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The probability of two IF q-polynomials to be coprime 

Hiroshi Sugita t and Satoshi Takanobu+ 

Abstract. 

By means of the adelic compactification R of the polynomial ring 
R := IF'q[x], q being a prime, we give a probabilistic proof to a density 
theorem: 

#{(m,n) E {0, 1, ... ,N- 1}2 ; 'Pm and 'Pn are coprime} q- 1 
N2 ___, -q-, 

as N---> oo, for a suitable enumeration {r.pn}~=O of R. Then establishing 
a maximal ergodic inequality for the family of shifts { R 3 f ,__.. f +r.pn E 

R}~=O• we prove a strong law of large numbers as an extension of the 
density theorem. 

§1. Introduction 

Dirichlet [2] discovered a density theorem that asserts the probabil­
ity of two integers to be coprime be 6/ 1r2 , that is, 
(1) 

lim #{(m, n) E N2 ; 1:::; m, n:::; N, gcd(m, n) = 1} = ((2)_1 = ~. 
N~ W ~ 

The notion of density is something like a probability, but it is not exactly 
a probability. In order to give a rigorous probabilistic interpretation to 
this theorem, Kubota-Sugita [5] gave an adelic version of (1), that is, 
the probability of two adelic integers to be coprime is precisely 6j1r2 , 
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and they derived (1) from the adelic version. Soon after that, Sugita­
Takanobu [11] established a strong law of large numbers (S.L.L.N. for 
short) in Kubota-Sugita [5]'s setting, and furthermore, discovered a new 
limit theorem which corresponds to the central limit theorem in usual 
cases. 

In this paper, we discuss an analogy of these works for the polyno­
mial ring lFq[x] =: R, q being a prime, using again the adelic compacti­
fication R of R. As a result, an S.L.L.N. holds in this case, too. 

However, the proofs here are not a complete analogue of the pre­
vious ones. Indeed, in many points R and R resemble Z and its adelic 
compactification Z respectively, but in some points they are quite dif­
ferent. For example, Z has a natural linear order, while R does not, 
so that we need to define an appropriate enumeration R = {cpn};;,"=o· 
And the family of shifts {x t---t x + n};;_"=0 in Z forms a semigroup with 
respect to the addition of the parameter n, while the family of shifts 
{! t---t f + cpn};;,"=o in R does not, i.e., in general, cpm + ipn "!- cpm+n· In 
particular, the latter is a strong obstacle in proving an S.L.L.N. (The­
orem 2 below), which is finally overcome by adopting a modification of 
Stroock [10, § 5.3] 's method due to Miki [8]. 

§2. Summary of theorems 

We here present three theorems as well as definitions and a lemma 
to state them. The proof of the theorems will be given in the following 
sections. 

Definition 1. Let q be a prime, lFq := ZfqZ ~ {0,1, ... ,q -1} 
be the finite field consisting of q elements, and R be the ring of all 
lFq-polynomials, i.e., R := lFq[x]. We enumerate R as follows: 

00 

cpn(x) := L:>~q)(n)xi-l, n=0,1,2, ... , 
i=l 

where b~q)(n) E {0, 1, ... ,q -1} denotes ~he i-th digit of n in its q-adic 
expansion, namely 

00 

n = Lb~q)(n)qi-1, n E Nu {0}. 
i=l 

Both of infinite sums above are actually finite sums for each n. 

The following density theorem is an analogue of (1). 
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Theorem 1. The probability of two elements in R to be coprime is 
(q- 1)/q. More precisely1 , 

(2) lim #{(m,n)E{0,1, ... ,N-1}2 ;gcd(<pm,<pn)=1} q-1 
N->oo N2 q 

More generally, for any f, g E R, we have 

(3) I. #{(m,n) E {0, 1, ... ,N -1P; gcd(J + <f7m,g + <f7n) = 1} 
lm 

N->oo N2 
q-1 

q 

The limit (q- 1)/q appearing in Theorem 1 is equal to (R(2)- 1 , 

where 

(R(s) := (1- qs~l) -1 

is the zeta function associated with R. See § 4 below. 
Let us introduce the adelic compactification R of R. We say p E R 

is irreducible, if it is not a constant (or, an element of lF q) and if p cannot 
be divided by any f E R with 0 < deg f < deg p. Let P denote the set 
of all monic irreducible polynomials. 

Definition 2. For each pEP, we define a metric dp on R by 

Let Rp denote the completion of R by the metric dp. It is a compact 
ring and has a unique Borel probability measure Ap which is invariant 
under the shifts {Rp 3 f ~---+ f + g}gER, (Haar probability measure). 

Now we define 

R := II Rp, A := II Ap· 
pEP pEP 

The arithmetic operation '+' and 'x ' being defined coordinate-wise, R 
becomes a compact ring under the prod~ct topology. And A becomes 
the unique Haar probability measure on R. 

1The function 'gcd(f,g)' is assumed to return the greatest common divisor 
of f and g that is monic. In particular, if there is no common divisor other 
than constants (or, elements of IF q), we have gcd(f, g) = 1 and say 'f and g are 
coprime'. When f = g = 0, any monic polynomial is their common divisor, so 
we do not define gcd(O, 0). 
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R is metrizable with the following metric2: 

00 

i=l 

f = (!1, h ... ), g = (gl, g2, .. . ) E R. 

Lemma 1. The diagonal set D := { (!, J, .. . ) E R; fER} is dense 
in R. 

Proof. According to the Chinese remainder theorem, for any k, mE 

N and any f1, ... , fk E R, there exists f E R such that f = fi mod 
p'[', i = 1, ... , k. This implies that D is dense in R x R x · · · with 
respect to the metric d. 0 

Identifying R with D, we can regard R as a dense subring of R by 
Lemma 1. Since R is countable, we have >-.(R) = 0. 

Now we can mention an S.L.L.N. 

Theorem 2. For each FE L 1(R1,>-.1), 

. 1 N-1 

hm Nl ""' F(fl + 'Pn 1 , ••• , fl + 'Pn1 ) 
N-->oo L..t 

nt, ... ,nt=O 

As a special case of Theorem 2, we have an S.L.L.N.-version of 
Theorem 1. 

Definition 3. For f, g E R, we define 

·= { 1 (! E pR), 
Pp(f) . o U ~ pR), 

X(!, g) := II (1- pp(f)pp(g)). 
pEP 

Note that for J,g E R, X(!, g)= 1 if and only if gcd(f,g) = 1. 

Theorem 3. 

. 1 N-1 q- 1 
hm N2 L X(!+ 'f!m,g + 'Pn) = --, ;>..2-a.e.(f,g). 

N-->oo q 
m,n=O 

2We enumerate P = {p;}~ 1 in the order given by Definition 1. 
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§3. R - Preliminaries 

3.1. Basic properties 

Although all lemmas in this subsection can be proved essentially in 
the same way as in the case of Z, we give them proofs to make this paper 
self-contained. 

Lemma 2. Let p,p' E P, p =F p', and kEN. 
(i) pk Rp is a closed and open ball. 
(ii) pk Rp' = Rp'. 

Proof (i) That 

pk Rp = {! E Rp; dp(f, 0) :::; q-kdegp} 

= {f E Rp; dp(f, 0) < q-(k-1) degp} 

shows pk Rp is closed and open. 
(ii) Since pk Rp' C Rp' is clear, we show the converse inclusion. To this 
end, it is sufficient to show the existence of g E Rp' for which pkg = 1. 
For each m E N, there exists 9m E R such that Pk9m = 1 mod (p')m, 
i.e., dp'(Pk9m, 1):::; q-mdegp'. Then for n > m, we have pk(9n- 9m) = 
0 mod (p')m, and hence 

d ( k k ) d ( ) < -mdegp' p' P 9n' P 9m = p' 9n' 9m - q · 

This implies {gm}~=l is a Cauchy sequence in Rp'. Then its limit 
g E Rp' satisfies 

in other words, pk g = 1. 0 

Lemma 3. Let f E R and deg f 2:: 1. 
(i) For 3 -oo :::; deg g :::; deg f - 1, the set (! R +g) is closed and open. 

(ii) R = UgER; -oo5,degg5,degf-l(JR +g), which is a disjoint union. 

Proof. (i) We may assume f to be monic. Let f = flpEP po.,,(f) be 
the prime factor decomposition, where ap(f) = 0 holds except for finite 
number of pEP. By Lemma 2, 

(4) f R = II f Rp = II pop(!) Rp, 
pEP pEP 

3deg 0 := -oo. 
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where each pavU) Rp is closed and open, and hence f R is closed and 

open, too. Since the shift R 3 f f--4 (! + g) E R is .a homeomorphism, 
(! R + g) is closed and open, too. 
(ii) Since R is dense in R and h f--4 fh + g is a continuous and closed 
mapping, we have f R + g = f R + g. On the other hand, since R = 
UgER; -ooS,deggS,degj-1(/R +g), we see 

u 
gER; 

-ooS,deggS,deg f-l 

Let us next show that the above union is disjoint. Let g, l be distinct 
polynomials both of which are of lower degree than f. By (i), A := 

(! R +g) n (! R + g') is an open set. If A f- 0, then RnA f- 0, because 
R is dense in R. But then, for l E R n A, we see that 

dp(l- g, 0) ~ p-av(fl, dp(l- g1 , 0) ~ p-ap(!), pEP, 

which means that for any pEP, pavUlj(g- g'). Thus we see fl(g- g'), 
which is impossible. Consequently, we must have A = 0. 0 

Lemma 4. For f E R \ {0} and A E B(R), we have fA E B(R) 
and that 

(5) .X(! A) = q- degf .X( A). 

Proof Since R is a complete separable metric space and the mul­
tiplication R 3 g f--4 f g E R is injective and Borel measurable, it holds 
that fA E B(R) (cf. [9, Chapter I Theorem 3.9]). Next, let v be a 
Borel probability measure on R defined by 

v(A) = .X(!~) A E B(R) . 
.X(!R)' 

Then v is clearly shift invariant, and hence v = A by the uniqueness of 
the Haar measure. Thus we see .X(! A) = .X(! R).X(A). Lemma 3 and the 
shift invariance of .X imply 

1 = .x(ii) = 
gER; 

-ooS,deg gS,deg f -l 

from which (5) immediately follows. 0 
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3.2. Zeta function associated with R 
Let us define the zeta function associated with R: 

1 

(R(s) := fER~onic N(f)s' 
Res> 1, 

where 

(7) N(f) := the number of residue classes R/ JR = qdegf. 

Since the polynomial ring R is a unique factorization domain, and 

N(fg) = N(f)N(g), 

we have an Euler product representation of (R: 

Surprisingly, the following extremely simple formula holds: 

(9) ( 1 )-1 
(R(s) = 1- qs- 1 

Let us show (9). Let g(m) := LdlmJ-t(![J)qd, where J-t is the Mobius 
function. Then the Mobius inversion formula implies 

qn = Lg(d), n EN. 
din 

We must also recall that (See [7, 3.25. Theorem]) 

1 
#{pEP; degp = m} = -g(m). 

m 

Now noting that log(1- t)- 1 = I:,~= 1 t~ (ltl < 1), 

( 1 ) - 1 00 1 1 
log (R(s) = L log 1- qsdegp = L L;;;; qnsdegp 

pEP pE'Pn=1 

0000 11 00 11 
= "'"' --#{p E P;degp = m} = "' ---g(m) L L nqsmn L mnqsmn 

m=1 n=1 m,n=1 
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( 1 )- 1 
=log 1--­

qs-1 

Thus we have (9). 

Theorem 3 follows from the next lemma and Theorem 2. 

Lemma 5. 
r xu, g)> . .Z(dfdg) = q- 1 . 

}R2 q 

Proof 

( X(f, g)>..Z(dfdg) = II ( (1- Pp(f)pp(g))>.2 (dfdg) 
1R2 pEP 1R2 

= II (1- lr pp(f)>.(df) lr Pp(g)>.(dg)) 
pEP R R 

= II (1 _ q- degpq- degp) 

pEP 

= II (1 _ q-2degp). 

pEP 

On the other hand, plugging s = 2 into (8) and (9), we see that 

II (1- q-2degp) -1 = (R(2) 
pEP 

and hence 

r 2 1 h2 X(f,g)>. (dfdg) = (R(2) 
q-1 

q 

3.3. Uniform distributivity of {<t'n}~=O in R 

0 

We begin with a characterization of continuous functions on R. 

Definition 4. Let f E R and h E R \ {0}. When deg h ::::0: 1, 
by Lemma 3 ( ii), there exists a unique g E R such that - oo :::; deg g :::; 

deg h-1 and f- g E hR. This g is denoted by f mod h. When deg h = 0, 
i.e., his non-zero constant, we always set f mod h := 0. 

Definition 5. A function F : R--> lR is said to be periodic, if there 
exists h E R, deg h ::::0: 1, such that 
(10) 

F(f) = F(f mod h) L F(g)lhR+9 (f), fER. 
gER; 

-oo$deg g$deg h-1 
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And F : R ~ lR is said to be almost periodic, if there exists a sequence 
{Fm}~=l of periodic functions that converges to F uniformly. 

Lemma 6. A function F : R ~ lR is continuous, if and only if it is 
almost periodic. 

Proof Lemma 3 implies that periodic functions on R are continuous, 
and hence their uniformly convergent limits, that is, almost periodic 
functions are continuous. 

Conversely, let F be a continuous function on R. Since R is compact, 
F is uniformly continuous, in particular, for any c > 0, there is 8 > 0 
such that for any h E R, d(O, h) < 8, and any f E R, it holds that 
IF(!)- F(f + h)l < c. Now fix such an h E R, and define a periodic 
function F' by 

F'(f) := F(f mod h), fER. 

Then we have IF(!)- F'(f)l < c, f E R. Thus F is almost periodic. 0 
We next introduce the following lemma, which shows an important 

property of our enumeration { 'Pn}~=o· 

Lemma 7. Let m E N and let h E R be a monic polynomial of 
degree m. Then, for any j E N, {cpn mod h; (j- 1)qm :::; n < jqm} 
forms a complete residue system modulo h. Namely, 

{cpn mod h; (j -1)qm :S n < jqm} = {g E R; -00 :S degg < m} 

= { 'Pn ; 0 :S n < qm}. 

Proof This lemma is due to Hodges [4, p. 71]. Since the enumeration 
{ 'Pn}~=O is systematic, we can present a shorter proof here. Let j E N 
and let (j - 1 )qm :::; n < jqm. According to the definition of { 'Pn}~=O• 
since 

we have 
'Pn = 'Pn-(j-l)q"' + 'Pj-l'Pq"'' 

where 

deg 'Pn-(j-l)q"' < m, { 
~ m (j > 1), 

degcpj-l'Pq"' . 
= -oo (J = 1). 

Noting that r := 'Pj-l'Pq"' mod his of degree< m, we see that 
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= H'Pn-(j-1)qm + 'PJ-1'Pqm) mod h; (J- 1)qm:::; n < Jqm} 

= { ( 'Pn + r) mod h ; 0 :::; n < qm} 

= { 'Pn ; 0 :::; n < qm}. 0 

Since R is compact and includes R densely, each continuous function 
F : R ---+ lR is determined by its values on R. In particular, the integral 
ofF is determined by the sequence {F(cpn)};;:"=o· The following lemma 
indicates this fact explicitly. 

Lemma 8. The sequence { 'Pn} ;;:-:'=0 }:_s uniformly distributed in R, 
that is, for any continuous function F : R ---+ JR, it holds that 

(11) 
. 1 N-1 { 

J~oo N L F(cpn) = JR F(])>.(d]). 
n=O 

Proof. 
~ Let F be a periodic function, that is, let us assume F(f) = 

F(f mod h), f E R, for some nonconstant monic hE R. Then putting 
m := deg h and j 0 := lq~' J, Lemma 7 implies that 

1 N-1 

N L F(cpn) 
n=O 

1 N-1 1 jo jqm-1 

= N L F('Pn mod h)+ N L L F('Pn mod h) 
n=joqrn j=1 n=(j-1)q"' 

1 N-1 Jo 
= N L F('Pn mod h)+ N L F(g). 

n=joqm -oo~deg g<m 

Letting { t} denote the fractional part of t > 0, 

I~~ F(~n) - q~ -=<E<m F(g)l 

1

1 N-1 1 N N 
= N n!;m F('Pn mod h)+ N (qm- {qm}) -oo~~g<m F(g) 

q~ -=<~'<m F(g)l 
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:S N1 {qm max IF(g)l +I I: F(g)l} 
-oo<degg<m 

- -oo:Sdegg<m 

---+ 0 as N ---+ oo . 

Thus (11) holds for periodic functions. 
2° Let F : R ---+ lR be a continuous function. By Lemma 6, for any 

c > 0, there is a periodic function FE such that IIF- FE lloo < c. By 1 o, 

I~~ F(cpn)- h F(f)-\(df)l 

=I~ ~(F(cpn)- FE(Cf?n)) + ~ ~ FE(cpn)- h FE(f)-\(df) 

+ h(FE(f)- F(f))-\(df)l 

::::; 2c +I~~ FE(fn)- h FE(f)-\(df)l 

---+ 0 (first N ---+ oo, secondly c ---+ 0). 

Thus (11) holds for continuous functions. 0 

The following corollary follows from Lemma 8 and [9, Chapter III 
Lemma 1.1]. 

Corollary 1. For any continuous function F : R2 ---+ JR, we have 

N-1 

lim N\ I: F(cpm,Cf?n) = ( F(f,g)-\ 2 (dfdg). 
N-oo }~ 

m,n=O 

The assertion of Corollary 1 is referred to as the weak convergence of 
the sequence of probability measures4 {~2 I::~:-;-,~ 0 5( 10 m, 10,)}N= 1 to -\2 . 

It is well-known that the weak convergence is equivalent to the following 
condition ( cf. [10, § 3.1]): For any closed set K C R2 , it holds that 

(12) 
N-1 

limsup ~2 I: 5(\0m,<,On)(K) :S -\2 (K). 
N----+oo m,n=O 
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§4. Proof of density theorem 

Although Theorem 1 could be proved in an elementary way, we 
here prove it in the light of probability theory by means of the adelic 
formulation. This section is an analogue of Kubota-Sugita [5, § 6]. 

If the function X(!, g) were continuous on R2 , Corollary 1 would 
imply Theorem 1. However it is not continuous. Indeed, 

B := x-1({1}) = n (R2 \ (pR) 2 ) c R2 

pEP 

is surely a closed set, but we can show B = BB, which means that in any 
neighborhood of any point of B, there exists a point for which X = 0. 
Thus X is not continuous. That B = BB is shown in the following way: 
Take any (!,g) E B and any E > 0. Then choose l, mEN so large that 

d ( 0, n:=1Pi) < E. Now find h1, h2 E R such that 

{
fmodpl+l+hlf1:= 1Pi=O (modpt+l), 

g mod Pl+l + h2 IJ:=l Pi= 0 (mod Pl+l)· 

In fact, since TI~=l Pi and Pl+l are coprime, there exists k E R such 

that k TI~=l Pi = 1 (mod Pl+l), so that h1 = k(Pl+l - f mod Pl+l) 
and h2 = k(Pl+l - g mod Pl+l) are required ones. Then it is easily 

seen that d(f, f + h1 TI~=l Pi) < E, d(g, g + h2 TI~=l Pi) < E, and that 

(! + h1 TI~=l Pi, g + h2 TI~=l Pi) rf. B. Thus B C BB. 

Let us begin to prove (2) in Theorem 1. For each monic polynomial 
hER, we set 

hB := {(hj,hg) E R2 ; (!,g) E B}. 

Since hB n R2 = {(!,g) E R 2 ; gcd(f, g) = h }, it is easy to see that 
(13) 

{ 
1 

5 hB - ' L (<pn,'Pn)( ) - 0 
hER:monic ' 

(m,n) E {0,1,2, .. _}2\{(0,0)}, 

(m, n) = (0, 0). 

According to Lemma 5, .>..2(B) = JR2 X(!, g).>..2 (dfdg) = (q-1)/q. Hence 
by Lemma 4, 
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Since hB is a closed set, (12) implies 

(14) 

Note that by (6), (7) and (9) with s = 2, we have 

(15) 
1 

L q2degh 
hER: monic 

q 

q-1 

Also, since, for v 2': 0 and r..p E R 

-oo:::; degr..p:::; v <¢=:? r..p E {'Pm; 0:::; m:::; q"+l-1}, 
(<) (<) 

we see that for N E Nn [2, oo), taking v E NU {0} so that q":::; N -1 < 
qv+1, 

N-1 N-1 

1 """"" 5 (hB) 1 """"" 5 (hiP) N2 ~ (<pm,'Pn) ::::: N2 ~ ('Pm,'Pn) 
m,n=l m,n=l 

( 
1 qv+l_1 )2 

= ~ L 5'Pm (hR) 
q m=1 

= (#{1:Sm:Sq"+1 -1;hlr..pm}) 2 

q" + 1 

= (#{r..p E R; -oo < degr..p:::; v, h 1 r..p}) 2 

q" + 1 

= (#{k E R \ {0}; deg(hk):::; v}) 2 

q" + 1 

= (#{k E R; -oo < degk:::; v- degh}) 2 

q" + 1 

= { (qv-:e~:+~- 1 f, v 2': deg h, 

0, v < degh 
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q2 
<-­- q2degh · 

Here the last expression is summable in h E R, monic. Then it follows 
from (15), (14) and the Lebesgue-Fatou theorem that 

(16) 
q-1 

1---= 
q 

> 

> 

q-1 1 
-q- · q2degh 

hER; deg h?':1, monic 

1 N-1 

L limsup N 2 L b(cpm,'Pn)(hB) 
hER;degh?':1,monic N->eXJ m,n=O 

. 1 N-1 

L hmsup N 2 L J(cp,.,cp,.J(hB) 
hER;degh?':1,monic N-+oo m,n=1 

N-1 

2':limsup L ~2 L J(cp,.,cp,.)(hB) 
N-+oo hER;degh?':1,monic m,n=1 

N-1 

= limsup ~2 L L J(cp,.,cp,.)(hB). 
N-+oo m,n=1 hER; degh?':1, monic 

Subtracting each side of (16) from 1 and noting (13), we have 

(17) q ~ 1 ::; l~n:.H;r (1- ~2 I:1 L: s(cp,.,cp,.)(hB)) 
m,n=1 hER; deg h?':1, monic 

= l~~i~f(~2 I:1 (1- L J(cp,.,cp,.)(hB)) 
m,n=1 hER;degh?':1,monic 

+ ~2 O<m,~N J 
m=O or n=O 
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Finally, (14) with h(x) = 1 and (17) imply that 

. 1 N-1 

hm - """"' 8( J(B) 
N-HXl N2 L....t 'Pm>'Pn 

m,n=O 

which is equivalent to (2). 

q-1 
q 

Next, let us prove (3) in Theorem 1. Take arbitrary J, g E R with 
deg f V deg g ~ 0, and set <p~ := f +<pm and <p~ := g+'Pn· Then it is easy 
to see that the sequence of probability measures { # 2::~:-;,~0 8('P;,, ,<p::l} N 

weakly converges to A 2 . ·Furthermore, we have 

(18) 

By these facts, we can deduce that 

1 N-1 

J~oo N2 L 8('P;,,,<p;:J(B) 
m,n=O 

(19) 
q-1 

q 

similarly as the case where (!,g) = (0, 0). 

Remark 1. If J, g E R fail to belong to R, (19) may not be true. 
The following is one of such examples: Let T : N x N ~ N be a bijective 
mapping. For each N EN, we consider a system of equations 

(! + 'Pm) mod P-r(m,n) = 0, 

(g + 'Pn) mod P-r(m,n) = 0, 
m,n = 1,2, ... ,N, 

with unknown variable (!,g) E R2 • By the Chinese remainder theorem, 
the solution (!,g), say (! N, gN) E R 2 , exists. Since R2 is compact, 
{(/N,gN)}'jV=1 has a limit point, say (!00 ,g00 ) E R2 . Then since for 
each p E P, pR is a closed ball, it holds that 

Uoo + 'Pm) mod P-r(m,n) = 0, 

(goo + 'Pn) mod P-r(m,n) = 0, 
m,n EN. 

Clearly, we have X(/00 + 'Pm,goo + 'Pn) = 0, m,n EN, and hence 

N-1 

lim _2__ """"' 8(! + + ) (B) = 0. N-+oo N2 L...., x: I{Jm.,9x 1./)n 

m,n=O 
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§5. Proof of strong law of large numbers 

5.1. Maximal ergodic inequality 

Basically, we adopt the method used in Stroock [10, § 5.3]. We begin 
with the definition of classical maximal function. 

Definition 6. For f E L 1 (IR1 -+ IR), we define Hardy-Littlewood's 
maximal function M f by 

Mf(x) := ~~~ ~~~ h lf(y)ldy, x E IR1, 

where the sup is taken for all cubes Q of the form 

l 

Q= IJ[a1,a1 +r), a=(al, ... ,al)EIR1, r>O 
j=l 

such that Q 3 x, and 

IQI := the Lebesgue measure of Q. 

Lemma 9 (The Hardy-Littlewood inequality). ([10, § 5.3]) For any 
0 < o: < oo, it holds that 

1211 l{x E IR1;Mf(x);::: o:}l :S - lf(y)ldy. 
0: JRI 

Definition 7. For each m, n = 0, 1, 2, ... , there exists a unique 
k E N U {0} such that 'Pm(x) + 'Pn(x) = 'Pk(x). This k will be denoted 
by m · n, that is, 

00 

m·n := l.:((d~q)(m)+d~q)(n))modq)qi-l. 
i=l 

As is easily seen, m · n =/= m + n in general. Therefore the method 
used in Stroock [10, § 5.3] does not work to derive the maximal ergodic 
inequality. In this paper, we adopt a modification of Stroock's method 
due to Miki [8]. 

Lemma 10. ([8]) Let m, n, l = 0, 1, 2, .... 
(i) m · 0 = m, m · n = n · m, (l· m) · n = l· (m · n). 
(ii) The mapping N U {0} 3 k f--.+ m · k E N U {0} is bijective. 
(iii) (mVn)-(q-1)(mAn)::; m·n:Sm+n. 
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Proof (i) and (ii) are obvious. We here check (iii). Since, for a, b E 

{0, 1, ... 'q - 1} 

{ 
a+b, 

(a+ b) mod q = 
a+ b- q, if a+ b 2: q, 

if a+ b < q, 

it follows that 

(a+ b) mod q ~a+ b, 

{

a+b+(q-1)a 

= b + qa, if a+ b < q, 
(a+b)modq+(q-1)a= b ( ) 

a+ -q+ q-1 a 

= b + q(a- 1), if a+ b 2: q > b 

Hence, for 0 ~ m ~ n 

00 

m·n= ,L((d~q)(m)+d~q)(n)) modq)qi- 1 

i=1 

l ~ t(d~q)(m) + d~q)(n))qi- 1 = m + n, 

2o ~(dl''(n)- (q -l)dl'\m))qH ~ n- (q- l)m. 
0 

Lemma 11. For any square array {ak,,k2}k,,k2 E{0, 1,2, ... } C [O,oo) 

with L:;::,k2 =o ak1 ,k2 < oo, the following inequality holds: For any a > 0, 

Proof. Put 

where 

00 

f(x) := L ak,,k2 1c(k1 ,k2)(x), x E ~2 , 
kt,k2=0 
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Then clearly we have 

(20) 

and maximal function M f becomes 

Now suppose that x E C(k1,k2) (k1,k2 E {0,1,2, ... }), n EN, and 0 :<:::: 

j 11 j2 :<:::: n-1. If we take Q = [k1- (q-1)n, k1 +n) x [k2- (q-1)n, k2+n), 
then Q 3 x and 

(22) 

holds. Because Lemma lO(iii) implies 

and 

we see 

k1·J1 2: k1- (q-1)n, 

k2 · j2 2: k2 - (q- 1)n 

k1 · J1 :<:::: k1 + J1 :<:::: k1 + n- 1, 

k2 · j2 :<:::: k2 + )2 :<:::: k2 + n - 1, 

[k1·j1,k1 ·j1 + 1) C [k1- (q -1)n,k1 +n), 

[k2 · ]2, k2 · J2 + 1) C [k2- (q- 1)n, k2 + n), 

and hence (22) holds. 
If we take this Q for (21), we have for x E C(k11 k2), n EN that 

n-1 

Mf(x)2: l~l L ak1"]1 ,kd2 1C(k1·J11k2·J2)nQI 
Jt,]2=0 

1 2 n-1 

= (qn) . L akl")t,k2"i2· 
]1,]2=0 
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Taking sup in n, 

Then for 0 < a < oo, 

{ x E [0, oo) 2 ; Mf(x):::: a} 

:::> {x E [O,oo) 2 ; 

u 
Therefore Lemma 9 and (20) imply 

1221 =- f(x)dx 
0: JR2 

:::: l{x E IR2 ;Mf(x):::: o:}l 
:::: l{x E [O,oo) 2 ;Mf(x):::: a }I 

00 

Lemma 12 (Maximal ergodic inequality). Let F: R2 ----) [0, oo) be 
a Borel measurable function such that 
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Then for any 0 < a < oo, it holds that 

~2 
Proof. Fix M E N and (!,g) E R . For each k1 , k2 E {0, 1, 2, ... }, 

we define 

if 0 :S: kt, k2 :S: 2M- 1, 

otherwise. 

Then Lemma 11 implies that 

0 <a< oo. 

Noting that 

0 :S: kt, k2 :S: M, 0 :S: Jt, J2 < N, 1 :S: N :S: M 

we have 

'* 0 :S: kt · j 1 :S: k1 + j 1 :S: M + N- 1 :S: 2M- 1, 

0 :S: k2 · j2 :S: k2 + ]2 :S: M + N - 1 :S: 2M - 1 

'* ak,-j,,k2"J2(f,g) = F(f + CfJk,-j,g + CfJkd2) 

= F(f + CfJk, + CfJJ, g + CfJk2 + CfJh), 

#{ (kt, k2) E {0, 1, 2, ... , M}2 ; 

max ( 1N) 2 ~ F(f + CfJk 1 + CfJJ 1 , g + CfJk2 + CfJJ?) >a} 
l<N<M q - -

- - j,,]2=0 

122 21'11-1 
:S:- L F(f + CfJk,,g + CfJk2 ), 0 <a< oo. 

a 
k, ,k2=0 
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Therefore taking the expectation JE>- 2 of both sides, 

122 21\1-1 ::; ~ L lE>.2 [FU + ipk1 ,g + ipk2 )], 0 <a< oo. 
kl,k2=0 

Since >.2 is shift-invariant, the above inequality reduces to 

>.2 ( max ( N1 )2 't1 F(J + ij}jpg + tpjo) ::::a) 
1<N<M q -

- - )1,)2=0 

< 122 (~)2IE>.2[F] 0 <a< oo. 
- a M+1 ' 

Finally, letting M ___, oo, the assertion of the lemma follows. D 

5.2. Proof of Theorem 2 

For simplicity, we here prove Theorem 2 for l = 2 only. The same 
method works for generall, too. Namely, what we prove is as follows: 

For any FE L 1(R2 ,>.2), 

(23) 
N-1 

1 "'"""' >.2 N2 ~ F(f + tpm, g + tpn) ___, lE [F] 
m,n=O 

Proof. Take sequence of continuous functions {Fk}~1 so that 

(24) 
1 

IIFk- Fllu ::; k2 , kEN. 

By Corollary 1, it holds for each k E N that 
(25) 

N-1 

1 "'"""' >.2 N2 ~ Fk(f + tpm, g + tpn) ___, lE [Fk] 
~2 

asN___,oo, (f,g)ER. 
m,n=O 

By Lemma 12, it holds for 0 <a< oo that 

A' (~'b ~' ,,~,IHU + ~'" g +~h)- F(f + ~; .. g +'Ph ll :0. q'a) 
242 2 

::; -IE>. [IFk - Fl] 
a 
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242 1 
:::; ----;- . k2. 
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From this, it follows that 

which means that 

N-1 

lim sup N\ L 1Fk(f+cp1,,g+cp12 )-F(f+cpit,g+<ph)l =0, a.s. 
k-->oo N>1 . . 

- ]1 ,]2=0 

Consequently, by (24) and (25), we see that 

(26) I~',.~:/(! t ~, .. g + ~,) -JE'' [F]I 
=I ~2 j,¥::0 (FU + <pj,,g +'Ph)- Fk(f + 'Pj,,g +'Ph)) 

N-1 

+ ~2 L H(f+cpj,,g+cp)2)-lE'>.2 [H] 
it ,]2=0 

+lEA2[Fk) -JEA2[F)I 

N-1 

:::; ~2 L IF(f+cpj,,g+cp)2)-Fk(f+cpj,,g+cp)2)1 
j,,]2=0 

I 
N-1 I 

+ ~2 j,~oFk(f+cpj,,g+<ph) -JE-A2[Fk) 

+ JEA2 [IFk- Fi] 
M-1 

:::; sup J\,~2 L IF(!+ 'Pj,' g +'Ph)- Fk(f + <pj, ,g + 'Ph)l 
M::C:l j,,]2=0 
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+I ~2 . ~ Fk(f + 'P]l' g + 'PjJ -lE,\ 2 [Fk]l 
}1 ,]2=0 

1 
+ k2 

----> 0 a.s. (first N----> oo, secondly k----> oo). 0 

Remark 2. IfF E LP(R2 , >.2 ) for some 1::; p < oo, the convergence 
in (23) is in fact an LP-convergence. Indeed, for any E > 0, there exists 
a bounded measurable function Fro: : R2 ----> lR such that 

A similar estimate as (26) can be done in LP-norm in the following way: 

II ~2 ~ F(f + lf?m,g + 'Pn) -JE,\2 [F]II 
m,n-0 LP 

1 N-1 

::; N2 L IIF(f+rpm,g+rpn)-Fo(f+rpm,g+rpn)]]LP 
m,n=O 

+ ~~~2 ~ Fe(f+rpm,g+rpn) -JE,\2 [Fe]ll +liFe -F]]v• 
m,n-0 LP 

<II~' m~/,(! + ~,.,g + ~n) -IE''[Fdllu + 20 

----> 0 (first N----> oo, secondly E----> 0). 
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