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Pontrjagin classes and higher torsion of sphere 
bundles 

Kiyoshi lgusa 

Abstract. 

By a classical result of Schafer and Kahn ([12], [6]), oriented topo
logical sphere bundles have well defined rational Pontrjagin classes. In 
the smooth case, we show that the corresponding Pontrjagin charac
ter is proportional to the higher Franz-Reidemeister torsion invariant 
in each degree when the fiber is even dimensional and we discuss the 
relationship in the odd dimensional case. 

This short paper is intended to answer a question about oriented 
smooth sphere bundles that Shigeyuki Morita and Dieter Kotschick 
asked me at the AIM (American Institute of Mathematics in Palo Alto) 
conference in March, 2005 on the moduli space of curves, namely: Can 
higher Franz-Reidemeister torsion be used to define Pontrjagin classes 
for smooth oriented odd-dimensional sphere bundles? 

If a smooth oriented sphere bundle E ---> B has a section then the 
vertical tangent bundle of E along the section can be used to define the 
Pontrjagin classes and therefore the Pontrjagin character of the bundle 
E. In the case when the fiber is an even dimensional sphere this Pontr
jagin character is proportional to the higher Franz-Reidemeister torsion 
invariant. Therefore, Morita and Kotschick pointed out to me that (the 
appropriate scalar multiple of) this higher torsion invariant can be used 
as a generalization of the Pontrjagin character and therefore defines Pon
trjagin classes for all oriented even dimensional smooth sphere bundles. 
In the case of an odd dimensional sphere bundle the analogous state
ment is false by a construction of Hatcher. If there is a section of the 
bundle, the higher Franz-Reidemeister torsion is equal to a multiple of 
the Pontrjagin character plus an exotic term which measures how far the 
bundle differs from the linear bundle given by the section. The question 
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is: Can we specify this decomposition in general, even when there is no 
section? 

§1. Rational Pontrjagin classes 

We recall that a Euclidean bundle is a fiber bundle with fiber ffi.n 
and structure group Homeo(ffi.n, 0), the group of homeomorphisms of ffi.n 
preserving the basepoint 0 with the compact open topology. Euclidean 
bundles are equivalent to topological microbundles by [7]. We recall the 
following classical result. 

Theorem 1.1 (Schafer[12], Kahn[6]). Oriented Euclidean bundles 
over a finite cell complexes have natural and well defined rational Pon
trjagin classes which agree, rationally, with the usual Pontrjagin classes 
if the bundle is a vector bundle. 

Corollary 1.2. Oriented topological sphere bundles over finite com
plexes have well defined rational Pontrjagin classes. 

Proof. The fiberwise open cone of a topological sphere bundle is a 
Euclidean bundle. Q.E.D. 

Lemma 1.3. If an n-dimensional Euclidean bundle E over a fi
nite complex contains an embedded n-disk bundle associated to a vector 
bundle V then E is fiberwise homeomorphic to V. 

Proof. Since ffi.n is contractible, we can move the base point to the 
center of the n-disk. This reduces the structure group of the bundle 
to the subgroup of Homeo(ffi.n, 0) which is orthogonal in a small neigh
borhood of the origin. There is a deformation retraction of this group 
to the orthogonal group O(n) by the one parameter family of contin
uous automorphisms cf>t given by cf>t (f) ( x) = t f ( tx) if 0 < t S 1 and 
cf>o(f) = Df(O) E O(n) is the derivative off at 0. Q.E.D. 

Corollary 1.4. If p : E __, B is a smooth oriented sphere bundle 
over a compact manifold B and s : B __, E is a section, then the rational 
Pontrjagin classes of the sphere bundle E agree with the usual Pontrjagin 
classes of the pull-back s*TV E of the vertical tangent bundle rv E of E. 

Proof. The Euclidean bundle given by coning off each fiber of E 
contains a linear disk bundle associated to the stabilization of s*Tv E. 
By the lemma, these bundles are homeomorphic. So, they have the same 
rational Pontrjagin classes by the theorem. Q.E.D. 
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We will combine the Pontrjagin classes of a vector bundle E into 
the Pontrjagin character ph(E) = 'L_phk(E) where 

phk(E) = ( -l)kchzk(E ~!C) 

is, up to sign, the degree 4k part of the Chern character of the com
plexification of E. Since ph( E) is a polynomial with rational coefficients 
in the Pontrjagin classes, oriented Euclidean bundles have well-defined 
Pontrjagin characters. Also, it is well-known and easy to verify that the 
Pontrjagin character determines the rational Pontrjagin classes. 

We will denote the Pontrjagin character of an oriented topological 
sphere bundle E by ph top (E). 

§2. Higher torsion of sphere bundles 

We recall the higher torsion invariants defined in [8], [3], [5], [4]. 
Given any smooth bundle p : E ---+ B where 1r1 B acts trivially on the 
rational homology of the fiber, there are higher torsion invariants 

T~R(E) E H 4k(B; ffi.) 

called the higher Franz-Reidemeister (FR) torsion invariants of E which 
are invariants of the smooth bundle but, in general, are not topological 
invariants. Oriented smooth sphere bundles satisfy the trivial action 
assumption and therefore have well-defined higher FR-torsion invariants. 

For oriented smooth bundles E ---+ B with closed even dimensional 
fibers, the higher FR-torsion is proportional to generalized Miller
Morita-Mumford classes M 2k(E) which can be defined rationally in 
terms of the Pontrjagin character as 

Mzk(E) = tr~ c -1):(2k)! phk(Tv E)) E H 4k(B; Q) 

where tr~ : H* (E) ---+ H* (B) is the transfer [2]. The coefficients are 
chosen so that A12k(E) is equal to the usual Miller-Morita-Mumford 
classes, also called tautological classes, for oriented surface bundles ([11], 
[9], [10]). 

Theorem 2.1. [3],[5] If E ---+ B is an oriented smooth bundle with 
closed even dimensional fibers so that 1r1 B acts trivially on the rational 
homology of the fiber then 

FR(E)= (-l)k((2k+l)M (E)=((2k+l)t E( h (TvE)) 
Tzk 2(2k)! 2k 4 rs P k 

where ( ( s) = 'L_ ,;s is the Riemann zeta function. 
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Corollary 2.2. If p : E ____, B is an oriented smooth even dimen
sional sphere bundle then 

In particular, Tt;.,R(E) is a topological invariant. 

Proof. One of the basic properties of the transfer [2] is that the 
composition 

* t E 

H*(B;Q) ~ H*(E;Q) ~ H*(B;Q) 

is equal to multiplication by the Euler characteristic of the fiber which in 
this case is 2. By naturality of phtop and Corollary 1.4, p*(phtop(E)) = 
phtop(p* E) = ph(Tv E). Transferring down to H 4k(B) we get: 

proving the formula. Q.E.D. 

For smooth oriented odd dimensional sphere bundles, the situation 
is not so clear. If the bundle is linear then we have the formula: 

Theorem 2.3. [3],[5] If E = S2n-l(~) is the S 2n- 1 -bundle associ
ated to an S0(2n)-bundle ~ over B then 

However, when the bundle is not linear, there is an exotic component 
to the higher torsion. Hatcher gave a family of examples of such bundles. 
The first example has the following properties (Theorem 6.4.2 in [3]). 

Theorem 2.4 (Hatcher's example). There is a smooth bundle E ____, 
S 4 with fiber S13 which has a section along which the vertical tangent 
bundle is trivial but so that T{R(E) is equal to ±24((5) times the gen
erator of H 4 (S4 ). 

§3. Exotic torsion 

The difference between the two expressions in Theorem 2.3 can be 
defined for all oriented smooth sphere bundles as follows. 
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Definition 3.1. For any oriented smooth sn-bundle E --> B, we 
define the exotic torsion T2k(E) E H 4k(B;ffi.) by 

Exotic torsion is zero for all smooth oriented even dimensional sphere 
bundles by Corollary 2.2 and for all linear odd dimensional sphere bun
dles by Theorem 2.3. Therefore, it measures the extent to which E is 
not a linear bundle. 

In [4], the general theory of higher torsion invariants is discussed. 
But the following proposition tells us that exotic torsion does not fit into 
this theory. 

Proposition 3.2. Exotic torsion, as defined above, is not the re
striction to sphere bundles of a higher torsion theory as defined in [4]. 

Proof Higher torsion theories in degree 4k have an even and an odd 
component, each of which is unique up to a scalar multiple. However, 
exotic torsion is zero on all linear even and odd dimensional sphere 
bundles. So, both even and odd components would be zero making it 
identically zero if it were a higher torsion theory. Q.E.D. 

This implies that exotic torsion is not an absolute higher torsion 
theory. However, it might be an example of a relative theory. As I 
explained in my lecture at the conference in honor of Professor Morita, 
there are different definitions of higher relative torsion, three of which 
agree according to my joint work with Sebastian Goette. 

§4. Higher relative torsion 

There are three definitions of relative smooth torsion: axiomatic 
relative torsion, higher relative Franz-Reidemeister (FR) torsion and 
relative Dwyer-Weiss-Williams (DWW) torsion. The axiomatic relative 
torsion is defined when we have a pair of smooth bundles E --> B, 
E' --> B over the same base B with compact smooth manifold fibers 
M, M' and a fiber homotopy equivalence f: E--> E'. I.e., f commutes 
with the projection to B and induces a homotopy equivalence on fibers 
M ~ M'. In this case we have "tangential" and "exotic" relative torsion 
invariants TT (!), Tx (!) E H 4k ( B; ffi.) which measure the extent to which 
f is not a fiberwise diffeomorphism. 

The tangential relative torsion measures the difference between the 
vertical tangent bundles of E and E'. It is the push-down of the Chern 
character of the difference bundle, i.e., it is the relative generalized 
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1\iiller-Morita-Mumford class. The exotic relative torsion is indepen
dent of the vertical tangent bundle. By an argument very similar to the 
one given in [4], it follows that tangential and exotic relative torsion are 
unique up to a scalar factor. This implies that exotic relative torsion is 
proportional to higher relative FR torsion. 

What Goette and I proved is that the exotic relative torsion is also 
proportional to the relative Dwyer-Weiss-Williams torsion when the base 
and fiber are closed oriented manifolds. This extends to the case of 
arbitrary base spaces but the definitions become more complicated. 

4.1. Dwyer-Weiss-Williams smoothing theory 
Dwyer-Weiss-Williams smoothing theory works as follows. We take 

a topological manifold bundle E --+ B (with compact topological mani
fold fiber M) together with a linear vertical tangent bundle vv E. This 
is a vector bundle whose total space is homeomorphic to a neighborhood 
of the diagonal f:l.E in the fiberwise product E XB E (the bundle over 
B with fiber M x M). The question is: Given the pair (E, vv E), can 
we find a smooth bundle W --+ B and a homeomorphism f : W --+ E 
which commutes with the projection to B so that f is covered by a non
s!ngular linear isomorphism of vector bundles j: TvW--+ vv E so that 
f is compatible with the exponential maps to W and E? We call this a 
fiberwise tangential smoothing of (E, vv E). 

Let s'}jt (E, vv E) be the space of all fiberwise tangential smoothings 
of ( E, vv E). We want to know how many components this space has. 
In their paper [1] Dwyer, Weiss and Williams give a computation of the 
homotopy type of this space (and in particular of n0 ) in the stable range. 
Stabilization is given by taking the direct limit with respect to all linear 
disk bundles D(~) over E. This gives a space 

Theorem 4.1 (Dwyer-Weiss-Williams [1]). Assuming that this 
space is nonempty, we have a homotopy equivalence 

sS'}jt(E, vv E)~ fB1i%(E) 

where fB1i%(E) is the space of sections of the bundle 1i%(E) over B 
whose fiber is the zero space n=(M+ 1\ 1i(*)) of the homology theory on 
the fiber of E with coefficients in the stable h-cobordism space 1i(*). 

This theorem is not stated in this way in their paper [1]. So, Bruce 
Williams gave us (Goette and the author) handwritten notes proving 
this statement. Excerpts were shown in my lecture. This theorem leads 
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to the concept of the stable smooth structure class of an exotic smooth 
structure. The idea is as follows. 

First of all, this theorem implies that the set of stable tangential 
smooth structures on (E, vv E) forms an abelian group since it is 1ro 
of an infinite loop space. However, it would be more accurate to say 
that it is an affine space which needs a choice of zero to become an 
additive group. This choice is given by a fixed tangential smoothing Eo 
of (E, vv E). Then, any other tangential smoothing E gives an element 
of this group: 

- o/c 
B(E, Eo) E 7rofB'H 0 (E) 

We call O(E, Eo) the relative stable smooth structure class of (E, E0 ). 

4.2. Results of Goette-l. 

Sebastian Goette and I looked at the special case when both base 
and fiber are closed manifolds. In this case we have the following results. 
Details will appear elsewhere. 

Theorem 4.2 (Goette-l). If the fiber M and base B of the bundle 
E ---+ B are closed oriented manifolds then 

7rofB'H%(E) ® Q ~ E9 HctimB-4k(E; Q). 
k>O 

We call the image of O(E, Eo) in EBk>O HctimB-4k(E; Q) the rela
tive rational stable smooth structure class of (E, Eo) and denote it by 
B(E, E0 ). As a consequence of this calculation we can make the follow
ing definition. Again, this is not the same as the definition given in [1] 
but I claim that it is equivalent in the cases where both are defined. 

Definition 4.3. Suppose that E, E0 are smooth bundles over B 
which are tangentially fiberwise homeomorphic and suppose that the 
fiber M and base B are closed oriented manifolds. Then the degree 
4k relative Dwyer- Weiss- Williams torsion Tfl,ww (E, Eo) E H 4k(B; Q) 
is defined to be the Poincare dual of the image of the relative rational 
stable smooth structure class B(E, Eo) in HctimB-4k(B; Q). 

Theorem 4.4 (Goette-l). In the situation above, the relative DWW 
torsion Tfl,ww (E, Eo) is a scalar multiple of the relative FR torsion 
T~R(E,Eo). 

Corollary 4.5. Suppose that E ---+ B is a smooth oriented sphere 
bundle over a closed oriented manifold B. Suppose also that Eo ---+ 

B is a linear sphere bundle which is tangentially fiber homeomorphic 
to E. Then the relative DWW torsion TR,WW (E, Eo) E H 4k(B; Q) is 
proportional to the exotic torsion T2k (E) E H 4k ( B; JR.). 
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Proof. Let c2k E lit be the proportionality constant between T.fl,ww 
and T~ R. Then 

c2kT.fl,ww (E, Eo)= T~R(E, Eo)= T~R(E)- T~R(Eo). 

Since E and Eo are fiber homeomorphic, they have the same topological 
Pontrjagin classes. Therefore, the difference between their higher FR
torsions is equal to the difference between their exotic torsion invariants. 
Since Eo is linear, its exotic torsion is zero. Therefore this difference is 
equal to the exotic torsion of E as claimed. Q.E.D. 

§5. Questions 

I will close with two questions, which arise from this correspondence 
between higher FR torsion and higher Dwyer-Weiss-Williams torsion. 

Question 5.1. For a smooth oriented S2n- 1-bundle p : E -+ B 
where B is a smooth closed manifold, does there exist an "absolute 
rational smooth structure class" 

so that 

The answer to this question would be "Yes" if there were a unique 
or canonical linear sphere bundle Eo which is tangentially fiber homeo
morphic to E. Then we could define B(E) to be B(E, E0 ). If Eo does not 
exist, perhaps we could define B(E) to be the average value of B(E, Eo) 
using some canonically defined measure on the set of fiberwise smooth 
structures on E -+ B. 

By the Gysin sequence 

... -+ H4k+2n-l(E) !!.c..... H4k(B) ~ H4k+2n(B) E'._, H4k+2n(E)-+ ... 

this question is almost the same as the question: Is T~k(E) U e = 0? 
where e E H 2n(B) is the Euler class of E. This condition is certainly a 
necessary condition for the existence of B(E). 

For even dimensional sphere bundles, T~k (E) = 0. So the analogous 
conjecture would be that B(E) exists and is equal to zero. In the relative 
theory, B(E, Eo) = iJ(E, Eo) 0 Ql is the rational version of the integral 
obstruction iJ(E, Eo) to fiberwise stable tangential diffeomorphism, i.e., 
iJ(E, Eo)= 0 if and only if Ex DN is fiberwise diffeomorphic to Eo x DN 
where E, Eo are tangentially homeomorphic smooth bundles. So, the 
idea that B(E) might be trivial would be expressed as follows. 
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Question 5.2. Are smooth oriented S 2n-bundles E ____, B "stably 
rationally rigid" in the sense that, for sufficiently large N, the smooth 
bundle E x DN ____, B is uniquely determined up to finite indeterminacy 
by the underlying topological bundle of E? 

References 

[ 1] W. Dwyer, M. Weiss and B. Williams, A parametrized index theorem for 
the algebraic K-theory Euler class, Acta Math., 190 (2003), 1-104. 

[ 2] J. C. Becker and D. H. Gottlieb, The transfer and fiber bundles, Topology, 
14 (1975), 1-12. 

[ 3] K. Igusa, Higher Franz-Reidemeister Torsion, AMS/IP Stud. Adv. Math., 
31, International Press, 2002. 

[ 4] ___ , Axioms for higher torsion invariants of smooth bundles, J. Topol., 
1 (2008)' 159-186. 

[ 5] ___ , Higher complex torsion and the framing principle, Mem. Amer. 
Math. Soc., 177 (2005), no. 835, xiv+94. 

[ 6] P. J. Kahn, A note on topological Pontrjagin classes and the Hirzebruch 
index formula, Illinois J. Math., 16 (1972), 243-256. 

[ 7] J. M. Kister, Microbundles are fibre bundles, Ann. of Math. (2), 80 (1964), 
190-199. 

[ 8] J. R. Klein, The cell complex construction and higher R-torsion for bundles 
with framed Morse function, Ph.D. thesis, Brandeis Univ., 1989. 

[ 9 ] S. Morita, Characteristic classes of surface bundles, Bull. Amer. Math. Soc. 
(N.S.), 11 (1984), 386-388. 

[10] ___ , Characteristic classes of surface bundles, Invent. Math., 90 (1987), 
551-577. 

[11] D. Mumford, Towards an enumerative geometry of the moduli space of 
curves, Arithmetic and geometry, Vol. II, Birkhiiuser Boston, Boston, 
MA, 1983, pp. 271-328. 

[12] J. A. Schafer, Topological Pontrjagin classes, Comment. Math. Helv., 45 
(1970), 315-332. 

Department of Mathematics 
Brandeis University 
Waltham, MA 02454 
USA 


