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On the bifurcation structure of positive stationary 
solutions for a competition-diffusion system 

Yukio Kan-on 

Abstract. 

In this survey, we consider a generalized Latka-Volterra compe­
tition model with diffusion, and discuss the bifurcation structure of 
positive stationary solutions for the model. To do this, the compari­
son principle, the bifurcation theory, and the numerical verification are 
employed. 

§1. Introduction 

To understand the mechanism of phenomena which appear in vari­
ous fields, we often use the system of reaction-diffusion equations 

(1.1) { Ut=E:D~u+f(u), xEn, 

tv U = 0, X E an, t > 0 

t > 0, 

with suitable initial condition, and discuss the existence and stability 
of stationary solutions for the system, where u E RN, E: > 0, D is a 
diagonal matrix whose elements are positive, f : R N --> R N is a smooth 
function in u, n is a bounded domain in R" with smooth boundary an, 
and tv denotes the outward normal derivative on an. 

When· N = 1, we employ the so-called comparison principle, and 
study the existence of stationary solutions of (1.1) and their stability 
property. Furthermore it is well-known that for suitable f(u), the global 
attractor A of (1.1) can be represented as A = UeEE wu(e), where E 
is the set of stationary solutions of (1.1), and wu(e) is an unstable 
manifold of (1.1) at u = e (for example, see Chapter 4 in Hale [2]). 
This fact suggests that one important problem is to seek all stationary 
solutions of ( 1.1). 
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In general, the comparison principle does not always hold for the case 
N ;::: 2. This fact leads to the considerable complexity for the study of 
the existence and stability of stationary solutions for (1.1). As a first step 
to approach the problem, we treat a competition-diffusion system which 
describes the dynamics of the population for two competing species u = 
(u,v) E R 2, where du > 0, dv > 0, D = diag(du,dv), 

f(u) = (!, g)(u), f(u) = f 0 (u) u, g(u) = g0 (u) v, 

and f 0 (u) = (!0 , g0 )(u) is a smooth function in u. Moreover we set n = 
{ x E R£ llxl < 1r }, and we restrict our discussion to radially symmetric 
positive stationary solutions of ( 1.1), where we denote by Cl A the closure 
of the set A, and we call u(x) = (u,v)(x) positive when u(x) > 0 and 
v(x) > 0 are satisfied for any x E ClO. At this point, we should note 
that such stationary solutions satisfy 

(1.2) {
0 = c: Dr1-£ [r£-l u']' + f(u), 

u' = 0, r = 0, 1r 

r E (0, 1r), 

for suitably fixed real number £ E [1, +oo), where r = lxl and ' = 
fr. There are many and various theorems on the existence of positive 
solutions for (1.2). Recently in case of£ = 1, the author in the papers 
[6], [7] and [8] has established the global bifurcation structure of positive 
solutions for (1.2) with 

(1.3) f 0 (u) = 1- un- cvn, l(u) = 1- bun- vn 

relative to c: > 0, where the positive constants du, dv, n, b and c are 
suitably fixed. The aim of this paper is to survey the result in the 
papers [6], [7] and [8] which correspond to the case£= 1, and to give a 
characterization on the set of positive solutions for (1.2) in case of£ > 1. 

§2. Assumptions 

From the competitive interaction, we assume that 

(A.1) there exists M > 0 such that f(u) < 0 and g(u) < 0 hold for 
any u E Cl R~ with I u I ;::: M, 

(A.2) f~(u) < 0, f~(u) < 0, g~(u) < 0 and ge(u) < 0 are satisfied 
for any u E ClR~, and 

(A.3) there exists a solution u = (u, v) E R~ of f(u) = 0 with 
detfu(U.) < 0, 

where R+ = (0, +oo). We should remark that (A.1) means the bounded­
ness of positive solutions for (1.2), and (A.2) implies that the comparison 
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principle holds for (1.1) relative to the order relation~ which is defined 
in the following manner: 

It is obvious that (1.3) is a typical example satisfying (A.1-3), when 
n > 0 and min(b, c) > 1 are satisfied. 

We define E by the set of solutions of f(u) = 0 with u E ClR~. 
For the sake of simplicity, we assume that 

( A.4) det fu (e) =J 0 is satisfied for any e E E, 
which implies that every e E Eisa nondegenerate solution of f(u) = 0. 

§3. Sets of Positive Solutions 

We set 

X= { u(.) E C2 ([0, 7r]) I u'(O) = 0 = u'(7r) }. 

For each C E [1, +oo), we denote by E(C) the set of (c, u(;)) E R+ x X 
such that u(r) is a positive solution of (1.2) for c, and by E;(C) (respec­
tively, E/t(C)) (kEN) the set of (c, u(.)) E E(C) such that there exists a 
strictly increasing sequence { rj }j=0 (c [0, 1r]) such that ( -1)j u'(x) >- 0 
(respectively, ( -1)1+1 u'(x) >- 0) holds on (rj, rJ+l) for any integer 
0 :::; j < k, where r 0 = 0, rk = 1r, and the relation -< is obtained 
from the order relation ~ by replacing :::; with <. Setting 

we clearly have Uk:o::o Ek(C) C E(C) for any C E [1, +oo). 

Lemma 1. Let C E [1, +oo), k E N, and (ci, ui(.)) E Ek(C) (i = 1, 
2) be arbitrary. Suppose that [u1(0)]I = [uz(O)h and/or [u1(0)]z = 
[u2 (0)]z is satisfied, where [u]j is the jth element of the vector u. Then 
c1 = cz and u1(.) = uz(.) hold. 

Proof Let C E [1, +oo), k E N, and (ci, ui(.)) E Ek(C) (i = 1, 
2) be arbitrary. Since the argument below is still valid for the case 
[u1(0)]z = [u2 (0)]z by the change of the role between u and v, we only 
consider the case [u1(0)h = [u2 (0)]1. For each i, setting 
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we see that wi(~) is a positive solution of 

(3.1) {
0 =ne-e:~ [e-l t~wi] + f(wi), 

J~ wi(O) = 0 = dd~ wi(2i), 

and satisfies J~wi(~) J~zi(~):::; 0 for any~ E [0,2i]· Moreover we have 

a?j(O < 0 for any i, j and~ by virtue of (A.2), where 

Suppose that z1(0) > z2(0) holds. From 

it follows that there exists 6 E (0, 3] such that 

(i) w1(~) > w2(~) and z1(0 > z2(~) hold for any~ E (0,6), and 
(ii) w1(6) = w2(6) and/or z1(6) = z2(6) is satisfied for the case 

6 <2, 
where 3 = min(21, 2 2). Setting 

we have 

W(~) = J~wl(~) w2(~)- w1(0 J~w2(~), 

Z(O = d~z1(~) z2(~)- z1(~) J~z2(~), 

du e-e -1?, [e- 1 W(~)J 

wi(~) w2(~) 

=- a~ 1 (~) (wi(O- w2(~))- a~2 (~) (z1(~)- z2(~)) > 0, 

dv e-e -1?, [e- 1 Z(~)] 

ZI(~) Z2(~) 

=- agd~) (wi(~)- w2(0)- ag2 (~) (z1(~)- z2(~)) > 0 

for any~ E (0, 6) due to (3.1). From W(O) = 0 and Z(O) = 0, we obtain 
W(6) > 0 and Z(6) > 0, which implies 6 = 3. If 2j :::; 2 3_j holds, 
then we have 

This contradiction implies that z1(0) :::; z2(0) must be satisfied. 
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Since we can similarly derive a contradiction for the case z1 (0) < 
z2(0), we arrive at z1(0) = z2(0). By the uniqueness of solutions for 
(3.1), we have w1(~) = w2(~) for any~- By the definition of Ek(£), we 
obtain c1 = c2. Q.E.D. 

For each k E N and (c, u(.)) E Ek(1), we can regard u(r) as a 
periodic function with period 2 1r satisfying u(r) = u( -r) for any r 2:: 0. 
Furthermore we see that (k2 c, u(./k)) E E 1 (1) is equivalent to (c, u(.)) E 
Ek(1) for each kEN, because we can take ri as satisfying ri = 1r jjk 
for any integer 0 ~ j ~ k due to the uniqueness of solutions for (1.2). 

Lemma 2 (Section 2.1 in [5]). E(1) = Uk2:o Ek(1) holds. 

The above lemma says that we can understand the complete struc­
ture of E(1) by using the information on the structure of E 1 (1). Unfor­
tunately it is unknown whether Lemma 2 is valid for £ E (1, +oo). 

Setting 
Pk(£) = { [u(O)h I (c, u(.)) E Ek(£)}, 

we see from Lemma 1 that for each £ E [1, +oo) and k E N, there 
exist functions tk(p, £) and uk(., p, £) defined on Pk(£) such that (i) 
[uk(O,p,£)h =pis satisfied for any p E Pk(£), and (ii) Ek(£) is rep­
resented as 

Hence it follows that Ek(£) can be parameterized by the value of [u(O)]t, 
and that the secondary bifurcation from the positive solution on Ek(£) 
is of saddle-node type even if it exists. 

§4. Structure of E 1 ( £) 

As £0 ( u) is represented as 

! 0 (u) =f<0 + f 0 un 1 + 1° vn2 + the remainder term, 0,0 n1,0 JO,n2 

g0 (u) =g0 + g0 un3 + g0 vn4 + the remainder term 0,0 na,O O,n4 

with suitable constants f~i, g?,i and ni, we treat the simplest nonlin­
earity (1.3) in this section, in order to discuss the global bifurcation 
structure of positive solutions for (1.2), where n, b and c are positive 
constants. At this point, we should note that (1.2) has constant solu­
tions (0, 0), (0, 1), (1, 0), and 

u = ((~)!.' (~) !.) 1-bc 1-bc 
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which is positive for either max(b, c) < 1 or min(b, c) > 1. By the max­
imum principle, we can prove that (1.2) has no positive nonconstant 
solutions for the case min(b, c) < 1. Hereafter we shall discuss the bifur­
cation structure of positive solutions of (1.2) for the case min(b, c) > 1. 

We set No= N U { 0 }, 

X= { u(.) E C 2 [0, 11"]1 u'(O) = 0 = u1(7r)}, Y = C 0 [0, 71"], 

and we define the linear operator K(.; R) :X--> Y by 

K( u; £) = -r1-£ [r£- 1 u'J' 

for R E [1,+oo). Let {Ak(R)}kENo be eigenvalues of K(.;R) satisfying 
Ak(R)::; Ak+l(R) for any k E N 0 , and let (h(r,R) (kENo) be an eigen­
function of K(.; R) corresponding to the eigenvalue Ak(R). Without loss of 
generality, we may assume ¢k(O, R.) > 0 for each k E N 0. It is well-known 
that the following property holds for each R E [1, +oo): 

(i) Ao(R) = 0, Ak(R) > 0 for any kEN, and limk-+oo Ak(R) = +oo 
are satisfied, 

(ii) ¢k(r,R) has k zeros on (0,71") for any k E N 0 , 

(iii) { cPk (r, R) }kENo is a complete orthonormal set in L2 (0, 71") rela­
tive to the weight r£- 1, and 

(iv) ¢k(r, R) is represented as 

Setting 

for R = 1, 

for R > 1 

with suitable constant C, where lv(z) is the Bessel function of 
the first kind. 

<I>k(R.) = fo., ¢1(r,R)kr£- 1dr, 

we have <I>2 ( R) > 0 for any R E [1, +oo), and <!>3 (1) = 0. It is known that 
<I>3 ( R) > 0 is satisfied for any R > 1 (for example, we refer to [9]). By 
,\1 ( R) > 0 and detfu ( u) < 0, we obtain 

V(£) = { d = (du, dv) E R~ I det ( -A1(£) D + fu(U.)) = 0} :f 0 

for each R ~ 1. 
Let R ~ 1 and d E V(R) be arbitrary, and let v (respectively, v*) be 

a nontrivial solution of 

(-A1(R)D+fu(U.)) v=O 

(respectively, ( -,\1(£) D + fu(uf) v* = o), 
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where AT is the transposed matrix of the matrix A. After simple calcu­
lations, we can check that the linearized operator of (1.2) around u = u 
has the only one eigenvalue (respectively, at least two eigenvalues) in the 
right half-plane for any c with c: > 1 (respectively, 0 < c < 1), and that 
the linearized operator£ of (1.2) around u = u for c = 1 has the simple 
eigenvalue 0 with the corresponding eigenfunction (PI (r, £) v. Moreover 
we see that ¢1 (r, £) v* is an eigenfunction of the adjoint operator of £ 
corresponding to the eigenvalue 0. 

Substituting 

c = f(£, v) =1 + v€1(£) + v2 €2(£) + v3 €3 (£, v), 

u = ii(r, £, v) =il + v ¢ 1(r, £) v + v 2 ii2(r, £, v) 

into (1.2), we have 

0 = : 2 { c Dr1-e [re- 1 u'J' + f(u)} = £ii2(r,£, v) 

- €1 (£)A1 (£) ¢1 (r, £) D v + ¢1(r, £)2 f2(v, v) + o(1) 

as v--+ 0, where f2(u1, u 2) is a bilinear map obtained from the second 
derivative of f(u). From the Fredholm Alternative Theorem, it follows 
that the above equation has a solution ii2(r,£, v) if and only if 

is satisfied. 

4.1. Case£= 1 

From ci>3 (1) = 0, we obtain €1(1) = 0, so that we need to determine 
the sign of €2(1). To do this, we employ the numerical verification 
method such as the interval arithmetic built into Mathematica, and then 
we can establish the following: 

Lemma 3 ([6], [7]). If either n = 1 or n ~ 2 is satisfied, then 
there exist a constant v0 (1) > 0 and C 2 -class functions €(1, v), ii(., 1, v) 
defined on the interval ( -vo(1), vo(1)) such that 

(i) (€(1, v), u(., 1, v)) E E1(1) holds for each v-I- 0, and 
(ii) €1(1) = 0 and €2(1) < 0 are satisfied. 

From (A.1) and Theorem 1.3 in Rabinowitz [10], it follows that there 
exists a maximal continuum C ( C E 1 ( 1) U { ( 1, u) } ) such that C contains 
(1, u) and meets { 0} x X. By (A.2) and the maximum principle, we 
have C = E1(1) u { (1, u) }. 
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We define '1/J(r, p, c, f) by the solution of 

{
0 = c Dr1-t [;e- 1 u'J' + f(u), 
u(O) = p, u (0) = 0, 

r > 0, 

where p = (p,q) E R 2 . It is well-known that '1/J(r,p,c,f) is analytic in 
(r, p, c, f) (for example, see Corollary 3.4.6 in Henry [3]). Clearly we 
have 

'1/J(., ft1 (0, p, f), €1 (p, f), f) = ft1 (., p, f) 

for any f E [1,+oo) and p E P1 (f). Since '1/J(r,p,c,f) is a solution of 
(1.2) if and only if 'l/J'(7r,p,c,f) = 0 holds, we may seek solutions (p,c) 
of 'ljJ 1(1r, p, c, f) = 0. Setting 

w(p, f) = '1/J~( 1r, ih (o, p, f), t1 (p, f), f), 

we know the following: 

Lemma 4 (Section 2. 7 in [5]). Every element of w(p, f) is positive 
for any f E [1, +oo) and p E P1(f). 

The above lemma means that the eigenvalue 0 of w(p, f) is sim­
ple even if it exists. After lengthy arguments, we can establish the 
following by employing the above lemma, Lemma 1, Theorem 1.3 in 
Rabinowitz [10], Theorem 2.1 in [4], and Theorem 1.1 in [5]: 

Theorem 1 ([6], [8]). If either n = 1 or n ~ 2 is satisfied, then 
there exist continuous functions u_(.,c) and u+(.,c) such that 

(i) Er(1) = { (c, u±(.,c)) 1 c E (o, 1) }, 
(ii) ±u± (r, c) -< 0 for any (r, c) E (0, 1r) x (0, 1), and 

(iii) lime-+1 U±(.,c) = u 
hold (see Figure 1). 

The above theorem says that the secondary bifurcation of positive 
solutions for (1.2) never occurs. 

4.2. Case f > 1 

Setting 

z=vn, w=(w,z), w=1-w-z, 

we obtain 

Y = A1(f) Z du, 
nw 

0 < w < 1, 0 < z < 1, 0 < w < 1, 0 < y < 1 
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X 
u(O) 

1 ..1.. 
--;1 z2 

Fig. 1. Global Bifurcation Structure for f = 1 

because of 
dv = n(nw- .X1(C)idu) . 

.X1(£) (.X1(£) du + nw) 

Since we can take v and v* as satisfying 

( n(1-w)u ) 
v = -(du .X1(£) + nw) v 

* ( n (1- z) v ) 
and v = -(du.Xl(C)+nw)u ' 

respectively, we have 

_ (o) _ n (n + 1) r2(y) <1>3(£) 
e1 .r. - , 

2 Zrl (y) <1>2 (.C) 

wherer1 (q) =wi+2wq-wq2 and 

From 

r2(q) =- w2 22 + 2 (1- 4w + 3w2 - 2 + 4w 2) q 

- w (1 - w- z- 2 w 2) q2 + w2 q3 . 

r1(0) =w z > 0, 

r2(0) =- w2 22 < 0, 

r1(1) =(1- w) (1- z) > 0, 

r2(1) =(1- w) 2 (1- z) 2 > 0, 

it follows that r 1 (y) > 0 holds, and that there exist 0 < Ql ::::; Q2 ::::; q3 < 1 
such that r 2 ( q1) = 0 for each j and 

ify E I+=: [O,ql) U(q2,q3), 
if y E L = ( Ql , Q2) U ( q3, 1]. 
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X X 
u(O) 
r------

£[(1) 

(a) dE V_(£) 

Fig. 2. Global Bifurcation Structure for C > 1 

Setting 

V±(£) = {dE V(£) I du = At~~ Z y, Y E h } , 

we obtain ±f1 ( £) > 0 for any d E V'f ( £). By employing the similar 
argument with Theorem 1, we have the following: 

Theorem 2. Let£ > 1 and IJ E { -, +} be arbitrary. If d E Da(£) 
is satisfied, then there exists a continuous function u(., c) such that 

(i) Ef(£) = { (c, u(., c)) I c E (0, 1) }, 
(ii) IJ u'(r, c) --< 0 for any (r, c) E (0, 1r) x (0, 1), and 

(iii) lim6 __. 1 u(., c)= u 
hold (see Figure 2). 

Figure 2 shows the structure of E 1 ( £) which is suggested by The­
orem 2, and says that the secondary bifurcation of saddle-node type 
appears on Et ( £) (respectively, E! ( £)) for the case d E V _ ( £) ( respec­
tively, d E V + ( £)). Since Theorem 2 does not give us enough information 
on the structure of E 1 (£), it is open how many secondary bifurcations 
occur on Et(£). 

§5. Concluding Remarks 

From the result in Chafee and Infante [1], it follows that under 
the assumption stated in Theorem 1, the global bifurcation structure of 
positive solutions for (1.2) with £ = 1 relative to c is similar to that for 

{ 
0 = c u" + u ( 1 - u) ( u - a), 

u'(O) = 0, u'(1r) = 0 

r E (0,1r), 

with 0 < a < 1. Figure 3 shows the numerical bifurcation diagram 
for the case where n = 1.1 and du = dv are satisfied. The horizontal 
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(a) b = c = 200.0 

-----------
...................... 

........................ 

) 
4 

3 

2 

1 --·-·--···--·-···-···--····----···-···-<::.·-----· __ ... _. __ ... _ .. _ ...... _ ... _ ...... -·--·-·::. 
OL-~--~--~~--~--~~ 
0.995 0.996 0.997 0.998 0.999 1 1.001 1.002 

(b) b = c = 2000.0 

Fig. 3. Numerical Bifurcation Diagram 

and vertical axes mean the value of c and u(O)ju, respectively. This 
figure suggests that the bifurcation structure of positive solutions for 
(1.2) depends on band c, when the assumption of Theorem 1 is violated 
(for example, 1 < n < 2 is satisfied). 

To determine the local bifurcation structure of positive solutions for 
(1.2) on a neighborhood of (s, u) = (1, tl), we employ the numerical ver­
ification method such as the interval arithmetic built into Mathematica. 
Unfortunately we have not succeeded in establishing the local bifurcation 
structure when f 0 (u) is changed for 

f 0 (u) = 1- un 1 - cvn2 , g0 (u) = 1- bun3 - vn4 

with positive constants b, c and n1, so that the global bifurcation struc­
ture for (1.2) with more general nonlinearity f 0 (u) is still open. 

Finally, we should remark that Theorem 1 and Theorem 2 do not 
give us the information on the Hopf bifurcation from positive stationary 
solutions of 

{
Ut = c D ( Urr + R. ~ 1 Ur) + f(u), 

Ur=O, r=0,7r, t>O, 

T' E (0, 1r), t > 0, 

so that the global attractor of the above evolution equation is also still 
open. 
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