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Approximations to the Goldbach and twin prime 
problem and gaps between consecutive primes 

Janos Pintz 

Abstract. 

We give a survey about the topics mentioned in the title, with 
a more detailed description of the recent joint results of Goldston, 
Y1ldmm and the author about small gaps between consecutive primes. 

§1. Introduction 

In the present work we give a short survey of the results concerning 
the above mentioned problems with special emphasis to the develop
ments in the last 5 years. We will discuss in greater detail the recent 
(still mostly unpublished) results of the author reached partly in collab
oration with R. C. Baker and G. Harman (Large gaps between primes), 
I. Z. Ruzsa (Goldbach-Linnik problem) and mainly with D. Goldston, C. 
Y1ldmm, S. W. Graham and Y. Motohashi (Small gaps between primes 
and almost primes). 

Finally we will discuss the ideas behind the proof of the basic result 
(Pn denotes the nth prime) 

(1.1) liminf Pn+l- Pn = 0, 
n--+oo log Pn 

reached in a recent joint work with Goldston and Y1ldmm [34]. 
A more detailed discussion of the earlier results connected with 

Goldbach's conjecture can be found in the survey paper of Pintz (2006). 
Further discussion of all the mentioned topics can be found in the ex
cellent monograph of Narkiewicz (2000). 
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Sections 3-15 will be devoted to the developments reached in the 
twentieth century, while Section 11 will contain a description of the 
results of the past 5 years. 

Acknowledgement. The author would like to thank the referee 
for many helpful comments. 

§2. Origin of the problems 

The time of the origin of the twin prime problem is unclear, but it 
is plausible to suppose that already the Greeks observed that there are 
neighbouring odd integers larger and larger which are both primes. In 
view of Euclid's proof about the infinitude of primes we may justifiably 
suppose that the same was believed to be true about twin primes as 
well. In this way there is a good chance that the twin prime problem is 
one of the oldest (if not the oldest) unsolved problems in mathematics. 

What we know for sure is that de Polignac (1849) formulated in 
1849 already a generalization of it, namely 

De Polignac conjecture (Generalized twin prime conjecture). Ev
ery even integer can be written in infinitely many ways as the difference 
of two primes. 

A weaker form of this conjecture is a complete analogue of the Gold
bach conjecture. 

Weak de Polignac conjecture (Weak form of the generalized 
twin prime conjecture). Every even integer can be written in at least 
one way as the difference of two primes. 

This conjecture clearly does not follow from and does not imply the 
Twin Prime Conjecture. In contrary to this, the following conjecture is 
a weaker form of the Twin Prime Conjecture. 

Conjecture about bounded prime differences. There exists 
an absolute constant C such that 

(2.1) Pn+I -PI :S C infinitely often. 

In order to see the difference in the depth of the de Polignac conjec
ture and its weaker form it is sufficient to remark that the truth of the 
de Polignac conjecture for at least one even integer is equivalent to the 
conjecture (2.1) about bounded prime differences. On the other hand, 
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the weak de Polignac conjecture is already known to be true for almost 
all even integers since 1937, as it follows directly from the proof of the 
results of van der Corput (1937) Cudakov (1938), Estermann (1937) (see 
Section 4). 

In contrast to the immense uncertainty in the time of the origin of 
the twin prime conjecture, the Goldbach conjecture is usually considered 
to be originated in the letter of Goldbach to Euler, dated June 7th, 1742 
(Euler, Goldbach (1965)). But the situation is also a little bit more 
complicated here. Goldbach used even two different formulations in his 
above mentioned letter from the usual one. In his answer dated June 
30th, 17 42 Euler essentially formulated the presently known form of the 

Binary Goldbach conjecture. Every even integer greater than 2 
can be written as the sum of two primes. 

(In his time still the number 1 was considered as a prime, so he did 
not need the assumption "greater than 2".) 

Euler mentions in his letter that 
(i) the above quoted formulation was mentioned to him earlier in a 

conversation by Goldbach and 
(ii) that it implies one of the more complicated original formulations 

of the conjecture contained in the June 7th letter of Goldbach. 
Another fact, which is an important aspect of the history of the 

Goldbach problem is the nearly forgotten short remark of Descartes 
(1908) which we can formulate as 

Descartes conjecture. Every even integer can be written as the 
sum of 1, 2 or 3 primes. 

This remark appears just in the 1908 edition of the Collected Works 
of Descartes (Vol. 10, p. 298), so it was probably not known to Goldbach, 
although the possibility cannot be excluded completely. 

In the survey paper (Pintz 2006) we made a more detailed analysis 
of the logical connections between various forms of the Goldbach conjec
ture which revealed that (surprisingly) the two original versions of the 
(binary) Goldbach conjecture formulated by Goldbach in his letter are 
both equivalent with the present version, unlike the Descartes conjec
ture, which is equivalent to the weaker assertion that for any even N at 
least one of Nand N + 2 is a Goldbach number, that is, can be written 
as the sum of two primes. 

Finally, for the sake of completeness, we may formulate the 
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Ternary Goldbach conjecture. Every odd integer greater than 5 
can be written as the sum of three primes. 

This conjecture is not contained in the correspondence of Goldbach 
and Euler, but this terminology is generally used nowadays. It is easy to 
see that it follows both from the binary Goldbach conjecture and from 
the Descartes conjecture. 

It was a great triumph of (analytic) number theory when I. M. Vino
gradov (1937) proved that the ternary Goldbach conjecture is true for all 
sufficiently large odd integers N > N 0 . The best known value N 0 = e3100 

was reached very recently by Liu Ming-Chit and Wang Tianze (2002). 
In view of the almost complete solution of this problem we shall restrict 
our attention for the binary Goldbach conjecture, called further on just 
Goldbach conjecture. 

As practically no advance was made in either the Goldbach or the 
twin prime conjecture in the eighteenth and nineteenth centuries, Hilbert 
included both problems (and a common generalization of them) into its 
gth problem- together with the Riemann Hypothesis- into the collection 
of the famous 23 problems in his celebrated lecture at the 1900 Paris 
International Congress (see Hilbert (1935)). After more than hundred 
years we can say with some justification that his gth problem turned 
out to be the most difficult. Although most of his problems are already 
completely solved, none of the three above mentioned problems about 
primes have been solved in the past 105 years. 

No progress was made in the first 12 years. So, at the 1912 Cam
bridge International Congress Landau (1912) listed four basic problems 
about primes 

(1) Goldbach conjecture 
(2) Twin prime conjecture 
(3} There are always primes between n2 and (n + 1)2 (n E Z) 
(4) There are infinitely many primes of the form n 2 + 1. 
He characterized in 1912 in his speech these problems as "unangreif

bar beim heutigen Stand der Wissenschaft" ( unattackable at the present 
state of science). 

In fact, they are all open today, after nearly 100 years. Since we will 
deal with the most important approximations to Problems 1-3 in the 
next sections but not with Problem 4 we remark here that modern sieve 
methods have already reached a close approximation to Problem 4. We 
are referring to the deep result oflwaniec (1978) which gave the following 
weaker form of Problem (4) of Landau. 

Theorem (Iwaniec). n 2 + 1 = P2 infinitely often. 
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Here we use the well-known notation Pr for numbers having at most 
r prime factors (counted with multiplicity). 

§3. Approximations to the Goldbach problem. (i). Almost 
primes 

The first significant approximation of Goldbach's problem was achiev
ed by Vigo Brun (1920) who showed that the analogue of the binary 
Goldbach conjecture is true if we allow instead of primes numbers of 
type P9 , that is (with the notation introduced at the end of Section 2), 
numbers with at most 9 prime factors. 

Theorem (Brun). If N > N0 is even, then N can be written in the 
form N = P9 + Pg. 

Selberg showed in the early 1950's with the sieve invented by himself 
that 

(3.1) 

but details of the proof appeared much later (Selberg (1992)). 
Renyi (1947, 1948) could combine traditional sieve methods, ana

lytic methods and the large sieve of Linnik to show the first result when 
one of the summands is definitely prime in the "quasi Goldbach" de
composition of a large even integer N. 

Theorem (Renyi). There exists a fixed (large) integer K such that 
N = P1 + PK if N > N 0 , N even. 

The value of K was reduced in subsequent works of Pan Cheng Dong 
(1963) and Barban (1963) to K = 4, then to K = 3 by Buhstab (1965). 
Finally, in 1966 Chen Jing Run (1966, 1973) obtained his celebrated 
{1, 2} result with an ingenious application of the weighted sieve. 

Chen's Theorem. N = P1 + P2 if N >No is even. 

A crucial role was played in Chen's theorem by (a new version of) 
the famous Bombieri-Vinogradov theorem. 

§4. Approximations to the Goldbach problem. (ii) Excep
tional sets 

The first method which was able to attack approximations to the 
binary and ternary Goldbach problems with primes was developed by 
Hardy and Littlewood (1923) soon after Brun's work. Although the 
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results were initially just conditional, it was the circle method of Hardy 
and Littlewood which formed the basis of Vinogradov's famous three 
prime theorem. In their ground-breaking paper they showed that the 
ternary Goldbach conjecture holds for N > N 0 subject to the Hypothesis 

(4.1) L(s,x) =I 0 for a> 8, 

where e is any fixed constant withe< 3/4. 
In their next paper (Hardy-Littlewood (1924)) they showed under 

the Generalized Riemann Hypothesis that almost all even numbers are 
Goldbach numbers with a strong estimate on the exceptional set. Let 
us use the notation 

(4.2) E(X) = #{n :s; X, 2 In, n =F Pl + P2}· 

They showed on GRH in 1924 the estimate 

( 4.3) E(X) «-= X 112+", 

which is apart from the factor X" even today the best conditional result 
on GRH. 

The first unconditional estimate of type 

(4.4) 

was shown by an entirely different elementary method by Schnirelman 
(1930, 1933) (see (5.2)). However, the crucial result 

( 4.5) E(X) = 0 A (-4-) , A > 0 arbitrary 
log X 

of van der Corput (1937), Cudakov (1938) and Esterman (1937) proved 
simultaneously and independently by them was a suitable modification 
of Vinogradov's method in proving the ternary Goldbach conjecture, 
which was based on the circle method of Hardy and Littlewood. 

The pioneering work of Montgomery and Vaughan (1975) yielded 
the first estimate of type 

(4.6) E(X) « X 1- 8 

with some (explicitly calculable) small unspecified value of fl. 
Despite many efforts of Chen, to show ( 4.6) with a good explicit 

value of fi, the results fJ = 0.05 of Chen and Liu (1989) and {J = 0.079 
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of Hongze Li (1999) remained far from the conditional estimate (4.3) of 
Hardy and Littlewood. The hitherto best published result 

(4.7) E(X) « X 0 ·914 ~ 6 = 0.086 

was shown one year later by Hongze Li (2000a). 

§5. 5. Approximations to the Goldbach problem. (iii) An
other conjecture of Landau 

In the same talk at the Cambridge International Congress in 1912, 
Landau proposed the following weaker form of the Goldbach conjecture. 

Landau's conjecture. There exists an integer k such that every 
integer exceeding 1 can be written as the sum of at most k primes. 

We may formulate also a weaker form of this as 

Weak Landau conjecture. There exists an integer k such that 
every sufficiently large integer can be written as the sum of at most k 
primes. 

We remark that although the two conjectures are equivalent with 
each other as long as no bound on k is required, they are of different 
difficulty if we would require them to hold with the same value k. Let 
us denote the minimal value of k by S in the first formulation, and by 
S 1 in the second formulation. 

It was actually Brun's work on sieves which opened the way to an 
unconditional treatment of Landau's conjecture. Namely, Schnirelmann 
(1930, 1933) succeeded to show that the set g of Goldbach numbers, 
that is the set 

(5.1) Q = { n; 2 I n, n = P1 + P2} 

has positive lower density (see ( 4.4)), i.e. 

(5.2) G(X) = #{n:::; X; n E Q} »X for X 2:: 4. 

He could show further that this property implies Landau's conjecture 
with the bound 

(5.3) s1 :::; 8oo ooo. 

Vinogradov's (1937) three primes theorem implied 

(5.4) 
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but left open the value for S, as well as the question whether 

(5.5) s1 = 3, 

which is equivalent to Descartes' conjecture for N >No, and so it would 
be a consequence of the binary Goldbach conjecture. 

The best known unconditional result is due to Ramare (1995) who 
showed that all even integers can be written as a sum of 6 primes, there
fore 

(5.6) 

His proof relies both on analytic and elementary arguments, com
bined with computations. Schnirelman's method was developed by him 
to the point that 

(5.7) 
X 

G(X) > S for X > e67, 

as an explicit form of (5.2). 
Finally we mention that the best known conditional results, subject 

to the Riemann Hypothesis (RH) and the Generalized Riemann Hypoth
esis (GRH), respectively, were achieved by Kaniecki (1995), who showed 

(5.8) RH ==? 81 :<:; 6, 

and by Deshouillers, Effinger, te Riele, Zinoviev (1997) and Saoter (1998): 

(5.9) GRH ==? TGC ==? 81 :<:; 4, 

where TGC means the ternary Goldbach conjecture (for every odd N > 
5). 

§6. Approximations to the Goldbach problem. (iv) Goldbach 
numbers in short intervals 

The results ( 4.5) of van der Corput, Cudakov and Estermann raised 
the following two natural problems. 

I) What are the possible longest intervals without any Goldbach 
numbers? 

II) What are the possible longest intervals where the possible Gold
bach exceptional numbers form a positive proportion of all even integers 
in the interval? 

According to the above let 

(6.1) g = {gi}~l' £ = {n;21 n,n ~ Q} 
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(6.3) 
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A(x) = max(gk+l - gk) 
9k~X 

E(X, Y) = E(X + Y) - E(X) = #(& n (X, X+ Y]), 

where gn denotes the sequence of all Goldbach numbers. 
It turns out that in contrast to essentially all problems concerning 

Goldbach numbers, the most effective methods to answer question I are 
the ones which use no specific additive methods, just results about the 
distribution of prime numbers and the mere definition of the Goldbach 
numbers. We can formulate the simple idea of Montgomery and Vaughan 
(1975) in the following slightly more general form 

Proposition. Let us suppose we have four positive constants 111, 112 
c 1 and c2 < c 1 191 with the following properties: 

(a) every interval of type [X- Y, X] with X{} 1 < Y < X/2 contains 
at least c1 Y /log X primes for any X > Xo, 

(b) for all but c2 X/ log X integer values n E [X, 2X] the interval 
[n- X{}2 , n] contains a prime for any X> X 0 . 

Then 

(6.4) A( X) «: X{} 1{} 2 • 

According to this, the estimate 

(6.5) 

follows directly from the results about 191 and 192 . (We mention that 
results about 191 are dealt with in more detail in Section 14). The results 
of Huxley (1972) 

(6.6) 
7 

191 = 12 + c, 

accordingly led Montgomery and Vaughan to the result 

(6.7) 
7 

193 = 72 +c. 

The strongest published results before 2000, 191 = 0.535 of R. C. 
Baker and G. Harman (1996), further the result 19 = 2~ + c of Ch. Jia 
(1996a) implied 

(6.8) 193 = 0.02675. 

Based on these results we may formulate the following weaker con
jecture, which is perhaps more accessible than the Goldbach problem. 
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Conjecture A. 9k+l- 9k « g'k for any c > 0. 

Our feeling that Conjecture A may be proved easier than the Gold
bach conjecture is supported by the result of Linnik ( 1952), according to 
which the Riemann Hypothesis implies Conjecture A, with the estimate 
log3 9k· The strongest conditional result is the following 

Theorem (Katai 1967). RH =* 9k+l - 9k « (log 9k)2. 

The first answer for Problem II was furnished by the result of K. 
Ramachandra ( 1973) 

(6.9) E(X, X 194 ) = o(X194 ) if 194 = ~+c. 

This was improved twenty years later when simultaneously and in
dependently Perelli-Pintz (1933) and H. Mikawa (1992) showed (6.9) 
with 19 4 = ;, + c and 19 4 = Js + c, respectively. Further significant 
improvements were 

194 = i1 + c Hongze Li (1995), 
194 = 11l0 + c Baker, Harman, Pintz (1995/96). 
Finally we remark that we can show an analogue of the above men

tioned theorems of Linnik and Katai for the more difficult question II, 
if we suppose the Generalized Riemann Hypothesis in place of RH. 

Theorem (Kaczorowski-Perelli-Pintz (1993)). The GRH implies 
for any c > 0 

(6.10) E(X, Y) = o"'(Y) for Y = (logX)B+"'. 

§7. Approximations to the Goldbach problem. (v) The Gold
bach-Linnik problem 

The following approximation of the Goldbach problem was exam
ined by Linnik more than half a century ago, before most of the short 
interval problems. He imposed the question whether we can write any 
(sufficiently large) even integer as the sum of a Goldbach number and 
at most K powers of two, with a fixed number K. In two subsequent 
papers Linnik (1951, 1953) succeeded to prove this with an unspecified 
K, first under GRH, two years later unconditionally. Since the binary 
Goldbach conjecture (for large enough even numbers) is equivalent to 
K = 0, the proof of Linnik's result with a reasonable value of K shows 
how close we are to the Goldbach conjecture in the above sense. It may 
be interesting to note that Descartes' conjecture implies K = 1. 
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The problem can be formulated in a similar (but not equivalent) 
following way, too. 

Problem: Suppose an arbitrary even integer is given in the binary 
form. How many binary digits have to be changed at most in order to 
obtain a Goldbach number? 

In 1975 Gallagher [29] found a significantly simpler prooffor Linnik's 
theorem. The first explicit results, obtained at the end of the 1990es, 
were based on Gallagher's proof. We list the results below up to 2000. 

K = 54000, J. Y. Liu, M. C. Liu and T. Z. Wang (1998b); 
K = 25000, Hongze Li (2000b); 
K = 2250, T. Z. Wang (1999). 
The conditional estimates were the following. 
GRH =} K = 770, J. Y. Liu, M. C. Liu and T. Z. Wang (1998a); 
GRH =} K = 200, J. Y. Liu, M. C. Liu and T. Z. Wang (1999); 
GRH =} K = 160, T. Z. Wang (1999). 
Finally at the Debrecen Number Theory meeting in 2000 the author 

announced the results K = 10 (under GRH) and K = 12 (uncondition
ally), which were later further improved in joint work with I. Z. Ruzsa 
(see Section 11). 

§8. Approximations to the Goldbach problem. (vi) Moments 
of differences of Goldbach numbers 

The idea of examination of moments 

(8.1) Mn(X) = L (g~+l- gn)n (gk, = max(gk,X)) 
g."::;x 

of differences of Goldbach numbers originates from H. Mikawa (1993). 
He proved 

(8.2) Ma(X) = 2n-l X+ o(X) for 0 < o: < 3 

and 

(8.3) 

The expression (8.1) (for all o: 2': 0) tells more, in some sense, about 
irregularities of the distribution of Goldbach numbers than E(X) in ( 4.2) 
since large blocks of Goldbach exceptional numbers obtain larger weight 
in (8.1) foro: > 1; in this way it tells something about the structure of 
the exceptional set [(see (6.1)), too. 
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Since the binary Goldbach conjecture (for all sufficiently large even 
numbers) is equivalent to 

(8.4) Met(X) = 2et-l X+ Oet(1) for a:~ 0, X> 0, 

it is plausible to formulate the following weaker conjectures. 

Conjecture C 2 : Met(X) = 2et-l X+ O(X1- 6 ) for any a: ~ 0 with 
a positive 8 = J(a:). 

In order to see the depth of Conjecture C2 we remark that its asser
tion for a: = 0 is obviously the deep theorem ( 4.6) of Montgomery and 
Vaughan (1975). 

It is interesting to note that in the above formulation (that is for all 
a: ~ 0) the seemingly weaker Conjecture C1 is equivalent to C2 (using 
again ( 4.6)). In fact, ( 4.6) implies the following connection 

Proposition. Conjectures C1, C2 and A (see Section 6} are equiv
alent. 

The above equivalence implies that similarly to Conjecture A, also 
Conjectures C1 and C2 follow from the Riemann Hypothesis (unlike 
most other problems in connection with the Goldbach conjecture, where 
we need assumptions about zeros of Dirichlet £-functions, like the Gen
eralized Riemann Hypothesis, for example). 

Since Mikawa's method has its natural limit at a: = 3 we used en
tirely different methods to improve his results (see Section 11). 

§9. Approximations to the Twin Prime Conjecture and to the 
Weak Form of the Generalized Twin Prime Conjecture 

The results about Goldbach decompositions of even integers using 
almost primes in place of primes (see Section 3) all have their natu
ral analogues for the twin prime conjecture. So, we mention just the 
strongest result. 

Chen's theorem (1966, 1973). There are infinitely many primes 
p such that p + 2 is a P2 number (and the same holds for p- 2, too, or 
with an arbitrary even integer 2d in place of 2}. 
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In case of the examination one can ask the same questions for the 
exceptional set in the weaker form of the generalized twin prime conjec
ture, that is for 

(9.1) E'(X) = #{ n :S X; 2 In, n -1- P1- P2} (see (4.2)) 

or for the analogue E'(X, Y) = E'(X + Y)- E'(X) (see (6.3)). 
Although the results were not worked out in most cases, the applied 

methods would yield the same results as those of Sections 4, 6, 8 and 
(with perhaps slight changes) 7, if we substitute Goldbach numbers by 
the numbers which can be written as the difference of two primes. (We 
ignore trivial differences, like E(2) = 1 in contrast to E'(2) = 0, and 
consequently the Goldbach conjecture is equivalent to E(X) = 1 for 
X~ 2, while we conjecture E'(X) = 0 for all X, naturally.) 

Thus, the difference is only with results of Section 5, concerning 
Landau's conjecture, which have no natural analogue with respect to 
any form of the twin prime conjecture. 

§10. Large Gaps Between Consecutive Primes 

It is a very natural question to ask how large the gaps can be in 
the sequence of primes. The first published conjecture was the well
known Bertrand's postulate. Bertrand (1845) conjectured that there is 
always a prime in (x/2, x- 2] for any x > 6, which means that we have 
essentially always at least one prime between an integer and its double. 
The same conjecture appeared about 100 years earlier in an unpublished 
manuscript of Euler (cf. p. 104 of Narkiewicz (2000)). This conjecture 
was proved by Chebyshev (1850), ([13]), who even showed the much 
stronger result 

X X . 
0.92129-1 - :S 1r(x) :S 1.10555-1 - If X> Xo, 

ogx ogx 
(10.1) 

where 1r(x) denotes the number of primes not exceeding x. The proof of 
Chebyshev was completely elementary. 

The proof of the prime number theorem with the classical error term 

(10.2) 1r(x) = lix + 0 ( X ) = r __!!:!_ + 0 ( X ) 
ecy!IOgX } o log t ecy!IOgX 

due to de la Vallee Poussin (1899) automatically leads to an estimate 
for the gaps between primes. Since under the Riemann Hypothesis we 
have even 

(10.3) 7r(x) = lix + o( v'xlogx), 
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this implies the existence of primes in intervals of the form 

(10.4) 

This was the knowledge about the differences of consecutive primes 
when Landau expressed his conjecture (Problem 3 in Section 2) in 1912, 
which asserts (roughly) the existence of primes in intervals of type 

(10.5) [x,x + 2Vx]. 

On the other hand, the Prime Number Theorem (10.2) obviously 
implies that the average size of gaps between primes around x is much 
smaller, namely 

(10.6) logx, 

which indicates that a much stronger assertion than (10.5) might hold 
in reality. In fact, Cramer (1936) constructed a heuristic probabilistic 
model for the primes in which the integers n are chosen to be prime in
dependently with probability 1/ log n, based on the function li x and the 
approximation (10.2), describing the average density of primes around x. 
This model is very effective to produce conjectures about the true be
haviour of primes. Even if it spectacularly fails in some cases - like 
shown first by the celebrated result of Helmut Maier (1985); 

(10. 7) 
1r(x + (logx).A)- 1r(x) f---+ 1 

(logx).A-l 

for any fixed .\ > 0, as x --+ oo - we have no better tools to make 
plausible predictions. Based on his model Cramer (1936) expressed the 
conjecture 

(10.8) 1. Pn+l- Pn 1 1msup 2 = . 
n--+oo log Pn 

This conjecture is accepted by most experts, at least apart from the 
value 1; definitely it is believed to be true in the weaker form 

(10.9) Pn+l - Pn «o: (logpn) 2+" for any E: > 0; 

and is considered to be false for any E: < 0. 
The first result, going beyond the "trivial" gap size implied by the 

error term of the prime number formula was reached by Hoheisel ( 1930), 
nearly two decades after Landau's lecture in 1912. 
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His idea could be formulated in the following way. Let us consider 
the explicit formula for the well-known function 

(10.10) 1/J(x) = L A(n), 
n:<;x 

A(n) = {logp 
0, 

if n = pm 

otherwise. 

Denoting the non-trivial zeros (} = (3 + ir of the (-function we have 

1/J(x) = x _ L x12 + 0 (x lo~ Tx). 
I'YI:ST (} 

(10.11) 

(We can set here T = y'x, e.g.) The crucial observation is that although 
the individual error terms can make up the total error in (10.2), but 
their change ((x + y)12- x12)/ (}once we move from x to x + y with any 
of the form 

(10.12) y=x19 (79<1), 

for example, is generally much smaller than the absolute value of xl2 / (). 

Therefore, if we have some information about the number of zeros 

(10.13) N(CJ, T) = 2:: 1, 
Q;((IJ)=O 

hi:ST, ,62:a 

then we can estimate the change in the error term much better than the 
size of the error term itself. Since the density theorem of Carlson (1920), 

(10.14) N(CJ, T) « 10 T(4a+c)(l-a) for any E > 0 

was available since 10 years in 1930, Hoheisel succeeded to show the 
existence of primes, even to give a prime number theorem for short 
intervals 

(10.15) 
1 

for 79 = 1---. 
33000 

Later discoveries about the zero-free region of the zeta-function re
vealed that the crucial point is to have a good density theorem as (10.14), 
and in case of a bound 

(10.16) N(CJ, T) « TA(l-a) logE T 

one can prove (10.15) with 

(10.17) 
1 

79 = 1- A +E. 
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Continuing this research, after many subsequent improvements, finally 
Huxley (1972) succeeded to prove the above with 

(10.18) A= 12 
5' 

7 • 
iJ= 12 +c:=0.583+c:, 

which is even today essentially the best result for (10.15). 
However, surprisingly Iwaniec and Jutila (1979) found a way to 

show the existence of primes in short intervals without requiring the 
asymptotic (10.15). With an ingenious combination of modern forms of 
sieve methods and analytic methods they succeeded to prove in place of 
(10.15) the weaker relation 

(10.19) 
X{) 

7r(x + x{))- 7r(x) » -1 -, ogx 

13 
iJ = 23 = 0.5652 . . . . 

The estimate (10.19) was improved several times before the end of the 
twentieth century until the distance iJ- 1/2 was finally nearly halved 
compared to (10.19) by the result 

(10.20) iJ = 0.535, R. C. Baker - G. Harman (1996). 

The present best conditional result, the improvement of (10.4) with 
a factor log N; that is, the existence of primes in 

(10.21) [x,x + Cy'xlogx] on RH 

originates from Cramer (1936), but still fails to decide Landau's original 
problem. 

As we mentioned earlier, according to the general belief, the actual 
size of the largest possible gaps is around (10.8), which is exactly the 
square of the average gap size log p around p. 

The value log p was improved by elementary arguments to 

(10.22) ). =lim sup Pn+l - Pn > 2 
n-->oo log Pn -

by Backlund (1929); further by Brauer and Zeitz (1930) to 

(10.23) ). 2: 4. 

The first estimate of type >. = oo was found one year later by West
zynthius (1931) 

(10.24) l. (Pn+l - Pn) log4 Pn O 
1msup > 
n-->oo log Pn log3 Pn 
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where log11 x denotes the v-fold iterated logarithm. This was improved 
by Erdos (1935) to 

(10.25) l. (Pn+l - Pn)(log3 Pn)2 > O 1msup ; 
n->oo log Pn log2 Pn 

further three years later by a log log log logp factor by Rankin (1938) to 

(10.26) l. (Pn+l - Pn)(log3 Pn)2 > 1 1msup -. 
n->oo log Pn log2 Pn log4 Pn - 3 

Apart from the constant 1/3 this result is even today, after nearly 
70 years the best known despite of the prize $ 10 000 offered by Erdos 
in 1979 for the proof (or disproof) that (10.26) holds with any positive 
constant c in place of 1/3. Although (10.26) was improved four times (by 
Schonhage, Ricci, Maier-Pomerance and the author), the best known 
result at present is only 

(10.27) l. (Pn+l- Pn)(log3Pn) 2 > 2 1 1msup e , 
n->oo log Pn log2 Pn log4 Pn -

proved by the author [Pintz (1997)] by a combination of methods from 
graph theory, probability theory, analytic and elementary number the-
ory. 

§11. Small Gaps Between Consecutive Primes 

The smallest possible existing gap between primes is clearly 2, apart 
from the exceptional distance 1, between 2 and 3. However, whether 
gaps of size 2 appear beyond any limit, is obviously exactly the twin 
prime conjecture. According to this, the detection of small gaps between 
primes is a natural approximation to the twin prime conjecture. The 
progress can be compared to that in the problem of finding large gaps 
between consecutive primes as described in (10.22)-(10.27). 

Since the average gap size is logp by the Prime Number Theorem, 
one can set the goal to reach some nontrivial estimate (possibly zero) 
for the quantity 

(11.1) A 1. . f Pn+l - Pn L.l.l = lm ln . 
n->oo log Pn 

The first result was proved eighty years ago under GRH by Hardy 
and Littlewood (1926) 

(11.2) ~1 ::; 2/3, 
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by the aid of their circle method. However, the first unconditional result 
was reached much later by Erdos (1940); 

(11.3) b.l ::;: 1- c, 

with an unspecified small positive constant c. Erdos used Brun's sieve 
in order to show that for any particular integer k the equation 

(11.4) Pl - pz = 2k Pi ::;: x 

has not too many solutions. This showed that the relation .6.1 = 1, 
which would imply a too big concentration of the differences Pn+l - Pn 

around log x if Pn E [x/2, x], is not possible. 
After several improvements in sieve methods enabled an improve

ment of (11.3) to c = 3/32 in 1965, Bombieri and Davenport (1966) were 
able to substitute the GRH by the new Bombieri-Vinogradov theorem, 
which led itself to .6.1 ::;: 1/2. Further, a combination with the method 
of Erdos yielded 

(11.5) b.l ::;: (2 + v'3) /8 = 0.466 ... 

Further improvements reduced this to 

(11.6) .6.1 ::;: 0.44254... Huxley (1977), 

when H. Maier (1985) invented his method which led to the unexpected 
irregular behaviour (10.7) of primes in intervals of length (logx).x. for 
any .\ > 0. Since quantitatively he showed that primes might be dis
tributed more densely than on average by a factor e1 in intervals of 
length w(x)logx with w(x) = (logx)o(l), that is 

l . 1r(x+w(x)logx)-1r(x) 
1msup ( ) 2: e', 
n->oo W X 

(11. 7) 

this automatically yielded .6.1 ::;: e-1 = 0.56145 .... 
However, his method could be again combined with that of Hux

ley (1977) in proving (11.6), so the combination of the three basically 
distinctive approaches of Erdos, Bombieri-Davenport and Maier finally 
led, in a fairly non-standard way, to the result of Maier (1988), 

(11.8) .6.1 ::;: e-1 · 0.44254 = 0.2486 .... 

The results (11.2), (11.5) and (11.8) show that regularity of distribu
tion of primes in arithmetic progressions ( G RH or Bombieri-Vinogradov 
theorem) implies the existence of small gaps between consecutive primes. 
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On the other hand, Heath-Brown [39] proved in 1983, that the existence 
of Siegel zeros (that is very strong irregularities in the distribution of 
primes in arithmetic progressions) implies even more, namely the Gen
eralized Twin Prime Conjecture. 

This was the state of the problem at the end of the twentieth century, 
until very recently. Thus the improvements over a period of nearly 80 
years were just to gain slightly more than a factor 4 with respect to the 
"trivial" estimate ~ 1 ::; 1, which could be compared to the result >. 2: 4 
of Brauer and Zeitz (1930), proved 75 years ago (see (10.23)). 

Finally, we mention that the above mentioned methods were also 
able to estimate the quantity 

(11.9) A 1. . f Pn+v - Pn 
Uv = lmln . 

n~= logpn 

The subsequent results proved about ~" were 
~" ::; v- 1/2, Bombieri-Davenport (1966); 
~" ::; v- 5/8 + o(1) Huxley (1968/69); 

and finally 
~" ::; e-"~(v- 5/8 + o(1)) Maier (1988). 
The twin prime conjecture was generalized already 100 years ago by 

L. E. Dickson (1904) in the following way. Let h1 , h2 , ... , hk be non
negative distinct integers, 

(11.10) 

and let vp(H) denote the number of distinct residue classes modulo p, 
occupied by the elements of H. 

Dickson raised the question under what condition on H is it plausible 
to conjecture that all elements 

(11.11) 

can be primes for infinitely many values of n. A trivial necessary condi
tion is the requirement 

(11.12) vp(H) < p for all primes p. 

Dickson (1904) conjectured that this condition is also sufficient. We 
will call a set H admissible if (11.12) holds. The conjecture was later 
examined in greater detail in the quantitative form by Hardy and Lit
tlewood (1923). They introduced the so-called singular series 

(11.13) 
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(which arose as a series, not a product, in their work), and expressed the 
following quantitative form of Dickson's conjecture. They were probably 
unaware of Dickson's qualitative formulation, since they do not mention 
his work in their paper. Since nowadays even the qualitative version of 
Dickson's conjecture is associated with the names of Hardy and Little
wood, due to their valuable results in connection with these type of prob
lems we may call the qualitative conjecture Hardy~Littlewood~Dickson 
(HLD) conjecture in the following. 

Hardy-Littlewood's Prime k-tuple Conjecture. In case of 
any admissible set H of size k we have 

(11.14) L 
n<N 

n+hiEP~ (l:S::i:S::k) 

N 
1 "'6(1-f)-k-. 

log N 

The arithmetic meaning of 6(1-f) is that the correct "probability" 
that all elements of a k-tuple (11.13) are not divisible by a given prime 
is 

(11.15) 1 _ vp(H) 
p ' 

compared by the naive (and false) "probability" 

(11.16) 

when considering Cramer's model (see Section 10). Therefore we have 
to multiply the naive probability (obtained by the product rule of inde
pendent random variables) 

(11.17) 
1 

lol N 

for the simultaneous primality of all components n + hi with the cor
rection factor (11.13). The factor 6(1-f) takes into account that the 
primality of the components n + hi is not independent. 

We remark that the factor 6(1-f) is 1 in average if H runs through 
all sets of size k with elements in [1, H] for a fixed k and H ____, oo. 

Theorem (Gallagher (1976)). If all sets 1i are counted with a mul
tiplicity k! (are regarded as ordered sets) then for fixed k and h ____, oo we 
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have 

(11.18) L 6(1-£) rv L lrv Hk. 
11il=k 11il=k 

1iC[l,H] 1iC[l,H] 

The plausibility of the quantitative conjecture (11.14) is supported 
by the following results: 

(i) it is true for almost all k-tuples 1i C [1, N] if k is fixed, N ----> oo 
as shown by Lavrik (1961); 

(ii) we have for any fixed 1i as N----> oo 

(11.19) I: 
n<N 

n+h;E'P-(l::Oi:"'k) 

1::; (2kk! + a(1))6(1i)-+
log N 

(see Theorem 5.3 of Halberstam and Richert (1974)). 

§12. Small gaps between almost primes. Conjectures of Erdos 
on consecutive integers 

Chen's theorem (see Section 2) showed that the analogue of the twin 
prime problem can be solved if we allow almost primes of type P2 , that 
is numbers with at most two prime factors. However, there is no way to 
decide which one of the equations 

(12.1) p + 2 = p' or p + 2 = p' p" 

has infinitely many solutions. Even the seemingly much easier question 
than Chen's result to show that both cases 

(12.2) 2 I O(p + 2) and 2 f O(p + 2) 

occur infinitely often, is still open. (O(n) denotes the number of prime 
factors of n, counted with multiplicity). 

The reason for this is the so-called parity problem, a heuristic prin
ciple, first formulated by Selberg, which says that sieve methods cannot 
differentiate between integers with an even and odd number of prime 
factors. 

According to this, Chen's theorem leaves many questions still open 
about the distribution of almost primes, where the almost primes have a 
given number of prime divisors. Let us call Er or E~ numbers the integers 
with exactly r prime factors, counted with or without multiplicity, that 
is 

(12.3) Er = {n;O(n) = r}, E~ = {n;w(n) = r}, 
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where w( n) denotes the number of distinct prime factors of n. Particular 
attention can be paid to E 2-numbers which are products of exactly two 
primes, since they are in this sense the closest approximations to primes. 

It seemed to be until very recently that due to the parity phenom
enon it is as difficult to show results for Er (or E~) numbers for any 
specific r as for primes itself. Thus, for example, one can raise the 
problem, whether 

(12.4) lim inf Qn+l - Qn < oo 
n-->oo log Qn (log log Qn) -l 

if q1 = 4, q2 = 6, ... denotes the sequence of E2-numbers, or any ana
logue of (12.4) with Er-numbers for an r > 2. 

Erdos proposed some interesting problems about divisors and prime 
divisors of consecutive integers 

Problem 1 (Erdos-Mirsky (1952). Is d(n) = d(n + 1) infinitely 
often? 

Problem 2 (Erdos (1983)). Is f!(n) = f!(n + 1) infinitely often? 
Problem 3 (Erdos (1983)). Is w(n) = w(n + 1) infinitely often? 

There seemed to be no other way to attack these conjectures than 
to look for almost prime solutions, and this is the situation still today. 
On the other hand, due to the parity phenomenon, a solution of any of 
these problems seemed to be as difficult as the twin prime problem. 

It turned out, however, that there is a possibility to find almost 
prime solutions for these problems by "side stepping" the parity problem, 
that is, without specifying the number of prime divisors, or even the 
parity of the number of prime divisors of n and n + 1. After a first idea of 
C. Spiro (1981) (who showed that d(n) = d(n+5040) has infinitely many 
solutions) Heath-Brown (1984) succeeded to solve Problems 1 and 2. 
However, Problem 3 was not solved before the end of the century. 

If we consider the problems of Erdos when n is restricted to almost 
primes, these problems can be considered like further close approxima
tions to the twin prime conjecture or generalized twin prime conjecture. 
We remark that in case of almost primes there is no need to restrict 
the distance of the two almost primes to even integers therefore we can 
consider pairs of type n, n + b for odd values of b too, like, in particular 
b = 1. In fact, Ch. Pinner (1997) extended the method of Heath-Brown 
and showed that both equations 

(12.5) d(n) = d(n +b), f!(n) = f!(n +b) 

have infinitely many solutions for any given integer value b. 
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Although Chen's theorem answered even the generalized twin prime 
conjecture affirmatively for almost primes of type Pr (with r = 2) the 
following problems remained open for any value of r. Let v and r be 
. L n { (r)}oo g1ven. et rr = mi i=l" 

Problem. Is it true that any admissible k-tuple contains at least v 
almost primes of type Pr if k is sufficiently large (k > C(v, r))? 

Problem. Is liminf(m~~v- m~)) < oo? 
n-+oo 

§13. Recent developments 

In the present section we will give an account of the developments 
of the past 5 years 2001-2005 including many still unpublished results 
of the author. 

Concerning the size of the exceptional sets E(X) (see (4.2)) and 
E'(X) (see (9.1)) for the Goldbach and the weaker form of the general
ized twin prime problem we state the following unconditional estimates. 

Theorem 1. E(X) « X 2/3. 

Theorem 2. E'(X) « X2/3. 

If we define the analogous counting function describing the size of 
the exceptional set in Descartes' conjecture (see Section 2), 

(13.1) 

we can show 

Theorem 3. D(X) « X 315 log10 X. 

We can see that these results are nearer to the conditional estimate 
X 1/2+t: (see (4.3)) of Hardy and Littlewood (valid on GRH) than to the 
earlier sharpest unconditional bound X 0·914 (4.7) of Hongze Li (2000). 

The best upper bound for large gaps between consecutive primes was 
improved in 2001, which is the best known approximation to Landau's 
3rd problem. 

Theorem 4 (R. C. Baker, G. Harman, J. Pintz (2001)). We have 

(13.2) 
x'I'J 21 

rr(x + x'I'J) - rr(x) » log x for{) = 40 = 0.525. 
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The above result (which is also valid for some {) very close but 
smaller than 0.525) together with the theorem of Ch. Jia (1996a) assur
ing the existence of primes in almost all short intervals of size x 1/ 20+e 

implies by the Proposition of Section 6 the strongest known upper bound 
for gaps between consecutive Goldbach numbers 

Theorem 5 (Baker, Harman, Jia, Pintz). We have 

(13.3) g - g // 921/800 
n+1 n '' n · 

The best known bounds for the Goldbach-Linnik problem were 
shown simultaneously and independently in joint works of D. R. Heath
Brown and J. C. Puchta (2002) (K = 7 on GRH and K = 13 uncondi
tionally) and Pintz and I. Z. Ruzsa (2003, 200?) which we state as 

Theorem 6 (Pintz, Ruzsa). Every sufficiently large even number 
can be written as the sum of two primes and K powers of two, where 
K = 7 on GRH and K = 8 unconditionally. 

The methods of proof of Theorem 1 allow a considerable improve
ment on Mikawa's estimates (8.1)-(8.3). 

Theorem 7. Let g1 , 92, ... be the series of Goldbach numbers. Then 

(13.4) Ma(X) := L (g~+1 - 9n)a = 2a-1 X+ O(X1-6) 
g,~x 

for any a < 341/21 = 16.238 ... with a suitably chosen 8 = J(a) > 0 
(with g'k = max(gk, X). 

Concerning small gaps between primes we proved the following re
sults (see [34]) 

Theorem 8 (Goldston, Pintz, Ylldmm). We have for any v :2:: 1 

(13.5) A _ 1. . f Pn+v - Pn < ( r.: _ 1) 2 
L.l.v - Im Ill l _ y 1/ , 

n--+oo ogpn 

in particular 

(13.6) A l" . f Pn+1 - Pn O 
L.l.1 = 1m1n = 

n--+oo logpn 

and the obtained small gaps of size ( ( y'V- 1) 2 +c) logpn represent a 

positive proportion of all gaps Pn+v - Pv· 
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A simplified version of (13.6) was proved in a joint work with Gold
ston, Motohashi and Ylldmm ([32]). 

The above Theorem 8 can be improved in two directions. First, 
using many further ideas we can give a significant improvement of the 
qualitative result (13.6) as 

Theorem 9 (Goldston, Pintz, Ylldmm). We have 

(13. 7) lim inf Pn+l - Pn < oo. 
n->exo (logpn)l/2 (loglogpn) 2 

Secondly, we can combine the method of Maier (1985) with that of 
Theorem 8 as to yield 

Theorem 10 (Goldston, Pintz, Ylldmm). We have 

(13.8) A = 1. . f Pn+v - Pn < ---"( ( r.: _ 1) 2 
uv 1m In l _ e y v . 

n--->00 ogpn 

The proofs of Theorems 8 and 10 revealed that proofs of results 
about small gaps between primes rely heavily on our knowledge about 
the regularity of distribution of primes in arithmetic progressions. We 
say that primes have level of distribution {} if the relation 

(13.9) X I X log p - -( -) «A,c --A-
'f! q log X 

holds for any positive E: and A as X ----+ oo. 
The Bombieri-Vinogradov theorem asserts that primes have level of 

distribution 1/2. The Elliott-Halberstam conjecture (EH) asserts that 
even {} = 1 is an admissible level for primes. 

It is a very surprising fact that any improvement of the Bombieri
Vinogradov theorem to a fixed {} > 1/2 implies already the very strong 
relation (2.1) and even more. 

Theorem 11 (Goldston, Pintz, Ylldmm). If primes have level of 
distribution {} > 1/2, then any admissible k-tuple contains at least two 
primes infinitely often if k > C1 ( tJ). In particular we have then 

(13.10) 

The Elliott-Halberstam conjecture implies the existence of two primes in 
every admissible 6-tuple, and thereby 

(13.11) lim inf(Pn+l - Pn) ::::; 16. 
n->oo 
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Remark. To show (13.11) we can use the admissible 6-tuple '}-{ = 
{0,4,6,10,12,16}. 

It is also surprising that in order to have 3 primes in a block of 
length o(log x), which seems to be easier than the bounded difference 
problem (13.10) we need to assume more, namely EH. 

Theorem 12 (Goldston, Pintz, Y1ldmm). EH implies 

(13.12) A 1. . f Pn+2 - Pn O 
L.l.2 = lmln = . 

n->oo logpn 

The methods applied in the proofs of Theorem 8-12 turned out to 
be even more successful for almost primes of type Er (or E~) than for 
primes. The further results were all obtained in collaboration with D. 
Goldston, S. W. Graham and C. Ylldmm, abbreviated later as GGPY 
(see [31] and its continuations). 

First we mention that we can give an affirmative answer to the last 
two problems of Section 12, even if we restrict ourselves to Er numbers 
for any specific r ~ 2. 

Theorem 13 (GGPY. Weak form of the HLD conjecture for almost 
primes). Let r ~ 2 and v ~ 1 be given. Any admissible k-tuple contains 
simultaneously at least v + 1 Er (or E~) numbers infinitely often if 

(13.13) k ~ C1(v) = (1 + o(1))e"-"Y 

as v----) oo. 

Since '}-{ = {Pk+ 1, ... , p2k} is always an admissible k- tuple of diam
eter "" k log k we obtain from (13.13) 

Corollary 14 (GGPY). If Er = {qt)}:1, r ~ 2, then 

(13.14) ~(v, r) := liminf(q;;~v- qtl) ~ C2(v) = (1 + o(1))ve(v-"Y). 
n->oo 

The above results can be generalized for a k-tuple of linear forms 
Li(n) = ain + bi (ai, bi E Z) which is admissible, that is the product 
of all forms have no fixed prime divisors. This extension is particularly 
important in the treatment of Erdos' problems. 

Theorem 15 (GGPY). Let r ~ 2 be given. Any admissible triplet 
of linear forms contains two forms which take simultaneously Er (orE~) 
numbers infinitely often. 

Taking the triplet n, n + 2, n + 6, this implies 

Corollary 16 (GGPY). liminf(q;;-~ 1 - qr)) ~ 6. 
n->oo 
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Theorems 13 and 15 already show that the parity obstacle can be 
overcome in some way, but they still do not show that we can obtain 
even neighbouring Er numbers for some r. However, one can derive 
this from Theorem 15 with a slightly bigger value of r, and to give a 
solution to Erdos' problems when the value of w, n, or dis a prescribed 
number. In this connection we mention that Schlage-Puchta (2003/05) 
succeeded to solve recently Problem 3 of Erdos. However, his result does 
not extend to the general case w(n) = w(n +b) (even no result is known 
for any single b > 1). 

Theorem 17 (GGPY). Let A 2:: 3, B 2:: 4, C 2:: 1 be arbitrary given 
integers. Then the equations 

(13.15) w(n) =w(n+1) =A, 

(13.16) n(n) = n(n + 1) = B, 

(13.17) d(n) = d(n + 1) = 24C 

have all infinitely many solutions. 

Apart from a singe exceptional case for the divisor function (b = 
15(mod 30)) these results can be extended for an arbitrary shift b. 

Theorem 18 (GGPY). Let b E Z, b '/'- 15(mod30) in case of 
(13.20). There exists a constant A(b) such that if A 2:: A(b), B 2:: 5, 
C 2:: 1, then the equations 

(13.18) w(n)=w(n+b)=A, 

(13.19) n(n) = n(n +b)= B, 

(13.20) d(n) = d(n +b) = 48C 

have all infinitely many solutions. 

We can see from (13.19) that the de Polignac conjecture can be 
solved if primes are substituted by Er numbers for any given r 2:: 5. 
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§14. Basic ideas of the proof of A 1 = 0 

In the following we outline the basic ideas leading to the proof 
of (13.6) and (13.10). A long series of investigations of Goldston and 
Ylldmm on short divisor sums, Gallagher's work (1976) about the con
nection of the Hardy-Littlewood-Dickson (HLD) k-tuple conjecture with 
the distribution of primes in short intervals and ideas of Granville and 
Soundararajan led to the conclusion that the distribution of primes in 
short intervals could be examined through some approximation of the 
HLD conjecture in the form of 

(14.1) s = S(H, v) := L ( L x*(n +hi)- v )a(n), 
N<n~2N h,EH 

where v E z+, x* is the characteristic function of primes, 

(14.2) x*(n) = {1 if n is ~rime' 
0 otherwise 

and a(n) are suitably chosen non-negative weights (which depend on H) 
satisfying the "trivial" condition 

(14.3) A:= A(N) := L a(n) > 0. 
N~n~2N 

In fact, for any k the positivity of S in (14.1) for an arbitrary fixed 
v E z+ and N > No(v, H) implies the existence of at least v + 1 primes 
of the form n +hi for some n E (N, 2N]; in particular even for v = 1 
bounded gaps between primes infinitely often, more precisely 

(14.4) lim sup(Pn+l - Pn) -::= C(H) = hk - h1. 
n-->oo 

Although the above goal looks too ambitious, it turned out that it 
can be reached under the supposition that the level 13 of distribution of 
primes (cf. (13.9)) is an absolute constant bigger than 1/2 if k > k(iJ) 
and this approach led finally to an unconditional solution of the weaker 
relation (13.6). 

The crucial condition S > 0 can be reformulated as follows. First 
we normalize the weights a( n) by introducing 

(14.5) w(n) =a~) ::::> 0 
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then we have to show that 

k k 

(14.6) E(1i) := L E(1i; hi):= L L w(n)x*(n +hi)> 1. 
i=l i=l N<n-5,2N 

The notation above suggests that we consider w(n) as a probability 
measure and E(1i; hi) stands then for the expected number of primes 
in the ith component of the k-tuple 1i. If this expected value is in all 
k components together bigger than 1, then we proved the existence of 
at least two primes in the k-tuple 1i with n E (N, 2N]. So our goal can 
be formulated as to try to choose some weights a(n), equivalently w(n), 
which maximizes E(1i). 

The best conjectured choice would be to set 

k 

(14. 7) a(n) =II x*(n +hi), 
i=l 

which would lead "in reality" most probably to the optimal result 

(14.8) E(1i) = k. 

The "only" problem is that in this case the trivially necessary condition 
(14.3) is clearly equivalent with the Dickson conjecture about the simul
taneous primality of all n +hi for at least one n E (N, 2N], an assertion 
which is much stronger than our present aim. 

Another, also "trivial" choice, is to set with a fixed i E [1, k] 

(14.9) a(n) = x*(n +hi); 

which yields in contrast to the former choice unconditionally 

(14.10) E(1i) ~ E(1i; hi) = 1. 

However, similarly to (14. 7)-(14.8), in this case the condition (14.6) is 
only a trivial reformulation of our original goal. Paradoxically, still at 
present, any other known choices of a(n) (apart from trivial variations of 
(14.9)) with (14.3) yield in the unconditional case a final result inferior 
to (14.10), that is 

(14.11) E(1i) ~ E*(1i), E*(1i) < 1; 

so in some sense (14.9) is still the best known choice in order to maximize 
E(1i), although completely useless to prove any reasonable result. 

Despite the mentioned obstacles these choices (or at least one of 
them) are still helpful as to get an idea how to create some weights 
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a(n) which might lead to non-trivial results about small gaps between 
primes. Although the choice (14. 7) does not yield unconditionally any 
positive estimate of E(1i), in contrast to (14.10), the choice (14.7) is still 
promising since it captures at least the simultaneous primality of n +hi, 
whereas the weight x*(n +hi) has nothing to do with other elements 
of 1i. The idea is to approximate in some way (14.7) and hope that 

(i) the approximation will make possible the asymptotic evaluation 
of the weighted sum 

(14.12) A := A(1i) = L a(n), 
N<n5,2N 

(as N ---+ oo) and that of the sums, twisted by primes 

(14.13) S(i) = S(1i; hi) = L a(n)x*(n +hi); 
N<n5,2N 

(ii) will finally lead to a possibly not small value of 

(14.14) 
1 k 

E(1i) = A L S(i). 
i=l 

Since in practice we can substitute the characteristic function x* ( n) 
of the primes by 

(14.15) A(n) = L JL(d) log~' 
din 

the choice (14. 7) offers two possibilities. 
(a) To approximate the product of all A(n+ hi)'s term by term with 

a truncated divisor sum 

(14.16) 

leading to the approximation 

(14.17) 

where the squaring is performed to ensure the condition a(n) ;::: 0. 
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(b) To work with the generalized von Mangoldt function which de
tects numbers with at most k prime-factors, 

(14.18) L JL(d) logk ; , 
dim 

and detect whether {n + hiH=1 is a prime k-tuple or not by applying 
the above formula (14.8); then, to approximate this by 

(14.19) 

where 

k 

(14.20) Prt(n) =IT (n +hi)· 
i=1 

A big advantage of the later choice (14.19) is that we have just one 
parameter, d, involved; instead of k parameters di, implicit in (14.17). 

It is interesting to note that actually both choices a1(n) and a2 (n) 
with the "truncation parameters" 

(14.21) 

respectively, make possible an execution of the steps (i) and (ii) (cf. 
(14.12)-(14.14)), and yielded (after relatively elaborate calculations) the 
values 

(14.22) 
1 1 

E(1-l) = 4 - c:1(k) and E(1-l) = 2"- c:2(k). 

For the case a1(n) see Goldston and Ylldmm ([33]). These could be 
used to obtain further (in a non-trivial way) 

(14.23) 
1 

~1 :0::::: 4 and ~1 :0:::::1- V'3/2 = 0.1339 ... , 

respectively, which were actually better than earlier values reached by 
other methods without the combination with Maier's matrix method 
(which would improve these estimates by a factor e-"1 = 0.5614 ... ). In
terestingly and fortunately the simpler choice a2 (n) leads to the better 
result. Thus, in what follows, we will continue with a suitable general
ization of the weight a2 (n) in (14.19). 
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Expressions, similar to (14.1), of the form 

(14.24) L (T(PH(n))- C)a(n) 
N<n<;;2N 

were investigated for k = 2, 'H = {0, 2} by Selberg in the early 1950's 
(see Selberg (1992)) and for general k and 'H by D. R. Heath-Brown 
(1997) to prove results about twin almost primes and k-tuples of almost 
primes, respectively. The choice of the weights a2 (n) and a3 (n) was 
motivated, in fact, by Heath-Brown's work (1997). 

It is plausible to work with weights which give the maximal weights 
for the set of all prime k-tuples. In other words we can try to choose 
the weights in such a way that, supposing that 

(14.25) a( n) = 1 if n + hi E P (1 :::; i :::; k), 

we should have A in (14.3) as small as possible, which is in this formu
lation equivalent to an upper bound sieve problem. 

The best known upper bounds for the number of prime k-tuples are 
essentially reached in this case by the use of the function a2 (n) in (14.19) 
(see (11.19)). 

However, a closer look of the expressions in (14.12)-(14.14) reveals 
that we have to maximize the quantity E('H), so we need to maximize 
the ratio 

k 

L S(i) 
(14.26) E (H) = _i=_1 A-,---

not just A - 1 , that is, to minimize A. This means we have no convincing 
heuristic argument to choose the weights as in (14.19). 

If we consider the starting heuristics that we try to choose an ap
proximation for the detector function of prime k-tuples, the question 
arises: if our goal is to show the existence of at least two primes among 
the k components why not try to choose a function which simulates k
tuples with at least two primes, for example to approximate numbers of 
the form P?-l ( n) with 

(14.27) 
k 

w(IJ(n+hi)) :S:k+£ with O:S:R:S:k-2, 
2=1 



Approximations to the Goldbach and twin prime problem 355 

which definitely contain at least two primes among n +hi. This gives 
the idea to try the weight-function 

(14.28) aa('H, n) := aa(n) := Ah(n; 1-l, f) := ( L J.L(d) logkH ~) 2 

diP,t(n) 
d5,R 

in place of the simpler a2(n) in (14.9). 
After the evaluation of the corresponding weighted sums it will turn 

out that actually any choice of f with 

(14.29) f = o(k), f -HX) as k -+ oo 

is much (exactly twice) better for k-+ oo than the choice f = 0. It will 
lead unconditionally after performace of steps (i) and (ii) (cf. (14.12)
(14.14)) to 

(14.30) 
1 

E('H;hi) = k(l-c:o(k)), E('H) = 1-c:o(k) 

with an c:o(k) -+ 0 ask-+ oo (under the condition (14.28)), which is, 
however, unfortunately positive 

(14.31) c:o(k) > 0-¢=:::::? E('H) < 1. 

To be more precise, the function c:0 (k) = c:0 (k,f) depends on f, too, and 
the optimal choice f,....., Vk/2 yields 

(14.32) 
2 

c:o(k, f) ,....., ,jk" 

At first sight this is still a total failure. What does it help to show 
in average the existence of at least 1- w-Io primes in a k-tuple instead 
of 1/2- w-10 primes in (14.22) once we have clearly infinitely often at 
least one prime in a k-tuple? 

Fortunately, there are even (at least) two possibilities. The first 
one is that if we allow conditional results, too, then an easy analysis 
of the proof leading to (14.30) and (14.22) shows that the number 1 in 
the numerator of these expressions arises in the unconditional treatment 
actually as 

(14.33) 2'19, 

where '!9 is an admissible level of distribution of primes. This observation 
implies that if any fixed absolute constant '!9 > 1/2 is an admissible level, 
then we have already 

(14.34) E('H) = 2'19(1- c:0 (k)) > 1 
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primes in "average" in our k-tuple H, that is, (13.10) holds. 
The other useful, although nearly trivial observation is that we were 

now looking at the much more difficult problem than (13.6), namely we 
tried to find at least two primes in a given k-tuple. We missed just with 
a hair-breadth to solve it, which in general might not help naturally 
the solution of the easier problem. However, what we achieved, can be 
measured quantitatively, and that makes a big difference between the 
results of (14.22) and (14.30), too. We constructed a suitable weight 
function a3 (n) (or a probability measure, in other words) in (14.28) 
such that the expected number of primes of the form n + hi for any 
i E [1, k] is f (1- c:0 ( k)). In other words, choosing n E (N, 2N] randomly 
with probability Wn = a(n)/A, we have already an expected number 
of 1 - Eo ( k) primes among the mere k candidates { n + h;}f=l· Since 
the probability to choose a prime of size eN randomly with uniform 
distribution is asymptotically just 

(14.35) 
1 

logN 

in general, our achievement 1- c:0 (k) for E(H), even in the weaker form 
(14.22), is much more than the expected number 

(14.36) 
k 

logN 

in a uniformly chosen random set { n + hi }f=1 . 

Fortunately, these 1 - c:0 (k) primes are not lost by our failure to 
prove the existence of 2 primes in H. They are for our disposal: if we 
can add to them for a H = E log N in average more than 

(14.37) Eo(k) 

additional primes among 

(14.38) { n + h }; 1 ::; h ::; H, h of. hi, 

then we have proved the existence of two primes among { n + j}_f=1 , so 
we proved (13.6). 

The weight-function a3(n), depending on H was naturally construct
ed in an especially intricate way: to catch as much primes of the form 
{ n + h;}f= 1 as possible. Thus we cannot expect it to be so extremely 
sensible for primes of the form (14.38) as well. However, we can justifi
ably expect it to be as effective as the simplest uniform random choice, 
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that is, to capture for any given h E [1, H] \ 1-l a prime value for n + h 
with probability 

(14.39) 
1 

logN" 

An evaluation of the corresponding weighted sum is again possible. 
It reveals that even if (14.39) is not exactly true, but the correct answer 
is near to it; using the random choice corresponding to { w( n)} N <n9N = 
a(n)/ A, we obtain for ho E [1, H] \ 1-l, 1{0 = 1-l U h0, k, N -t oo: 

(14.40) P(n + ho is prime) := E(?-l; ho) 

" * 6(?-l0 ) 1 
.- L....t w(n)x (n + ho)"' S(?-l) · lo N' 

N<n~2N g 

and it follows from the theorem of Gallagher (see (11.18)) that the frac
tion 6(?-l0 )/6(?-l) is one if averaged for all 1-l c [1, H], 11-ll = k and 
ho E [1, HJ \ ?-l. 

In this way it is really enough to choose 

(14.41) H = (1 + c)c-o(k) log N (c > 0 arbitrary, fixed) 

in order to get more than co(k) primes among {n + hhE[l,H]\1-£ in aver
age; that is, to obtain more than 1 prime among 

(14.42) 

in "average". This proves (13.6), if k is chosen enough large, N > No(k). 

Remark. If instead of (14.41) we choose 

(14.43) H = (11 + (1 + c)c-o(k)) logN (c > 0 arbitrary fixed) 

we obtain at least 11 + 1 primes for some n E (N, 2N] in some interval 

(14.44) (n,n + H] 

thereby showing as an extension of ~1 = 0, 

(14.45) ~v :S II- 1. 

§15. Ideas of the proof of .d1 = 0. Main Propositions 

In order to see some of the technical details of proofs of (13.6) and 
(13.10) we formulate the following two basic propositions, which are 
needed for the evaluation of 

(15.1) A(?-l) = L a3(n) 
N<n~2N 
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and 

(15.2) 8(7-l, ho) = L a3(n)x*(n + ho) 
N<n'5,2N 

for any ho E [1, H], with a3(n) = Ah(n; 1-l, €) defined in (14.28). 
In the propositions below we suppose that k and .e, further c > 0 

are fixed constants, implicit constants may depend on k, .e and c. Let 

(15.3) 17-ll = k, 1-l0 = 1-l U {ho}, ho :::; H :::; R :::; N, 

0:::; .e:::; k, R,N _, oo, 

(15.4) ( 2€) (log R)k+U 
B(k, €) := .e (k + 2€)! N, 

e = logR. 
logN 

Proposition 19. If R «: N 112 (logN)-16k, then 

(15.5) A:= L Ah(n;7-l,€)=(6(7-l)+o(1))B(k,€). 
M<n'5,2N 

Proposition 20. If R «: NTJ/ 2- 15 with an arbitrary fixed c > 0, 
then 
(15.6) 

{ 
(6('H0 )+o(l))B(k,t) if ho i, 7-l, 

L Ah(n; 1-l, f)x*(n + ho) = (6('Hl:~Cl~B(k-l,Hll 
N<n'5,2N logN if ho E 7-{. 

Remark. Although the right-hand side of (15.6) looks quite different 
if h0 E 1-l or h0 i, 1-l, the two relations are actually equivalent. If n + ho 
is namely a prime and ho E 7-l, then clearly 

(15.7) d I P'H(n)-¢=:::} d I P'H\{ho}(n). 

Taking into account 17-ll = k, 17-l \ {ho}l = k- 1, this implies by k + .e = 
k - 1 + .e + 1 the relation 

(15.8) AR(n; 1-l, €) = AR(n; 1-l \ {h }, .e + 1) 

and applying the shift k -> k- 1, .e _, .e + 1 we obtain the case ho E 1-l 
from the case ho i, 1-l or vice versa. 

Comparing the right-hand sides of the upper equality in (15.6) with 
(15.5) we immediately see (14.40). Further, dividing the lower equality 
in (15.6) by (15.5) we obtain for hi E 1-l ( cf. (14.6)) the claim (14.30): 

2: a(n)x*(n +hi) 
(15.9) E(1-l; hi)= N<n<2N B(k -1,€ + 1) 

A B(k, f) log N 



Approximations to the Goldbach and twin prime problem 359 

1 log R 48 2{) - 4E 
k + 2£ + 1 . log N rv T = k 

if we suppose I!= o(k), I!-+ oo (cf. (14.29)). 

Remark. Since we have 

(15.10) 
( 2 ~£~1)) 1 

( 2cc) k + 2£ + 1 

2(2£ + 1) 
(I! + 1) ( k + 2£ + 1) ' 

it is easy to calculate that the maximum of (15.10) is reached if 

(15.11) 

is minimal, that is if 

(15.12) 

k 
-~-+2£+1 
2<:- + 1 

which leads for (15.10) to the maximum value (cf. (14.32)) 

(15.13) 
4 
k(1- Eo(k)), 

2 
Eo(k) rv Vk (k-+ 00). 

The actual dependence on k has great importance if we want to 
show results beyond (13.6) as given in (13.7), for example. In this case 
we have to choose sets of cardinality k = k(N) -+ oo as N -+ oo. The 
proof of (13.7) is far from being an immediate extension of the proof 
of (13.6) and requires many new ideas also, as well as the successful 
treatment of some serious technical difficulties. It might be, however, 
worthwhile to note that in order to show it we need to work with all 
possible sets 1t of size K with 

(15.14) 

where 

(15.15) 

[ ClogN] 1t E [1, H] = 1, K , 

K = cJIOglV . 
(log log N) 2 

It is also an important change in the proof that the actual weight func
tion, used in the proof of (13.7), although similar to (14.28), was far 
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more elaborate. The actual choice is too complicated to state here; but 
it is closer to 

(15.16) a4(n) = ( L AR(n; 1-l, f)) 
2 

1-tc[l,H] 
I'HI=k 

than to a3 (1i, n) or to the function 

(15.17) 
'HC[l,H] 

I'HI=k 
'HC[l,H] 

I'HI=k 

We remark here that we actually used in the works of Goldston, Pintz, 
Yddmm ([34]) and Goldston, Motohashi, Pintz, Y1ldmm ([32]) the above 
functions (15.16), (15.17) and a further one, which is of type 

(15.18) as(n) = ( t L bf.AR(n;H,f)log-£ R r 
l=O 'HC[l,H) 

I'HI=k 

with some constants bt, depending on f, k and L. 
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