
Advanced Studies in Pure Mathematics 51, 2008 
Surveys on Geometry and Integrable Systems 
pp. 235-257 

Quantum product, topological recursion relations, 
and the Virasoro conjecture 

Xiaobo Liu 

The Virasoro conjecture predicts that the generating function of the 
Gromov-Witten invariants is annihilated by infinitely many differential 
operators which form a half branch of the Virasoro algebra. This con­
jecture was proposed by Eguchi, Hori and Xiong [EHX] and S. Katz 
(cf. [CK] [EJX]). It is a natural generalization of a conjecture of Wit­
ten ( cf. [W2] [Ko] [W2]) and provides a powerful tool in the computa­
tion of Gromov-Witten invariants. The genus-0 Virasoro conjecture was 
proved in [LT] (cf. [DZ] and [G3] for alternative proofs). The genus-1 
Virasoro conjecture for manifolds with semisimple quantum cohomology 
was proved in [DZ]. Without assuming semisimplicity, the genus-1 Vi­
rasoro conjecture was reduced to the genus-1 £ 1-constraint on the small 
phase space in [L1]. It was also proved in [L1] that the genus-1 Virasoro 
conjecture holds if the quantum cohomology is not too degenerate (a 
condition weaker than semisimplicity). The essential part of the results 
in [L1] was extended to the genus-2 Virasoro conjecture in [L2]. The 
study of the genus-2 Virasoro conjecture is important because this is 
the first case where we do not have a formula to reduce the problem to 
the small phase space. The behavior of the Virasoro conjecture in this 
case will provide much needed insight in what we should expect in the 
higher genera cases. The techniques developed in [L2] could be easily 
adapted to the study of the higher genera Virasoro conjecture. 

In this expository article, we will explain how to apply the main 
ideas in [L2] to the study of the Virasoro conjecture in all genera. In 
particular, we will explain how to use the quantum product on the big 
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phase space to interpret topological recursion relations and the Virasoro 
conjecture. The quantum product on the big phase space does not have 
an identity element. The string vector field is the closest vector field 
to an identity. In our view point, various topological recursion relations 
are just different ways to express how close the string vector field is to 
an identity for the quantum product on the big phase space. Using such 
topological recursion relations, we can rephrase the Virasoro conjecture 
in terms of quantum powers of the Euler vector fields. More precisely, 
for g 2: 1, the genus-g Virasoro constraints compute the derivatives 
of the genus-g generating function along a sequence of vector fields con­
structed from (twisted) quantum powers of the Euler vector field. When 
the quantum cohomology is semisimple, quantum powers of the Euler 
vector field span the space of the primary vector fields. Therefore in this 
case, the Virasoro conjecture is strong enough to determine the genus-g 
generating function in terms of data of genus less than g. Such an inter­
pretation of the Virasoro conjecture is very useful both in resolving the 
conjecture and in applying it to solve other problems. 

To keep the article brief, we will emphasize the main ideas and omit 
most proofs. Interested readers are referred to [12] for more details. 
The major exception to this rule is a complete proof of the genus-0 Vi­
rasoro conjecture, which simplifies the arguments in [LT]. The argument 
presented here is new and has not appeared elsewhere. 

The author would like to thank the organizers of Mathematical So­
ciety of Japan- 9th International Research Institute on "Integrable Sys­
tems in Differential Geometry" for their invitation. He would also like 
to thank G. Tian for helpful discussions. 

§1. Quantum product on the big phase space and topological 
recursion relations 

1.1. Gromov-Witten invariants 

For simplicity, we assume that Vis a smooth projective variety with 
Hodd(V; q = 0. All results in this paper should also be true for com­
pact symplectic manifolds except those concerning Virasoro constraints 
of genus bigger than 0. Gromov-Witten invariants are defined via the 
intersection theory of moduli spaces of stable maps from Riemann sur­
faces to V. For any element A E H 2 (V, Z) and non-negative integers 
g and k, the moduli space M 9 ,k(V, A) is defined to be the collection 
of all data ( C; x1, ... , Xk; f) where C is a genus-g projective connected 



The Virasoro conjecture 237 

curve over C whose only possible singularities are simple double points, 
where x1, ... ,xk are smooth points on C (called marked points), and 
when f is an algebraic map from C to V which is stable with respect to 
(C; x 1 , ... , Xk), (i.e. there is no infinitesimal deformation for this data). 
Each marked point x; defines a map, called the i-th evaluation map, 

ev;: M 9 ,k(V, A) 
(C;x1, ... ,xk;j) 

____, v 
f-----7 f (xi). 

It also defines a line bundle over M 9 ,k(V, A), denoted byE;, whose fiber 
over ( C; X1' ... 'Xk; f) is r;i C. For any cohomology classes '/1' ... ''/k E 

H*(V, C) and non-negative integers n 1 , ... , nk, the corresponding de­
scendant Gromov-Witten invariants are defined by 

(Tnl('/l) .. ·Tnk('/k))9 := 

"qA f . c 1 (E1 )n 1 Uev~('Yl)U .. ·Uc1 (Ek)nkuev~('/k), 
~ l[M 9 ,k(V,A)r''t 

where [M9 ,k(V, A)rirt is the virtual fundamental class of M 9 ,k(V, A) 
( cf. [LiT]) and qA belongs to the Novikov ring (i.e. the multiplicative ring 
spanned by monomials qA = qr 1 • • • q~r over the ring of rational numbers, 
where { q1, .. · , qr} is a fixed basis of H2(V, 7L) and A = 2::~= 1 a;q;). 
When all the n; are zero, the corresponding invariants are called primary 
Gromov-Witten invariants. 

1.2. Notational conventions 

We will use d to denote the complex dimension of V and N the 
dimension of the space of cohomology classes H*(V, C). To define the 
generating functions, we need to fix a basis { ')'1, ... , '/N} of H* (V, q 
with ')'1 equal to the identity for the cohomology ring of V and 'Ia E 
HP",q" (V, C) for every a. We also arrange the basis in such a way that 
the dimension of 'Ia is non-decreasing with respect to a, and, if two 
cohomology classes have the same dimension, we also require that the 
holomorphic dimension Pa is non-decreasing. 

Lower case Greek characters will be used to index the cohomology 
classes. The range of these indices is from 1 to N. Lower case Roman 
characters will be used to index the level of descendants. Their range 
is the set of all non-negative integers, 7L+. All summations are over the 
entire ranges of the indices unless otherwise indicated. Let 

7]a{3 = i '/aU '/(3 
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be the intersection form on H*(V, q. We will use T] = (Tiaf3) and ry- 1 = 

(ryaf3) to lower and raise indices. For example, Ia := ryaf31f3· Here 
we are using the summation convention that repeated indices (in this 
formula, (3) are summed over their entire ranges. Let C = (Cg) be the 
matrix of multiplication by the first Chern class c1 (V) in the ordinary 
cohomology ring, i.e. c1 (V)Uia = cglf3· Since we are dealing only with 
even dimensional cohomology classes, the Ckry are symmetric matrices 
for all k 2:: 0, where the entries of Ckry are given by 

Let ba = Pa- ~(d- 1). The following simple observations will be used 
throughout the calculations without mention: If ryaf3 "I 0 or T/af3 "I 0, 
then ba = 1 - b13. cg -I 0 implies b13 = 1 + ba, and Caf3 -I 0 implies 
b(3 = -ba. 

1.3. Generating functions and correlation functions 

The genus-g generating function is defined to be 

nr, ... ,nk 

where { t~ I n E z+' 0: = 1' ... 'N} is an infinite set of parameters. We 
. can think of these parameters as coordinates on an infinite dimensional 

vector space, called the big phase space. The finite dimensional subspace 
defined by { t~ = 0 if n > 0} is called the small phase space. The 
function F9 is to be understood as a formal power series of t~. For 
convenience, we will always identify the symbol Tn(ra) with the tangent 
vector field 8~~ on the big phase space. We also consider Tn(ra) with 

n < 0 as the zero operator. For each o:, we will abbreviate To(ra) asIa· 
We call a (formal) vector field W = Lm,a fm,aTm(ra) a primary vector 
field if fm,a = 0 whenever m > 0, a descendant vector field if fm,a = 0 
whenever m = 0. 

Instead of coordinates { t~ I m E Z+, o: = 1, ... , N}, it is very 
convenient to use the following shifted coordinates on the big phase 
space 

-a _ t" s: s: _ { t~ - 1, tm - m- Um,lUa,l - ta 
m1 

if m = o: = 1, 
otherwise. 
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As in [LT], it is convenient to introduce a k-tensor (( · · · · · )) defined ..__, 
k 

L f;,t,nl · · · f!k,ak 
m1 ,a1 , ... ,mk ,ak 

ak 
at';;:l at~k ... at~k Fg, 

for (formal) vector fields wi = .L:m,a tfn,a 8f~ where the Jfn,a are (for­
mal) functions on the big phase space. We can also view this tensor 
as the k-th covariant derivative of F9. This tensor is called the k-point 
(correlation) function. 

1.4. Quantum product 

For any vector fields U and W on the big phase, define the quantum 
product of U and W by 

By definition, the quantum product of two vector fields is always a pri­
mary vector field. This product is evidently commutative. It is also 
associative due to the generalized WDVV equation 

which follows in turn from the genus-0 topological recursion relation 

for m > 0 ( cf. [Wl]). When restricted to tangent vector fields on the 
small phase, this is precisely the product in the quantum cohomology 
of V (called the big quantum cohomology by some authors). For any 
vector field w on the big phase space, we define wk to be the k-th 
quantum power of w. i.e., wk = w. w •... w, for k > 0. 

k 

For the quantum product on the small phase space, the constant 
vector field 1'1, which was chosen to be the identity for the ordinary coho­
mology ring, is also the identity for the quantum cohomology. However 
on the big phase space, there is no identity vector field for the quantum 
product. Instead, the string vector field 

m,a 
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can be considered as a sort of identity in the following sense: First, the 
string equation can be written as 

Taking second derivatives of the genus-0 string equation, we obtain 

for any a and /3. This equation can be interpreted asS • W = W for 
any primary vector field W. Second, since U • W is always a primary 
field, the associativity of the quantum product implies 

(1) S•U•W=U•W 

for all vector fields U and W. Define W : = S • W for any vector field 
W. Then 

(2) W•V= W •V 

for any vector field V. If we restrict the quantum product to the space 
of primary vector fields, then it has an identity S. 

1.5. Topological recursion relations 

In some sense, the topological recursion relations tells us how far S is 
from being an identity for the quantum product on the big phase space. 
To describe this interpretation, we introduce the following linear trans­
formations (that is, linear with respect to multiplication by functions) 
on the space of vector fields on the big phase space: 

Definition 1.1. For any vector field W = Ln,o: fn,o:Tnba), define 

n,o: n,o: 

1r(W) := L !o,o:'Yo:· 

Then T+r-(W) = W-1r(W), LT+(W) = r_T(W) = W. Moreover 
the second derivatives of the genus-0 string equation have the following 
form (cf. [LT, Lemma 1.1 (3)]): 

(3) (( w s v )) 0 = (( r- (W) v )) 0 + (( w r-(V) )) 0 + ~ Y'~,v17af3totg 
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where Wand V are arbitrary vector fields and \7~ v = 'Vw'Vv- 'VV'wV 
is the second covariant derivative. In particular, this implies that 

(4) 

An immediate consequence of this formula is the following: 

(5) 

The genus-0 topological recursion relation implies 

(6) T(W) • V = 0 

for any vector fields W and V. The converse of this equation is also true 
( cf. [L2]), i.e. 

W • V = 0 for all V ~ W = T(U) for some U. 

It follows from the first derivatives of the genus-0 string equation that 
T(S) = V where V is the dilaton vector field V = -2:: ~ t~ Tm(ra)· 

m,~ 

The genus-0 dilaton equation and its first two derivatives have the fol-
lowing form (cf. [LT, Lemma 1.2]) 

(7) (( V )) 0 = -2Fo, (( v w )) 0 = - (( w )) 0 ' ((VWV)) 0 = 0 

for all vector fields W and V. Equation (6) in particular implies that 
V• W = 0 for all W, which also follows from (7). Moreover the equation 
T(V)• W = 0 for all W is e~ivalent to [LT, Lemma 5.2 (2)], which is also 
equivalent to the genus-0 £ 1 constraint. Similar reasoning also applies 
to the genus-0 L2 constraint by considering the vector field T(R(V)) 
where R is defined in Definition 2.2. 

Equation (6) has the following generalization, which is obtained by 
taking derivatives of the equation T(W) • V = 0, 

(8) 

for any vector fields W and V1, ... , Vk+l with k ;::: 1. Note that the 
power of T in this formula is sharp in the sense that if we replace Tk by 
Ti for i < k, the formula is no longer correct. The same is also true for 
(10). For example, 

(( T(V) W1 W2 'Y"' )) 0 'Ya = W1 • W2 • V 

for any vector fields W1, W2, and V (cf. [L2, Corollary 1.6]). 
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If S were an identity for the quantum product on the big phase space, 
T(W) would always be a zero vector field because of (5). However, 
from the definition ofT, we know T(W) =f. 0 unless W = 0. On the 
other hand, equation (6) tells us that at the genus-0 level, the operator 
T always annihilates vector fields from the viewpoint of the quantum 
product. This equation can be thought of as another way to interpret 
the genus-0 topological recursion relation. Similar interpretations can 
also be given for the higher genus topological recursion relations. 

The genus-1 topological recursion relation is the following ( cf. [DW]): 

This formula is equivalent to 

(9) 

for any vector field W. For g > 0, we call a vector field W trivial at the 
genus-g level if (( W )) 9 can be represented by data of genera less than g. 
Then the genus-1 topological recursion relation just means that T(W) 
is trivial at the genus-1 level for all W. 

Equation (9) and its derivatives imply the following 

(10) 

for k ;::: 0 and any vector fields w) v1) ... ) vk. 
The genus-2 topological recursion relations are much more compli­

cated than genus-0 and genus-1 topological recursion relations. Two 
genus-2 topological recursion relations were given in [G2]. The first one 
was derived by using a formula due to Mumford: 

(( Ti+2(x) )) 2 = (( Ti+l (x) "(a )) 0 (("fa )) 2 + (( Ti(x) "(a )) 0 (( T1 ha) )) 2 

- (( Ti(x) "(a ))o (("fa "({3 ))0 (( "({3 )) 2 + 1
7
0 (( Ti(x) "fa "({3 ))0 (("fa ))1 (( "({3 ))1 

+ 110 (( Ti(x)"fa "({3 ))0 (("fa "({3 ))1- 2~0 (( Ti(xha ))1 (("fa "({3 "({3 ))0 

+ 21430 (( Ti(xha "(a "({3 ))o (("({3 ))1 + 9~0 (( Ti(x)"fa "fa "({3 "({3 ))o. 
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This formula can be written in the following form: For any vector field 
W on the big phase space, 

7 1 
(( T2(W)))2 = 10 (("fa )h (( {IP • W} ))1 + 10 (ba {!P • W} ))1 

- 2~0 (( W {ra • 'Ya} )) 1 + ;430 (( W /'a 'Ya /'(3 )) 0 (('y(3 )) 1 

(11) + 9~0 (( W 'Ya 'Ya 1'(3 /'(3 ))o' 

where T 2 (W) := T(T(W)). Another topological recursion relation in 
[G2] is a formal consequence of this formula and a formula in [BP] ( cf. 
[12]). 

Unlike in the genus-1 case, T(W) is no longer trivial at the genus-2 
level in general. In fact, the genus-2 dilaton equation implies (( T(S) )) 2 = 

(( V )) 2 = 2F2 . Unless F 2 can be expressed as a function of Fo and 
F 1 , T(S) is not trivial at the genus-2 level. However, the topological 
recursion relation ( 11) tells us that T 2 (W) is trivial at the genus-2 level 
for all vector fields W. The topological recursion relations for genus 
g = 1, 2 are derived by using a formula for expressing the tautological 
class 'lj;f_ (i.e. c1 ( El)9 according to the notation in Section 1.1) on the 
moduli space of stable curves M 9 ,1 in terms of boundary classes. It 
was conjectured in [G2] that polynomials of degree gin the tautological 
classes '1/J; are boundary classes on M 9 ,n- This conjecture was proved 
in [Io]. A somewhat stronger version of a special case of this conjecture 
would be that 'lj;f_ is equal to a boundary class in M 9 ,1 without genus-g 
components. This would imply the following: 

(12) T 9 (W) is trivial at the genus-g level for g ;:=: 1. 

The following topological recursion relation for all g ;:=: 1 was derived 
in [EX] under the assumption that the genus-g generating function is a 
function of the derivatives of genus-0 generating function: 

3g-2 

(( Tn+3g-1 ('Yo:))) 9 = L (( Tn+3g-2-j ('Yo:) /'(3 ))o A~ 
j=O 

where Ag = (( 'Yf3 )) 9 and A~= (( Tj('Yf3) )) 9- I:{:~ (( Tk('Yf3) ~'~" )) 0 A'j_1_k. 

An easy induction on j shows that (( TJ ( 'Yf3) )) 9 = A~ and a similar in­
duction argument also shows that this topological recursion relation is 
precisely 

(13) (( T 39 - 1 (W) )) 9 = 0 
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for all vector fields W. For g = 1 and 2, this equation follows from 
equations (8), (10), and (11). For general g, it follows from 7/Jrg-l = 0 
on M 9 ,1 since the complex dimension of M 9 ,1 is 3g - 2. This was first 
observed by Getzler. 

To apply these topological recursion relations, we observe that 

k-1 

(14) W = W + LTi(r~(W)) + Tk(r~(W)) 
i=1 

for any vector field W and k ;::: 1 ( cf. [L2]). Since T~ (W) is a primary 

vector field, the descendant level of Ti( T~ (W)) is at most i. In ap­
plications, we can choose k large enough to apply suitable topological 
recursion relations to get rid of the last term on the right hand side of 
(14). For example, to apply (12), we would choose k =g. To apply (13), 
we would choose k = 3g - 1. 

§2. Virasoro conjecture 

Let 
Z := exp L )..29 - 2 F9 . 

g?:O 

This is the partition function in the topological sigma model coupled to 
gravity. In the case that the underlying manifold is a point, Witten con­
jectured that Z is a r-function of the KdV hierarchy ( cf. [W1]). Witten's 
conjecture was proved in [Ko] and [W2]. In [DVV] [FKN] [KS], it was 
proved that a function is a T function of the KdV hierarchy and satisfies 
the string equation if and only if it is annihilated by a specific sequence 
of differential operators satisfying the Virasoro bracket relation. Eguchi, 
Hori, and Xiong [EHX] defined a sequence of differential operators Ln, 
n 2: -1, which satisfy the Virasoro type relation 

for a class of compact symplectic manifolds whose Chern numbers satisfy 
a certain non-trivial equation. For general projective varieties V, these 
operators were modified by S. Katz so that the Virasoro relation is always 
satisfied. The Virasoro conjecture predicts that 

for n 2: -1. The genus-g Virasoro conjecture predicts that the coefficient 
of )..29-2 in the Laurent polynomial z-1 LnZ in terms of).. vanishes. 
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The Virasoro conjecture is one natural generalization of Witten's 
conjecture. Another way to generalize Witten's conjecture is to con­
struct an integrable system to govern the Gromov-Witten theory for 
each projective variety. In [EY], it was conjectured that the integrable 
system corresponding to J!D1 is the Toda hierarchy. For general projec­
tive varieties, the corresponding integrable systems are not clear at the 
time of writing. The study of the Virasoro conjecture should shed more 
light in this direction. In fact, it was conjectured in [DZ] that the Vira­
soro constraints can be used to construct KdV type integrable systems 
for semisimple Frobenius manifolds. If this program is successful, we 
can then obtain an integrable system for each projective variety with 
semisimple quantum cohomology provided that the Virasoro conjecture 
can be proved. 

The Virasoro operators Ln defined in [EHX] are very complicated. 
A basic idea in [LT] is that we can study the Virasoro conjecture through 
the study of certain globally defined vector fields on the big phase space. 
For this reason, we will not give the explicit form of these operators here. 
Instead, we will give a recursive description of the relevant vector fields 
following [L2]. 

2.1. Virasoro vector fields 

We first define a new product on the space of vector fields on the 
big phase space. 

Definition 2.1. ForW = l:m,a fm,aTm(ra), V = l:m,a gm,aTm(ra), 
We define W * V = l:m,a fm,agm,aTm(/a)· 

We can think of "*" as a commutative associative product on the 
space of vector fields with the identity 

m,a 

Another important vector field for this product is Q := l:m a(m + 
ba)Tm(ra)· We also need the following linear (over the ring of fu~ctions) 
transformations on the space of vector fields: 

Definition 2.2. For any vector field W = l:m,a fm,aTm(ra), define 

C(W) = l:m,a,/3 fm,aC~Tm(r/3) and R(W) = Q * T(W) + C(W). 
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As pointed out in [LT], the most important vector field in studying 
the Virasoro conjecture is the Euler vector field, which is defined by 

X:=- L (m + ba- bl- 1) f~ Tm(/'a)- L c~t~ Tm-1(/'/3)-
m,a m,a,/3 

This vector field satisfies the following quasi-homogeneity equation 

((X)) 9 = (3-d)(1-g)F9 +~89,o LCa13t0tg- 2
1
489 ,11 c1(V)Ucd-1(V). 

<>,/3 v 

The second derivatives of the genus-0 quasi-homogeneity equation have 
the following form (cf. [LT, lemma 1.4 (3)]): 

(15) (( W XV )) 0 = (( Q(W) V )) 0 + (( W Q(V) )) 0 + ~ \7~,vCaf3t0tg 
where 

(16) Q(W) := g * w + CL(W) 

for any vector field W. This equation implies the following (see [L2]) 

Theorem 2.3. For any vector field W, W•X = S•R(W) = R(W). 

Proof: Since both sides of this equation are tensors with respect 
to W, we only need to prove the theorem for W = Tm(/'a)· By def­
inition, R(Tm(/'a)) = (m + 1 + ba)Tm+l('Ya)- b13 (( Tm(/'a)"'·l))0 '"Yi3 + 
cgTm('Y/3)· Equation (3) implies that (( s R(Tm(/'a)) '"YJ.L ))o = (m + 1 + 
ba - bJ.L) (( Tmba) '"YJ.L ))o + cg (( Tm-l('Y/3) '"YJ.L ))o + b"!C~. The right hand 
side of this equation is precisely ((X T m ("fa) '"YJ.L )) 0 by (15). The theorem 
is thus proved. D 

Theorem 2.3 implies that R(W) = R(V) if W = V. Another conse­
quence of the quasi-homogeneity equation is that 

(17) 

for all m, k 2': 0. This can be proved by using an argument similar to 
the one on the small phase space given in [L1]. 

Define Ck := -Rk+l(S) for k 2': -1. We call Ck the k-th Virasoro 
vector field due to its intimate connection with the Virasoro conjecture. 
Since V = T(S), Co= -X- (b1 + 1)V. Therefore £ 0 =-X because 
V = 0. So Theorem 2.3 implies 

(18) 
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for k 2 -1. Here and thereafter, we will understand X 0 as the string 
-0 -

vector field S and X as S . 

Let \7 be the covariant derivative defined by 

m,a 

for any vector fields V and W = '2.:m,a fm,a Tm(!'a)· It is straightforward 
to check 

(19) RL (W) = L R(W) - 9 * w - w 

and 

(20) 'Vv(R(W)) = R('Vv W)- 9 * (V • W) 

for any vector fields V and W ( cf. [12]). By induction on k and using 
Theorem 2.3, we obtain 

k-1 

(21) RkL(W) = T-Rk(W)- k Rk- 1(W)- 2..:::: Ri (9 * (Xk- 1-i • W)) 
i=O 

and 

k-1 

(22) 'Vv(Rk(W)) = Rk('Vv W)- 2..:::: Ri (9 * (Xk- 1-i • V • W)) 
i=O 

for k 2: 1. We can also use (21) to simplify (22) and obtain 

since L(V • W) = 0. Using these equations, we can prove the following 

Proof: It is straightforward to check that \7 wS = -L (W) for any 
vector field W. Therefore, applying (22) to .Ck = - Rk+l (S) first, then 
using (1) and (21), we have 

(24) 

for any vector field W. In particular, if W = .Cm, we have \7 Lrn .Ck = 
L(.Cm+k+d- (k+ 1).Cm+k· Therefore [.Cm, .Ck] = \7 Lrn .Ck- \7 £k Lm = 
(m- k).Cm+k· 0 
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2.2. Quantum powers of the Euler vector field 

From (18), we can see that the quantum powers of the Euler vector 
field are very important in the study of the Virasoro vector fields. In 
this section, we compute (( W Xk V ))0 for k 2: 1 and arbitrary vector 
fields W and V. 

For any k 2: 2, define 

where Q is defined by (16). For convenience, we also define 

Qo := 7_ and 

These operators have the following properties 

Lemma 2.5. 

(i) 7+ Qk = (Q- 1) · · · (Q- k) 7!- Ck1r for k 2: 1, 

(ii)7!Q7+ = (Q-k)7!+1, 

(iii)Q 7+ Qk = Qk+l- QCk1r, 

(iv)Qk (Q- 1) 7+ = Qk+l· 

The first two formulae follow from a straightforward induction on 
k. The last two formulae are direct consequences of the first two. 

The aim of this section is to prove the following 

Proposition 2.6. For any vector fields W and V and k 2: 1, 

(( W Xk V ))0 = (( Qk(W) V ))0 + (( W Qk(V) )) 0 + ~ V'~,v(Ck)a,a tgtg 

k-l 
+ L (( W Qi('r"') )) 0 (( {(Qk-i - Qk-1-iC)(l'a)} V ))0 . 

i=l 

Note that this proposition also makes sense for k = 0 and it is pre~ 
cisely (3) if one takes X 0 =Sand (C0 )a,a = 'TJa,B· By the genus~O topolog~ 
ical recursion relation, (( W 1'"' )) 0 ((!'a S 7 + (V) )) 0 = (( 7 + (W) S 7 + (V) )) 0 . 
Applying (3) to both sides of this equation and observing that we have 

V';+(W), V tg tg = 0, we obtain 

This is precisely [LT, equation (10)]. 
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Fork = 1, Proposition 2.6 is precisely (15). By the genus-0 topolog­
ical recursion relation, (( W X Ia )) 0 (( Ia V )) 0 = (( W X T+(V) )) 0 . Apply­
ing (15) to both sides of this equation, then using (25) and Lemma 2.5 

(i) and observing that ~ ( Y'i:v, 1 ,. (Ck)a;3 t0 tg) Ill = Ck1r(W), we obtain 

(26) 
(( W Q(ra) )) 0 (( Ia V )) 0 =- (( {(Q- 1)T+(W)} V )) 0 +(( W {QT+(V)} )) 0 . 

We remark here that [LT, Lemma 3.2 amd 3.3] are simple consequences 
of this formula and (25). Note that by using Proposition 2.6 for k = 2 
in a similar way, we also obtain [LT, Lemma 4.4], which was needed in 
the proof of the genus-0 Virasoro conjecture in [LT]. But it will not be 
needed in this paper. 

Proof of Proposition 2.6: We prove this proposition by induction 
on k. When k = 1, it is just (15). For k :::0: 2, we have for any vector 
fields W, V, 

If V = 1;3 for some (3, this formula is just the associativity of the quantum 
product. The general case follows from this special case and the genus-0 
topological recursion relation. 

Applying (15) to the first term on the right hand side of (27) and 
then using the genus-0 topological recursion relation, (( W Xk V )) 0 = 

The proposition then follows from applying the induction hypothesis 
to the right hand side of this equation and simplifying the resulting 
expression using (26), Lemma 2.5 and the following simple observation: 

for any linear transformations P1 , P2 on the space of vector fields. D 

If we set W = V = D in Proposition 2.6 and use the genus-0 dilaton 
equation (7), we obtain 

Corollary 2. 7. (( Qk(D) )) 0 = 

k-1 
~ 2.: (( Qi(la) ))o (( {(Qk-i- Qk-1-iC)(Ia)} ))0 + ~(Ck)a;3 tQ'tg. 

i=1 
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2.3. Genus-0 Virasoro conjecture 

In this section we compute (( Lk )) 0 using Corollary 2. 7 and then 
relate it to the genus-0 Virasoro conjecture. For this purpose, we need 
to study relations between the operators R, T, and Q. 

First, replacing W by RT(W) in (14) with k = 1, then using Theo­
rem 2.3 and (19), we obtain RT = T(R + T) (cf. [L2, Lemma 4.6]). By 
induction on k, we have 

(29) 

for k ?: 0. By the definitions of R and Q, R = QT. Writing Rk 
Rk-l R, then by induction on k and using (29), we obtain 

(30) Rk = Q(Q- 1) · · · (Q- k + 1)Tk 

for k ?: 1. Therefore 

£k = -Rk+1 (S) = -Q(Q- 1) · · · (Q- k)Tk(V) 

(31) = -Qk+1(V)- Q(Q- 1) ... (Q- k)(Tk- T!)(V). 

On the other hand, writing 

Tk(W) = Tk-1 (T(W)) = Tk- 1 (T+(W)- (( W'Ya )) 0 'Ya), 

then by induction on k and using (25), we obtain 

k-1 
(32) Tk(W) = T!(W) + L) -1)i+1 (( WT.f_('Ya) )) 0 T!-1-i('Ya) 

i=O 

for any vector field W. In particular, replacing W by V and using (7), 
we have 

k-1 
(33) (Tk- T!)(V) = .2:) -1)i (( T.f_('Ya) ))o T!-1-i('Ya). 

i=O 

Together with (31) and Corollary 2.7, we can use this equation to com­
pute (( Lk )) 0 . To simplify the result, we also need the following 

Lemma 2.8. For any linear (over the ring of functions) transfor­
mation P on the space of vector fields and k ?: 1, 

Q(Q- 1) ... (Q- k) (~( -1)i (( {PT.f_('Ya)} ))o T!-1-i('Ya)) 

k 

=-L (( {PQi('Ya)} ))o (Qk+1-i- Qk-iC)('Ya)· 
i=l 
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Proof: Let WP,k := I:7==-01( -1)i (( {PT-f_('y")} ))0 T!-1-iha)- We 
prove the lemma by induction on k. The lemma holds fork= 1 because 
Q(Q- 1)(Wp,I) = (( P('y") )) 0 (ba- 1)Qba) =- (( {PQ('y")} ))o Q('ra)· 
By Lemma 2.5 (i) and (ii), Q T! = T! ( Q + k) + T!- 1C7r for k ;:=: 1. Using 
this equation and (28), it is straightforward to check that 

(Q- k) ( (( {PT-f_('y")} )) 0 T!-1-i('ya)) = 
-(( {P(QT-f_-T~- 1 0)(1")} )) 0 T!-1-i('Ya)+(( {PT-f_C('y")} )) 0T!-2-i(1a)· 

Consequently, we have 

k-1 

(Q- k)(WP,k) = 2:::( -1)i+1 (( {PQT~('y")} )) 0 T!-1-i('ya)· 
i=O 

Therefore, fork;::: 2, Q(Q- 1) · · · (Q- k)(WP,k) = 

The lemma then follows from induction on k and by using Lemma 2.5 
(iii). D 

Combining Corollary 2.7, equations (31) and (33), and lemma 2.8 
for P equal to the identity transformation, we obtain 

Theorem 2.9. (( Lk )) 0 = 

k 

~ 2::: (( Qi('y") ))o (( {(Qk+l-i- Qk-iC)('ra)} ))o- ~(Ck+ 1 )af3 tgtg. 
i=1 

Remark: The right hand side of this equation is equal to Po,k as 
defined in [L2, Section 5.1]. One can show this by using the following 
properties of the operator R+ defined in [L2]: R'f. = Qk T+ fork;::: 1. 

Now we relate Theorem 2.9 to the genus-0 Virasoro conjecture. Since 

we can use Theorem 2.9 and (24) to compute (( Lk 1"' )) 0 . We can then 
compute Lk+l = R(.Ck) from Lk by using these formulae. We already 
know that the vector fields £_1 and £ 0 are precisely the first derivative 
parts of the Virasoro operators L_ 1 and L 0 defined in [EHX]. Therefore 
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using the above method, we obtain £1 = 

m,a m,a,/3 

and 

m,a 

+ L {3(m+ba)2 +6(m+ba)+2}C~t~Tm+1('Y{3) 
m,a,/3 

m,a.,/3 m,a,{3 

- L(3b~- 1)C$ (( 'Ya )) 0 1{3· 

a,{3 

These vector fields are slightly different from the vector field £1 and £2 in 
[LT]. The linear parts of these vector fields are the corresponding vector 
fields in [LT], but £ 1 and £2 here have extra non-linear terms. These 
vector fields do agree with the corresponding vector field in [DZ] and 
[G3]. Therefore Theorem 2.9 is precisely the genus-0 Virasoro conjecture 
as proved in [LT]. So the arguments presented here give a new proof 
of the genus-0 Virasoro conjecture. We also notice that equation (18) 
fork= 1, 2 is equivalent to Lemma 3.1 and Lemma 4.2 of [LT] because 
of (3). We can interpret them as the second derivatives of the genus-0 
£ 1 and £ 2 constraints. As explained in [LT], they are eventually also 
equivalent to the genus-0 £1 and £2 constraints because of the dilaton 
equation. 

Moreover, as a consequence of Lemma 2.4, we obtain 

where Lk is the k-th Virasoro operator defined in [EHX], since the se­
quence of vector fields on the right hand side of this equality also satisfy 
the same Virasoro type bracket relation as in Lemma 2.4 (cf. [G3]). 
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2.4. Higher genus Virasoro conjecture 

For convenience, we introduce the following notation: For two func­

tions h and h on the big phase space, we say h ~ h if h - h can be 
expressed as a function of F0 , ... , F9 _ 1 and their derivatives. For g ~ 1, 
the genus-g Virasoro conjecture gives an explicit formula for computing 
(( .Cn )) 9 in terms of data with genus less than g for n ~ -1. The pre­
cise way to express (( .Cn )) 9 in terms of data of genus less than g can be 
explicitly written out using the Virasoro operators Ln defined in [EHX] 
(see, for example, [12, Section 5.1] for a description using recursive op­
erators). A weaker form of this conjecture 

(34) 

In other words, this conjecture predicts that the sequence of vector fields 
.Ck are trivial at the genus-g level for all g ~ 1. Since the genus-g Vi­
rasoro conjecture only differs from its weak version (34) at the lower 
genus level, (34) captures the major difficulty as well as the computa­
tional power of the original Virasoro conjecture. Moreover, conjecture 
(34) makes sense for all compact symplectic manifolds while the original 
Virasoro conjecture requires a non-trivial topological condition for the 
underlying manifolds. 

To compute (( .Cn )) 9, we can use either (12) or (13) together with 
formula (14). Because of these formulae, the computation of (( .Cn )) 9 
is equivalent to computing the derivative of F9 along the vector field 

:z=:-~o Tm ( T!?" ( .Cn)) where k = g or 3g- 1 depending on whether we are 

using (12) or (13). For this purpose, we first need to compute T!?"(.Ck)· 
- -n+1 

Form= 0, T!?"(.Cn) = .Cn =-X by (18). Using (19), we can prove 

inductively that T!?"(.Cn+d = R( T!?"(.Cn)) + m T:'-1 (.Cn) + 9 * T:' 1 (.Cn) 
for all m ~ 1 and n ~ -1. Therefore, by Theorem 2.3, we have the 
following ( cf. [12]) 

Theorem 2.10. 

T!!_'(.Cn+1) =X • T!!_'(.Cn) + mT:'-1(.Cn) + y * T:'-1(.Cn) 

for all m ~ 1 and n ~ -1. 

Using this recursion formula, we can express T!?"(.Cn) in terms of 
twisted quantum powers of the Euler vector field (here the twisting is 

given by the operation Y*) and vector fields T!_ (S) where i = 1, ... , m. 
-n+1 -- -n 

For example, when m = 1, L(.Cn) = -X • L(S)- (n + 1) X -
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n -j -n-j 
l:j=O X •(Q* X ) for all n 2: 0. By the genus-1 topological recursion 
relation (9) and (14), 

((.Cn))1 = (( £n))1 + ((T(r_(.Cn))))l 

=- ((X n+1 ))1 + ;4 \\ r_(.Cn) Ia Ia )) 0 · 

This immediately explains the rather mysterious formulae for the genus-
1 Virasoro conjecture in [11]. We would also like to point out that for 
i 2: 1, T~ ( S) is zero when restricted to the small phase space. In this 
way, we can get rid of such vector fields in applications. 

From the point of view of applications, the computational power 
of the Virasoro conjecture depends on how large the space spanned by 
the vector fields 2::::-~o Tm(T~(.Cn)) (with n 2: -1) is. In general, this 
space could be very small. For example, for all algebraic curves, the 
space spanned by the quantum powers of the Euler vector fields always 
has dimension 2, while the dimension of the small phase space can be 
arbitrarily large if the genus of the curve is large enough. If the space 
spanned by the quantum powers of the Euler vector field is small com­
pared to the small phase space, we do not expect that the Virasoro 
conjecture will determine the generating functions. In the other ex­
treme case, when the quantum cohomology is semisimple, the quantum 
powers of the Euler vector fields span the entire tangent space of the 
small phase space. Therefore in this case, the generating functions can 
be computed by using the Virasoro conjecture. 

For genus g 2: 1, the topological recursion relation is not sufficient 
to prove the Virasoro conjecture. For g = 1 and 2, we need at least 
the equations derived from the algebraic relations in H 4 (M 1 ,4 ) ap.d 
H 4 (M 2,3 ) which were proved in [G1] and [BP] respectively. In [11] 
and [12), we wrote these equations as equations for certain global ten­
sors on the big phase space. Studying these tensors for quantum powers 
of the Euler vector field, we proved that for all n 2: 3, 

(35) 

and 

(36) 
2 n -

~n ~ 2(n _ 2) T( X )~n-1 

where ~n ·- \\ X n)) 2 - \\ T( L (.Cn-d))) 2 . The difference of the 

two sides of each equation can be written down explicitly in terms of 
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the lower genus data. The topological recursion relations (9) and (11) 

imply that (( .Cn )) 1 ~ - \\ X n+l)) 1 , (( .Cn )) 2 ~ -1/Jn+1 for all n. 

Therefore equations (35) and (36) imply that the conjecture (34) of 
genus 1 and 2 can be reduced to the corresponding L 1-constraint. The 
same is also true for the original Virasoro conjecture (cf. [11] and [12]). 
Moreover, since the space of primary vector fields is finite dimensional, 

the infinite sequence of vector fields {X k I k 2: 0} must be linearly 
dependent at each point. This adds extra information to equations (35) 
and (36). In the case that the quantum cohomology is not too degenerate 
(which is a condition weaker than semisimplicity), this enables us to 

solve for \\ X n)) 1 and 1/Jn from these equations and thus obtain the 

corresponding Virasoro conjecture (the weak version only for the genus-2 
case). The reader is referred to [11] and [12] for details. In [12] we also 
explicitly found the genus-2 generating function F2 in terms of F1 and F0 

when the quantum cohomology is not too degenerate. For genus bigger 
than 2, relations analogous to the ones in [Gl] and [BP] are missing. 
Provided with such equations, the structures described here combined 
with the techniques developed in [1T], [11] and [12] could lead to the 
final resolution of the Virasoro conjecture for all genera. 

Update added, August 2007: The first version of this paper was 
submitted in January 2001. Much progress on the Virasoro conjecture 
has been made since then. In particular, the genus-2 Virasoro conjecture 
for manifolds with semisimple quantum cohomology was proved in [13]. 
When the underlying manifold has a torus action with isolated fixed 
points and also has semisimple quantum cohomology, Givental gave a 
scheme to reduce the Virasoro conjecture to the so-called R-conjecture, 
which only depends on genus-0 equivariant Gromov-Witten invariants. 
An outline for the proof of the R-conjecture for projective spaces was 
given in [Gi]. The R-conjecture has been verified for flag manifolds in 
[JK] and for Grassmannians in [BCK]. Moreover, the Virasoro conjec­
ture for algebraic curves was proved in [OP]. 
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