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Finsler geometry in the tangent bundle 

Lajos Tamassy 

Abstract. 

Linear and metrical connections of a Riemannian space, whose 
indicatrices are ellipsoids, are established in the tangent bundle. ln
dicatrices of Finsler spaces are smooth, starshaped and convex hyper
surfaces. They do not transform, in general, into each other by linear 
transformations, and thus they do not admit linear metrical connec
tions in the tangent bundle. This necessitates the introduction of line
elements yielding the dependence of the geometric objects not only of 
points x but also of the direction y. Therefore, the apparatus (con
nections, covariant derivatives, curvatures, etc.) of Finsler geometry 
becomes inevitably a little more complicated. 

Nevertheless there are a number of problems which need no line
elements. Such are those, which concern the metric only (arc length, 
area, angle, geodesics, etc.) and also the investigation of those impor
tant special Finsler spaces, which allow linear metrical connections in 
the tangent bundle. 

In this paper we want to present results which use the tangent bun
dle T M only, and do not need TTA1 or VT AI or line-elements. These 
investigations often admit direct geometrical considerations. Longer 
proofs are only sketched or omitted. 
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I. Relation between distance spaces 
and Finsler spaces 

§ 1. Finsler spaces, distance spaces 

1. A Finsler space pn = (M, F) is a couple of an n-dimensional 
manifold Manda Finsler structure (fundamental function, metric func
tion) 

F: TM--+ R+ = [0, oo), (p, y) >---+ F(p, y) ~ 0, p EM, y E TvM, 

which satisfies the following requirements: 

(F i) F E C0 on T M, and F E coo on the slit tangent bundle 
TM\ 0 = {(p,y) I y =/:- 0} (regularity) 

(F ii) F(p,)..y) = >..F(p,y),).. E R+ ((first order) positive homogene
ity) 

(F iii) 8~~;:, (p, y)vivj > 0, 1::/ v =/:- 0 E TvM, i, j = 1, ... , n (strong 
convexity). 

In place of (F ii) a more restrictive requirement is 

(F iv) F(p, )..y) = i>..IF(p,y), ).. E R ((first order) absolute homogene
ity). 

At the early stage of Finsler geometry (F iv) was usually supposed. 
The Finsler norm of y E TpM is defined by IIYIIF := F(p, y), and 

the Finsler arc length of a piecewise differentiable (this will always be 
supposed) curve c: [a, b] --+ M, t >---+ c(t) ~ x(t) is given by the integral 

(a) s = 1b F(c, c)dt = 1b (9ij(X, i:)i:ii)) 112dt, 

where 
1 a2F 2 

%(x, y) ==--a ·a (x, y) 
2 y" yJ 

(xi are coordinates of p in a local chart U c M). If F 2 (x, i:) = 
9ij (X )xi i;J' then pn reduces to a Riemannian space vn = ( l'vf, g)' and 
we have 

(b) 

Conditions (a) and (b) are very similar, except that in the Riemannian 
case the integrand of (b) is the square root of a quadratic form in i:, 
while in the Finsler case the same expression need not to be quadratic 
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in x. Since both Finsler and Riemann geometries are built on the arc 
length of curves, on the base of the strong similarity of (a) and (b) we 
can say that Finsler geometry is just Riemannian geometry without the 
quadratic restriction. This witty statement is due to S. S. Chern [C]. 
Indeed, the two geometries have many basic similarities. Chern deems 
Finsler geometry to be the geometry of the XXI th century. 

(F ii-iv) have simple and important geometrical meanings. (F ii) 
is equivalent to the invariance of the arc length against orientation
preserving parameter transformations of the curves. Also, (F ii) implies 
that the graph z = :F(po, y) C Rn+l = (Tp0 M)(y) x R(z) is a cone 
centered at p0 . The orthogonal projection in Rn+l of (z = :F(po, y)) n 
(z = 1) on Tp0 M is the indicatrix I(po) := {y E Tp0 M I :F(po,y) = 1} 
of pn at p0 • I(p) plays a role similar to that of the unit sphere of the 
Euclidean space En. 

Condition (F iii) is equivalent to the triangle inequality in Tp0 M 
with respect to the Finsler norm: 
(F iii') 
:F(po, Yl) + :F(po, Y2) > :F(po, Y1 + Y2), Vy1, Y2 E TpoM, Y2 f AYl· 

The tangent plane Tp0 M endowed with the Finsler norm IIYIIF = :F(po, y) 
is a Minkowski space Mn = (Tp0 M, :F(p0 , y)). So a Finsler space makes 
any of its tangent spaces Tpo M into a Minkowski space. In the case of 
a Riemannian space vn the indicatrices are ellipsoids, and the induced 
Minkowski spaces are Euclidean spaces. 

Remark that :FE C0 at y = 0. However, in view of (F ii, iii) more 
cannot be achieved. Indeed, if we had :F E C 1 at y = 0, then the cone 
z = :F(p0 , y) would be a hyperplane through the origin of Rn+l, and 
because of :F(po, y) ~ 0 this should be Tp0 M. Then z = :F(po, y) = 0, 
which is not compatible with (F iii). 

Condition (F iv) is equivalent to the invariance of the Finsler arc 
length s against any reparametrizations of the curves, including the 
change of the orientation. It is also equivalent to :F(p, y) = :F(p, -y), 
Vp,y. In this case Mn= (Tp0 M,:F(po,y)) is a Banach space. 

2. A distance space (M, e) is a set M and a distance function 
e : M x M ~ D associating with any ordered pair p, q an element e(p, q) of 
the "distance set" D. In most cases, as in our case too, D consists of the 
non-negative reals R+ or a subset of them. If e has still the properties: 
a) e(p,q) = 0 ~ p = q (positive definiteness), b) e(p,q) = e(q,p) 
(symmetry), and c) e(p, q)+e(q, r) ~ e(p, r) (triangle inequality), then 
(M, e) is called a metric space ([B] sec. 8). If c) may fail, then e and 
also (M, e) are semi-metric. They are genuine semi-metric if c) really 
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fails. If a) and c) are satisfied, but b) may fail, then e and ( M, e) are 
called quasi-metric [RS] (or genuine quasi-metric if b) really fails). 

Distance spaces were introduced by K. Menger, and developped by 
L. Blumenthal, H. Busemann, M. Frechet and others. Distance spaces 
were used in investigations of geometric problems without differentiabil
ity conditions [e.g. Be]. They often appear also in recent topological 
studies, e.g. in investigations on the metrizability of topological spaces, 
etc. ([K], [RR], [RS], [St]). 

§ 2. Distance functions induced by Finsler spaces 

Let M be a connected manifold, and r(p, q), p, q E .M the collection 
of all equally oriented curves c( t), a ::; t ::; b emanating from p and 
terminating at q. Then a Finsler space pn = ( M, :F) determines by 

(1) eF(p,q):=infl F(c,c)dt, c(a)=p,c(b)=q 
r(p,q) 

a distance function eF. It induces a distance function to a Finsler metric 
and a distance space to a Finsler space 

We want to answer the naturally arising questions: Does conversely any 
? 

distance space (M, e) determine a Finsler space (M, :F) : e H :F? Which 
of the e do this? We also want to find those distance spaces (M, e) and 
those relations e f---7 :F for which 

(1) F e f---7 :F f---7 e = e. 

If this is satisfied, then the initial e must possess the properties of eF. 
So we first recall some properties of eF ( cf. [BCS] Chap. 6, esp 

sec. 6.4). Clearly 

(the positive definiteness of eF). If :F is absolute homogeneous, then 

(R ii) 

(the symmetry of eF). This is true, since in the case of (F iv) the arc 
lengths of curves c E r(p,q) and c E r(q,p) are independent of the orien
tation. Nevertheless without the absolute homogeneity (F iv) eF (p, q) 
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may differ from gF ( q, p). This can easily be seen on a Minkowski space 
Mn = ( Rn, F), whose indicatrix is non-symmetric. 

Also, every gF satisfies 

(R iii) 

(the triangle inequality), since by (1) for apropriate c1 E f(p,q) and 
c2 E f(q,r) with arc length h and /2 we obtain 

Moreover, (R iii) holds also for spaces (M, F), where F is not 
strongly convex (i.e. (F iii) or (F iii') is not satisfied; these spaces 
are not Finsler spaces in our sense). This happens if the indica trices 
F(po, y) = 1, Po E M are star-shaped, smooth, but non-convex. Arc 
lengths s of curves and distance functions gF can be formed even in this 
case, and our considerations described in the previous paragraph also 
remain alive. Thus (R iii) is valid as well. It means also thc;tt neither 
of these distance functions can be genuine semi-metric. - Nevertheless 
we can present differential geometric examples for genuine semi-metric 
spaces, if g is given in another way. Let us consider a Minkowski space 
Mn = (Rn,F) in an adapted coordinate system (x) (seep. 182 of this 
article or [M] p. 158) with a symmetric, star-shaped, smooth and non
convex indicatrix I, and define a distance function g( x 1, x2) by the 
Minkowski norm of the vector ~: 

g(x1,x2) := II~IIM· 

Then (R ii) is satisfied because of the symmetry of I, but the triangle 
inequality (R iii) is not, since I is non-convex. 

So (M, gF) is a metric space provided F is absolutely homogeneous, 
and it is a genuine quasi-metric space ifF is only positively homoge
neous. Further on (M, g) is supposed to be quasi-metric. Metric (M, g) 
are included as special case. 

What differentiability properties has gF (p, q)? 
Using in pn a geodesic polar coordinate system (r, cp) in a neigh

bourhood U c A1 around p0 , we find that gF (p0 , q) = r. This shows that 
gF (po, q) E C 0 at q =Po, gF (po, q) tf_ C 1 at q =Po, and gF (po, q) E Coo 
on the punctured domain U \ 0 ( r -:/- 0). 

Let q(t), 0:::; t:::; a be a geodesic of pn with q(O) =Po and lim q(t) = 
t--->0 

Yo-:/- 0. Then 
(2') 

lim [dd gF(p0 ,q(t))] =lim [dd t F(q(T),q(T))dT] = F(po,Yo) > 0. 
t--->0 t t--->O t }0 
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Hence -fteF(p0 ,q(t)) = -ftlq(t),q(t)eF(po,q) is the directional derivative 

of eF at q(t) in the direction q(t). Since directional derivatives depend 
on the point and the direction only, q(t) in (2') can be replaced by any 
other c(t), 0 :::; t emanating from Po = c(O), and having at Po the (one 
sided) tangent y0 . Then 

(2) 
de 

Yo= lim -d . 
t-+0 t 

The relation (2) is basically the content of the Busemann-Mayer theorem 
([BM] p. 186, in a more comfortable form in [BCS] p. 153, or [S] p. 72). 

Thus we obtain 

(R iv) (a) eF(po,q) E C0 at q =Po 
(b) eF (Po, q) E c= in an open domain around, but with

out Po· 
(c) There exists!~ -ftlc(t),C(t)eF(po,q) for any (c(t), 0 :::; t 

emanating from p0 = c(O). The value of this limit is 
:F(po, Yo), Yo = lim ~~, which is positive if Yo # 0, of 

t-+0 

class C0 if Yo = 0. 

It follows from the properties of the directional derivatives that 

(R v) :~! lc{t),~(t) eF (po, q) =A!~! lc(t),c(t/F (po, q), A E R+' 
where c(O) = c(O) and ~(t) = Ac(O). Hence (R v) is a consequence of (R 
iv). 

Let c1(t), c2 (t), c3(t), 0:::; t be curves emanating from p0 with non
null and non-parallel tangents c1(0) = Yl, cz(O) = yz, c3(0) = Yl + yz. 
From (2), (F iii) and (R iv,c) we obtain 

lim !!:_ I eF (Po, q) + lim !!:_ I eF (Po, q) > 
t-+O dt c1(t),cl(t) t-+O dt c2{t),c2{t) 

> lim !!:_ I eF (Po' q). 
t-+0 dt c3 (t),c3 (t) 

(R vi) 

This is somewhat stronger than the local triangle axiom (see [W] p. 56). 

Conditions (R iv-vi) hold also for eF(q,po). 
We can summarize these statements in 

Proposition 1. The distance function eF derived from an pn by 
(1) possesses the properties (R i, iii-vi). The condition (R ii) is added 
iff :F is absolutely homogeneous. 

The often appearing properties (Ri, iii-vi) will be denoted by (R*). 
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§ 3. Finsler spaces induced by distance functions 

Further on we suppose that f2 in place of (]F staisfies (R*). 

169 

Given a quasi-metric distance space (J'vf, fl), we want to define a 
correspondence 

(3) fl(Po, q) f--7 F(po, y), V Po EM; (M, fl) f--7 (M, F) 

with the natural requirement that in case of f2 = flF the Finsler metric F 
corresponding to f2 = flF by (3) is just that F from which flF originates 
by (1): 

(F J!2. )flF ~ F =F. 

We know that between flF and F the relation (2) subsists. Hence (3) 
must have the form 

(4) F(p,y) :=lim [dd fl(p,c(t))], 
t-->0 t 

de 
y =lim -d , 

t-->0 t 

where c(t), 0:::; t, c(O) =pis a curve emanating from p. 
It follows that F defined by (4) is a Finsler metric. By (R iv,c) the 

function F(p, y) is non-negative, it is of class coo if c(O) = y i= 0, and 
of class C0 if c(O) = y = 0. Thus F(p, y) of (4) satisfies (F i). By (R v) 
it satisfies (F ii). Finally because (2) and (R vi) it satisfies also (F iii). 
Thus we obtain 

Proposition 2. If fl(p, q) satisfies (R*), then F(p, y) defined by 
(4) is a Finsler metric. If (R ii) is also satisfied, then F is absolutely 
homogeneous. 

Without any of the conditions (R *) on (], the function F(p, y) de
fined by ( 4) may not be a Finsler metric. 

By (1), (2) and (4) we have F J!l. flF ~ F J!l. (]F. This means 
that (1) and (4) are map and inverse map. Thus they induce between 
{F} and {flF} (over a given M) a 1: 1 relation. Nevertheless (4) assigns, 
for every f2 (which satisfies (R*)), an F (the bar is omitted) and thus 

f2 ~ F J!l. flF. We show that in this sequence flF i= f2 may occur. 
This fact is expressed by the 

Theorem 1. {flF} is a proper part of {fl}, where f2 satisfy (R*). 

This can be proved by giving an example, where f2 induces by ( 4) 
a Finsler metric F(p, y), yet the flF obtained from this F by (1) differs 
from the initial (], that is flF -1- fl. 
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First we give a !-dimensional example. Let M = R 1 = R be the 
Euclidean line E 1 , and (x) the canonical coordinates on it. Let e(O, x), 
x E [0, oo) be a strictly increasing coo function with strictly decreasing 
first derivative, e(O, 0) = 0, and satisfying 

(5) lim dd e(O, x) = 1 
x--+0+ X 

(e.g. e(O,x) = ln(x + 1)). We define e for x < 0 by 

(6) e(O, x) = e(O, lxl), 

and for x0 f=- 0 by 

(7) e(xo, x) = e(O, x- xo). 

The functions e(x0, x) for different xo are parallel translates of each 
other. One can prove that they satisfy (R i-vi). In consequence from (R 
i-iii) it follows that (M, e) is a metric space. According to Proposition 2 
this e generates by ( 4) a Finsler space F 1 = (R1 , :F), ( (F iii) with the sign 
of equality). By (4), (6) and (7) we have :F(x0,a) = :F(x0, -a). Thus 
:F is absolutely homogeneous. By (4) and (7) one can see that :F(x, a) 
is independent of x. Therefore F 1 is a Minkowski space with symmetric 
indicatrix, and because of n = 1 it is a Euclidean space E 1 . Hence 
eF(Xt,X2) = lxl- x21· Nevertheless, by the integral mean theorem 

By (5), (7) and the strict decrease of e'(xt, z) on z > Xt we obtain 

lim e'(xt, z) = 1 > e'(xt, z*). 
z---+-xi 

Thus 

. (4) (1) F 
1. e. e f---t :F f---t e -1=- e. 

The discussed !-dimensional example can be extended toM= Rn. 
Let now the graph z = e(O, x) C Rn+l (x, z) of the new distance function 
e(O, x), x E Rn be the rotation around z-axis of the graph z = e(O, x1) C 

R 1(x) x R 1 (z) = R2(x1 , z) of the previous !-dimensional example, and 
____, 

let z = e( a, X), X E Rn be the parallel translate of it with Oa of z = 
. (4} (1) 

e(O, x) C Rn+l. Then, agam, we have e ~---+ :F ~---+ eF f=- e. 
Similar examples can be constructed on manifolds M different from 

Rn, provided that M admits a locally Minkowski structure. This is 



Finsler geometry in the tangent bundle 171 

possible iff M admits an open cover M = U U a by local charts, and on 
a 

each Ua there exists a coordinate system (xa), such that the transitions 
(xa) ~ (x,13) on Ua n U,13 are linear ([T1] sec. 2). The torus has this 
property, but the sphere does not ([BC] p. 250; [BCS] p. 14). 

§ 4. Conditions for (! = (!F 

Further on we suppose that in pn = (114, :F) any pair of points p, q E 

M can be connected by a (short) geodesic g(t), a :::; t :::; b, g(a) = p, 
g(b) = q whose arc length is (!F(p,q). This is certainly true if pn is 
geodesically complete. (In this case the infimum in (1) is a minimum.) 

Starting with an arbitrary (! (which satisfies (R*), it may happen 
that 

(4) r (1) F _j_ 
(! f----+ .r f----+ (! r (! 

(i.e. (!F may differ from Q), as it was shown by the examples of the 
previous section. We look for conditions assuring 

(4) r (1) F 
(! f----+ .r f----+ (! = (!. 

First we show the parallelity of certain vector fields. Let g(t), t E [0, T] 
be a short geodesic of pn = (lvf, :F) from Po to q. Then for any h, 
O<h<t<T 

From this 

(8) 

Consider the distance surface of pn attached to p0 given by 

where U(q) c NI is a coordinate neighbourhood of PO· The point Po is 
the vertex (cape) of e:C,. The curve ~0 (t) := (g(t), (!F (p0 , g(t)) c U x R+ 
lies on e:r,, and 6(t) := (g(t), (!F(g1,g(t)) c e:;. By (8) their tangents, 

~o(tl) and lim ~1(t) =: ~i(tl), are parallel, i.e. 
t-+ti 

. '+ Proposition 3. ~o(h)ll~1 (h), '<:/ t1 E (0, T). 
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Consider the projection 1r: U x R+ -+ U, (p, z) t--t p. Then 

where eo(h) and et (t1) are the lifts of g(h) to Teo(ti)e:o resp. lim Te1 Ctl 
t-+tt 

eF 
91. 

In a distance space with (R*) the notion of geodesic can be replaced 
to a certain extent by that of "parallelity curve" . Let us consider a 
curve p(t), t E [0, T]. Along this there exists a family of distance surfaces 
o;(to) :with z = e(p(to), q) (to is the parameter of the family) and curves 

(o(t), (1(t) on o;(to) over p(t) similarly to ~o(t) and 6(t). If (o(t) E C 1, 
and 

. "+ (o(tl)ll(1 (h), Vt1 E (0, T), 

then p( t) is called a parallelity curve. 

One can prove the following 

Theorem 2. For any curve c(t), t E [0, T] of a distance space (M, e) 
satisfying (R *), and for the Finsler metric :F determined by e according 
to (4) we obtain 

(a) e(c(O),c(T)) ~ f0T :F(c,c)dt 

(b) if c( t) is a parallelity curve, then 

(9) e(c(r), c(t)) = lt :F(c, c)du, 0:::; T < t < T 

(c) if along c(t) (9) holds for Vr, t, 0:::; T < t < T, then c(t) is a 
parallelity curve. 

Corollary. In a Finsler space parallelity curves and short geodesics 
coincide. 

As we have shown, a distance space (Jtf, e) with (R*) determines an 
pn = ( M, :F), and this pn determines a eF: 

(10) (4) 'r:" (1) F e f---+ .r f---+ e . 

Theorem 3. In (10) eF = e iff any short geodesic of pn (deter
mined by e) is a parallelity curve of (M, e). 

In other words: the distances in (M, e) coincide with the distances of 
a Finsler space iff the short geodesics of the Finsler space are parallelity 
curves of the distance space (Proof in [T4]). 
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In Theorem 3 we required the parallelity property on curves deter
mined by pn, and not on curves determined directly by the distance 
space (M, e). Now we replace the parallelity property (the condition 
of Theorem 3) by another one, which is expressed directly in terms of 
the (M, e). 

Let us consider two points a, b of a distance space (M, e) (with 
(R*)), and a sphere S£(t) := {q EM I e(a, q) = t} around a with radius 
t ~ r = e(a, b). Then there exists another sphere s:(7) := {q E M I 
e( q, b) = 7} such that the two spheres osculate each other from outside 
at a common point a(t) of S£(t) and s:(7). (These spheres are actually 
"forward" and "backward" metric spheres (see [BCS] p. 149, 155).) If 
a(t), t E [0, r] is a C 1 curve, then it will be called osculation curve, and 
we obtain the 

Theorem 4. The distances e(p, q) in a distance space (M, e) {whose 
e satisfies (R *)) coincide with the distances eF (p, q) of a Finsler space 
(M,F) iff any osculation curve is a parallelity curve in (M, e). 

Because of the triangle inequality (R iii) we obtain r ~ t + 7 along 
any osculation curve a(t; a, b). If r = t + 7, VO < t < r, then a(t; a, b) 
is called straight ([BC]) or a Hilbert curve ([BM] p. 170). In a Finsler 
space osculation curves are short geodesics. 

II. Angle in Minkowski and Finsler spaces 

Area in Minkowski spaces was given by Busemann [Bu] and studied 
and often used by others. Infinitesimally a Finsler space is a Minkowski 
space. So if we can measure area in a Minkowski space, then by inte
gration we obtain the area (of a domain) of a Finsler space. The same 
holds also for submanifolds. We consider the angle of two vectors in 
a tangent space of the base manifold of a Finsler space. This angle in 
Minkowski (or Finsler) spaces attracted less interest. Since the Finsler 
space makes its tangent space into a Minkowski space, measuring of 
angles in a Finsler space reduces to that in a Minkowski space. We 
show that they are applicable in measuring the deviation of a Finsler 
space from being Riemanian. Also it can be proved that a diffeomor
phism between two Finsler spaces is an isometry iff it keeps angle (in the 
above sense) and area, similary to the well known result of Riemannian 
geometry. 
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§ 1. Angle 

Given a Finsler space pn = (M, F) we consider an angle a= L(a, b) 
between two rays a, bE Tp0 M emanating from the origin 0 =Po ofTp0 M. 
Here Tp0 M is an n-dimensional vector space vn and, a and b span a 
two-dimensional linear subspace I: of Tp0 M, provided a is not parallel 
to b : a .ft b. If a II b, then we assign to the pair a, b a 2-dimensionallinear 
subspace I: of TpM trough the straight line g ::) a, b. The convex domain 
of I: bounded by a and b will be denoted by A. This is unambigous if 
a .ft b. If a= b, then A = 0. In the case when a, b c g, a =1- b, then g cuts 
I: into I;+ and I;-. Therefore A = I;+ or A = I;-. 

Let B~0 (1) := {y I :F(xo,y) ~ 1} C Tx0 M be the indicatrix body of 
pn at x 0 EM. The Finsler space pn makes each Tx 0 M into a Minkowski 
space M~0 with indicatrix body B~0 (1) and with the Minkowski func
tional :F(y) = :F(xo,y) : Tx0 M---+ R+. Then B~(1) is a Minkowski 
ball of radius 1, and aB;;(1) =I is the indicatrix (hyper) surface. By 
B;, = B~(1) n I:, it follows that M~ (or Fn) induces on I: c TxM 
a two-dimensional Minkowski metric and thus an M;. Remark that 
B;, n A = D is a segment of the indicatrix body of M; belonging to 
La( a, b). 

Let {e1 , e2 } be an arbitrary basis in the real vector space V2 ::::: I: C 

TxM. Then y = 2::7= 1 yiei. Let W : I: ---+ R 2 be a mapping given by 
W(y) = (y 1,y2 ) E R 2 . Considering w(ei) as an orthonormal system, R 2 

becomes a Euclidean space E 2 . We denote the Minkowski area in M; 
by 11·11 M, and the Euclidean area in E 2 by 11·11 E· Then the 2-dimensional 
Minkowski area of Din M~ is the Minkowski area of Din M 2 : 

(11) 

IIDIIM = l udy 1 dy 2 , (J = lllffi~lle' lffi2 = w(B;), ][» = w(D). 

(Z. Shen [S1] §1.3, or H. Busemann [Bu], H. Rund [Ru] Chap. I, §8, D. 
Bao- S. S. Chern- Z. Shen [BCS], §1.4, and many other places.) Since 
JIDJ dy 1dy2 is the Euclidean area of Ir», the relation (11) is equivalent to 

(11') 

Formulas ( 11) and ( 11 ') are true for any domain 9 C I: in place of D. 
The Minkowski measure of the angle La( a, b) can be defined as 

follows: 

Definition. 

(12) LMa(a, b) := t:2IIDIIM· E = 1 or - 1. 
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The sign E depends on the orientation of the angle. 

The angle LMa can be expressed by the Minkowski functional F and 
the data of the two legs a and b. Let (r, cp) be a polar coordinate system 
inE2, e(cp) a unit vector in E 2 with polar coordinates (1, cp), and I 2 := 

8B;(1) the indicatrix curve of M;. Let y E ~' w(I2) = (r(cp), cp), and 
w- 1 (e(cp)) = e(cp). Then 1 = F(y(cp)) = F(r(cp)e(cp)) = r(cp)F(e(cp)). 
Thus r(cp) = F-1(e(cp)). The Euclidean area of JB2 is 

1271" 1 1 [ 271" 1 
IIJB211E = cp=O 2r2(cp)dcp = 2 Jo F2(e(cp)) dcp 

Hence 

Or, in another from 

f = { + 1 if 'Pl < 'P2 
-1 if 'P2 < 'Pl, 

where 0:::; cp1, cp2 :::; 211" denote the directions of the two legs a, b of a. 
If M~ is a Euclidean space En, then (12) reduces to the Euclidean 

measure LEa of the angle a. Indeed, if M~ = En, then JB2 is the 
Euclidean unit ball. Now w-1(e(cp)) = y(cp) E I 2 ==> F-1(y(cp)) = 

1 ==> IIDIIM (l;;b} 27r(27r)-1('P2 - cpl)~ and by (12) we have LMa = 

cp2 - cp1, which is the Euclidean measure of a. Thus LMa = 2.:IIDIIM 
is a generalization of the Euclidean measure of a. - If 8JB2 is an ellipse 
£, then there is a linear (Minkowski) isomorphism i of :E = V2, which 

takes£ into the unit circle of E 2 , and M; into aM~. Since II ·liM is 
a Haar measure which is preserved by linear isomorphisms, we obtain 
that LMa = LMa = LEia. 

IIDIIM of (13.b) is positive if 'P2 > 'Pb and negative if 'P2 < 'Pl· 
Therefore LMa has a sign, and because of the additivity of the sec
ond integral in (13.b), the angle LMa is also additive: LMa(a, b)+ 
LMa(b, c) = LMa(a, c). However LMa is symmetric in the sense that 
ILM(a, b)l = ILM(b, a)l. 
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Let us consider the case of the straight angle. In this case a U b = g 

is a line through 0 E TxM. Let L(a, b) =a+ be the straight angle with 
the domain ~t =A+, and L(b,a) =a- the straight angle with the 
domain ~;;- = A-. Because of the additivity we have 

LMa+ + LMa- = 21r, V g. 

Therefore the equality LMa+ = LMa- of the Minkowski measure of 
the two straight angles implies IIB2 n A+ liE = II+ID2 IIE = II-ID2 IIE = 
IIB2 n A-liE, and conversely. In other words: LMa+ = LMa- iff g 
bisects B 2 . 

If JR2 is symmetric, then every line g through 0 bisects B 2 . We 
show that also conversely, if every g through 0 bisects B 2 , then JR 2 is 
symmetric. Suppose that JR 2 is non-symmetric. Then there exists a <.po, 
such that in the applied polar coordinate system r(<.po) > r(<.po + 1r), 
where (r(<.p),<.p) E 8JR2 , V<.p. A g is fixed by its direction <.po. Then for 
every g ( <.po) we have 

11'Po+7r 1 
2 r 2 (<.p)d<.p = 2II1R2 IIE, 

'Po 
vo::::: <.p < 7!". 

Especially 

1
<po-E+7r 1<po+E+7r 

r 2 (<.p)d<.p = r 2 (<.p)d<.p, 
<po-E 'Po+E 

and hence it follows 

1
<po+E 1'Po+E+7r 

r 2 (<.p)d<.p = r 2 (<.p)d<.p. 
<po-E <po -E+7r 

By the integral mean value theorem we obtain 

<.po - E :::; <.p1 :::; <.po + E 

<.po - E + 1r :::; <.p2 :::; <.po + E + 1r, 

and because of the continuity of r(<.p), the limit E --> 0 yields r(<.po) 
r( <.po + 1r) in contradiction to our assumption. Therefore JR2 , and thus 
also B 2 is symmetric. This is equivalent to the absolute homogeneity of 
:F. 

These statements are summed up in 

Theorem 5. LMa = E2IIDIIM is an additive, symmetric measure 
of the angles in Finster spaces. In a Euclidean space this reduces to the 
Euclidean measure of a. Moreover LMii = ±1r for every straight angle 
ii if and only if the Finster metric is absolute homogeneous. 
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§ 2. Isometry between pn and P 

Let pn = (M,F) and P = (M,F) be two Finsler spaces, cp: M----> 
M a diffeomorphism, I(po) := {y E Tp0 M I F(po, y) = 1} and I(p0 ) := 
{y E T-p0 M I F(p0 , y) = 1 }, Po = cp(po) are indicatrix hypersurfaces 
(indicatrices) of pn and P resp. I(p) n ~ = I'2(p) is the indicatrix of 

M;, and I(p) n E = I 2 (p), p = cp(p), E = cp(~) is the indicatrix of M~. 
The mapping cp is an isometry iff 

(14) (dcp)I(p) = I(p), 'ip EM. 

Theorem 6. The diffeomorphism cp : M ----> M is an isometry be
tween the Finster spaces pn and Fn iff cp keeps angle and {2-dimensional) 
area. 

Proof A) Suppose that cp is an isometry. By (14) we obtain 

(15) (dcp)I2 (p) = (dcp)I(p) n (dcp)~ = I(p) n "E = I 2 (p). 

The linear spaces ~ and E equipped with Euclidean metrics are in fact 
2 -2 E and E , respectively. Then by (11') 

(15') 

and since dcp is a linear mapping which keeps the ratio of areas we obtain 

(Strictly speaking, dcp should be replaced here by (dcp)* := W"odcpow-\ 
- - -2 - -1 -2 
W":~---->E ,yf--t(y ,y ).) 

Finally, in consequence of (15'), we obtain 

llii}lle - -
IIDIIM = 11"~ = IIDIIM, D = (dcp)D. 

lllBl lie 
This means that cp keeps (2-dimensional) area. (It is easy to see that an 
isometry keeps also the k-dimensional (1 :::; k :::; n) area.) 

According to (12) the measure LMa is defined by area. Thus, if 
(12) 

cp keeps area, then cp keeps angle too. Indeed, we know that LMa = 
2t:IIDIIM and LpjQ = 2t:IIDIIM, where a= (dcp)a. Then, from IIDIIM = 
II ( dcp) D II M ( cp keeps area) we obtain L M a = L. :x;fQ, that is cp keeps angle 
too. 
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B) Suppose that r.p keeps area (a) and angle (n). In the following, the 
notations (a), (n) mean these assumptions. Let us denote (dr.p):P(p) =: 
- -n -2 - -
I(p). Then F determines the indicatrix I (p) = I(p) n E. We denote 

-2 .-.. - -(dr.p)- 1I (p) =: I(p) c E and I(p) n A =: D (A is the domain of the 
angle La(a, b)). 

The application dr.p maps a, b into a, b, and the domain A into A. 
- - - - - -2 

Furthermore D : = An I (p), and D : = An I (p). Moreover ( dr.p) -l takes 
a, b into a, b respectively, as well as I(p) into I 2 (p). 

By (a) and (n) we obtain 

IIDIIM ~ IIDIIM 

IIDIIM ~ IIDIIM ~ IIDIIM· 

Thus we obtain 

(16) 
IIIDliiE ~ lllfiiiE ~ 

IIB2(p)IIE = IIDIIM = IIDIIM = IIB2(p)IIE ===} IIIDlEII = IIIDliiE· 

Let c be a ray in E, with c n :P(p) = C, and c n I= 8. Suppose 
that at a point p there exists a c such that C =f. 8, and let us say that 8 
is outside B;. Then, because of the continuity, there exists a ray h(=f. c), 

such that the whole arc 8ft (fi := h n I) is outside B;. Then the 

segment D(c, h) of B; is a proper part of the segment D(c, h) bounded 

by c, hand I. Then IID(c, h) liE < IID(c, h)IIE, which contradicts (16). 
Therefore we must have C = 8, for V c,p. Then aB; = :P(p) = I. 

- ~ -2 
Consequently we obtain (dr.p)I2 (p) =I = (dr.p)I = I (p), Vp E M. 
This yields (14), and thus r.p is an isometry. 

§ 3. Deviation of Finsler spaces from Riemannian spaces 

There are known several conditions which imply the reduction of 
an Fn to a Riemannian space vn. Such a condition is the vanishing 
of the Cartan tensor Cijk or the constantness of the distortion r(x, y) 
[S3]. Many other quantities, such as the S-curvature [S2], Landsberg 
curvature, Cartan torsion, etc. can be coupled with this problem. Also, 
recall that a Finsler space is a Riemann space iff the indicatrices are 
ellipsoids. We want to present conditions expressed by the Minkowskian 
angle which imply the reduction of the indicatrices to ellipsoids. 

We consider a Finsler space Fn = ( M, F) and its tangent space, 
as a Minkowski space Mn = (TpM,F(p, y)), and a 2-dimensionallinear 
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subspace~ ofTv0 M. Here Tv0 M can be identified with a vector space vn 
or the coordinate space Rn(x) which can be equipped with a Euclidean 
metric, yielding En(x). Let Bn be the indicatrix body of Mn, aBn =I 
the indicatrix surface, and I n ~ = I 2 is the indicatrix of the M 2 

induced by Mn on ~- If pn is a Riemannian space vn, then M 2 is a 
Euclidean space, and I reduces to an ellipse. In this case Minkowskian 
and Euclidean angle are the same, LMa:(a, b)= LEa:( a, b), and it equals 
1r iff a is a straight angle, i.e. its two legs a, b are two half lines of a 
straight line g: aU b =g. As we have seen 

is necessary for an pn to be a vn. 
Given an arbitrary ray a C ~- Let a be the other ray, such that 

aU a is a line g, and let b c ~ be such that V Ma:(a, b) = 1r. Then b 
depends on a, and ILM(b, a) I =: f(a) ~ 0 is a function of a C ~- It 
follows that f(a) = 0, '<Ia c ~is necessary for pn = vn. Let (r, v) be 
a Minkowskian polar coordinate system in ~' where r = :F(p0 , y) for a 
y E ~' and v = LM(Oy, d0 ) the Minkowskian angle between the ray Oy 
and an initial direction (initial ray) d0 . Then 
(17) 

Q(p, ~) := 1~: f(v)dv = 0, f(a(v)) = f(v), 'v'~ C Tp0 M, 'v'po EM 

is necessary for pn = vn. This and sec. 1 of this Chaper yield 

Proposition 4. The condition (17) is equivalent to the following: 
1) b =a, '<Ia, 2) LM(a,a) = 1r,'v'a, 3) any g bisects I 2 , 4) I(p) is 
symmetric, 5) pn is absolutely homogeneous. 

All these ~re necessary for a Finsler space to be Riemannian. Hence, 
Q(p, ~) ~ 0 measures the deviation of an pn from being absolutely 
homogeneous in ~ C TpA1. 

We want to obtain sufficient conditions for pn = vn. Our tool 
for this will be the difference between Minkowski orthogonality and 
transversality. Since the properties listed in Proposition 4 are neces
sary, we suppose that the indicatrices are symmetric. Let g = a U a, 
h =bUb be lines and rays in~ C TpM, where M~ = (TpM, :F(p, y)), 
and pn as above. Our considerations will be restricted to ~- Because of 
the symmetry of I 2 (p) the Minkowskian perpendiculafities a..lMb, i.e. 
LMa:(a, b) = ~' a..lMb, a..lMb, a..lMb are equivalent. They mean 
g..lMh. So, in the case of the symmetry of I 2 (p) we can speak of the 
perpendicularity of lines in place of rays. Denoting by gl- a line perpen
dicular tog, we obtain (gj_ )j_ II g. -Another notion is transversality. Let 
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g n I 2 (p) = g, g'. Then the tangent TgP(p) =: g* is called transversal 
to g. Because of the symmetry of I 2 (p), Tg,I2 (p) =: (g')* is parallel to 
g*. Also, any line parallel tog* is said to be transversal to g. So we can 
speak of transversality of a direction to another direction. Nevertheless, 
this relation is not symmetric, that is the direction transversal to g* is 
in general not g, i.e. (g*)* ~g. The relation 

(18) (g*)* II g, v g c E 

means that in M; the transversality operation * is involutive. 
A strictly convex, closed, differentiable curve with 0 in its interior, 

and with the property (18) is called a Radon curve. Every ellipse is a 
Radon curve, but not conversely. This shows that if the indica trices of an 
F 2 = (M, F) satisfy (18) at every point p E M, then these indicatrices 
need not be ellipses, and thus F 2 needs not be a Riemannian space 
V 2 = (M,g). 

We claim that if n > 2 and (18) is satisfied in every E with respect 
to I 2 (p), then pn is a vn. Indeed, under these conditions every I 2 (p) = 
I(p) n E is a Radon curve. Then in TpM every cylinder osculating 
to B; osculates along a planar curve [T2]. In this case, according to 
W. Blaschke ([B1] pp. 157-159), every I(p) is an ellipsoid, and thus 
pn = vn. 

If pn = vn, then VI2 (p) is an ellipse, and (18) is satisfied. But 
(gj_) j_ II g is always true if I 2 (p) is symmetric. Hence in case of pn = vn 
gj_ II g* for any g. 

If L.Ma(g*, gj_) = 0, i.e. if g* = gj_, then (18) hold good for (gj_ )j_ II 
g is true. Hence 

(19) 
K(p, E):= L" IL.Ma(g*(v),gj_(v))ldv = 0, 

g c E, VE c TvM, Vp EM 

is sufficient for pn = vn. Conversely, (19) is always satisfied in a Rie
mannian space vn. Thus we obtain 

Theorem 7. An absolutely homogeneous Finster space Fn, n > 2 
reduces to a Riemann space vn if and only if K(p, E)= 0, VE C Tp0 M, 
VpEM. 

The deviation of an absolutely homogeneous pn from being a Rie
mannian space on E C Tv0 M can be measured by K(E). Thus K(E) 
can be considered as a kind of sectional curvature. The deviation at a 
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point Po E M can be measured by the integral 

where 9n,2 is the Grassmann manifold of the 2-dimensional linear sub
spaces ofTp0 M, and dais a positive measure on 9n,2, such that I9,_ 2 da 
is finite and invariant with respect to linear transformations in Tpo M. 
The deviation of pn from being Riemannian on M (the global case) can 
be measured by the integral 

H(M) = I ld r Q(x)dJL ~ 0, 
M JL jM 

where dJL is the Finsler volume element, and I M dJL is supposed to be 
.finite. 

III. Metrical connections in T M for an pn 

Besides the metric another very important notion of a metrical dif
ferential geometry, especially of Finsler geometry, is parallelism. In order 
to develope Finsler geometry in a way more or less similar to Riemannian 
geometry (covariant derivation, curvature theory, etc.) a metrical and 
linear (or at least homogeneous (see [KB])) connection is indispensable. 
However for Finsler spaces there do not exist, in general, linear mappings 
of the tangent spaces taking indicatricies into indicatrices, consequently 
there do not exist linear metrical connections r(p) in the tangent bundle 
T M, in contrast to Riemann spaces. To solve this problem line-elements 
(p, y) E T M and Finsler vectors ~ (p, y) E VT M C TT M were intro
duced. This allowed the introduction of a metrical linear connection 
f(p, y) in the Finsler vector bundle VT M. Nevertheless the dimension 
of the base space T M of this vector bundle is 2n, while the rank of 
the bundle is n. This is sometimes unconvenient, and makes the appa
ratus of Finsler geometry more complicated than that of Riemannian 
geometry. 

Euclidean, Riemannian and Minkowskian spaces, as special Finsler 
spaces, allow metrical linear connections. We want investigate which 
other Finsler spaces allow still linear metrical connections in T M, and 
what are the special features of their geometry. Also we touch upon sev
eral related questions, such as affine deformation, and locally Minkowski 
spaces. 
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§ 1. Affine deformation, locally Minkowski spaces 

Let us consider a Finsler space pn = (M, :F). Because of the positive 
homogeneity of :F, the knowledge of the indicatrix bundle 1r : I ---. M, 
1r-1 (p) = I(p) is equivalent to the knowledge of the structure function · 
:F(p,y). Thus we can write (M,J) in place of (M,:F). 

Let A = { a(p)} be a field of linear automorphisms (i.e. centroaffine 
transformations) of the tangent spaces: 

It is easy to see that A of class coo exist over any paracompact manifold. 
Moreover, if A is given over a chart of M, then it can be extended to 
the whole M in a coo manner. Then 

(20) a(p)I(p) = I(p), 

and we obtain the affinely deformed Finsler space F' = (M, l) 
(M,:F) = AFn. The relation (20) is a kind of gauge transformation. 

Given two Riemannian spaces V0n = (M, Qo) and vn = (M, Q) 
(where Q0 and Q denote the indicatrices) over the same base manifold, 
clearly there exist a(p), such that a(p)Q0 = Q. So every vn is the affine 
deformation of a single V0n (over the same manifold). Nevertheless this is 
not true anymore for Minkowski-, locally Minkowski- and Finsler-spaces. 

Locally Minkowski spaces £Mn play important role in the search for 
Finsler spaces admitting metrical linear connections r (p) in T M. An 
pn = (M,:F) is locally Minkowskian if Vp0 EM has a chart Up0 (x) in 
which :F(p, y) restricted to Upo : :F(p, y) f Upo = :F(y) is independent 
of p. This coordinate system (x) is called adapted. If (x) is adapted 
on U, then any other coordinate system (z) on U is adapted iff the 
transformation (x) ~ (z) is linear ([M] p. 158). -If M has an open 
covering by local charts M = UaUa(xa) with coordinate system (xa), 
such that (x,;) ~ (x.a) is linear on Ua n U.a, then M will be called 
affine differentiable manifold (affine manifold, for short). 

Theorem 8. A manifold M admits a locally Minkowski structure 
iff M is an affine manifold. 

Proof. A) Suppose that M is an affine manifold. We show that 
there exists a Finsler metric :F(p, y), such that (M, :F) is a locally Minko
wski space. Let Ua(xa), a E A be an atlas of M with coordinate systems 
(xa) on Ua, such that the transitions Xa ~ x.a are linear. Consider 
two points r, q E M, and a curve c(t), 0 ::; t ::; 1, connecting c(O) =rand 
c(l) = q. The curve c(t) is a closed set covered by Ua, of which already 
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finitely many cover c(t). We can omit part of them, then truncate and 
renumber them in such a way that for the remaining Ui, i = 1, 2,.:., N 
we have r E ul, q E u N, ui n ui+l -:/:- 0, and ui n uj = 0, j = 1, 0 0 0 , N, 
but j -:/:- i and j -:/:- i + 1. Each of these Ui carries a coordinate system 
(xi), such that the transition between them is linear. 

On U(xl) n U(x2) = u12 the transition between x{ and X~ is x{ = 
a~x~ + ai = Ji(x2)· It means also a coordinate transformation (x2)--+ 
(x1) on U2(x2). Thus we can extend the coordinate system (x1) from U1 
to U1 u U2. This process can be continued, and the coordinate system 
(x1) can be extended over uf::1 Ui = U. From now on (xl) on U will be 
denoted by ( x). 

Let I(r) C TxM be an indicatrix surface in TrU. Then I(r) corre
sponds to a regular, positively homogeneous, strongly convex Minkowski 
functional F1(y) i.e. I(r) <==> F1(y), y E TrU. 

We extend this F 1 (y) over the whole U ( x) by 

(21) F(x, y) := F1(y) x E U, y E TxU. 

This F(x, y) is independent of x. Thus we obtain a Minkowski space on 
u. 

Choosing two other points r E U and q ~ U, and a curve c( t) joining 
r with q, we can repeat our previous construction. Using the previous 
notation, but with a dash-, we obtain a domain U ::J c( t) (corresponding 
to U ::J c(t)), equipped with a coordinate system (x), and we construct 
an F(x, y) on U such that F = F on U n U. The function Fin the 
coordinate system (x) is independent of x. If U n U is homeomorphic 
to Rn, then we can introduce on U U U a common coordinate system 
(x). On U n U = U12(x) we have ;z;k = a}xe + ak = fk(x). Similarly 
yk = a}ye for y E Tx-U12 , or in a matrix form y = J(x, x)y, where J(x, x) 
is the Jacobi matrix ~~!l =a}, which is constant. Then we define F on 
u12 as 
(22) 

F(p, Y) I U12::::::: F12(x, Y) = F(f(x), J(x, x)y) := F(x, y) = F1(y). 

Nevertheless, F is independent of X on u12 c U. Hence also f12 is 
independent of x. We denote it by F 2('fl), and we define 

F(x, Y) := F2(y) on U(x). 

Thus F2('fl) = F1(y) on U12· Then by F(p, y) I U\U := F2(J(x, x)y) we 
can extend F to U U U. By (22) also F = F on U12 . So the constructed 
F is a Minkowski functional on U U U. 
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If U n U consists of several disjunct domains Ui, U2, . . . homeo
morphic to Rn, then the introduction of a common coordinate system 
(x) on U U U may be impossible. The coordinates of p E (U n U) \ 
Ui = U* on U(x) may differ from the coordinates obtained for them on 
U(x(x)). However F(x, y) = F2('fl), on U, F2(Y) = F1(y) on U12, and 

F1 (y) (~) F(p, y) on U. Thus F(p, 'fJ) = F(p, y) also on U*. Moreover 
F [ U = F1(y) and F [ U = F2(Y) are independent of p, and the tran
sition functions on U n U are linear, since the Jacobi matrix J(x, x) is 
constant because of the supposed affine character of M. So F is again 
a Minkowski functional on U U U. 

Continuing this construction with further points r* E U U U, q* rJ_ 

UUU and connecting curves c*(t) C U until UUUUU · · · = M, we obtain 
a regular, positively homogeneous, strongly convex F(p, y), p EM, such 
that F(x,y) [ Ua(xa) is independent of Xa \fa EA. Thus (M,F) is a 
locally Mikowski space over the affine differentiable manifold M. 

B) If M admits a locally Minkowski struCture (M, F) = £Mn then 
the charts U0 (xa) with adapted coordinate systems (xa) form an open 
cover of M, and (xa) [ Uaf3 and (xf3) [ Uaf3 are adapted coordinate 
systems on Uaf3 = Ua n Uf3. Thus (xa) [ Uaf3 f---+ (xf3) [ Uaf3 are linear 
transformations. Then M is an affine manifold. Q.E.D. 

Not every manifold is an affine manifold. Consider the Euclidean 
sphere S2 C E 3 covered by two charts H(x) and H(x) (e.g. two hemi
spheres, one of them extended a little beyond the equator). On H n H 
8~, = a~b, det Ia~ I =/:- 0. If S2 with H(x), H(x) is an affine manifold, 
then a~= canst., and thus y := -foxr on Handy:= a~b on His a con
tinuous, never vanishing vector field on S2, what is impossible. Hence 
a~ =f:. canst., and S2 with H(x) and H(x) is no affine manifold. This is a 
concrete simple example. A result ofBao and Chern ([BC], p. 250) gives 
still more. According to this a compact, boundaryless manifold with an 
Euler characteristic A =f:. 0 admits no locally Minkowski structure, and 
then, by Theorem 8 it is not an affine manifold. 

§ 2. Linear metrical connections in T M 

·Every Riemannian space over a paracompact manifold admits linear 
metrical connections. Also Minkowski spaces do so. It is not difficult to 
see that locally Minkowski spaces also belong to this family. All these 
are non-Riemannian special Finsler spaces. What other Finsler spaces 
do still allow linear metrical connections in T M? 
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Theorem 9. Affinely deformated locally Minkowski spaces AeMn 
admit linear metrical connections in T M. Moreover, if a Finsler space 
pn = (M,:F) admits a linear metrical connection in TM, then it is the 
affine deformation of a locally Minkowski space CMn, provided its base 
space M is an affine manifold. 

Proof. A) Let the Finsler space pn = (M, I) be an affine deforma
tion of a locally Minkowski space CMn = (M,I): pn = AeMn. Then 

I(p) (~) a(p)I(p), a(p) E A, Vp E M, where I(p) and I(p) are indica
trices of pn and CMn respectively. Let po, qo be two points of M, and 
c(t), 0 ::; t ::; 1, c(O) = po, c(l) = qo a curve connecting them. Since 
CMn is a locally Mikowski space, then M is an affine manifold (Theorem 
8), and thus there exists a domain U 3 Po, qo, such that c( t) C U with 
an adapted coordinate system (x) on it (see the previous section). We 
consider (x) as an affine coordinate system on U, and t(x0 , x) as the 
parallel translation in TU: 

Then t(xo, x)I(xo) = I(x), is an adapted coordinate system for (x). 
Furthermore we obtain 

-1 - - -
(a(x) o t(xo, x) o a (xo))I(xo) = g(xo, x)I(xo) = I(x), 

g(xo, x) := a(x) o t(xo, x) o a- 1(xo). 

Let ei(xo) = e{(xo)a~j E I(xo), i,j = 1,2, ... ,n be a frame (xo,eo) 

of Tx0 U = Tx0 M. Then g(xo, x)ei(xo) =: ei(x) E I(x), and (x, e) is a 
frame of TxU. The frame bundle P over U is 

1r:P->U, 7r- 1 (x)~QC(n)={e,f,g, ... }, e=(ej), P={(x,e)}. 

Let CJ : U ---> P, x ~ (x, e(x)), e(x) = g(x0 , x)e(x0 ) be a section of 
P. Then e9 (x,e) := (x,ge) (ge is the matrix multiplication) is a fiber 
preserving transitive transformation in P, and 

yields a horizontal distribution HinT P, and thus induces a linear con
nection rP on P. This rP determines a linear connection r(x) in TM 
(in the vector bundle associated to P). In this connection the parallel 
translate of ei(xo) along c(t), i.e. Pr ei(xo), is g(xo, x)ei(xo) = ei(x), and 
g(xo, x)I(xo) = a(x) o t(xo, x) o a- 1(xo)I(xo) = a(x) o t(xo, x)I(xo) = 
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I(x). Thus f(x) is also metrical with respect to pn 

The distribution H is integrable, therefore u is an integral mani
fold of H. Then the obtained f(x) is integrable too, and each ei(x) = 
g(x0 , x)ei(x0 ) is an absolute parallel vector field, i.e. an integral mani
fold of the distribution determined by f(x) in TM. Now the curvature 
R(x) of f(x) vanishes. This can be seen also from the fact that at the 
construction of the absolute parallel vector field ei ( x), and thus also at 
parallel translation of ei(x0 ), no route connecting x0 and x was used. 

There are also other curves c( t) connecting p 0 and q0 , and to each 
of them belongs a fJ with an adapted coordinate system (x), and a 
connection f(x) as constructed above. We show that r = f on U n fJ. 
This is true if ei(q0 ) constructed on U equal i?i(q0 ) constructed on fJ, 
and thus u(qo) = Ci(qo), qo E UnfJ. Nevertheless UnfJ = U* may have 
disjunct components U1*, i.e. U* = Ui U U2 U ... , Po E Ui, qo E Uj. 
Since both (x) and (x) are adapted coordinate systems on Ui, after 
an appropriate linear transformation (ltr) : (x) ---+ (x) on fJ we obtain 
X= X on ur Also we obtain a new coordinate system on fJ. We denote 
fJ with the new coordinates by U(x). This does not mean that x = x on 
the other Uj (j i= 1). Nevertheless M is an affine manifold, and thus the 

Jacobi matrix J(x,x) =(~~)is the same on the whole U*. Moreover, 
it is the unit matrix on Ui, and therefore J(x, x) too is the unit matrix 
on U*. We know that ei(q) constructed from ei(Po) on U(x) is 

(23) ei(q) = a(q) o t(po, q) o a- 1 (po)ei(Po), 

and ei ( q) constructed from ei (Po) on U (x) is 

(24) ei(q) = a(q) o t(po, q) o a- 1 (po)ei(Po), 

where t means parallel translation on U(x). Both parallel translations t 
and t keep the components of the parallel translated vectors. Thus (23) 
an (24) have the same components in TqU and TqU. Since J(x, x) is the 

unit matrix on U*, we obtain ei(q) = ei(q). Consequently r = f =f. 
The above said is true for any q E M. Thus we obtain an unam

biguous linear metrical connection f(x) in TM for pn = A£Mn. 

B) Suppose that a Finsler space pn = (M, I) over an affine manifold 
M admits a linear metrical connection f(x) in T J\i[. Then there exists for 
Man atlas {Ua(xa) }, such that the transitions (xa) f------7 (x13) are linear. 
We show that this pn is the affine deformation of a locally Minkowski 
space £Mn = (M,I). 
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First we give the £Mn. Choose a point r E M, and take the indi
catrix I(r) of pn at r. Starting with this as I(r) E J, the construction 
applied in the proof of Theorem 8 part A yields a locally Minkowski 
space £Mn = (M, I). As we have seen, for any p E M there is a curve 
c(t) from r top, and a domain U :=l c(t) with a coordinate system (x) 
adapted with respect to £Mn. Let t(p, r) denote the parallel translation 
in (x) from p tor. Then t(p, r)I(p) = I(r) = I(r), since (x) is adapted. 
Let P~ be the parallel transport along c according to the linear metri
cal connection r of pn. Then P~ o t(p, r) : TpM ____.. TpM is an affine 
transformation a(p) : I(p) ____.. I(p). Thus we obtain an A= {a(p)} on 
M, such that a(p)I(p) = I(p). In the adapted coordinate system (x) f 
is independent of x, and thus of class coo. Also I ( x) E coo. Hence also 
A= {a(p)} are C 00 • This means that pn = A£Mn. Q.E.D. 

The content of this section is closely related to the results of Y. 
Ichijyo ([Il-3]). He investigated Finsler spaces modeled on Minkowski 
spaces. Nevertheless he used an approach completely different from the 
ours. 

We have seen that any affinely deformated locally Minkowski space 
A£Mn admits a linear metrical connection with vanishing curvature 
R(x). This means that we have 

Proposition 5. Any affinely deformated locally Minkowski space 
A£Mn is parallelizable. 

Given an affinely deformated locally Minkowski space A£Mn, with 
A = {a(p)}, one can determine on an adapted coordinate sytem (x) 
the local components of the just constructed linear metrical connection 
f(x). The parallel translate of a vector ~0 = ~(x(t0 )) along a curve x(t) 
according to the metrical linear connection r(x) is 

~(t) = a(x(t)) o t(xo,x(t)) o b(xo)~o, 

where b(x) is the inverse matrix of a(x), and x0 = x(t0 ). In components 

it is t(t) = at(x(t))bJ(x0 )~~' since the parallel translation t does not 
alter the vector components. Then 

must have the form 

V xo = x(to), 
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where f/r are the components of the linear metrical connection f(x). 
Hence, in an adapted coordinate system (x) we obtain 

(25) 

We remark that there are Finsler spaces other than affine deforma
tions of locally Minkowski spaces, which admit linear metrical connec
tions in T M. We know that every Riemannian space vn over a para
compact manifold admits such connections. Nevertheless not every vn 
is the affine deformation of a locally Euclidean space (the indica trices 
of a vn are affine images of a sphere), for not every M admits a locally 
Euclidean structure. It is easy to see that for this it is necessary and 
sufficient that M is an affine manifold (see Theorem 8). The following 
question arises: are there Finsler spaces not vn and not Al'Mn which 
admit linear metrical connections in T M? 

* * A Finsler space pn = (M, F), where M is the coordinate space 
Rn(x) (or a domain of it), is said to be of 1-form metric (the local case), 
if there exits a function F of n variable, such that 

* F(x, y) = F(a(x)y), 

where (a(x)y)i = a1(x)yk, det la1(x)l =J 0. The name comes from 
the fact that for fix i any a'k(x)yk is a 1-form. Such spaces, as line
element spaces, were introduced and investigated by M. Matsumoto and 
H. Shimada [M], [MSl-2]. These spaces are also affine deformations of 
Minkowski spaces [T3], [KT]. This is true also in the global case. 

Consider a manifold }.![ (in the sequel no more restricted to Rn), 
an atlas { U"' (X a)} of it and a Finsler metric F : T M --> R+, such 
that F(xa, Ya) = Fa(Ya), that is F I Ua is independent of Xa· (Then 
pn = ( M, F) is a locally Minkowski space l'Mn.) On U <>!3 = U"' n U {3 we 

have Fa(Ya) = F{3(Y{3), and Y{3i = 88x~ y~, or Y!3 = J(xf3, Xa)Ya for short. x, 
Thus 

(26) 

The left side of (26) is independent of Xa, Xf3· Then so is the right side 
too. Hence J(xf3, Xa) must be constant. This means that (xa) f------7 (x{3) 
is linear, and thus }.![ is an affine manifold. 

* * * Now consider a Finsler space pn = (M, F) = (M, I), an atlas 
{Ua(xa)} for M, and suppose that there exists on M a function F 



Finsler geometry in the tangent bundle 189 

of n variable, such that on each U0 (x0 ) we have 

* * 
F r Ua = F(xa, Yo) = F(b(xa)Ya) = Fa(Y0 ), 

On Uaf3 = Ua n Uf3 we obtain 

* F r Uaf3 = Fa(Y0 ) = Ff3(Yf3) = Ff3(J(xf3,xa)Y0 ) 

Then, according to the previous paragraph, M is an affine manifold, and 
* * pn is called a Finsler space of 1-form metric (the global case). (M, F) 

* is a Finsler space, and since F r Ua = Fa(Ya), it is a locally Minkowski 
space £Mn = (M, I). Let us choose a chart U0 (X 0 ), and denote it by 

* * U(x). If F(x, y) = 1, then y is an element of I(x) the indicatrix of 
* pn at x. Moreover b(x)y is an element of I(x) the indicatrix of £Mn, 

which is independent of x on U. Now let A = {a(x)} be such that 
at(x) := (b- 1)L, and thus b(x)y =: 'fj, or in other form y = a(x)y. Then 

* * we have 'fj E I and a(x)y E I(x). This means that I(x) = a(x)I on U, 
* and similarly on every U0 • Thus, every Finsler space pn of 1-form metric 

* is the affine deformation of a locally Minkowski space: pn = A£Mn. 

In our investigations a(p) : TpM ---> TpM was a centroaffine trans-. 
formation, which keeps the origo 0 (the null vector of vn i':::! TvM). Such 
deformations were considered also by M. Anastasiei ([A1-2]). However 
a(p) can indicate also a genuine affine transformation: a centroaffine 
transformation followed by a translation, which takes 0 into another 
point C E Rn i':::! TpM. Understanding A and a(p) in this sense, we 
obtain the indicatrices of a Randers space nn = (Rn,F) over Rn(x) by 
the affine deformation of the Euclidean space En(x), i.e. nn = AEn. 
For an nn = (M, F) this is true locally only. Globally nn = A£En 
is not true in general. Randers spaces are the most simple, but the 
most important examples of not absolutely homogeneous Finsler spaces. 
They are often investigated also recently (see [BRS], [Ba], [Mi] and also 
[H] with relation to the affine deformation). Randers spaces also have a 
close relation to physics ([In], [IT]) etc. 
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§ 3. Affine automorphisms of the indicatrices 

Any Riemannian space vn = (Rn, Q) is the affine deformation of 
the Euclidean space En(Rn, S), i.e. vn = AEn, Q = aS, where Q 
means ellipsoids, S is a sphere, and a E A. Nevertheless this relation 
can be realized by a set of A. Let namely r(p), p E Rn be a rotation 
in TpM ~En, then a(p)r(p)S = a(p)S = Q(p), and vn = AEn, A= 
{a(p)}. Given Fn = A£Mn = (M, I), an orientation preserving (centro) 
affine transformation k(p) : TpM---+ TpM is an affine authomorphism of 
I(p) if 

k(p)I(p) = I(p), 

i.e. if k(p) takes the indicatrix I(p) as a whole into itself. 
The parallel translation P[ in an A£Mn according to f(x) given 

by (25), along a curve c from p to q is an affine transformation a(p, q) : 
TpM---+ TqM, and takes I(p) into I(q). This means that all indicatrices 
of an £Mn, and of any A£Mn are in affine relation. Thus, if k(p) is an 
affine automorphism of I(p), then a(p, q) o k(p) o a- 1 (p, q) is an affine 
automorphism for I(q). 

If an indicatrix I 0 of an £Mn has only the identity as affine automor
phism, then I is called rigid (with respect to the affine automorphisms). 
If there exists k =F id ., such that ki0 = I 0 , then Io is called mobile. 
In these cases every indicatrix of £Mn and A£Mnis rigid (resp. mo
bile). If in an A£Mn there exists a closed curve c C M, p E c, and a 
f(x) given by (25), such that Pf :1 id, then A£Mn and its indicatrices 
are called f-mobile, otherwise A£Mn is f-rigid. If A£Mn is f-mobile, 
then there exists an Yo E I(p), such that P[ Yo = Y1 =F YO· Moreover, 
if cis contractible top, and c(v), 0 :::; v :::; 1, c(O) = c, c(1) =pis a 
continuous family of curves, and if v---+ 1, then P~v)YO = Yl(v) ---+Yo, 

and P~v) = k(v) yields infinitely many different affine automorphisms 
of I(p). These automorphisms belong to the holonomy group of f. 

Proposition 6. If in an A£Mn there exits a P[ =F id with a con
tractible closed curve c, then A£Mn has infinitely many different affine 
automorphisms k. 

Clearly any f-mobile A£Mn is mobile, and any rigid A£Mn is f
rigid, but not conversely. Consider an M 2 = (R2 (x),I), where I(p0 ) c 
Tp0 R 2 ~ E 2 is a regular planar polygon with N-vertices (i.e. regular 
N-gon). (This I(p0 ) is actually no indicatrix, but the vertices can be 
rounded, and the edges slightly curved, and thus we obtain a smooth 
indicatrix, which admits only N affine automorphisms.) So this M 2 is 
mobile, but it is not f-mobile with any linear metrical connection f. 
This is also true for any affine deformation AM2 of the considered M 2 . 
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If r(x) is a connection of Fn = A£Mn constructed by (25) and k(p) 
is an affine automorphism, then A = {a= a o k} yields by (25) another 
linear metrical connection f(x) on Fn. Both of them have vanishing 
curvature: R(x) = R(x) = 0. However, if A.eMn admits a field k(p, J-L) 
of affine automorphisms c= in (p, J-L), where J-L is a parameter, then there 
exist linear metrical connections r(x) with not vanishing curvature R(x). 

We show the following 

Theorem 10. A r -mobile A£M2 = (M, I) on a simply connected 
M is a Riemanian space V 2 . 

* Proof. A£M2 is an affine deformation of an £M2 = (M, I) and it 
makes the tangent space TpM (pis fixed) into a Mikowski space M~ = 
(TpM,I(p)). Since A£M2 is r-mobile, and M is simply connected, there 
are infinitely many affine automorphisms k(p, v) = k(v). Each k(v) is 
a linear automorphism of TpM and at the same time an isometry with 
respect to the metric of M~, for k(v)I{p) = I(p). Then by a result of P. 
Gruber ([G], or [Th] p. 83) I(p) is an ellipse. This holds at every point 
of M. Hence A£M2 is a V2 . 

Since £M2 is a locally Minkowski space, A1 is an affine manifold. 
Thus there exists on M a locally Euclidean space £E2 = (M, S), where S 
are congruent spheres in each adapted coordinate system. Then to each 
S(p) there exists an affine transformation a(p) taking S(p) into Q(p). 
Hence A£M2 is the affine deformation of an £E2 • Q.E.D. 

This theorem can be extended to higher dimensions. Consider an 
A.eMn = (M, I), and the set Y(y*) of those points y E I(p) (pis fixed), 
to which we can parallel translate y* by a p~, where r is any possible 
linear metrical connection of A£Mn, and cis any closed curve through p. 
Denote by Lr(p) the smallest linear subspace of TpM containing Y(y*). 
r means the dimension of this subspace. r may depend on y*. Let m be 
the maximum of r(y*). Then 

(27) 

is an ( m - 1 )-dimensional ellipsoid. (The proof is omitted.) After an 
appropriate linear transformation Qm- 1 is a sphere sm- 1 , and I(p) is a 
rotation surface containing an ( m - 1 )-dimensional sphere. This yields 

Theorem 11. If A£Mn is r -mobile, then its indicatrices are affine 
images of rotation surfaces in TvM ~ En containing a sphere sm-1. 

The dimension of this sphere depends on the size of the r -mobility of 
A.eMn. 
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If A£Mn is f-rigid, then it has a single t'(x) determined by (25). The 
curvature of this f vanishes. If also the torsion of this f (X) vanishes, then 
parallel vector fields with respect to this f have constant components in 
an appropriate coordinate system. Consequently the indicatrices I(p) of 
A£Mn, which are parallel translate of each other with respect to f, are 
independent of p in this coordinate system, that is A£Mn is a locally 
Minkowski space. On the other hand, any vn = (M, Q) over an affine 
manifold is the affine deformation of a locally Euclidean space: vn = 
A£En, and these vn are maximally f-mobile. Conversely, if an A£Mn 
is maximally mobile, then m = n in (27). Since Ln(p) n I(p) = I(p), 
also these A£Mn are Riemannian spaces. Thus Minkowski spaces, and 
Riemannian spaces are extreme cases of certain A£Mn spaces belonging 
to f-rigidity, resp. to maximal f-mobility. 
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