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On the bifurcation structure of positive stationary
solutions for a competition-diffusion system

Yukio Kan-on

Abstract.

In this survey, we consider a generalized Lotka-Volterra compe-
tition model with diffusion, and discuss the bifurcation structure of
positive stationary solutions for the model. To do this, the compari-
son principle, the bifurcation theory, and the numerical verification are
employed.

§1. Introduction

To understand the mechanism of phenomena which appear in vari-
ous fields, we often use the system of reaction-diffusion equations
(11) w=cDAu+f(u), z2€Q, t>0,
' Zu=0 z€09Q t>0

with suitable initial condition, and discuss the existence and stability
of stationary solutions for the system, where u € RV, ¢ > 0, D is a
diagonal matrix whose elements are positive, f : R — RY is a smooth
function in u, © is a bounded domain in R with smooth boundary 99,
and a% denotes the outward normal derivative on 9.

When N = 1, we employ the so-called comparison principle, and
study the existence of stationary solutions of (1.1) and their stability
property. Furthermore it is well-known that for suitable f(u), the global
attractor A of (1.1) can be represented as A = |J .z W"(e), where E
is the set of stationary solutions of (1.1), and W*(e) is an unstable
manifold of (1.1) at u = e (for example, see Chapter 4 in Hale [2]).
This fact suggests that one important problem is to seek all stationary
solutions of (1.1).
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In general, the comparison principle does not always hold for the case
N > 2. This fact leads to the considerable complexity for the study of
the existence and stability of stationary solutions for (1.1). As a first step
to approach the problem, we treat a competition-diffusion system which
describes the dynamics of the population for two competing species u =
(u,v) € R2, where d,, > 0, d, > 0, D = diag(d,, d,),

f(u) = (f,9)(w), f(u)=F'w)u, g(u)=g"u)v,

and f%(u) = (f°,¢%)(u) is a smooth function in u. Moreover we set =
{ z € RY| |z| < 7 }, and we restrict our discussion to radially symmetric
positive stationary solutions of (1.1), where we denote by Cl A the closure
of the set A, and we call u(z) = (u,v)(z) positive when u(z) > 0 and
v(z) > 0 are satisfied for any € Cl1Q. At this point, we should note
that such stationary solutions satisfy

(1.2) 0=¢c¢Dr™* [re_lu’]/-l—f(u), r e (0,m),

' uw=0 r=0nr
for suitably fixed real number £ € [1,+00), where r = |z| and ' =
d

7-- There are many and various theorems on the existence of positive
solutions for (1.2). Recently in case of £ = 1, the author in the papers
[6], [7] and [8] has established the global bifurcation structure of positive
solutions for (1.2) with

(1.3) fflu)=1—-u"—cv™, ¢%°u)=1-bu"—-o"

relative to & > 0, where the positive constants d,, d,, n, b and ¢ are
suitably fixed. The aim of this paper is to survey the result in the
papers [6], [7] and [8] which correspond to the case £ = 1, and to give a
characterization on the set of positive solutions for (1.2) in case of £ > 1.

§2. Assumptions

From the competitive interaction, we assume that
(A.1) there exists M > 0 such that f(u) < 0 and g(u) < 0 hold for
any u € CIR? with {u|> M,
(A2) fou) <0, fo(u) <0, g%(u) < 0 and g2(u) < 0 are satisfied
for any u € C1R2+, and
(A.3) there exists a solution & = (4,9) € R% of f(u) = 0 with
detf, () <0,
where R = (0, 4+00). We should remark that (A.1) means the bounded-
ness of positive solutions for (1.2), and (A.2) implies that the comparison
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principle holds for (1.1) relative to the order relation < which is defined
in the following manner:

(u1,v1) = (u2,v2) <= u1 < ug, v1 > 0.

It is obvious that (1.3) is a typical example satisfying (A.1-3), when
n > 0 and min(b, ¢) > 1 are satisfied.

We define E by the set of solutions of f(u) = 0 with u € Cl R?.
For the sake of simplicity, we assume that

(A.4) detf,(e) # 0 is satisfied for any e € E,

which implies that every e € Eisa nondegenerate solution of f(u) = 0.

§3. Sets of Positive Solutions

We set
X = {u(.) € C*([0,n]) |u'(0) = 0 = u'(7) }.

For each £ € [1, +00), we denote by E(¢) the set of (¢,u(.)) € Ry x X
such that u(r) is a positive solution of (1.2) for ¢, and by E,  (¢) (respec-
tively, Eif (£)) (k € N) the set of (¢, u(.)) € E(£) such that there exists a
strictly increasing sequence { r; };?:0 (C [0, 7]) such that (—1)7 u/(z) = 0
(respectively, (—1)7*1u/(z) > 0) holds on (rj,rj;+1) for any integer
0 < j < k, where 1y = 0, 7y = m, and the relation < is obtained
from the order relation < by replacing < with <. Setting

Eo(f) =Ry x {a}, Ex(t)=E; (0)UEL(0),
we clearly have ;5o Ex(¢) C E(¢) for any £ € [1, +00).

Lemma 1. Let £ € [1,+00), k € N, and (g;,u,{.)) € Ex(¢) (1 =1,
2) be arbitrary. Suppose that [u1(0)]1 = [uz(0)]1 and/or [u1(0)]z =
[uz(0)]2 is satisfied, where [u]; is the jth element of the vector u. Then
€1 = &9 and uy(.) = ux(.) hold.

Proof. Let £ € [1,400), k € N, and (g, u;(.)) € Ex(€) (¢ = 1,
2) be arbitrary. Since the argument below is still valid for the case
[u1(0)]2 = [u2(0)]2 by the change of the role between u and v, we only
consider the case [u;(0)]; = [u2(0)];. For each 4, setting

s

wi(§) (= (wi,2:)(§)) = wi(Vei§), Ei=
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we see that w;(£) is a positive solution of

(3.1) {O—Dfl T [51 Lhw] +f(w), €€ (0,5),
d_ﬁwi(o) =0= dng(—q),

and satisfies d%w,-(f) Edgzi(ﬁ) < 0 for any & € [0,Z;]. Moreover we have
a?j (&) < 0 for any i, j and & by virtue of (A.2), where

1
( ) © = [ ROwi©)+ (1 6)wale) .

as; ‘122

Suppose that z1(0) > 22(0) holds. From
dy € & (w1 — wa] (0) = —af(0) w1 (0) > 0,

it follows that there exists £, € (0,Z] such that

(1) w1(&) > w2(€) and z1(&) > 22(€) hold for any £ € (0,&1), and
(i1) wy ({1) = wq(&1) and/or z1(&1) = 2z2(&1) is satisfied for the case

61 < Ev
where = = min(Z;,Z5). Setting

W(E) = Ly () wa(€) — wi(€) Lua(€),
(g) dgzl( )22(6) - Zl(g) EdEZQ(g)v

we have

d, €170 & [T W(e)]
w1 (§) wa(€)
= — a1 (&) (wi(§) — wa(§)) — aa(€) (21(6) — 22(€)) > 0,
d, €11 & [ 2(0)]
z1(€) 22(§)
= — a3,(€) (w1 (&) — w2(§)) — ad(€) (21(€) — 22(€)) > 0
for any £ € (0,&;) due to (3.1). From W(0) = 0 and Z(0) = 0, we obtain

W(&1) > 0 and Z(¢;) > 0, which implies ¢, = Z. If ; < Z3_; holds,
then we have

0 < W(E)) Z(5)) = w;(E)) % (E)) gewa—;(Z;) Fz3-;(;) <0.

This contradiction implies that z;(0) < z3(0) must be satisfied.
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Since we can similarly derive a contradiction for the case z:(0) <
22(0), we arrive at z1(0) = 22(0). By the uniqueness of solutions for
(3.1), we have w1(§) = w2(£) for any £. By the definition of E(¢), we
obtain £; = &». Q.E.D.

For each k € N and (¢,u(.)) € Ei(1), we can regard u(r) as a
periodic function with period 2 7 satisfying u(r) = u(-=r) for any r > 0.
Furthermore we see that (k? £, u(./k)) € E;(1) is equivalent to (¢, u(.)) €
Ey(1) for each k € N, because we can take r; as satisfying r; = 7j/k
for any integer 0 < j < k due to the uniqueness of solutions for (1.2).

Lemma 2 (Section 2.1 in [5]). E(1) = Uy>o Ek(1) holds.

The above lemma says that we can understand the complete struc-
ture of E(1) by using the information on the structure of £;(1). Unfor-
tunately it is unknown whether Lemma 2 is valid for £ € (1, +00).

Setting

Pie(6) = { [u(0)]1] (e,u(.) € Ex(0) },
we see from Lemma 1 that for each ¢ € [1,+00) and k¥ € N, there
exist functions £x(p,€) and Gk(.,p,¢) defined on Pi(¢) such that (i)
[(k(0,p, £)]1 = p is satisfied for any p € Pk(¢), and (ii) Ex(¢) is rep-
resented as

Ek(g) = { (ék(pv Z)vﬁk(‘vpv Z)) l peE ’Pk(e) } .

Hence it follows that E(£) can be parameterized by the value of [u(0)];,
and that the secondary bifurcation from the positive solution on Ej(¢)
is of saddle-node type even if it exists.

§4. Structure of F;({)
As £0(u) is represented as

o) =f0o+ fr ou™ + fo,, v™ + the remainder term,

9°(u) =g0o + 9o, 0u™ + g5, v + the remainder term

with suitable constants f;, g7, and n;, we treat the simplest nonlin-
earity (1.3) in this section, in order to discuss the global bifurcation
structure of positive solutions for (1.2), where n, b and ¢ are positive
constants. At this point, we should note that (1.2) has constant solu-
tions (0,0), (0,1), (1,0), and

o= ((11—_bcc>%’(11~_bbc)%>
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which is positive for either max(b,c) < 1 or min(b,c) > 1. By the max-

imum principle, we can prove that (1.2) has no positive nonconstant

solutions for the case min(b, ¢) < 1. Hereafter we shall discuss the bifur-

cation structure of positive solutions of (1.2) for the case min(b,c) > 1.
We set No=NU{0},

X ={u()eC?0,n]|v(0)=0=1u(r)}, Y=C0,n],
and we define the linear operator IC(.; 0): X - )Y by
K(u;€) = —r'=¢ [t u’]/
for £ € [1,400). Let { A¢(£) }ren, be eigenvalues of K(.;£) satisfying
At (£) < Agg1(€) for any k € Ny, and let ¢g(r,£) (k € Np) be an eigen-
function of K(.; £) corresponding to the eigenvalue A, (£). Without loss of

generality, we may assume ¢ (0,£) > 0 for each k € Ny. It is well-known
that the following property holds for each £ € [1, 4+00):
(i) Ao(€) =0, M(£) > 0 for any k € N, and limg o0 Ap(£) = +00
are satisfied,
(if) @(r,£) has k zeros on (0,7) for any k € No,
~(iii) { ¢r(r,£) }keN, is a complete orthonormal set in L?(0, 7) rela-
tive to the weight r¢~1, and
(iv) ¢x(r,€) is represented as

‘ C cos(k T) for £ =1,
R P 2( ,\k(e)r) for £> 1

with suitable constant C, where J,(z) is the Bessel function of
the first kind.

Setting
:/ d1(r, 0)F 1 dr,
0

we have ®4(¢) > 0 for any £ € [1, +00), and ®3(1) = 0. It is known that
®3(¢) > 0 is satisfied for any £ > 1 (for example, we refer to [9]). By
A1(£) > 0 and det f,(d) < 0, we obtain

={d=(dy,dy) € R} | det (~M(£) D+ fu(0)) =0} # 0

for each 4 > 1.
Let ¢ > 1 and d € D({) be arbitrary, and let v (respectively, v*) be
a nontrivial solution of

(M) D +fy(d))v=0
(respectively, (—Ai(¢) D + £,(2)T) v* = 0),
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where A7 is the transposed matrix of the matrix A. After simple calcu-
lations, we can check that the linearized operator of (1.2) around u =
" has the only one eigenvalue (respectively, at least two eigenvalues) in the
right half-plane for any € with € > 1 (respectively, 0 < € < 1), and that
the linearized operator £ of (1.2) around u = 1 for € = 1 has the simple
eigenvalue 0 with the corresponding eigenfunction ¢;(r, £) v. Moreover
we see that ¢(r,£) v* is an eigenfunction of the adjoint operator of £
corresponding to the eigenvalue 0.
Substituting

e=E4,v) =1 +v& )+ 250 + 13 &L v),
u=u(r,f,v)=u+veoi(r,f) v+ V2 aq(r, 2, v)

into (1.2), we have

0 :;15 {EDrl—Z [’r‘é_lu/}l + f(u)} = Lﬁg(’r‘,f,l/)
—E1(O) A (€) ¢1(r,£) DV + 1 (r, £)* £2(v, V) + 0(1)

as v — 0, where fa(uy, uz) is a bilinear map obtained from the second
derivative of f(u). From the Fredholm Alternative Theorem, it follows
that the above equation has a solution ti2(r, ¢, v) if and only if

~ _ (f (V,V),V*)(I)g(f)
a0 = >\1(2€) (Dv,v*) 33(f)

is satisfied.

4.1. Case (=1

From ®3(1) = 0, we obtain £;(1) = 0, so that we need to determine
the sign of &3(1). To do this, we employ the numerical verification
method such as the interval arithmetic built into Mathematica, and then
we can establish the following:

Lemma 3 ([6], [7]). If either n = 1 or n > 2 is satisfied, then
there exist a constant vo(1) > 0 and C?-class functions £(1,v), u(.,1,v)
defined on the interval (—vp(1), (1)) such that

(iy ((,v),a(,1,v)) € E1(1) holds for each v # 0, and

(ii) £1(1) =0 and £2(1) < O are satisfied.

From (A.1) and Theorem 1.3 in Rabinowitz [10], it follows that there
exists a maximal continuum C (C E;(1)U{ (1,0) }) such that C contains
(1,4) and meets {0} x X. By (A.2) and the maximum principle, we
have C = E;(1) U {(1,1) }.
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We define ¢(r, p, €, £) by the solution of

0=cDr!=¢[r! u’]l +f(u), >0,
u(0) =p, u'(0)=0,

where p = (p, q) € R?. It is well-known that ¥(r, p,¢,£) is analytic in
(r,p,,¢) (for example, see Corollary 3.4.6 in Henry [3]). Clearly we
have

¢('v ﬁl(()?pv Z)vél(pa e)ae) = ﬁl('apv Z)
for any £ € [1,4+00) and p € P1(¢). Since ¢(r,p,€,¢) is a solution of
(1.2) if and only if ¢¥/(7, P, €, £) = 0 holds, we may seek solutions (p, €)
of ¥/(m, p,e,£) = 0. Setting

¥(p,¢) = ’([};)(7'{‘, G1(0,p,£),21(p, £),£),

we know the following:

Lemma 4 (Section 2.7 in [5]). Every element of ¥(p, £) is positive
for any £ € [1,+00) and p € Pi(£).

The above lemma means that the eigenvalue 0 of ¥(p,¢) is sim-
ple even if it exists. After lengthy arguments, we can establish the
following by employing the above lemma, Lemma 1, Theorem 1.3 in
Rabinowitz [10], Theorem 2.1 in [4], and Theorem 1.1 in [5]:

Theorem 1 ([6], [8]). If either n = 1 or n > 2 is satisfied, then
there exist continuous functions u_(.,e) and ui(.,e) such that
(1) Ef()={(e,ux(,e)| e€(0,1)},
(i) =£ul (r,€) <0 for any (r,e) € (0,7) x (0,1), and
(iii) lim.jus(,e)=1
hold (see Figure 1).

The above theorem says that the secondary bifurcation of positive
solutions for (1.2) never occurs.

4.2. Case/>1

Setting
A A . . P M) 2
w=4" 2=9", w=(W2), w=1-w-3 yzl)fdu,
nw
we obtain

O<w<l, 0<z<l, O<w<l O0<y<l1
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X '\
u, (.,€)
u(0) El'\"(e)
E, (€) E, (¢)
® 00 ® o0 ﬁ
E; (0)
t u_(.,e)i R

Fig. 1. Global Bifurcation Structure for £ =1

because of
4 = n(nw—A(£)z2dy,)

T @) M) du +nw)

Since we can take v and v* as satisfying

v (—(df A(ll(z)?ﬁw) v> and V= (—(dunx(11(£_> oo w>ﬁ> ’

respectively, we have

< n(n+1)ra(y) 83(4)
a0 = "W %0

where r1(¢) = W2 +2wq — wq? and

ro(q) = — w222 + 2 (1 - 4w+ 302 - 2+ 4w2)q
—w(l—w—2-2w3)¢® +w?.
From
r1(0) =w z > 0, ri(l)=1-w)(1-2) >0,
r(0) = —w?5%2 <0, (1) =(1-w)2(1-2)2>0,
it follows that r1(y) > 0 holds, and that there exist 0 < g1 < g2 < g3 <1
such that ra(g;) = 0 for each j and

r2(y) <0 if Yy € I+ = [anl) U((q27 (IB)?
>0 ifyel =(q1,92)Y(qgs, 1]
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X X E (0)
u(0) Ef (0 u(0)

u
E[ () s _/E_M

1 € 1 €

(a) de D_(¥) (b) d € Dy(€)

u(.,&)

Fig. 2. Global Bifurcation Structure for ¢ > 1

Setting

nw
du:——/\yvyelﬂ:}7

)\1 (5) r4
we obtain +£;(¢) > 0 for any d € Dx(¢). By employing the similar
argument with Theorem 1, we have the following:

Theorem 2. Let £ > 1 and o € {—,+} be arbitrary. Ifd € D,(¥)
is satisfied, then there exists a continuous function u(.,€) such that
(i) E7(€) ={(eu(,e))|ee(0,1)},
(ii)) ou'(r,e) <0 for any (r,e) € (0,7) x (0,1), and
(iii) lim._,;u(.,e) =1
hold (see Figure 2).

Figure 2 shows the structure of E(¢) which is suggested by The-
orem 2, and says that the secondary bifurcation of saddle-node type
appears on Ej (¢) (respectively, E; (¢£)) for the case d € D_(¢) (respec-
tively, d € D4 (¥)). Since Theorem 2 does not give us enough information
on the structure of Fy(£), it is open how many secondary bifurcations
occur on Ey(¢).

Dy (f) = {d € D(0)

85. Concluding Remarks

From the result in Chafee and Infante [1], it follows that under
the assumption stated in Theorem 1, the global bifurcation structure of
positive solutions for (1.2) with £ = 1 relative to ¢ is similar to that for

{O:Eu”—i—u(l—u)(u—a), r € (0,7),
u'(0) =0, u'(m)=0

with 0 < a < 1. Figure 3 shows the numerical bifurcation diagram
for the case where n = 1.1 and d, = d, are satisfied. The horizontal
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\\\\
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(a) b=c=200.0 (b) b = ¢ = 2000.0

Fig. 3. Numerical Bifurcation Diagram

and vertical axes mean the value of ¢ and «(0)/4, respectively. This
figure suggests that the bifurcation structure of positive solutions for
(1.2) depends on b and ¢, when the assumption of Theorem 1 is violated
(for example, 1 < n < 2 is satisfied).

To determine the local bifurcation structure of positive solutions for
(1.2) on a neighborhood of (¢,u) = (1, &), we employ the numerical ver-
ification method such as the interval arithmetic built into Mathematica.
Unfortunately we have not succeeded in establishing the local bifurcation
structure when f°(u) is changed for

Pou)=1—um —co™, (w) =1 - bu™ —

with positive constants b, ¢ and nj, so that the global bifurcation struc-
ture for (1.2) with more general nonlinearity f°(u) is still open.

Finally, we should remark that Theorem 1 and Theorem 2 do not
give us the information on the Hopf bifurcation from positive stationary
solutions of

-1
utzeD(urr+——u,~)+f(u), re(0,m), t>0,
r
u. =0, r=0,m, t>0,

so that the global attractor of the above evolution equation is also still
open.
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