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Abstract. 

This article uses the Berwald connection exclusively, together with 
its two curvatures, to cut an efficient path across the landscape of 
Finsler geometry. Its goal is to initiate differential geometers into two 
key research areas in the field: the search for unblemished "unicorns" 
and the study of Ricci flow. The exposition is almost self-contained. 
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§1. What are Finsler metrics? 

1.1. All it takes is a change of perspective 
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Even for a diehard Finsler geometer such as myself, the physical 
distance between any two points P and Q on a manifold M should still 
be measured by a Riemannian metric J.L: 

dist(P,Q) = infl VJ.La(&,a)ds, 
a a 
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du 
where a := ds . 
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Here, it's understood that the infimum is taken over all piecewise smooth 
curves from P to Q. Finsler metrics become relevant only when one asks 
for the least travel time from P to Q, rather than mere physical distance. 

The integrand y' J.la ( ir, ir) ds is the length of a tiny segment of the 
curve a, and the parameter s may have nothing to do with actual travel 
time. To get the least amount of time it takes to traverse this segment, 
we divide that length by the fastest travel speed we could muster, say, 
c. In general, c depends on our location x = a( s) E M, the direction 
of our instantaneous tangent y = ir(s) E TxM, and most likely the time 
of the day as well; but let us not insist on this last bit of reality. Since 
only the direction of y matters, c should satisfy c(x, >.y) = c(x, y) for all 
).. > 0. Then the least travel time from P to Q is: 

time(P,Q) = inf1-( 1 ") VJ.La(ir,ir)ds, 
a a c a,a 

The new integrand is of the type 

1 
F(x,y) = -(-) VJ.Lx(y,y) = c x,y 

da 
where ir := ds . 

J.Lx(y,y) 
c2(x, y) · 

It represents the shortest time required for traveling along y, from its 
basepoint x to the tip. The quantity inside the radical is typically not 
even rational in y; it is a quadratic function of y if and only if c has no 
y dependence, and in that case F is said to be Riemannian. 

Formally, a Finsler metric is a continuous function F : T M --> 

[0, oo) with the following properties. 

(1) Regularity: F is smooth on T M '- 0 := {(x, y) E T M I y i- 0}. 
(2) Positive homogeneity: F(x, >.y) = >.F(x, y) for all)..> 0. 
(3) Strong convexity: the fundamental tensor 9iJ := a;iy;(~F2 ) 

is positive definite at all (x, y) E TM '- 0. 

Regularity is needed in an essential way when establishing certain 
global results in Finsler geometry. These include a Gauss-Bonnet-Chern 
theorem ([Bao-Chern 1996], [Lackey 2002]) and a Hodge decomposition 
theorem [Bao-Lackey 1996]; the former because arbitrary vector fields 
are involved (hence there can not be any forbidden directions y), and the 
latter because one has to average over all directions. The less stringent 
criterion of y-locality, namely, F being not even C 2 at some nonzero 
y, or is strongly convex only on some proper open cone in T M '- 0, 
sometimes opens the door to phenomena that are either impossible or 
not-yet-witnessed in the stricter regime. More on this in Section 4, where 
we discuss Landsberg metrics. 
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Strong convexity implies that the vectors {y I F(x, y) ~ 1} comprise 
a strictly convex set in TxM, though the converse does not hold; see 
[Bao et al. 2000]. Its inclusion here in our definition of a Finsler metric is 
to enable technology transfer from Riemannian geometry, and to narrow 
our scope. For applications to relativistic physics, this hypothesis has to 
be weakened to non-degeneracy, namely, det(gij) =1- 0; see [Asanov 1985] 
for background and [Rutz 1996] for a concrete example. Thus, for the 
sake of generality, some authors (for example [Antonelli et al. 1993]) 
prefer non-degeneracy over strong convexity, and this point is articulated 
distinctly in [Matsumoto 1986]. 

The property of positive homogeneity that has been motivated by 
our discussion is of degree 1 (in y). Functions satisfying <I>(Ay) = ).t <I>(y) 
for all A > 0 are said to be positively homogeneous of degree r. For 
them, Euler's theorem assures us that the following two statements 
are equivalent: 

• <I>(Ay) = V <I>(y) for all A> 0. 

• yi()y,<l>(y) = r <I>(y). 

Many computations in Finsler geometry would have been intractable 
without this basic fact. 

Let us demystify the notation with examples from 2d. To reduce 
clutter, abbreviate y 1 asp and y 2 as q. 

r = 3: Try <I>= p5 jq2. Then pop<I>+qoq<I> = p(5p4 jq2)+q( -2p5 jq3 ) = 
3<l>, as expected. 

r = 0: Try <I> = (p2- q2)j(p2 + q2 ). Then the quantity pop <I>+ qoq<l> = 
p( 4pq2 /[p2 + q2]2) + q( -4qp2 /[p2 + q2j2) = 0. 

As a more serious illustration, two successive applications of Euler's 
theorem let us "invert" the defining relation 

of the fundamental tensor 9ij to recover F: 

2 i . 
F (x,y) = %(x,y)y yl. 

Consequently, strong convexity implies that F must be positive at all 
y =f. 0. The converse is false because, while 9ij(x, y) yiyj = F 2(x, y) may 
be positive for y =1- 0, the quadratic 9ij(x,y)vivj could still be~ 0 for 
some nonzero v. Given this, it is rather surprising to find that positivity 
and non-degeneracy together do imply strong convexity [Lovas 2005]! 

1.2. A practical example 

Imagine living on a Riemannian manifold (M, h), where the h-unit 
tangent vectors u represent the displacements we can make in 1 second, 
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with our engine at full throttle. According to the mindset presented in 
the previous section, we have Jhx(y,y) = VJ.Lx(y,y)j~(x), where J.L is 
some underlying Riemannian metric which measures physical distances, 
and ~(x) is a speed function which just happens to be independent of 
the direction of travel. This ~ is determined by the performance char
acteristics of our engine at various locations x on M. 

Now a wind starts blowing across this landscape, with its velocity 
at location x given by a tangent vector W ( x). For simplicity, let us 
assume that W does not vary with time. With the wind blowing, and 
with our engine still at full throttle, it is clear that in 1 second we can 
travel farther along those directions to which the wind lends a helping 
component. Thus, the new speed function c should depend on both 
x and y. The resulting F(x, y) = J J.Lx(Y, y)jc(x, y), which measures 
the shortest travel time from the base of y to its tip, is expected to be 
non-Riemannian. 

The purpose of this section is to show that in practice, it is some
times more efficient to derive the expression ofF through first principles, 
from which we can then determine c, rather than the other way around. 

Suppose our goal is to navigate along a tangent vector y E TxM, 
starting from its basepoint x. Within a split second t:.t: 

* The wind would have displaced us from x to the tip of W(x)t:.t, 
had we turned off our engine. 

* On the other hand, had the wind been absent, traveling at full 
power along any h-unit vector u would have taken us to ut:.t. 

So, in order to stay the course along y, we need to direct our engine at 
full throttle in the direction of a particular h-unit vector u, such that 
the resultant (u+ W)t:.t, denoted vt:.t, has the same direction as y. This 
trend of thought is represented by the picture below. 

X 

W(x) 

/-----------------------
-==========~_!:V:___ _ _.. Y = pv 

~/// 
u 

Since vt:.t is the displacement achieved during the split second t:.t, 
we have F(x, vt:.t) = t:.t according to the meaning intended for F. 
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Invoking the positive homogeneity of F, we can cancel off /:lt to get 
F(x, v) = 1. Expressing y as pv for some p > 0, homogeneity effects 
F(x, y) = p. It remains to determine p explicitly. To that end: 

h(u,u) = 1 

=? h(v- W, v- W) = 1 

=? ( + 2h(v, w)- h(v, v) = 0, with ( := 1- h(W, W) 

=? ( p2 + 2h(y, W) p- h(y, y) = 0 

-h(y, W) + J[h(y, W)J2 + ( h(y, y) 
=? p = . 

( 

In the above derivation, we have assumed h(W, W) < 1 to reduce the 
myriad of possible cases down to one, and have reminded ourselves that 
the p we are solving for must be positive. Thus 

( ) _ y'[h(y, W)J2 + h(y, y){1- h(W, W)}- h(y, W) 
F x, y - 1 - h(W, W) . 

Since F(x, -y) =/=- F(x, y), the function F can not possibly be Riemann
ian. This is also manifest from the fact that in the maximal travel speed 
c = J f.Lx (y, y) / F ( x, y), the y-dependence can not be eliminated. 

The Finsler metric we obtained has the structure of a Riemannian 
part (the first term) plus a 1-form part (the second term), and is said 
to be of Randers type [Randers 1941]. The pair (h, W) is called the 
navigation data for this Randers metric. The condition h(W, W) < 1 
is precisely what one needs to ensure that F is strongly convex; details 
can be found in [Bao-Robles 2004]. 

The idea that structures our discussion here is due to Zermelo; see 
[Zermelo 1931] and [Caratheodory 1999]. The discovery of the above 
remarkable formula in modern settings is due to Z. Shen; see [Shen 2003]. 

1.3. Chern's Riemannian vector bundles 

Recall that the fundamental tensor is defined as the y-Hessian of 
~ F 2 . Using subscripts to signify partial differentiation, we have 

In the Riemannian case, F(x, y) := J ar8 (x) yrys, so 9ij is simply aij (x), 
thereby recovering the Riemannian metric we started with. 

Outside the Riemannian realm, the fundamental tensor will always 
have a y-dependence. Let us illustrate with an example in 2d, where we 
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write y1 as p and y2 as q. 

the term proportional to 'ljJ is added to effect strong-convexity. For this 
F, the 2-by-2 matrix (9iJ) is 

whose y-dependence reaffirms that F is non-Riemannian. 
The Cartan tensor quantifies the deviation of F from being Rie

mannian, and is defined as 

This tensor is totally symmetric in all three indices. And its contraction 
with y vanishes by Euler's theorem, because 9ij is homogeneous of degree 
0 in y. Indices on A are manipulated by 9ij and its inverse giJ. With 
that in mind, one can show (for later use) that 

On account of the y-dependence of 9ij, the tensor 

carries with it not one but a sphere's worth of inner products in every 
tangent space TxM. Indeed, since 9iJ(x,y) is constant along each ray 
emanating from the origin of TxM, there is exactly one inner product 
corresponding to any given direction. Each such inner product deserves 
its own copy of TxM to act on. This realisation led Chern to the follow
ing "blow-up" type construction. 

• Replace each x E M by the collection of rays which emanate 
from the origin of TxM. Each element in this collection is a 
ray (x, [Yo]) := {(x, AYo) I A > 0}, with Yo ;f. 0. And, (x, [z]) = 
(x, [y]) if and only if z = AY for some A> 0. 

• Over each ray (x, [y]), erect a copy ofTxM and equip the latter 
with the inner product 9ij(x,y)dxi ®dxJ. The inner product 
is well defined because 9ij(X,Ay) = 9ij(x,y) for all A> 0. 
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In this way, the original n-dimensional manifold M is replaced by the 
(2n- I)-dimensional manifold of rays SM (also called the projective 
sphere bundle). It is to be emphasised that SM is independent of F. A 
Riemannian vector bundle of fibre dimension n is built over SM, with 
fibre metric given by the g defined above. This is called the pulled-back 
bundle over SM. Note that g is Riemannian precisely because F is 
presumed strongly convex. 

However, computations on SM are more easily done using the affine 
coordinates provided by T M" 0, the 2n-dimensional manifold of non
zero tangent vectors (also known as the slit tangent bundle). Ele
ments ofT M "-0 are of the form (x, y), withy -1 0. Over each (x, y), erect 
a copy of TxM, and equip it with the inner product gi1(x, y)dxi Q9 dx1. 
The resulting Riemannian vector bundle of fibre dimension n is called 
the pulled-back bundle overT M "- 0, and is denoted by 1r*T M. 

There is a global section of 1r*T M, defined by 

yi a 
R(x,y) := ( ) -a .. 

F x, y x' 

We shall call it the canonical section. Euler's theorem implies that R 
has unit length with respect to the bundle metric g. 

The dual of 1r*T M is the pulled-back cotangent bundle, 1r*T* M. It 
too, has an important global section 

called the Hilbert form. Euler's theorem implies that 

Ri := 9ij f!l = Fy', namely, w = g(C, ) . 

Consequently, w is also of g-unit length, and is naturally dual to C. 
Simple calculations give the following useful statements: 

F (Ci)yi 

F (Ri)yj 

8i1_gigj, 

8i1 - Ri R1 . 

We shall need these in later computations. 

§2. Geodesic sprays and nonlinear parallel transport 

2.1. The manifold of nonzero tangent vectors 

The manifold TM "-0 is the base space of Chern's pulled-back bundle 
1r*T M. Elements of T M are of the form (x, y), with y = yi ax' E 

TxM. Thus we have natural coordinates (x 1 , ... , xn; y1 , ... , yn) on T M 
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that are local in x but global in y. The associated coordinate basis is 
{ax';ay'}, with dual basis {dxi;dyi}. 

A local coordinate change xi = xi(x1, ... , xn) induces the transfor
mation 

a 
axP 

axi a 
----
axP axi 

onM. 

Since y can be expanded as either yiax' or fjPai:P, we must have 

i - axi -p 

Y - axP Y 

When used as a differential operator on TM, ai:P encounters func
tions <I> with both x and y dependences. The chain rule 

then implies that 

a axi a a2xi a 
axP = axP axi + axPaxq iJq ay• onTM. 

A similar situation holds for dfjP, namely 

a-p a2 -p 
d -p - X d i X j d i 

Y - -a · Y + -a ·a · Y x ' x• x• xJ 

though the "problem" does not extend to dxP and aiJP. 
Surprisingly, the remedy comes from a term in the differential equa

tion for geodesics O"(s) with constant Finslerian speed F(O", &). That 
equation reads 

where 
i ._ is 1 ( + ) 'Y jk .- g 2 9sj,xk - 9jk,x"' 9ks,xi 

are the fundamental tensor's formal Christoffel symbols of the second 
kind. Motivated by the second term in the geodesic equation, we define 
the geodesic spray coefficients 

while hastening to point out that the definition in [Bao et al. 2000]lacks 
that factor of ~. 
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In practice, one first computes 

Gi .- 9ii Gi 
1 . k 
4{9ij,xk - 9jk,x' + 9ki,xi} Y3 Y 
1 k 2 . 
4{(Ffi)xk Y - (F )xi+ (Ffi)xi y3 }, 

that is, 
1 . 

Gi = :d (Ffi)xi y3 - F Fx'}, 

and then raise the index to get Gi. As an example, consider the Numata
type metric 

F(x, y) = J8pq yPyq + fxv yP, 

where f is some function of x only. Then the components of the Hilbert 
form are 

from which we find that 

G . - .! o. f yPyq • - 2 -t, xPx• . 

Hence 
Gi _ ij G . _ 1 oi f P q - 9 3 - 2 -t xPxo Y Y · 

Using the geodesic spray coefficients, we generate the nonlinear 
connection ' 

Nii := (Gi)yi. 

For instance, in the Numata-type example considered above, we have 

N i _ 1 ( ri oi o ) f p q + oi f . P j - 2F u j - -t -tj xPx• Y Y -t xJxv Y · 

With the nonlinear connection in hand, let us modify ax' and dyi 
on T M" 0, as follows: 

8 aa.- Nsi aa , 
8xi 

.- x• ys 

8yi .- dyi + Nis dxs. 

Amazingly, local coordinate changes on M now induce the simple trans
formations: 

8 
8i;P 

axi 8 
[)i;P 8xi ' 
[)j;P . 
-a . 8y'. x• 
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This is why, on T M " 0, it is preferable to use the basis 

{ 8~i; F a~i} and its dual { dxi; 8;i} , 
rather than 

{ a~i; F a~i} and { dxi; d;i} . 
Here, factors ofF and 11 Fare introduced to render all objects invariant 
under positive rescaling y ~--+ >..y in y, so that they also make sense on 
the manifold of rays SM. 

The fundamental tensor 9ij is an object that wears several hats. We 
have already seen that its first job is to provide a Riemannian metric for 
Chern's pulled-back bundle 1r*T M and the associated tensor products. 
Now we describe its second job: to provide, via a Sasaki type lift, a 
Riemannian metric on the manifold T M '- 0 of nonzero tangent vectors. 
That metric is 

A ( ) ' ( ) d i d j ( ) 8yi 8yi g x, y .= 9ii x, y X l8l X + 9ij x, y F l8l F . 

With respect tog, the span of {818xi} is orthogonal to that of {Fay'}, 
and is therefore said to define a horizontal distribution on T M '- 0. 
Since the 8 I 8xi are constructed directly from the N 8 i, the latter then 
acquires the status of an Ehresmann connection; this is why it is called 
the nonlinear connection. 

2.2. Horizontal constancy of Finsler metrics 

We have seen that by naively lifting ax' from M to T M \ 0, one gets 
a vector field with less-than-satisfactory transformation properties 

a axi a a2xi a 
axv = axv a xi + axv axq i? ayt 

induced by local coordinate changes xi= xi(x1 , ••. ,xn) of M. On the 
other hand, the horizontal lift 81 8xi of ax' effects the transformation 
law 

8xP axv 8xi 
we had in mind, somewhat surprisingly. 

What is even more surprising is the following fact: 

8 
~F=O. 
uxJ 

A moment's thought gives the equivalent statement: 
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F is constant along any curve with horizontal velocity. 

The computation which establishes the above fact illustrates well the 
notation and formalism developed up to this point, so we give the details 
here. 

8 
~F 
uxJ 

Fx;- Nii Fy' 

Fxi - (Gi)yi f.i 

Fxi - (gis Gs)yi f.i 

Fxi - (gi8 )yi Gs f.i- gis (Gs)yi f.i 

Fxi + :A is j Gs f.i - f.B !{(Ff.s)xr Yr- F Fxs }y; 

Fxi + 0- !£B{(Ff.s)x'yi Yr + (Ff.s)x' 8rj- f.j Fxs- F Fx•yi} 

Fxi - !f8 {[f.jf.s + F (f.s)yi ]x' Yr + (Ff.s)xi - f.j Fxs - F (f.j )x·'} 

Fxi- !£8 {[f.jf.s + 9sj- fsf.j]xr Yr + Fxi fs + F (f.s)xi - (Ff.j)x•} 

Fxi- !£8 {[FFy•yi + fsf.j]xr Yr + Fxi fs + F (f.s)xi - (Ff.j)x•} 

Fxi- H[FFyiy• Y8 + Y8 fsf.j]xr f.r + Fxi + (y 8 fs)xi - (Ff.j)x• f. 8 } 

Fxi- H[O + Ff.j]xr f.r + Fxi + Fxi - (Ff.j)x• f. 8 } 

0. 

On account of the horizontal constancy of F, we have 

That is, 

dF = f.i8yi, 

an identity that will be useful later. 

2.3. A canonical nonlinear parallel transport 

Let O'(t) be any injective smooth curve in M which emanates from 
x at t = 0. Its velocity field is 

dO'i a 
a(t) := dt 8xi lu(t) 
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At each location a(t), we horizontally lift ir(t) to every point (a(t), y) 
on the fibre ofT M "- 0 over a(t): 

, dai J 
ir(a(t), y) := dt Jxi i(a(t),y) 

This defines a vector field on a subset ofT M "- 0, namely, the subset 
comprised of all fibres ofT M "- 0 over the curve a. 

We now describe how to parallel translate any fixed nonzero y E 

TxM along the curve a, from x to a(t). 
• Go to the point ( x, y) in T M "- 0. Find the unique integral 

curve of J which emanates from (x, y) at t = 0. 
• Denote the timet location along this integral curve as (a(t), Yt), 

and declare that to be the time t canonical parallel trans
late of (x, y). 

This construction originates from [Ichijyo 1978]. 

0 
0 

0 
0 

0 
0 

0 
0 

0 
f-----tFT---c-------oo----1 TxM '-. 0 

0 
0 

TM"-0 

The instantaneous velocity of (a(t), Yt) is 

·i()a ·ia a t -a . + Yt -a . x• y• 

7f -

M 

. i( ) { J N 1 ( ( ) ) a } ·i a a t ~ + i a t , Yt -a . + Yt -a . ux• yJ y' 

. i ( ) J { . i Ni ( ( ) ) . 1} a a t ~ + Yt + 1 a t , Yt a -a .. 
ux' y" 

a(t) 

Since (a(t), Yt) is an integral curve of J, that velocity equals &i(t) JjJxi 
as well. Hence we must have 
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Let us re-write this differential equation into a more familiar form. 
To that end, introduce the Berwald connection coefficients 

bri ·- (Ni ) _ (Gi) jk .- j yk - yiyk ' 

which are manifestly symmetric in j and k. 
• In the Riemannian case, Gi = Hijk} y1yk, hence the bfijk are 

simply the usual Christoffel symbols {i1k}. 
• In the Finsler setting, the Berwald connection coefficients typ

ically depend on y. Take for example the Numata type metric 
F(x, y) = J8pq yPyq + fxv yP that we've been working with. 
Differentiating the Ni1 obtained earlier, we get 

b . . 
rtjk = f) fxixk 

+ {hij fxkxv + hik fxixv} fP 
1 . . . 

-2 fxvx• fPfq {h'j fk + hjk £' + h1/ fj}, 

where hij := 9ij - fifj is the so-called angular metric. 

By Euler's theorem, brijk yk = Ni1 . The second term in our differ
ential equation is then yf bfi jk &1. After invoking the symmetry of bfi jk, 

and relabeling, that becomes Y1 bfi jk &k. The differential equation for 
the canonical parallel transport of (x, y) along a now reads 

. i 1 bri ( (. t) ) . k 0 Yt + Yt jk a , Yt a = . 

This is almost identical to that for the Riemannian case, with one ex
ception: the connection coefficients here typically depend on the vector 
being transported! 

So, in the general Finsler setting, canonical parallel transport defines 
an a priori nonlinear map ¢t from TxM '- 0 to Ta(t)M. Note that F 
must remain constant along (a(t), Yt) because this curve has horizontal 
velocity. That is, 

F(a(t),yt) = F(x,y). 

This, together with the fact that F is nonzero (in fact, positive) away 
from the origin of each tangent space, implies that: 

* Yt can not be zero, because y · =f- 0; hence the range of ¢t is 
contained in Ta(t)M '- 0. 

* The only continuous extension of ¢t to the origin is ¢t(x, 0) := 

(a(t), 0); but it may not be differentiable there. 

In this way, we have defined a differentiable map 
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that is F-preserving and injective, the latter because integral curves of & 
can not cross each other. The map <Pt is also surjective by the following 
reasoning: 

* Denote the reverse of cr by -cr. Horizontally lifting the velocity 
of -(J, we get -&. This implies that the integral curves needed 
for parallel translation along -cr are merely the reverse of those 
for parallel translation along cr. 

* Thus, given any element (cr(t), z) E T<J(t)M, its pre-image un
der <Pt can be recovered by parallel translating it along -cr, 
from cr(t) back to cr(O) = x. 

Canonical parallel transport, <Pt : TxM "0 ----+ Ta(t)M" 0, is therefore 
an a priori nonlinear F-preserving diffeomorphism. 

There is also a linear version of parallel transport, and its differential 
equation reads: 

. i j bri ( (t) . (t)) . k o Yt + Yt jk CJ , cr cr = · 

This notion, together with its underlying covariant derivative operator, 
plays a key role in establishing comparison theorems for Finsler metrics. 
See [Bao et al. 2000] for an expository account, and references. 

§3. The Berwald connection and its two curvatures 

3.1. Structural equations 

The Berwald connection coefficients bfijk := (Gi)y1 yk were intro
duced above, when we worked out the differential equation for canonical 
parallel transport. We now show that these are indeed the coefficients 
of a bona-fide connection, with which one covariantly differentiates sec
tions of the pulled-back bundle 1r*T M and its tensor products. This 
connection is called the Berwald connection; its associated connection 
forms are 1-forms w/ which live on the base space of 1r*T 1\4, namely, 
the manifold T 111 " 0 of nonzero tangent vectors of M. 

The first structural equation for the Berwald connection states 
that it is torsion-free: 

d(dxi)- dxl 1\ w/ = 0, that is, dx1 1\ w/ = 0. 

Being 1-forms on T M" 0, W/ have the expansion rijk dxk + zijk Jyk I F. 
Substituting this into the above equation, one concludes that zijk must 
vanish and ri jk must be symmetric in j, k. Thus, torsion-freeness im
plies that 

. . k . . 
w/ = f'jk dx , where f\1 = f'jk. 
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The second structural equation for the Berwald connection mea
sures its lack of compatibility with g := 9ij(x, y) dxi 0dx1, the Riemann
ian metric of the vector bundle 1r*T M: 

. k k . k 8yk 
dgij - 9kj Wi - 9ik Wj = - 2 Aijk dx + 2 Aijk F . 

Here, A is the so-called Landsberg tensor, defined as: 

Ajkl := -~ (9is Y8 )(Gi)yiykyl = -~ F.Ci (Gi)y1ykyl. 

Note that 

Substituting this and the refined expansion w/ = fijk dxk into the sec
ond structural equation, we get 

N 8 k · 
rijk + rjik = 9ij,xk - 2 Aijs F + 2 Aijk. 

Implementing Christoffel's trick, namely, 

produces a formula for riJk· Raising the index i with g 1i gives 

l l li ( Nsk Nsi Nsj) "l r jk = 1 jk - g Aijs F - Ajks F + Akis F +A jk . 

A comparison with [Bao et al. 2000] shows that the righthand side 
consists of the Chern connection coefficients plus the components of the 
Landsberg tensor. For the purpose at hand, this specific relationship 
with the Chern connection is not relevant. What is important is that we 
have established that there is exactly one solution to the two structural 
equations. 

In that computation, we have been writing r 1 jk without the super
script b because we do not yet know whether it coincides with the bfl jk 

introduced earlier. Directly showing that bfljk := (G1)yiyk equals the 
above righthand side turns out to be daunting. Instead, we shall check 
that bfl jk dxk satisfies the two structural equations, for then by unique
ness it must agree with the only solution that r 1 jk dxk is describing. 
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Since brlkj = brljk, torsion-freeness is automatic. Next, replac
ing wqP by brv qr dxr and using dgij = (gij,xk - 2 Aijs N 8 kl F) dxk + 
2 Aijk 8yk IF, we get 

dgij - 9kj wl - 9ik w/ 

{ 2 s b b } k 8yk 
(FFxk)y'yi- FAijsN k-( riik+ riik) dx +2Aiikp' 

which we need to simplify to -2Aijk dxk + 2Aijk 8yk I F. The key ingre
dient for that purpose is 8FI8xi = 0, equivalently Fx' = Niif.j. Indeed, 

(F Fxk )y'yi 

(F NPk f.p)yiyi 

(NPk 9pq yq)y'yi 

{ (NPk)yi 9pq yq + NPk; Apqi yq + NPk 9pq 8qi} yi 

{(NPk)yi 9pq yq + 0 + NPk 9pi}yi 

2 
(NPk)yiyi 9pq yq + (NPk)yi F Apqj yq + (NPk)yi 9pq 8qj 

2 
+ (NPk)yi 9pi + NPk F Apij 

b b 2 
Ff.v (GP)y'yJyk + o + rjki + rikj + F Aijp NPk 

. 2 b b 
-2 Aijk + F Aijp NPk + ( rjik + rijk), 

which, upon substituting into the above formula for dgij - 9ki wik -
9ik w/, gives the second structural equation. This completes the proof 
that the Berwald connection 

bw .i ·- bri · dxk - (Gi) · dxk J .- Jk - yJyk 

is the unique solution of out two structural equations. 
With this connection, we can covariantly differentiate any section of 

the tensor products of 1r*TM. A basic example is the covariant differ
ential 

b'\lf. = (b'\lf.)i Q9 Bx' := {df.i + f.r bWri} Q9 Bxi 

of the canonical section f.. This gives a 1r*T M -valued (that is, vector
valued) 1-form on the manifold T M '- 0. Since 

d oi - 8f.i d s F aei 8ys 
-t:. -X+--

- 8x8 ays F ' 
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we have 

bno { 8Ci or bri }d s a {Faci} 8ys a 
v {_ = 8xs + {_ rs X 0 x' + ays F 0 x' 0 

But 

-1 8F i 1 8yi 1 (Gi) r 
p2 8xs y + F 8xs + F Y'Y' y 

1 ( NP d ) 1 Ni = 0 O+FO- 8 up+F s 

and 

Therefore 
b i i 8ys 
'VI!= (8 s - c Cs) F 0 axi 0 

In other words: 

The first statement says that the canonical section C, just like F, is 
covariantly constant along the horizontal directions ofT M" 0. 

Earlier, we had shown that dF = Cs 8y8 • Combining this with the 
above formula for b'VC, we have 

an intriguing identity that we shall later find useful, because it allows 
us to computationally convert v = vi ayi into v = vi axi: 

b'Vv(FC) = 8yi(v) ax'= (dyi + Nis dx 8 )(v1 ayi) ax'= vi ax'= v! 

Let's close this section with an observation just for curiosity's sake. 
In terms of b'V, the differential equation for the canonical nonlinear 
parallel transport (along a) of y E TxA1 can be restated as 

b'V;,. Yt = 0 along the 'unknown' horizontal curve (a(t), Yt). 

After the equation is solved and Yt becomes known, the curve in question 
is the horizontal lift (of a) which emanates from (x, y). On the other 
hand, the differential equation for the linear parallel transport of y along 
a can be restated as 

b'V a,(u,o-) Yt = 0 along the known curve (a(t), &(t)). 

Here, (a, & ) is the canonical lift of a, and at (a, & ) is its velocity field. 
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3.2. Curvatures of Finsler metrics 

The curvature 2-forms bf2/ of the Berwald connection bw/ are de
fined as 

b n .i . _ d bw . i _ bw .k 1\ bw i 
HJ .- J J k • 

Being 2-forms on the manifold of nonzero tangent vectors T M " 0, 
they are a priori the sum of three types of terms: ~ bRj i kl dxk 1\ dx1, 
b'P i d k §J{_ d 1 bQ i iiyk §J{_ H b th b'R d bQ j kt x 1\ F , an 2 j kt F 1\ F . ere, o an are, 
without loss of generality, skew-symmetric in their last two indices k, 
l. However, taking the exterior differential of the torsion-freeness crite
rion dxJ 1\ bw/ = 0, we get 

dxj 1\ dbw/ = 0 

=? dxJ 1\ {bf2/ + bw/ 1\ bwki} = 0 

=? dxJ 1\ bn,/ + 0 1\ bwk i = 0 

=? dxj 1\ bn,/ = 0 

=? ~ bRj i kt dxj 1\ dxk 1\ dx1 + bpj i kt dxj 1\ dxk 1\ 8; 1 

1 b . . 8yk 8yl 
+ 2 Q / kt dx1 1\ y A F = o . 

In particular, since bQ is already presumed skew-symmetric in k and l, 
it must vanish. Thus 

dbw i- bwk 1\ bwki-.!. bR·\z dxk 1\ dxl + bp.ikt dxk 1\ 8yl 
J J -2 J J F 

which, upon the substitution of bwji := bfijk dxk, leads to 

b i 8 r jl b i b h 
~ + r hk r jl- (terms with k, l interchanged)' 

abri k 
-F--11- = -F (Gi)y1ykyl. 

8y 

For ease of exposition, we shall call bR the Riemann curvature, and bp 
the Berwald curvature. These are the only two curvature tensors for 
Finsler metrics, associated to the Berwald connection. In general, the 
use of any torsion-free connection (for instance the Chern connection) 
effects only two associated curvature tensors. 

In the Riemannian setting, the Berwald connection coefficients are 
simply the usual Christoffel symbols {ijk}· These are independent of 
the direction variable y. Hence the Riemann curvature reduces to the 
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familiar formula axk{ijl} + {ihk} {hjl}- (terms with k, l interchanged), 
and the Berwald curvature is zero. 

Finsler metrics whose F have no x dependence may at first glance be 
said to be of Minkowski type. However, we have seen earlier that every 
local coordinate change xi = xi(x1, ... , xn) on M induces a transforma
tion yi = fjP (8xi /8£P) on y, through which ax-dependence will reassert 
itself in such F. Thus the concept of F having no x-dependence is not 
a coordinate-invariant statement. Instead, we say that a Finsler metric 
is locally Minkowskian if all its x dependence can be suppressed by 
a transformation of the type just described. With x absent from the 
formula for F in a special coordinate system, the fundamental tensor 
9ij depends only on y; hence its formal Christoffel symbols must van
ish, and so must the geodesic spray coefficients Gi. Consequently, the 
Berwald connection coefficients vanish, leading to the conclusion that 
the Riemann and Berwald curvatures are both zero, which is happily a 
tensorial and hence coordinate-invariant statement. It turns out that 
the converse holds as well. Namely, the vanishing of bR and bp im
plies that F must be locally Minkowskian. For a leisurely exposition of 
this fact, see [Bao et al. 2000], while keeping in mind that this reference 
uses exclusively the Chern connection (which differs from the Berwald 
connection by the Landsberg tensor A). 

We summarise here the sequence of definitions that leads us from F 
to bp and A, as it highlights the economy of the Berwald connection. 

Object 

brijk 

bp/kl 

Ajkl 

Formula 

( lp2) .. 2 y'y1 

is 1 ( + . ) 9 2 9sj,xk - 9jk,x• 9ks,x1 

(Gi)yJ 

(Nij)yk = (Gi)yJyk 

-F (bfijk)yl = -F (Gi)yiykyl 

3.3. Berwald spaces 

Recall that the canonical parallel transport of y E TxM along any 
curve a(t) which emanates from x at t = 0 is governed by the differential 
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equation 
y: + yf brijk(cr(t), Yt) irk = o. 

In the general Finsler setting, bri jk typically depends on the evolution 
Yt of y along cr, hence the process is a priori nonlinear in y. It seems 
reasonable to expect that: 

Canonical parallel transport is linear in y if and only 
if brijk does not depend on y. 

Indeed, if the above differential equation is linear in y, then 

yj bri jk ( cr, y) is linear in y 
j b i {y r jk}yrys = 0 
. b . . b . 

{(5lr Pjk + y3 ( f'jk)yr}y< = 0 
b i i . j -{ r rk + (G )yrykyJ y }ys - 0 
b i { r rk + O}ys = 0 

bri rk is independent of y. 

Compare with the treatment in [Aikou 2001]. 
Finsler spaces for which canonical parallel transport is a linear pro

cess are said to be of Berwald type. Thus, on Berwald spaces, the 
F-preserving diffeomorphisms rPt : TxM '-. 0-+ Ta(t)M '-. 0 generated by 
canonical parallel transport become linear isometries between "normed" 
tangent spaces [Ichijyo 1976]. For example, Riemannian spaces and lo
cally Minkowskian spaces belong to this family. If, as Z. Shen sug
gests, we agree to assign a unique colour to each Minkowskian norm, 
then the above description may be paraphrased to read: Berwald spaces 
are monochromatic creatures, while Finsler spaces are in general multi
coloured. 

Since the Berwald curvature is given by bp/kl = -F(bfijk)yz, we 
see that: F is of Berwald type if and only if bp/kl = 0. In view of 
this curvature criterion for Berwald metrics, we may characterise locally 
Minkowskian spaces as Berwald spaces with zero Riemann curvature bR. 

On the other hand, ad hoc constructions of explicit Berwald metrics 
rely on the following characterisation in terms of Gi := ~~i pq yPyq, where 
ri pq are the formal Christoffel symbols of the fundamental tensor. 

brijk is independent of y ¢? Gi is quadratic in y. 

Indeed, if Gi is quadratic in y, then bfijk = (Gi)yiyk won't have any y 
dependence (even though /ijk may). Conversely, if brijk is independent 
of y, then ~brijk yJyk = ~(Gi)yiyk yjyk is quadratic in y; but by Euler's 
theorem, the latter is simply Gi. 
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To bring out the utility of this last viewpoint, consider Finsler met
rics of Randers type: 

A straightforward computation gives 

where {i1k} are the Christoffel symbols of the Riemannian metric aij, 

and bjlk denotes the covariant derivative of the 1-form b with respect to 
a. Observe that if b is parallel, then Gi reduces to Hi1k}y1yk, which 
is quadratic in y, hence bri jk = ( Gi )yi yk is independent of y and F 
is of Berwald type [Hashiguchi-Ichijyo 1975]. The converse also holds, 
namely, if a Randers metric is of Berwald type, then b must be parallel 
with respect to a. A direct proof is given in [Kikuchi 1979], though 
indirect arguments exist in [Matsumoto 1974] and [Shibata et al. 1977]; 
see also M. Crampin's proof in the Errata for [Bao et al. 2000]. 

When a Randers metric is of Berwald type: 

• brijk reduce to the Christoffel symbols {i1k} of a. The Rie
mann curvature bR1 i kl of the Berwald connection then becomes 
the usual curvature tensor of a. 

• Since b is parallel, it must have constant length with respect to 
a, so it is either identically zero or nowhere zero. To support 
the latter, the Euler number x(M) needs to vanish if M is 
compact boundaryless, or if b~ is transversal to aM. 

In order to construct a Berwald metric of Randers type which is neither 
Riemannian nor locally Minkowskian, we take a non-flat Riemannian 
metric a, and a nonzero parallel 1-form b. Since a is non-flat, the Rie
mann curvature bR of the Berwald connection is nonzero, hence F can 
not be locally Minkowskian; since b is nonzero, F is not Riemannian. 

For an explicit example, we choose M to be S 1 x S 2 , with coordinates 
(t, t.p, e), the latter two being the usual spherical coordinates. Since M 
is compact boundaryless and 3-dimensional, it automatically satisfies 
the topological constraint x(M) = 0. Let a be the product metric 
dt®dt+dt.p®d~.p+(sin2 t.p) d8®d8. Set b :=edt, where E is any constant in 
(0, 1), and is needed to ensure the strong convexity of F. The geometry 
of Cartesian products tells us that a is non-flat, and b is parallel with 
respect to a. Expanding tangent vectors y as yt at + y'P a'P + y8 ae, the 
formula for our Berwald metric F reads: 
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Berwald spaces have been classified by Z.l. Szab6 in [Szab6 1981] 
and explicitly constructed in [Szabo 2006]. His key insight is the realisa
tion that for a Berwald space (M, F), the Berwald connection coefficients 
brijk always coincide with the Christoffel symbols of a corresponding 
non-unique Riemannian metric on M. Thus, in order to account for 
all Berwald metrics, it suffices to consider the set of linear connections 
generated by all Riemannian metrics and, for each such connection, de
termine all the Finsler metrics that can claim this connection as their 
Berwald connection. However, for this purpose, the second structural 
equation that we used to characterise the Berwald connection is imprac
tical. Instead, Szabo relies on the following characterisation: 

Let F be any fixed Finsler metric and denote its 
Berwald connection by brijk dxk. Suppose we are 
given" a torsion-free connection f'i jk dxk' where r is 
invariant under y f-+ >..y, ).. > 0. Set {Ji := ! f'ijk yJyk 
and f:rij := (Gi)yi· Then, f'ijk = brijk if and only if 
the following two criteria are satisfied: 

One direction is simple: if f'ijk = brijk := (Gi)yiyk, then Euler's theo
rem gives {Ji = Gi; hence (2) is a tautology and (1) is immediate because 
of the horizontal constancy of F. Let us give a self-contained argu
ment for the converse. Criterion ( 1) says that Fx• = NJ i £ j. Likewise, 
8F/8xi = 0 is equivalent to Fx' = NJi £j. Hence (NJi- NJi) £j = 0. 
Upon differentiation, this basic statement 

=} (Nji_Nji)ykfj+(Nji_Nji)(£j)yk = o 
- . b . - . . 1 

=} (Pik- r 3ik)£j+(N3i-N1i)F(9jk-£j£k) 0 

-· b . -. . 1 
=} (r1ik- Pik)£j + (N3i- N 3 i) F 9jk- 0 = 0 

-· . k b. -· k 
=} (N3 i - N 3 i) 9jk g s = ( P ik - P ik) F£j g s 

- b . -. k 
=} Nsi- Nsi = ( Pki- r 1 ki) F£j g s 

=} (Gs- as)y• = (Njk- f:rjk)y• F£j gks 

=} (Gs - as)y• yi = (Nj k- f:rj k)y• yi F£j ls 

=} 2(08 -Gs)=(Njk_f:rjk)Ff!jgks 

=} 2 (as - as) = 0 ! 
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Consequently, fvii = Ni1 and f'ijk = brijk· In the above steps, that 
basic statement has been invoked twice, criterion (2) thrice, and Euler's 
theorem twice (in which the hypothesised homogeneity off' is needed). 

Here's how Szabo uses the established characterisation to avoid un
warranted computations. 

• Imagine that we have a Riemannian connection f'ijk dxk, from 
which we construct (ji and fvi 1 as we did in the above discus
sion, then criterion (2) is automatically satisfied because f' has 
no y dependence. Also, the parallel transport defined by f' can 
be realised by lifting any curve a(t) on M to an appropriate 
integral curve of &i(t){ax'- fvJi ay; }l(a(t),y), a vector field on 
a subset ofT M ....._ 0. 

• Suppose, in some fixed tangent space TxM, we have a Minkow
ski norm F 0 which is invariant under the holonomy group off' 
at x. Then F 0 can be unambiguously extended to a F on TM 
by imposing constancy along all said integral curves involved 
in the parallel transport. In doing so we will have ensured that 
&i(t){ax'F- fvJi ayiF}i(a(t),y) = 0 for all a, from which we 
can extract criterion (1). 

• The characterisation now tells us that f' is in fact the Berwald 
connection of F. Since f' has no y dependence, F must be a 
Berwald metric. 

§4. The unicorn problem 

4.1. Punctured tangent spaces as Riemannian manifolds 

The fundamental tensor 9iJ has been put to work in two different 
contexts so far. 

* First, it provides a Riemannian metric for Chern's pulled-back 
vector bundle 1r*TM. 

* Second, its Sasaki-type lift gives a Riemannian metric on the 
manifold T M ....._ 0 of nonzero tangent vectors. 

Let us describe a third role played by this remarkable tensor. Fix 
any tangent space TxM. The coordinate basis {ax'} allows us to expand 
y E TxM as yi ax'' thereby obtaining the global linear coordinates (yi). 
At each "point" y of TxM, we then have a coordinate basis { ay,} and its 
dual {dyi}. Since, in the general Finsler setting, 9ij(x,y) are defined at 
ally -=1- 0 (and typically not at the origin), the punctured tangent space 
Txll,f ....._ 0 can be endowed with a Riemannian metric 
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The point we are making here is: every Banach space, with the origin 
deleted, is automatically a curved Hilbert manifold. For an exposition 
on the Christoffel symbols and the Riemann curvature tensor of g, see 
[Bao et al. 2000]. 

4.2. Geometrical significance of the Landsberg tensor 

Recall that the map cf>t : TxM " 0 -+ Tu(t)M "- 0 which defines 
canonical parallel transport, namely 

cf>t(X, y) := (1J"(t), Yt), 

is a F-preserving diffeomorphism. Now that we have realised these punc
tured spaces as Riemannian manifolds, it is natural to wonder whether 
cf>t is a Riemannian local isometry, namely, ¢>; !iu(t) = !ix? If not, can we 
identify the obstruction? 

Toward that end, we compute the quantity 

Here, v, w are two arbitrary tangent vectors in Ty(TxM "0), and we 
have introduced abbreviations 

for their push-forwards, which are tangent vectors based at the point 
(IJ"(t), Yt) of Tu(t)M "0. 

In order to express that rate of change using the Berwald connection, 
we need to get the structural equations involved. But the latter concerns 
the Riemannian metric g := gij dxi ® dx1 of the vector bundle 1r*TM, 
not g. To overcome this obstacle, we expand 

and, using the resulting coefficients, define 

Consequently, 

and the original rate of change we wanted to compute now becomes 
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Vt 

Wt 

0 

(a(t), Yt)o0 

oo----ITu(t)M" 0 
0 

0 
0 

0 
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0 
0 

7f 
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~~::::iii~::::::._--------0° TxM "-._ 0 
0 

0 
0 
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Let c(t) be a curve in T M" 0 with velocity c, and let V(t), W(t) 
be sections of 1r*T Mover c. In view of the second structural equation 

k k . k 8yk 
dgij - 9kJ Wi - 9ik Wj = -2 Aijk dx + 2 Aijk F 

for the Berwald connection, it is straightforward to show that 

d 
dtg(V, W) g (bY' c V, W) + g (V, b'V c W) 

. . 8yk . . . k 
+ 2 AiJk V' W 1 y(c)- 2 AiJk V' W 1 dx (c). 

For the case at hand, the curve in question is (a(t), Yt), whose velocity 
field is the horizontal lift ;, = CJ 8 8 I 8x8 of (J = CJ 8 ax' . So 

We digress to explain why 
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We had exhibited near the end of §3.1 a trick that transforms Vt to Vt, 
namely, Vt = b'\1 "• (F£). Hence 

b'\1 • Vt 
" 

b'\1 J. b'\1 "• (F£) 

b'\111, b'\1 &(F£) + b'V[&,v,J(F£) + bO/(J., vt) (F£)i axi. 

There are, however, some subtleties concerning the second step! Observe 
that b'\1 &(F£), being a section over the horizontal curve (£T(t), Yt), is 
undefined along any curve tangent to Vt, so we can not apply the operator 
b'\1 "• to it. Likewise, the Lie bracket [J., iit] does not make sense because 
the velocity field J. of (lT(t), Yt) is undefined along curves tangent to Vt· 

Happily, the remedy is standard. We first generate a family of hor
izontal curves by the canonical parallel transport of vectors y + sv near 
y, so that (£T(t), Yt) is the "base curve" and iit is the "variational vector 
field". Explicitly, 

~(s, t) := cPt(x, y + sv). 

Note that s = 0 corresponds to the base curve, and we have 

(~* ~) aa cPt(x, y + sv) = aa (lT(t), Yt) = &(t), 
at ls=O t ls=O t 

(~* aa) = aa cPt(X, y + sv) = cPh (aa (y + sv)) = Vt. 
S ls=O S ls=O S ls=O 

Next, in the troublesome quantities described above, we replace J. by 
~*at and Vt by ~*as, carry out the stipulated computations, and then set 
s = 0 in order to restrict back to the base curve (lT(t), Yt)· Through this 
corrected perspective, we have: 

b'\1 J. Vt = b'\1 J. b'\1 flt (F£) 

b'\1 ~.a, b'V~.a, (F.e) 
b b b b., . 
'V~.a. 'V~.a,(F£) + 'V[~.a,,~.a.j(F£) + !1/(&,iit) (F£)3 ax•. 

Immediately, we see that in the last line: 

• The first term is zero because F and .e are both covariantly 
constant along horizontal curves. 

• The second term vanishes because [~*at, ~*as] = ~*[at, as] = 

~*0 = 0. 
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Though the third term needs no re-interpretation, it is zero nonetheless: 

Thus b\7;, Vt = 0 and likewise b\7;, Wt = 0, as claimed. This ends our 
digression. 

Returning to the question of whether </J; fi<T(t) =fix, we now see that 

d (A.* - ) (A A) - d ( ) - . 2 A. i j . k ( ) dt '1't 9<T(t) V, W - dt9(<T(t),yt) Vt, Wt - - ijk Vt Wt <T t . 

Since v, w, and ir are arbitrary, this allows us to conclude [Ichijyo 1978] 
that 

¢; fi<T(t) = fix if and only if A = 0. 

In other words, the Landsberg tensor A is the sole obstruction that 
prevents canonical parallel transport ¢t : TxM-..... 0 ~ T<T(t)M-..... 0 from 
being a local isometry between the Riemannian metrics fix and fi<T(t). I 
learned the structure of this calculation from Z. Shen, around 1996. 

Compare the exposition here with that in [Aikou 2001], which uses 
the viewpoint of fibred manifolds. 

4.3. Landsberg spaces and Asanov's breakthrough 

A Finsler metric F is said to be of Landsberg type if canonical 
parallel transport ¢t is a Riemannian local isometry between the punc
tured Riemannian manifolds (TxM-.....0, fix) and (T<T(t)M-.....0, fi<T(t))· The 
previous section tells us that an equivalent description of such metrics is 
A = 0. Since the Landsberg tensor A is related to the Berwald curvature 
bp via 

. 1 i 1 b i 
AJkl := - 2 Ffi (G )y.iykyl = 2 fi 'PJ kt, 

and since Berwald metrics are characterised by bp = 0, we see that every 
Berwald metric must be of Landsberg type. Thus we have 

Riemannian & locally Minkowskian C Berwald C Landsberg 

among four families of metrics. 
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The characterisations bp = 0 and A = 0 were originally the defin
ing criteria of Berwald and Landsberg metrics, respectively. See the 
papers [Berwald 1929], [Berwald 1947], as well as [Landsberg 1907a], 
[Landsberg 1907b], [Landsberg 1908]. See also the books [Rund 1959], 
[Matsumoto 1986], [Antonelli et al. 1993], and especially [Shen 2001]. 

The Landsberg family encompasses the Berwald family, which, in 
view of Szabo's classification, is already a geometrically rich class of 
Finsler metrics. However, on Landsberg spaces that are not of Berwald 
type, canonical parallel transport is a local isometry between Riemann
ian metrics but not a linear isometry between Minkowski norms, so there 
is still an intellectual need for explicit examples of such spaces. This 
rather obvious distinction between the Landsberg and Berwald families, 
brought out by canonical parallel transport, serves to instill a sense of 
optimism into the search. 

Furthermore, the A = 0 description of Landsberg surfaces leads to 
a particularly elegant Gauss-Bonnet-Chern theorem for the compact 
boundaryless ones among such surfaces. See [Chern 1990] together with 
[Bao-Chern 1996]; a leisurely treatment is given in [Bao et al. 2000]. In 
this theorem, the Finsler metrics are required to be C 4 and strongly 
convex at all y =J 0. It is a corollary of Szabo's classification that impos
ing y-globality ( C4 and strongly convex at all y =J 0) and restricting to 
two dimensions dramatically cuts down on the richness of the Berwald 
family, for in that setting the latter consists only of Riemannian and 
locally Minkowskian metrics! This then, is yet another reason why one 
is driven to find Landsberg metrics which are not of Berwald type. 

Research in the last few decades indicates that the said metrics are 
much more elusive than expected. For instance, in [Matsumoto 1996], 
one finds a list of rigidity results which almost suggest that such metrics 
do not exist. In 2003, Professor Matsumoto regained his sense of opti
mism and declared that the search for such metrics represents the next 
frontier of Finsler geometry. 

For the sake of simpler prose, I shall from now on refer to Landsberg 
metrics that are not of Berwald type as unicorns, by analogy with 
those mythical single-horned horse-like creatures for which no confirmed 
sighting is available. 

The picture has begun to change in the last few years. On several 
occasions since 2002, Robert Bryant has assured his audience that there 
is absolutely no doubt about the existence of generalised unicorns in 
two dimensions. For his exterior differential systems approach to the 
problem, and for the definition of a generalised Finsler metric in his 
framework, see [Bryant 1995]. In his announcements, Bryant states that 
in two dimensions, there is an abundance of such generalised metrics, 



Curvature-driven problems 47 

depending on two families of functions of two variables; among those, 
there is a subclass with zero flag curvature (to be defined in the next 
section), depending on one family of functions of two variables. 

Also, a perturbative approach has been advocated in [Bao 2006]. It 
is applicable to all dimensions, but is confronted at the outset by the 
issue of linearisation stability articulated in [Fischer-Marsden 1975a], 
[Fischer-Marsden 1975b]. 

The breakthrough came in March of 2006. In two remarkable manu
scripts ([Asanov 2006a], [Asanov 2006b]), later consolidated into a sin
gle one [Asanov 2006c], Asanov produced y-local examples of unicorns 
in dimensions ~ 3. He was led to the prototype of -such metrics in 
[Asanov 1995], by requiring that each indicatrix lxM := {y E TxM : 
F(x,y) = 1} has constant sectional curvature when equipped with the 
pull-back of the Riemannian metric 9x· This prototype was then devel
oped in [Asanov 1998] for the absolutely homogeneous case F(x, A.y) = 
IA.I F(x, y), and finally extended to the positively homogeneous setting 
in 2006. 

Asanov's unicorns can be described in our notation as follows. The 
underlying manifold is the product 

M := (0, 1) X N' 

where N can be any smooth ( n - 1 )-dimensional manifold with a Rie
mannian metric h := h~J-v dzll- ® dz"', 2 ~ JL, v ~ n. Let 'lj;(t) be any 
positive function on (0, 1) with nowhere zero derivative '¢'. Then we 
have the Riemannian warped-product metric 

a := dt ® dt + '¢2 (t) h 

on M, together with a natural1-form 

b := dt. 

Computing with the special coordinates (t, z2 , .•. , zn), we find that: 

• The 1-form b is closed, and has length 1 with respect to a; it 
is not parallel because '¢' is nowhere zero. 

• The covariant derivative of b with respect to a satisfies the 
equation biiJ = ( '¢' / '¢) ( aij - bibj). 

Denote arbitrary local coordinates on M by (xi), i = 1, ... , n. As 
usual, denote tangent vectors by y. Set 

Q .- Jaij(x)yiyj, 

{3 .- bi(x) yi, 

q .- Ja2 _ (32. 
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Our a, f3 are, respectively, Asanov's "S" and "b". Note that q = 0 if 
and only if y is a multiple of b~. 

Next, let 

Ct any constant in ( -2, 2), 

c2 M ' 

c3 
c1 
-
c2 

These constants correspond, respectively, to Asanov's "g", "h", and "G". 
Define 

q, := { +~ +arctan ( ~3 ) -arctan ( q+g; ff1 2
) 

_.:!!:+arctan ( 03 ) -arctan (q+C1 !31 2 ) 
2 2 C2(3 

if/3~0, 

if/3~0. 

Then Asanov's unicorns are the Finsler metrics 

F(x, y) e{c3 <I>/2} J ~ [/3 + ( ~C1 + C2)qj2 + ~ [/3 + ( ~C1 - C2)qj2 

e{C3 <I>/2} V/32 + c 1 f3q + q2, 

whose indicatrices have [Asanov 2006a] constant positive sectional cur
vature c~! Note that these F are y-local because the factor 1 I J a 2 - (32 

is present in all derivatives of q, thereby causing a singularity whenever 
y is a multiple of b~. Our F here corresponds to Asanov's "K". 

Being Landsberg metrics that are not of Berwald type, unicorns are 
characterised by the statement: 

. 1 i . 
Ajkl = - 2 Ff!i ( G )yiyky' = 0, with G' not quadratic in y. 

In Asanov's metrics, 

Gi = ~ {ijk} y1yk + ~ c1 (yi _ /3 bi) q ~ , 

where {i1k} are the Christoffel symbols of the Riemannian warped
product metric a, and 'lj; is the warping factor with nowhere zero de
rivative. Our convention for Gi here is half that in [Bao et al. 2000] and 
[Asanov 2006a], [Asanov 2006b]. 

• In dim M = 2, we can always find another 1-form e such that 
{b, e} is an orthonormal coframe field with respect to a. Since 
a = b 0 b + e 0 e, the quantity q loses its square root and 
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becomes le 8 (x) y 8 l, in which case the above Gi are quadratic 
in y, and F is of Berwald type. 

• In dim M ? 3, the square root on q persists, so the Gi remain 
irrational, making it impossible for (Gi)y.iykyz to vanish. Hence 
F can never be of Berwald type. 

Direct computations show that 

together with 

These effect the Landsberg criterion Ajkl = 0; complete details are given 
in [Asanov 2006b]. Thus, Asanov's y-local metrics are unicorns in di
mension ? 3, but not in dimension 2. 

Asanov's unicorns belong to the class of so-called (a, {3) metrics, of 
which Matsumoto's "slope of a mountain" metric [Matsumoto 1989] is 
an inspiring example; see [Antonelli et al. 1993], [Shen 2004] for expo
sitions, and [Bao-Robles 2004] for a synopsis of Matsumoto's account. 
Prompted by Asanov's discovery, Z. Shen debugged a project that had 
been in progress since 2004, eventually leading to [Shen 2006]. In this 
work, he proved with the help of Maple computations that in dimension 
at least three, there are only y-local (that is, F being either not even C 2 

or not strongly convex at some nonzero y) unicorns of (a, {3) type. He 
did so by showing that, within this class, there are exactly two families 
of unicorns, both y-local, with one consisting of Asanov's metrics. Shen 
also finds that the situation in dimension 2 is no better. 

The search for y-global unicorns should continue, because they rep
resent an unblemished ideal. In view of the discussion about the Gauss
Bonnet-Chern theorem for Landsberg surfaces, expressed earlier in this 
section, y-global examples on compact boundaryless 2-dimensional man
ifolds are particularly coveted. 

§5. Ricci flow for Finsler metrics 

5.1. Flag curvatures and Berwald's formula 

We now turn to the Riemann curvature 

b i 8 bri jl b i b h . . 
'Rj kl = ~ + r hk r jl- (terms wtth k, l mterchanged) 
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of the Berwald connection. According to the second variation of travel 
time J F(cr, ir)ds, only a piece of that curvature is relevant, namely 

. b l 
Rik := £3 'Rjikl £ . 

Most importantly, this piece is independent of all named-brand con
nections. For instance, the second variation is treated in detail in 
[Bao et al. 2000]; though that reference uses the Chern connection ex
clusively, it does give the relation between the Riemann curvatures of 
the Chern and Berwald connections, from which one can check that 
the resulting Rik are identical. Because of this, we can borrow from 
[Bao et al. 2000] the symmetry property 

whose derivation requires a certain Bianchi identity that we will not 
present here. 

We have seen three roles played by the fundamental tensor 9ij. First, 
as a Riemannian metric g := 9ij dxi Q9dxJ for Chern's pulled-back vector 
bundle rr*T M. Second, as a Riemannian metric [J := 9ij dxi Q9 dxj + 
9ij 8yi Q9 8y1 I F 2 on the manifold of nonzero tangent vectors T M ....._ 0. 
Third, as a Riemannian metric 9x := 9ij dyi Q9 dy1 for the punctured 
tangent space TxM ....._ 0. Remarkably, there is yet a fourth hat worn by 
this versatile object, one manifest in the definition of the flag curvature, 
a natural generalisation of the Riemannian sectional curvature. 

A flag consists of the following data: a location x E M at which we 
are to plant the flagpole; a nonzero y E TxM that serves as the flagpole; 
another nonzero V E TxM that is transverse to y. This V, together 
with £ = y IF, shall represent the actual "cloth" part of the flag. 
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The flagpole y singles out the inner product 

9. := 9ij(x, y) dxi ® dxi, 

with respect to which the cloth part of the flag has area 

51 

This allows us to define the flag curvature K(x, y, V) by a formula that 
becomes structurally the same as that for the sectional curvature: 

K(x,y, V) 
Vi Rik Vk 

9. (£, £) 9. (V, V) - 9;(£, V) 

Vi £i bRiikl fl Vk 

9. (£, £) 9. (V, V) - 9v2 (£, V) 

Vi yi bRiikl yl Vk 

9. (y, y) 9)V, V) - 9;(y, V) . 

(For a totally different approach to the flag curvature, see the exposition 
[Foulon 2002] and references therein.) 

In practice, however, computations seldom survive to the bRjikl 
stage, due to the enormous sizes of the intermediate expressions. This 
is where Berwald's formula . 

2i_ i i j ji ji F R k- 2(G )xk- (G )yi (G )yk -y (G )x.iyk +2G (G )yiyk 

comes to the rescue. One leisurely derivation of this formula can be 
found in [Baa-Robles 2004]. 

Computing with Berwald's formula, the flag curvatures of the Nu
mata type metric F(x, y) := Joij yiyJ + fx' yi are shown to be indepen
dent of the transverse edges V: 

3 ( . ') 2 1 ( ' ' k) K(x, y) = 4 F4 fx'xi y'yJ - 2 F3 fx'xixk y'yJy ' 

but explicitly dependent on the flagpoles y. An outline of the calculation 
can be found in [Bao et al. 2000]. 

For Finsler metrics, we have the Schur lemma due to [Berwald 194 7], 
[del Riego 1973], and [Matsumoto 1986]. It says that in dimension at 
least 3, if the flag curvature function depends neither on the transverse 
edges nor on the flagpoles, then it must in fact be constant. The above 
example shows that the Schur lemma does not rule out cases where 
K = K(x,y). 
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Finsler metrics with flag curvatures of the type K = constant or 
K = K(x, y) are abundant. A computationally useful characterisation 
[Bao et al. 2000] of such metrics is 

• Randers metrics with constant flag curvature have been classi
fied in [Bao et al. 2004], with a historical account of the prob
lem in [Bao 2004]. Key background works in this regard are 
[Matsumoto-Shimada 2002] and [Bao-Robles 2003]. The geo
desics of such spaces are classified in [Robles 2005]. 

• Randers metrics with K = K(x, y) include the ones of Numata 
type mentioned above. Many more interesting examples in 
this category are given in [Chern-Shen 2005], together with an 
informative exposition. (Their V means something different.) 

• Finsler metrics with constant flag curvature but which are not 
of Randers type have been extensively studied by Bryant. For 
interesting examples and a refreshing viewpoint, see the articles 
[Bryant 1996], [Bryant 2002]. 

When the flag curvature (is possibly non-constant and) falls within 
a certain precise range, we have the sphere theorem [Rademacher 2004]; 
see that article for a detailed exposition and references therein, especially 
to Dazord's work on the special case where F(x, -y) = F(x, y). 

We conclude this section with a discussion of the geometrical mean
ing of the flag curvature. 

To that end, fix x E M and take any 2-plane II which passes through 
the origin of TxM. Let us limit our choices of the flagpole y to this II 
and, for each selected y, choose our transverse edge V from II as well. 
Each flagpole y generates a geodesic which emanates from x with initial 
velocity y. The totality of all such geodesics gives rise to a surface S in 
M, and the flag curvature function K ( x, y, V) is the Finslerian analogue 
of the Gaussian curvature of S. Since in this case span{y, V} is always 
II, we may think of this restricted K as depending only on x and y. 

For Riemannian surfaces, the Gaussian curvature K(x) dictates the 
behaviour of geodesic rays that emanate from x. This behaviour is 
quantified by the use of Jacobi fields. It says, in essence, that nearby 
rays tend to focus if K is positive, and tend to diverge if K is negative. 
One finds in [Bao et al. 2000] the details that re-establish these features 
for the Finslerian realm, again through the use of Jacobi fields. 

Note, however, that there is a crucial difference between the two 
settings. For Riemannian surfaces, the Gaussian curvature K(x) de
pends only on the location x. Thus, if nearby geodesic rays behave in 
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a certain way when heading out from x along some sector, then the 
same behaviour must be exhibited by those that are heading out from x 
along other sectors. For Finslerian surfaces, they-dependence in K(x, y) 
breaks this isotropy. 

As a concrete example, take again our Numata type metric F(x, y) = 

y'8ij yiyJ + fx' yi, this time in dimension 2, with (x\x2) abbreviated 
as (s, t), (y1 , y2 ) abbreviated as (p, q), and f(x) := s3 + s2t + st2 + t 3 . 

Then the stated formula for its flag curvature function becomes 

; 4 [(3s + t)p2 + 2(s + t)pq + (s + 3t)q2] 2 .,-- ; 3 (p3 + p2q + pq2 + q3), 

where F(x, y) = y'p2 + q2 + (3s2 + 2st + t2) p + (s2 + 2st + 3t2) q. As a 
result, K(x,y) = K(s,t;p,q) is approximately given by 

at locations (s, t) close to the origin (0, 0), and is exactly equal to this 
expression at the origin. The said expression is zero where p + q = 0, 
negative where p + q > 0, and positive where p + q < 0. Accordingly, the 
behaviour of geodesic rays emanating from (0, 0) is depicted as follows. 

In the above sketch, the underlying manifold M is a small neigh
bourhood of the origin in JR2 , on which the pointwise Euclidean norm of 
the differential df is everywhere less than 1; this is to ensure the strong 
convexity of the Finsler metric F. 

Imagine that this sketch is a map prepared for mountain climbers. 
We can picture a mountain ridge above the locus of K ::::::: 0, with per
haps the summit directly above the point (0, 0) E M. The slope of the 
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mountain on the left of this ridge sits above the region in M with K > 0; 
similarly, the slope on the right of the ridge sits above the region in M 
with K < 0. The climate and the vegetation on the two slopes are typi
cally quite different, so much so that the most efficient paths of descent 
from the summit project onto the geodesics shown. Any attempt to cap
ture this anisotropy from the Riemannian perspective would necessarily 
introduce cusps. The Finslerian model can therefore be viewed as the 
unfolding or the blowing up of these singularities. 

5.2. Ricci-constant metrics and Chern's question 

For any fixed flagpole y in TxM, we use the inner product g!J to 
find n - 1 orthonormal transverse edges { e~" : p, = 1, ... , n - 1} per
pendicular to y. The flag curvatures K(x, y, e~") corresponding to these 
transverse edges simplify to (e~")i Rik (e~")k. Next, introduce en:= yjF 
to complete { e~"} into a g" -orthonormal basis for TxM, and note that 
(en)i Rik (en)k = £i Rik £k = 0 because bRjikl is skew-symmetric in its 
last two indices. Defining the Ricci scalar Ric as the sum of those 
n - 1 flag curvatures, we have 

n-1 n-1 

""' ""' i k Ric ·- L......K(x,y,e~") = L...t(e~") Rik (e~") 
Jl-=1 

n n 

a=1 a=1 

Thus, while conceptually the Ricci scalar is a sum of n-1 flag curvatures, 
from a tensor analysis viewpoint it is simply the trace of Rik. By virtue 
of this realisation, Berwald's formula immediately gives the following 
computational shortcut for the Ricci scalar: 

F 2 R. -2 (Gi) ·- (Gi) · (Gi) ·- 1 (Gi) · · + 2Gi (Gi) · · ZC- x·' yJ y' Y xJy' yJy' . 

A companion of the Ricci scalar is the Ricci tensor 

proposed in [Akbar-Zadeh 1995]. IfF happens to be Riemannian, this 
definition reproduces the standard formula for the Ricci tensor, namely 
Ri 8 sj· Also, thanks to Euler's theorem, we have 

. . 1 . . 
Ric= Ric·· £'£1 =-(Ric·· y'yl) t) p2 t) • 
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So the Ricci scalar and the Ricci tensor are content-wise equivalent. 
Furthermore, this last expression for Ric shows that it generalises a 
familiar Riemannian object, namely, the so-called "Ricci curvature in 
the direction of y" . 

Generically, Ric depends on both x and y and is therefore a function 
on the manifold T M '- 0 of nonzero tangent vectors. Due to its invariance 
under positive rescaling y ,__. >.y, ).. > 0, the Ricci scalar in fact lives on 
the manifold of rays SM. Finsler metrics for which Ric is a constant 
function are therefore nothing short of being remarkable, and are said 
to be Ricci-constant. It is straightforward to check that 

Ric = constant C Ricij = C 9iJ , 

the latter characterisation being one familiar to Riemannian geometers. 
The conceptual definition of Ric makes transparent the statement 

that every Finsler metric of constant flag curvature K has constant Ricci 
scalar (n- 1)K. Thus, metrics with constant flag curvature lie within 
the family of Ricci-constant metrics. As in the Riemannian setting, this 
inclusion is proper, and can be ascertained with the following explicit 
example. 

* Set M := sm( v'm- 1) X sn( y"n=l). Since the factors have 
constant sectional curvatures 1 I ( m - 1) and 1 I ( n - 1), respec
tively, they are Ricci-constant with Ricci scalar equal to 1. A 
moment's thought about the sectional curvatures of product 
metrics tells us that the product Riemannian metric h on M 
has constant Ricci scalar 1 as well, and is not of constant sec
tional curvature. 

* Regard points of each of the above spheres as row vectors in 
~m+l and ~n+l. Let !11 E so(m + 1), !12 E so(n + 1) be 
skew-symmetric real matrices of the indicated sizes. To each 
(p, q) E M, we assign the element (p!11, q!12) E T(p,q)M. This 
assignment gives a Killing vector field W of h. Since M is 
compact, we can scale W by a constant, if necessary, to achieve 
h(W, W) < 1. 

* As explained in [Bao-Robles 2004], the Finsler metric 

y'[h(y, W)F + h(y, y){1- h(W, W)}- h(y, W) 

1- h(W, W) 

of Randers type, with navigation data ( h, W), is a strongly con
vex Ricci-constant metric with Ric = 1, and is not of constant 
flag curvature. 
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Professor Chern had asked, on several occasions, whether every 
smooth manifold admits a Ricci-constant Finsler metric? Chern's ques
tion has already been settled in the affirmative for dimension 2 be
cause every 2-manifold admits a complete Riemannian metric of con
stant Gaussian curvature. See the book [Besse 1987] for an explicit 
construction, and references therein. 

Much less is known about dimension 3. As a concrete example, 
consider M := S2 X S1 . 

We first show that for this M, the Ricci scalar Ric of any Finsler 
metric can not be a positive function. Indeed, suppose the conclusion 
was violated by some F. The compactness of M would imply that 
F is complete; the compactness of SM would imply that the Ricci 
scalar of F is in fact uniformly positive. Through local diffeomor
phisms, the universal cover M := S2 x lR of M would inherit a forward 
geodesically complete Finsler metric with uniformly positive Ricci scalar. 
Then the Bonnet-Myers theorem ([Auslander 1955], [Dazord 1969]; see 
[Bao et al. 2000] for an exposition), applied toM, would tell us that the 
latter is compact, which is a contradiction. This establishes the claim. 
So, Ric must be ~ 0 somewhere; thus, between the two flag curvatures 
that sum up to Ric, one of them must be ~ 0 there. 

Incidentally, the existence of Riemannian metrics with non-constant 
Ric ~ 0 on S2 X S1 has already been demonstrated in [Gao-Yau 1986] by 
smoothing the singularities of certain special metrics. On the other hand, 
in [Lohkamp 1994] the same result is proved via local deformations; most 
importantly, Lohkamp's method works in all dimensions ~ 3. 

Next, we show that on our M, the flag curvatures of any Finsler met
ric can not be bounded above by zero. Again, suppose the conclusion was 
violated by some F, which would have to be complete because M is com
pact. The simply-connected universal cover M := S2 x lR would inherit 
a forward geodesically complete Finsler metric with all non-positive flag 
curvatures. Then the Cartan-Hadamard theorem ([Auslander 1955], 
[Dazord 1969]; see also [Bao et al. 2000]), applied to M, would tell us 
that the latter is contractible, which is absurd. Thus the claim holds. 
In particular, between the two flag curvatures that sum up to the Ricci 
scalar Ric, one of them must be positive somewhere. 

If we were addressing Chern's question about S2 X S1 within Rie
mannian geometry, our quest would be finished and the answer would 
have to be negative. The reason is that in dimension 3, the automatic 
vanishing of the Weyl conformal tensor forces the rigidity that having 
constant Ricci scalar Ric is the same as having constant sectional curva
ture Ric/2; but, as we discovered above, the two flag (sectional) curva
tures that sum up to Ric can not even have the same sign everywhere, 
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let alone being identical! In the Finslerian realm, however, such rigidity 
is not yet known to be true, thereby leaving open the window that there 
may be Finsler metrics with constant non-positive Ricci scalar Ric on 
8 2 x S 1. The next section proposes a deformation procedure for tackling 
this type of question. 

5.3. Ricci flow 
The geometric evolution equation [Hamilton 1982] 

g(t = 0) = g0 

is known as the un-normalised Ricci flow in Riemannian geometry. For 
an exposition of the rich geometric analysis behind this equation, see 
[Chow-Knopf 2004]. Here, we have put parentheses around gii for a 
pedantic reason: if the local coordinates should happen to depend on 
t, then 8t (gii) and ( 8t g )ii represent different objects conceptually, and 
are in general numerically unequal! 

In principle, the same equation can be used in the Finsler setting, 
because both gii and Ricij have been generalised to that broader frame
work, albeit gaining a y dependence in the process. However, there are 
two reasons why we shall refrain from doing so. 

(1) Not every symmetric covariant 2-tensor gii(x, y) arises from a 
Finsler metric F(x, y). As explained in [Bao-Robles 2004], the 
essential integrability criterion is the total symmetry of (gii )yk 
on all three indices i, j, k. Having to incorporate this criterion 
into every step of the analysis is at best inconvenient. 

(2) There is more than one geometrical context in which gii makes 
sense. Namely, as a fibre Riemannian metric on Chern's pulled
back vector bundle 1r*T M, as a Riemannian metric on the 
manifold of non-zero tangent vectors and the manifold of rays, 
as a Riemannian metric on punctured tangent spaces, and as 
a direction dependent inner product on each tangent space. 

Instead of this tensor evolution equation, we prefer a scalar one 
without any integrability criterion, and one for which the geometrical 
context is canonically clear. Note that contracting 8t(gii) = -2 Ricij 
with yiyi gives, via Euler's theorem, 8tF2 = -2 F 2 Ric. That is, 

8tlogF = -Ric, F(t = 0) = Fo. 

This scalar equation directly addresses the evolution of the Finsler metric 
F, and makes geometrical sense on both the manifold of nonzero tangent 
vectors TM '- 0 and the manifold ofrays SM. It is therefore suitable as 
an un-normalised Ricci flow for Finsler geometry. 
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If M is compact, then so is SM, and we can normalise the above 
equation by requiring that the flow keeps the volume of SM constant. 
Recalling the Hilbert form w := Fy' dxi, that volume is 

1 ( -1)(n-l)(n-2)/2 1 
VolsM := ( )' w 1\ (dw)n-l =: dVsM. 

SM n -1 · SM 

During the evolution, F, w, and consequently the volume form dVsM 
and the volume VolsM, all depend on t. On the other hand, the domain 
of integration SM, being the quotient space ofT M "- 0 under the equiv
alence relation z rv y {o} z = >..y for some >.. > 0, is totally independent 
of any Finsler metric, and hence does not depend on t. 

Thanks to the work and insights in [Akbar-Zadeh 1995], we have 

at dVsM = {gij at(%) -nat log F} dVsM, 

together with the surprising realisation that the scalar giJ at (gij) is 
merely 2n at log F plus a covariant divergence on SM. If M is bound
aryless, besides being compact, then so is SM. In that case, the said 
covariant divergence integrates to zero on SM and one obtains the re
markable formula 

at VolsM = { {nat log F} dVsM. 
isM 

An exposition of these derivations, at times adopting approaches differ
ent from those used by Akbar-Zadeh, is relegated to the Appendix. 

To normalise the proposed Ricci flow, we replace its equation by 
at log F = -Ric + C ( t) and determine C ( t) so that the volume of S M 
remains constant under the evolution ofF; here, C(t) is a function oft 
only. Substituting this objective into the formula for at VolsM, we get 

0 = r n {-Ric + c ( t)} dVs M ' 
isM 

from which we conclude that 

C(t) = y; ~ { Ric dVsM =: Avg(Ric). 
0 SM isM 

Hence we propose that a normalised Ricci flow for Finsler metrics is 

atiog F = -Ric+ Avg(Ric), F(t = 0) = Fo 

whenever the underlying manifold M is compact and boundaryless. 
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Ricci-constant metrics are exactly the fixed points of the above flow. 
Starting with any familiar metric on M as the initial data Fa (for in
stance, on M = 8 2 x 8 1, Fa can be the Berwald metric of Randers 
type from Section 3.3), we may deform it using the proposed normalised 
Ricci flow, in the hope of arriving at a Ricci-constant metric. To that 
end, Berwald's formula for 'Ric, presented earlier, will play an essential 
role in facilitating the computations, though the averaging of 'Ric over 
SM still remains a daunting challenge. It is hoped that this approach 
eventually proves to be viable for addressing Chern's question. 

§6. Appendix: Calculus on the manifold of rays 

6.1. Variation of volume forms 

The manifold T M " 0 of nonzero tangent vectors inherits a Sasaki 
type Riemannian metric 

. . oyi oyi 
gA = g·· dx' Q9 dx3 + g··- Q9-

' 3 ' 3 F F 

from the Finsler structure F. Since every term on the righthand side is 
invariant under positive rescaling y ~---* >..y, >.. > 0, we may regard fJ as 
the description, via affine coordinates, of a Riemannian metric on the 
manifold SM of rays. Thus, both TM" 0 and SM are endowed with 
Riemannian metrics that are canonically defined by F. 

Calculations on S M can be done intrinsically, by writing out its Rie
mannian metric with the help of a special type of orthonormal coframes 
[Bao et al. 2000] on T M " 0. For the purposes at hand, however, such 
intrinsic calculations are riddled with combinatorics and maneuvoers 
that are not instructive. Happily, there is a more illuminating, albeit 
extrinsic, way of achieving the same goals. 

Each element of SM is a ray [y] := {>..y : >.. > 0}, where y # 0; as 
such it corresponds uniquely to a direction, given by the unit vector y IF. 
The said orthonormal co frames do make clear that the map [y] ~---* y IF 
is a Riemannian isometry between SM and IM, the submanifold (in 
T M " 0) of unit tangent vectors {(x, y) : F(x, y) = 1 }, also known 
as the indicatrix bundle. (Incidentally, I M is given the notation ~F 
in [Bryant 2002].) The inter-relationships among these manifolds are 
summarised below: 

_jJ__ 
F(x,y) 

TM,o 

Y· 

inclusion 
f--

normalisation 
----+ 

_jJ__ 
F(x,y) 

IM 
_jJ__ 
F(x,y) 

diffeomorphism 
f--

quotient 
----+ 

[y] 

SM 
[f] = [y] 
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Note that while TM" 0 and SM are totally independent ofF, IM is 
on the other hand equivalent to F in terms of mathematical content. 

With respect to the natural (but non-holonomic) basis of 1-forms 
{ dxi; rSyi IF}, the components of the metric g on T M " 0 are given by 
the block diagonal matrix 

g!J J =j J=n+j 

I= i gij 0 

I= n+i 0 gij 

whose inverse is 

~JJ g J=j J =n+j 

I=i gii 0 

I= n+i 0 gij 

The volume form on T M " 0 is therefore 

where Jdet(§,J numerically equals det(%)· 
Since I M is defined by one scalar condition F ( x, y) = 1, it is a 

submanifold of codimension one, namely a hypersurface, ofT l'Vf" 0. For 
each fixed x, the chain rule and the identity Fy' = gi8 £8 imply that the 
vector field £8 ( F 8yB) is §-orthogonal to the ( n -1 )-dimensional indicatrix 
at x; the same vector field is also §-orthogonal to r5 I r5x1 , ... , r5 I r5xn. A 
little thought then convinces us that the unit outward-pointing normal 
field of the hypersurface I M is 

Consequently, its volume form dV1 M can be obtained by contracting 
nout into the first terms of the tensor products that comprise dVr 1\1----o, 

and the resulting formula reads 

dv: . fd t(' ) 1 "'n (-1)n+j-l yi IM = V e gu pn L..j=l 

dx 1 A··· A dxn A 

r5y 1 A · · · A r5yi-l A r5yi+l A · · · A r5yn. 



Curvature-driven problems 61 

Now consider a t-dependent family of Finsler metrics F(t). Then 
I M and dVr M both depend on t. Observe that: 

and 

at\/ det(.§u) = ! _gl J at(9u) v' det(g[J) = gij at(%) v' det(.§u), 

at()n) = -nF-n-latF = -(natlogF) j", 

at 8yk = at(dyk + Nk P dxP) = at(Nk p) dxP 

which, when wedged with dx1 1\ · · · 1\ dxn, gives zero. Hence 

at dVr M = {gij at(9ij) -nat log F} dVr M . 

Compare with the derivation in [Akbar-Zadeh 1995]. 
As we remarked earlier, the manifold of rays SM is isometric with 

the hypersurface I M through the ( t-dependent) diffeomorphism 

(x, [y]) -L ( y ) 
x, F(t,x,y) 

Thus 

and 

Let v1 , ... , v2n-l be 2n -1 arbitrary tangent vectors on SM. Since 
dVsM is given by the pull-back CdVrM, we have 

(at dVsM )(vt, ... , V2n-1) 

at{(dVrM)(~*vl, ... '~*V2n-d} 

(at dVrM )(~*Vt, ... , ~*V2n-1) 
2n-1 

+ L (dVrM)(~*vl, ... '~*Vt<-11 at ~*v"', ~*Vt<+l, ... '~*V2n-1) 
t<=l 

2n-1 

{C (at dVrM )}(vt, ... , V2n-d + L 0 · 
t<=l 

We digress to explain why each individual term in the sum vanishes. 
Take any tangent vector v of SM. It is the initial velocity of a curve of 
elements (x 8 , [y8 ]) of SM: 
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Thus 

Apply at to this equation, and note that it does commute with as. Then 

where nout is the unit outward-pointing normal field of the hypersurface 
corresponding to F ( t). Consequently, 

(dVIM )(~*VI, ... , ~*V~<-I, at ~*V, ~*V~<+I, .. ·, ~*V2n-d 

(dVIM) (~*VI,·.·, (as)js=O {- i~ nout}, · · ·, ~*V2n-I) 

(as)js=O {- i~ (dVnVI )(~*VI,···, nout, · · ·, ~*V2n-d} 

(as)js=O {- i~ (dVTl\ho)(nout, · · ·, nout, ... )} 

(as)js=O {0} · 

The point here is that, even though at does not commute with C, the 
terms which correspond to the lack of commutation are zero nevertheless, 
due to the special nature of dVIM and the diffeomorphism~- This ends 
our digression. 

Resuming the main discussion, we now see that 

In conclusion: 

at dVsM 

C (atdVIM) 

c ( {lj at(9ij)- nat log F} dVIM) 

{gij at (gij) - nat log F} dVsM . 
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Note that we have deduced this statement by an extrinsic method, 
without directly differentiating dVsM, which is a. constant multiple of 
w 1\ ( dw )n- 1, where w := Fy' dxi = ii dxi is the Hilbert form. I would 
like to reassure the purists that an intrinsic derivation has been carried 
out as well. 

6.2. Akbar-Zadeh's insight 
Associated to the Riemannian metric g on T M " 0 is its unique 

torsion-free metric-compatible connection w, whose connection 1-forms 
can be expanded in terms of the non-holonomic basis { dxk; Jyk j F} as 
follows: 

A I 
WJ A I ( J ) d k A I (p O ) 

WJ Jxk X + WJ ayk 

A I k A I Jyk 
=: r J k dx + r J n+k y . 

It is not too difficult to work out the forms w/ explicitly, thereby 
obtaining concrete formulae for the Christoffel symbols. The results 
read: 

~I r Jk J=j J=n+j 

I= i brijk - Aijk -His bR8/k - A/k} 

I= n+i ~ £8 bR8ijk- Aiik brijk- Aijk 

and 
~I r Jn+k J=j J=n+j 

I=i A i + 1 £8 bR i kj 2 8kj Aijk 

I= n+i -Aijk Ak/ + (9ki £i- 9ki ii) 

These Christoffel symbols enable us to carry out explicit covariant dif
ferentiations ~ on T M " 0. 

Take any (contravariant) vector field 

z := zi _i_, + zn+i F~ 
8x• ay• 

on T M" 0. Its equivalent covariant description is the 1-form 
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where 

9ji zi, 

g .. z'n+i 
1' 0 

The divergence of Z can be computed either directly as (VI Z)I (de
noted VI Z I in tensor analysis), or as fji J (VI Z~) J (namely fjiJ V 1 Z J 

in tensor analysis). Using the tabulated Christoffel symbols, we find 
that 

{ J~i zi + zs bri si} + F8yi zn+i- (n- l)zn+s f!s 

- 2 zs A + 2 z' n+s A 
s s ' 

where As:= Aiis and As:= Aiis· On the other hand, 

where brsi i := giJ brs ji. It is apparent that the second formula is com
putationally simpler, even though the answers in the two cases are nu
merically equal. 

In [Akbar-Zadeh 1995], we find the following insightful choice of Z: 

The components of Z~ are: 

Note that 

by two applications of Euler's theorem. We will return to the geometrical 
meaning of this condition later. For the moment, it simplifies the formula 
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for giJ ("¢'I Z0)J, which we then compute as follows: 

fl[J ('V'I z~>)J 

giJ Fay; Zn+J 

9iJ Fayi {Cq at(gjq)- u 1 at logF} 

giJ {(Jqi- £q£i) at(9Jq) + at([gJq]yi yq) 

-2 (9Ji- £A) at log F- 2 F£1 (at log F)y'} 

gqJ at(9Jq)- (FatF)y1yq Cq£1 + giJ at{(~F2 )y'y1yq yq} 

- 2 ( n - 1) at log F - 2 (at log F)y' yi 

giJ at(%) - 2 atlog F + 0 - 2 ( n - 1) atlog F - 0 

giJ at(9iJ)- 2n at log F. 

65 

Here, Euler's theorem has been invoked three times. The conclusion 
reads 

gij at(9ij) = 2n at log F + div T/vi,O z. 
As promised, we now return to address the geometrical significance 

of the fact Zn+s £8 = 0. To that end, recall that the unit outward
pointing normal field of the hypersurface I M is nout = £8 ( F ays). Note 
that this vector field, like Akbar-Zadeh's Z, is manifestly well-defined 
on all of T M "'- 0, and 

, ' , 'n+i j ' j 
g(Z,nout)=giJZ £ =Zn+J£ =0. 

Thus, Zn+s £8 = 0 tells us that z and nout are everywhere §-orthogonal 
on TM "'- 0. In particular, at points on the hypersurface IM, Z is 
tangent to I M. Since I M is a Riemannian manifold in its own right, 
the divergence div 1 M Z makes sense. It is then natural to wonder how 
this divergence is related to the ambient divergence div TJVho Z. 

In order to facilitate the comparison, let us take a §-orthonormal 
frame { e1, ... , en; en+l, ... , en+n} on T M "0 with the following prop
erties: 

• en+n = nout. 

• The first 2n - 1 vector fields, when restricted to I A1, are all 
tangent to the latter. 

Refer to those first 2n-1 vector fields as ea, with o: = 1, ... , 2n-l. Also, 
the induced Riemannian metric on I M has its own Christoffel symbols, 
which in turn define a covariant derivative operator V. Then 
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because the two covariant derivatives in question differ by a term pro
portional to nout, which has no components tangent to I M. On the 
other hand, 

div™,o Z = (Vea Z)a. 
Therefore the difference between the two divergences is the term 

(v' z)n+n en+n (v' z)n+n nuut 

9(Vn.o .. ~ z, nout) 

v n.o .. , {9(Z, noutH- 9(Z, v n.out nout) 

o- 9(Z, Vn.o ... nout). 

However, for the geometry at hand, 

v n,,ut nout = 0 0 

Indeed, keep in mind that Fay• is the (n + s)th vector in the basis 
{ojoy 8 ;Foys}, we have 

Vtk(F8 k) {fJ(Fay;)} 
y 

k A • 

t' '\l Fa k { t'3 (Fayi)} 
y 

k ' k ' A 

t' (Fayk f1) Fay; + t' f1 '\l Fa"k (Fayj) 

k. . f) k'A 
t' W k - t'3 t'k) F "'il' + t' t'3 '\l Fa k (Fayj) 

uy3 " 

Thus, 
(v, z)n+n - (V, z)n+n - o 

en+·n - nout - ' 

from which we conclude that 

div1M Z = divTA<ho Z (at points of IM). 

Consequently, a previous formula for gij Ot (gij), when restricted 
from TM" 0 to the submanifold IM, gives a result of Akbar-Zadeh's: 

gijat(9ij) = 2natlogF+div1MZ. 
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Compare the treatment here with that in [Akbar-Zadeh 1995] and the 
secondary reference [Akbar-Zadeh 1979]. 

Since ~ : S M ---+ I M, mapping [y] to y / F, is a Riemannian isometry, 
applying C to the above statement on I M yields 

6.3. Varying the volume of SM 

If M is compact, then so is SM and its volume is given by 

VolsM := { dVsM. 
isM 

Keep in mind that the Riemannian metric on SM is simply C applied 
to that on I M, which in turn is induced by the g ofT M "- 0. Thus, the 
geometry of S M certainly depends on the Finsler metric F, even though 
SM itself does not. 

Let us be given a deformation F(t) of some F0 . The domain of 
integration SM does not depend on the Finsler metrics, and hence it 
is independent of t. This fact allows our work from the previous two 
sections to effect the following: 

at VolsM 

{ atdVsM 
isM 

r {gij at (9i]) - nat log F} dVs M 
isM 

r {2n at log F + div SM [(C 1 )* Z]- nat log F} dVsM 
isM 

r {nat logF + div5M [(C 1)* Z]} dVsM. 
isM 

If, in adddition to being compact, M is also boundaryless, then so 
is SM. In that case the standard divergence lemma for Riemannian 
manifolds (see, for instance, [Bao et al. 2000] for an exposition) tells us 
that 

r { div SM [(C 1)* Z]} dVsM = 0. 
isM 

This simplifies the above formula for at VolsM to 

at VolsM = { {nat log F} dVsM. 
isM 
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Compare this with a formally identical statement in [Akbar-Zadeh 1995], 
one with the domain of integration stipulated as the t-dependent I M 
instead of our t-independent SM. 
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