step 1): Note that each such crossing occurs in the subsegment of 'Yi 
which is either of the form [xi; k-8Xi] or [it;Hxi; ftxi], where 8 > 0 is 
small enough. We apply Type I modification to these segments keeping 
the end point it;±Oxi fixed (such an end point is denoted by B in the 
local description of a Type I modification above). Note that each such 
modification is localized near some 'Yi and hence does not create new 
crossings, so the process stops after ·a finite number of modifications. 
Thus we replace assumption (C3) above by a stronger one: 

(C3') For each i, the isotopy ft: r \{xi}--+ M does not hit 'Yi· 
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STEP 3: It would be convenient to make a change of time in our isotopy 
as follows. We assume that ft is defined on the time interval t E [0; N + 1] 
and the crossings times are consecutive integers ti = i, i = 1, ... , N. 
Assumptions (C1) and (C2) of the previous step yield existence of em­
bedded pair-wise disjoint parallelepipeds Pi C M, i = 1, ... , N (each 
parallelepiped Pi is a neighborhood of the segment "fi) equipped with 
local coordinates u E [-1;N+2],v E [-1;1],w E [-1;1] so that the 
following holds: 

"fi = {(u,O,O) I u E [O;N + 1]}, 

KnPi={(i,O,w)l wE[-1;1]}, rnPi={(O,v,o)l vE[-1;1]}, 

and 
ft(O, v, 0) = (t, v, 0) 'it E [0; N + 1], v E [-1; 1] . 

In addition, assumption (C3') of the previous step guarantees that Pi's 
can be chosen so thin that 

(10) 

STEP 4: Let Qi C Pi be a sufficiently small cube centered at the crossing 
(i, 0, 0) whose edges have the length 4E and are parallel to the coordinate 
axes. Perform a Type II modification of our isotopy inside Qi: We keep 
notations ai, (Jf (with the extra sub-index i) for special curves appearing 
in the description of the modification presented in Step 1. The reader 
should have in mind that the current u-coordinate is shifted by i in 
comparison to the one of Step 1, and the crossing time T equals i. 

Thus we assume that 

f3t' = {(i±E,v,O) I v E [-2E,2E]}. 

Set 

ri = fi_,(r) and rt = (Ji_,(r) \ f3i) u ai , i = 1, ... , N. 

Note that rt = hi(ri), where hiE Diffo(Qi)· 
It will be convenient to put rt =rand r.zv+1 = !l(r). Recall that 

we write rt = ft(r). 

STEP 5: Fix i E {0; ... ; N}. Let us focus on the following isotopy taking 
rt to rUl : we proceed according to the description of the Type II mod­
ification (see Step 1) until we reach the graph ri+< which extends f3t 
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(this move is empty when i = 0), and then move on with the original iso­
topy ft until r;+1 . Note that this isotopy does not hit K. Furthermore, 

the (time-dependent) vector field di) of this isotopy, which is defined 
along the image of rt at the time moment t, is parallel to the u-axis 
in each of the parallelepipeds Pj, j = 1, ... , N. Now we shall use prop­

erty (10) of the original isotopy: It guarantees that one can cut off di) 
near K and extend it to the whole M so that it remains parallel to the 
u-axis in all Pj 's. After such an extension we get an isotopy supported 
in M \ K so that its time-1-map ¢i sends rt to r;+l. 

The following property of maps ¢i, which readily follows from the 
above discussion on vector fields di), is crucial for the final step of the 
proof: 

(11) ¢No ... o¢i(Qi)CPi Vi=1, ... ,N. 

STEP 6: We have 

(12) 

where the diffeomorphisms h; E Diff0 ( Q;) and the cubes Q; appear in 
Step 4, and the diffeomorphisms ¢; E Diff0 (M \ K) are constructed in 
the previous step. Put 

9i = (¢N 0 ... 0 ¢;)hi(¢N 0 ... 0 ¢i)-l ' i = 1, ... , N. 

Note that 9i E Diff0 (Q;) where Q~ =¢No ... o ¢i(Q;). By (11), the sets 
Q~ are pair-wise disjoint. Since each of Q~ is diffeomorphic to an open 
ball, the diffeomorphism h := 9N o ... o g1 is supported in a ball. Finally, 
put 

¢=¢No ... o ¢0 E Diff0(M \ K) 

and observe that in view of equation (12) h lr = h¢1r- This finishes off 
the proof of the lemma. • 
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