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A connectedness principle in positively curved
Finsler manifolds

Ioan Radu Peter

Abstract.

We study a connectedness principle in positively curved Finsler
manifolds. Some results from positively curved Riemannian manifolds
are generalized to Finsler spaces, and we also emphasize differences
between the Riemann and Finsler settings.

§1. Introduction

In algebraic and in Riemannian geometry connectedness principles
give uniform formulation for many classical results, for example Synge’s
theorem, Frankel theorem and Wilking theorem for totally geodesic sub-
manifolds.

Here we develop this tool in the Finsler setting. Here the situation is
much more complicated than in the Riemannian context. The variation
of the energy applied to a geodesic with the ends on submanifolds gives
rise naturally to a second fundamental form (see [17]). The statement
that a submanifold is totally geodesic (that is geodesics of the subman-
ifold are also geodesics for the ambient manifold) is equivalent to the
statement that the second fundamental form vanishes only for Berwald
spaces. That is because the reference vector of the second fundamental
form (which appear in the connection coefficients) is not tangent to the
submanifold. The asymptotic index is defined via the second fundamen-
tal form and a connectedness principle is developed using the asymptotic
index. But the results concerning totally geodesic submanifolds are true
for Berwald spaces (in these spaces the asymptotic index is equal to the
dimension of submanifold iff the submanifold is totally geodesic).
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In the Riemannian case such kind of results are obtained in terms of
asymptotic index, totally geodesic submanifolds or extrinsic curvature
of a submanifold (see [5, 8, 9] in the last notion). In the Finsler setting,
using our variational approach, the connectedness results involving the
asymptotic index can be extended to Finsler spaces, the results concern-
ing totally geodesic submanifolds are proved for Berwald spaces and the
results involving the extrinsic curvature are not treated because even in
Berwald spaces, where the reference vector is irrelevant for the connec-
tion coefficients, and further for the curvature tensor, the inner products
which appear in the flag curvature have a dependence of the reference
vector.

§2. Preliminaries

Let M be a real manifold of dimension m and (T'M, 7, M) the tan-
gent bundle of M. The vertical bundle of the manifold M is the vector
bundle (V,7, M) given by V = Kerw C T(TM). (z*) will denote the
local coordinates on an open subset U of M, and (x?, y*) are the induced
coordinates on 7~ }(U) C TM. The radial vector field ¢ is locally given

.0
by u(z,y) =y' 55
A Finsler metric on M is a function F' : TM — R, satisfying the
following properties:

(1) F is smooth on M where M = TM\ 0

(2) F(z,y) >0 forall (z,y) e M

(3) F(z,\y) = AF(z,y) forallz e M,y e T,M, A e RT
)

102F?
(4) the quantities g;;(z,y) = ___(w_,y_)

= 5 Buitud form a positive definite
Yy oy

matrix.

A manifold M endowed with a Finsler metric F' is called a Finsler
manifold (M, F).

Condition 4 is equivalent to the fact that that for any x € M the
indicatrix I, = {y € T,M| F(z,y) < 1} is strongly convex and also
implies that th2e cg(mnti)ties
10°F*(z,y
950 Y) = 5oy
bundle (V, 7, TM).

On a Finsler manifold there is not, in general, a linear metrical
connection. The analogue of the Levi-Civita connection lives just in the
vertical bundle, however, there are several of them.

induce a Riemannian metric (-, -) on the vertical
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In this paper we use the Cartan connection ([1]) which is a good
vertical connection on V, i.e. an R-linear map

VU (M) x X(V) = X(V)
having the usual properties of a covariant derivation, metrical with re-
spect to (-, -}, and 'good’ in the sense that the bundle map A : TM —V
defined by A(Z) = V% is a bundle isomorphism when V? restricted to
V. The latter property induces the horizontal subspaces H, = Ker A
for all w € M which are direct summands of the vertical subspaces
Vi = Ker (dm)y:
TM=H®V.

For a tangent vector ﬁelgl X on M we have its vertical lift XV and
its horizontal lift X to TM.

© : V — H denotes the horizontal map associated to the horizontal
bundle ‘H. Using O, first we get the radial horizontal vector field x =
© o In our case o = x(d). Secondly we can extend the covariant

derivation V¥ of the vertical bundle to the whole tangent bundle of M.
Denoting it with V, for horizontal vector fields we have

VzH = ©(Vy(©~Y(H))), V Z € X(M)

An arbitrary vector field Y € %(M ) is decomposed into vertical and
horizontal parts Y =YV + YH  then we obtain

V7Y =V5YV 4+ VY,

Thus V : ¥(M) x X(TM) — %(TM) is a linear connection on
M induced by a good vertical connection. The connection coefficients
depends on (z,y) € M=TM \ 0, and y will be called reference vector.
Its torsion 8 and curvature R are defined as usual:

VxY -VyX = [X,Y] + H(X,Y)
Rz(X,Y)=VxVyZ -VyVxZ - Vixv1Z
and the torsion has the property that for horizontal vectors 8(X,Y) is
a vertical vector [1]. Specially the horizontal flag curvature of V along
a curve o is given as follows: :
R;(UH, U™y = (", uhut, ¢f)

for any U € X(M). This is called the horizontal flag curvature in [1] and
gives the flag curvature of [4, 18] when ¢, UH are orthonormal with
respect to (, )s.
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The metrical property of the Cartan connection is also important

[1]:
XY, Z)=(VxY,Z)+ (Y, VxZ).

Let N be a submanifold of M of dimension p < m. We consider the

set
A ={(z,v)|lz € Nyve T,M}={Z € M|n(z) € N}.

We consider H;T, M and HzT, N be the horizontal liftings of T, M

and T, N respectively along T and

HNTM = | | H; T M
ZEA
and
' HNTN = | J HzT.N.
TEA

Let N3 be the (-, )z orthogonal complement of HzyT'N in HzTM. Let
X,Y € HNTN and let X*,Y™* be their prolongations to HyT M (that is
if X,Y € HT, N for some Z € TM it follows that X*,Y* € H;T,M).
The restriction of Vx-Y* to N does not depend on the choice of the
prolongation. By the orthogonal decomposition

H;T.M = H;T,N & N7

we obtain that

Vx:Y*=V%Y +I(X,Y).
We will call I(X,Y) the second fundamental form at X and Y. Note
that for T = (z,v) € A with v € Ty M \ T N we have

<VX*Y*aUH>v = Hv(Xa Y)

and we call it the second fundamental form of X and Y in the direction
of v (note that v is also the reference vector in the covariant derivative).
We will be interested mostly in the sign of the second fundamental form.

Let f : N — M be an immersion. The asymptotic index of the
immersion f in the direction is defined by

vf = :I;Iélll\} vi(z)

where v¢(z) is the maximal dimension of a subspace of T; N on which
the second fundamental form vanishes in every directionv € T, M\T, N.
The submanifold N will be called a totally geodesic submanifold (in the
analytic sense) if and only if v(f) = dim N.

Generally, for the notions and facts from algebraic topology we used
the books of A. Hatcher [11] and G. W. Whitehead [20].
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§3. Morse Theory on path space

At this points we are ready to apply Morse theory to obtain sev-
eral connectedness principles on positively curved manifolds. First we
present some technical constructions.

Let M be a connected Finsler manifold and P(M) denote the path
space of the manifold with the topology induced by the metric

1
dlon, ) = ( | (Pla) = F(an)*at)} + ma. dus(an(®) e (),
which is well defined even if ag and a; have finitely many cusps (here
das denote the metric induced on M by the Finsler metric).

Consider the projection map p: P(M) — M x M given by p(a) =
(a(0), @(1)) which defines a Serre fibration given by Q(M) — P(M) —
M x M where the fiber Q(M) is the loop space of M with a fixed
basepoint.

For a manifold N and a smooth map f : N — M x M we consider the
pullback fibration by f, Q(M) — P(M, f) - N. P(M,f) C N x P(M)
consists of (z,a) such that f(z) = (a(0),a(1)) and has the induced
topology.

3.1. Morse theory on P(M, f).

We will study in this section the space P(M, f) from the Morse the-
ory of the energy functional E(z,a) = %fol F?(a(t))dt. By the results
from [12] any critical point (z, @) of the energy functional E is a geodesic
for which (&(0), —&(1)) is ( , )4 orthogonal to (f.(Tx(N)))H. We will
restrict in this section to compact manifolds.

Theorem 1. Let M and N be compact Finsler manifolds, and f :
N — M x M an isometric immersion, and let A C M x M be the
diagonal. Assume that every nontrivial critical point (z,a) of E has
index I, > Ao. Then the following assertions are true.
(1) Ifho > 1, then f~Y(A) # 0.
(2)  If Ao > 2 and M is simply connected, then f~1(A) is connected.
If in addition f = f1 X fi : N = Ny x Ny, — M x M, where f
is an embedding, then
(3) m(P(M,f), f7HA)) =0 for all i < Ao.
(4)  For Ay > i, then there is an exact sequence of homotopy groups,

(P1f)«—(D2f) (M)

— (N ——
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where p1 and pe are the projections to the factors.

Proof. (1) f~Y(A) = 0 implies that E has an absolute minimum
at some non-trivial critical point (z,a), hence its index should be zero,
this is a contradiction.

(2) At this step we use the finite approximation of the path space
proved for the Finsler setting by Dazord ([6] p. 129-134).

Let P.(M, f) = E~1([0,¢)) be an open subset of P(M, f) and B¥(M,
F) C P.(M, f) the space of piecewise smooth geodesics with k-cusps
(with each piece of length less than the injectivity radius). For k suf-
ficiently large B¥(M, f) and P.(M, f) are homotopy equivalent. Being
the space B¥(M, f) formed by k-broken geodesic it can be identified
with an open submanifold of the product N x M x ... x M (k copies
of M). E is a proper function when restricted to B¥(M, f) and fur-
thermore E|gk (s sy and Elp,(ar,5) have the same critical points with
identical indices ([6] p. 129-134).

Suppose, by contrary, that f~!(A) is not connected. In this case
there exist disjoint non-empty compact subsets A and B such that AU
B = f~1(A). We can think at f~!(A) as the set of constant paths in
P(M,f). Let p€ A and g € B.

The manifold M being simply connected it follows that the loop
space (M) is path connected, and it implies that P(M, f) is also path
connected, and, furthermore, there exists a path ap in P(M, f) joining p
and ¢q. By the previous observations related to B¥(M, f) we can choose
a path ag € B% (M, f) joining p and ¢ for some constant ¢y > 0 and
some k € N, enough large such that Bf“(M , ) has the same homotopy
type as P.(M, f).

Let X = B, (M, f) with the induced product metric [15] from
N x M x...M (k times of M) and consider g = E|x. By an above
consideration we identify f~!(A) with g=1(0). We will prove (3) un-
der the assumption that there exists a sequence of connected paths
o : [0,1] — g71[0,%] , (k> 1) in X with ax(0) = p and ax(1) = g,
in the homotopy class of [ag], keeping the endpoints fixed. By the com-
pactness of A and B the distance dx (A, B) > 0. Consider the function
a(z) = d(z, A) — d(z, B). We can see that al,, satisfies a(p) < 0 and
a(g) > 0, so there exists a point xx € aj with a(zi) = 0. Now (zk)ken
contains a convergent subsequence, so we can assume that (zy) itself
is convergent to a point z, and limg_,., g(zx) = 0. Thus we obtain a
contradiction z € g7 1(0) and a(x) = 0, since AN B # 0.

By Corollary 6.8 in [16] and from the fact that Ag > 2, there exists
a Morse function h on X such that |g — h| < ﬁ on the sublevel set

X <eot+d — {z € X, h(z) < cp+ %} , such that the critical points of h
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in the set h=!([3,co + 3]) have Morse index greater than 1, so from
Morse Theory it follows that h~!(—o0, co + %] is homotopy equivalent to
h=1(—oo0, ﬁ] by gluing cells of dimensions at least 2. But this implies
that the relative homotopy group 1 ((—00,co + 1], (—00, 3]) = 0, s0 ag
is homotopic to a path o in h™!(~o0, ﬁ] with the same endpoints p
and q fixed.

(3) It is enough to show that E~1(0) = f~}(A) C B.(M, f) has
an open neighborhood U € B.(M, f) which is a deformation retract of
f~Y(A). The existence of such a neighborhood will be given in Propo-

sition 2.
(4) We have that m;(QM) = m;41(M). Further we have the diagram

i (P(M, f)) ——  m(N) —2 s m(M) —— m_1(P(M, f)). ..

7. ] -| .|
om(P(M)) —P (M x M) —2 (M) ——— w1 (P(M))...

because Q(M) — P(M, f) — N is the pullback of the Serre fibration Q(M) —
P(M) — M x M via the immersion f : N — M x M. Being P(M) homotopic to
M it follows that p : M — M x M is homotopic to the diagonal map. Denoting
p; the projection of M x M to the i-th factor, then §. = (p1)« — (p2)«. (From
the diagram we have the homomorphism ¢ = (p1f). — (p2f)«. Q.E.D.

The next proposition states the existence of the neighborhood used
in the proof Theorem 1 point (3). Let X be a complete Finsler manifold
and let f: N — X x X be a isometric immersion, where N is a compact
manifold. Let S be the subset

S ={(z, f(@),...,f(x)) € N x (X x X) x - x (X x X)|z € fL(A)},

k times X x X.

Proposition 2. Let X be a complete Finsler manifold and f : N —
X x X be an isometric immersion as above. The subset S in N x (X x
X) x ... (X x X), (k-copies of (X x X)) is a deformation retract of an
open neighborhood U if one of the following conditions holds:
e f s a totally geodesic map
e N =N; x Ny and f = f1 x f1, where f1 is an embedding.

Proof. In the second case S is diffeomorphic to IV, so S is closed.
In the first case S is diffeomorphic to f~*(A), and it follows that it is
closed. Take U any open tubular neighborhood of S and this is done.
We present for convenience the argument that for f totally geodesic S
is closed.
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Take any open disk D C N such that f(D) is imbedded in X x X.
f(D) N A is a totally geodesic submanifold since it is an intersection
of two totally geodesic submanifolds. Furthermore f : f~1(A)N D —
AU f(D) is a diffeomorphism, which implies that f~1(A) is a manifold.

Q.E.D.

3.2. Index estimates in the case of positively
curved Finsler manifolds

Consider as in the previous subsection the energy F of the Finsler
metric on P(M, f). At a point (z,a) € P(M, f) the tangent space
consists of vectors (v, W), with v € T, M and W piecewise smooth vector
field along o such that f.(v) = (W(0),W(1)). Being f an immersion
the tangent space can be identified with the space (W (0), W (1)). For a
parallel vector field along a, by the second variation formula of Finsler
energy, the Hessian of the energy function satisfies

1
E.. = /—(Q(dH,WH)WH,dH)ddt
0
+(Ia(fo (), £ (D), (—6(0), 6(1)) )4

Theorem 3. Let M be a compact Finsler manifold of positive flag
curvature and let f : N — M x M be an isometric immersion with
asymptotic index v¢. Let (x, ) be a non-trivial critical point of E, with
Morse Index I,. Then,

(1) Ia>vi—m

(2) Iff=(fi,f2): N =Ny xNg— MxM such that f; : N; > M

s an immersion, 1 = 1,2, then I, > vy —m + 1.

Proof. (1) Consider the set V' of vector fields along a such that v#
is parallel along and ( , )4 orthogonal to &¥. It is clear that dimV =
m — 1 and we can identify V' = {v(0),v(1)}.

Consider further N, the maximal subspace of T, /N such that the
second fundamental form in the direction & is zero, so dimN; > vy.
Being both V" and f.(M;)¥ (,)4 orthogonal to (&(0), —é(1)) we have
by the dimension theorem that

dim((f.WN)F N V) > vp +dimV - 2m +1 = vy —m.

(2) « is a geodesic in M such that &*(0) is ( , )a(oy Orthogonal to
((f1)«(Toy N1))? and &7 (1) is (, ), orthogonal to ((f2)«(Tz, N2))™,
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where .= (z1,72). Now both (&(0),0)# and (0,&(1))# are normal to
f+(TyN)H? and V, so we have for the dimension of their intersection

dim((fe(Ne)H V) > vp +dimV —2m+2 =vf —m +1.

Q.E.D.

§84. Main Results

Theorem 4. Let M be an m-dimensional compact Finsler manifold
of positive flag curvature and A the diagonal of M x M. Consider
an isometric immersion f : N — M x M of a closed manifold with
asymptotic index vy. The following statements hold:

(1) Ifvg>m, then f71(A) #0

(2) Ifvy > m+ 1 and M is simply connected, then f~'(A) is

connected.

(3) Forvy > m+1 the following sequence of homotopy groups

W;(f_l(A)) 7T1(N) (P1f)x—(P2f)« 7‘_1(]\/[)
— ma (7)) ——
1S exact.

Proof. The three assertions follow from Theorems 1 and 3. Q.E.D.

In the case where f is not a correspondence but a pair of immersions
we have the following stronger result:

Theorem 5. Under the assumptions of Theorem 4 if in addition
N = N1 x Ny and f = (f1, f2) with asymptotic index vy, then
(1) Ifvy >m then f~1(A) #0
(2) Ifvy>m+1 and M is simply connected, then it follows that
F~YA) is connected.
If f = (f1, f1) with fi embedding then
(3) Forvy > m+1i the following sequence of homotopy groups

(P1f)«—(P2f)«

m(f7H(A)) —— m(N) mi(M) —— mi—1(f71(4A))

18 eract.
(4) We have the natural isomorphism

mi(N1, f7H(A)) — mi(M, Ny)
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for i < vy —m and a surjection for i = vy —m + 1. Here
m;i(Nj, f~1(A)) is understood as the i-th homotopy group of

the composition map f~1(A) — N P, N;j-

Proof. The assertions come from Theorems 1 and 3. Q.E.D.

85. Some consequences of the main results

Theorem 6. Let M be a compact simply connected Finsler manifold
of positive flag curvature. Let f; : N; — M be a compact isometric
immersion with asymptotic index vy,i = 1,2, For vy + vy > m+1
then both f(f2(N2)) and f5'(fi1(N1)) are connected.

Proof. Let us consider the immersion (fi, f2) : N1 x No — M x
M. By the Theorem 5, (f1, f2) " !(A) is connected and it follows that
FTH(F2(N2)) = pr((f1, £2)7H(A)) and f771(f1(N2)) = p2((f1, f2) H(A))

are connected. Q.E.D.

The next theorem is a Frankel type result about intersection of sub-
manifolds, see [7, 13, 14] for different versions in the Riemann and Finsler
setting.

The original Frankel theorem states that for a complete connected
Riemannian manifold M of positive sectional curvature, two totally ge-
odesic submanifolds V and W have nonempty intersection, VW # ( ,
provided that dim V + dim W > dim M.

Theorem 7. Let M be an m dimensional connected Finsler man-
ifold of positive flag curvature and let fi : N; — M be an isomet-
ric immersion of a compact submanifold with asymptotic index vy,. If
ve + e 2m, then fl(Nl) N fZ(NZ) # 0.

Proof. Consider f = (f1,f2) : Nt x No - M x M. Now vy =
vf, + v, > m, so from Theorem 4 it follows that f~1(A) # 0, that is

f1(N1) N fa(N2) # 0.
Q.E.D.

A map f: N — M is said to be (i + 1)- connected if it induces an
isomorphism up to the i-th homotopy group and a surjective homomor-
phism on the (i + 1)-th homotopy group. '

In what follows we prove some results related to the above defined
connectedness notion.

Theorem 8. Let M be a compact simply connected Finsler manifold
of positive flag curvature and let f : N — M be an immersion of a
compact manifold. If the asymptotic index vy > i‘gﬂ, then f is an
embedding.
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Proof. 1t is enough to show that f is one-to-one map since f is an
immersion. We have that

F7HA) = {(z,2),7 € N}U{(z,9)|f(2) = f(y),z # y}-

If f is not injective it follows that f~!(A) is not connected, this is a
contradiction. Q.E.D.

Theorem 9. Let M be a compact Finsler manifold of positive flag
curvature and N be a compact embedded submanifold with asymptotic
index v. We have mi(M,N) =0 fori < 2v —dim M.

Proof. In Theorem 5 consider N7y = Ny and f; =1: N — M the
inclusion. Now f(=V(A) = N = N;NN; and the result follows. Q.E.D.

The next theorem is a result related to embeddings, similar to the
results of B. Wilking [21], which states that the for a positively curved
n-dimensional manifold M of positive sectional curvature and a (n — k)-
dimensional totally geodesic compact submanifold N the inclusion ¢ :
N — M is n — 2k + 1 connected.

Theorem 10. Let M be a compact simply connected Finsler man-
ifold of positive flag curvature and let f : N — M be an embedding of a
compact manifold with asymptotic index v¢. Then f is (2vf—dim M+1)-
connected.

Proof. The result is a consequence of Theorems 5 and 9. Q.E.D.

Theorem 11. Let M be a compact simply connected manifold of
positive flag curvature. If f : N — M is an isometric immersion of a
compact manifold with asymptotic index vy then f is (2vf —dim M + 1)
connected.

Proof. We have that (2vy — dimM + 1) > 1, so 2vy > dim M.
Unsing Theorems 8 and 10 the proof is concluded. Q.E.D.

§6. Applications for totally geodesic submanifolds of Berwald
manifolds

In Riemannian geometry the fact that the second fundamental form
of a submanifold is zero is equivalent to the property that the submani-
fold is totally geodesic.

In our case the situation is more subtle. The second fundamen-
tal form, defined from the variational approach (second variation of the
energy of a geodesic where the ends of the geodesics are in two sub-
manifolds) is rather an analytical definition. The reference vector of
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the second fundamental form is not tangent to the submanifold, so it is
an extrinsic characteristic of the submanifold (it is related to the way
the submanifold lies in the ambient manifold). The condition that the
second fundamental form vanishes is not equivalent to the geometric
property of a submanifold being totally geodesic. For Berwald spaces
the above equivalence is true, due to the fact that the reference vector
of the covariant derivative is irrelevant. So, we have two notions of a to-
tally geodesic submanifold. One of them is analytical, that is, the second
fundamental form in a non-tangent direction vanishes, and the other is
geometrical, that is, the geodesics of the submanifold are geodesics in
the ambient manifold.

In the case when the manifold M is of Berwald type, the connection
of M lives on the tangent level (the reference vector is irrelevant) and
is linear. In this case, for a submanifold, the condition that the sec-
ond fundamental form defined in Section 2 vanishes is equivalent to the
property that the submanifold is totally geodesic, that is the geodesic of
the submanifold are geodesics for the ambient manifold. Furthermore in
this case a submanifold N of the manifold M is totally geodesic in both
senses, analytic and geometric iff vy = dim N (in the Berwald category
the reference vector is irrelevant).

In the case of Berwald spaces, the previous characterization of to-
tally geodesic submanifolds is also implied by Szabé’s structure theorems
on Berwald spaces (see [19]). One of Szabd’s results says that if (M, L, V)
is a manifold endowed with a Berwald metric L and V is the Berwald
connection, then the connection is Riemann metrizable, i.e., there exists
a non-unique Riemannian metric g on M such that V is the Riemannian
connection of g. This implies that the geodesics of the Berwald metric L
and the non-unique Riemannian metric g coincide. It follows now that
a submanifold of M is totally geodesic with respect to g iff it is totally
geodesic with respect to L, i.e., the totally geodesic submanifolds of M,
with respect to the Berwald metric L, coincide with the totally geodesic
submanifolds with respect to the non-unique Riemannian metric g whose
existence is guaranteed by Szabo’s results.

The second fundamental form defined in the Section 2 has the refer-
ence vector non tangent to the submanifold. But this second fundamen-
tal form appears naturally in the study of geodesics joining two subman-
ifolds. This shows us an important difference between the Finsler and
Riemann cases, and as expected, this difference comes up from the fact
that the Cartan connection (and any other connection used in Finsler
geometry) has a directional dependence. In the Finsler category, there
is no such strong relationship between the asymptotic index and the



Connectedness in Finsler geometry 123

property of a submanifold to be totally geodesic as in the Riemannnian
case.

All the results concerning asymptotic index can be restated for to-
tally geodesic submanifolds N of Berwald manifolds M, with f : N —- M
totally isometric immersion and vy = dim V.

Finally we present some problems in Finsler geometry where we ex-
pect that these tools can be applied. Grove and Searle ([10]) introduced
the symmetry rank of a Riemannian manifold (M, g), to be the rank
of the isometry group of (M, g). Grove also proposed to classify those
manifolds with a large isometry group. One of the aims of this program
is to find general obstructions to the existence of Riemannian metrics
of positive curvature (taking benefit from the obstructions for manifolds
with a large amount of symmetries). We expect that these tools can be
applied to the study of manifolds with Finsler metrics of positive flag
curvature.
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