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A sharp bilinear restriction estimate for the sphere 
and its application to the wave-Schrodinger system 

Takafumi Akahori 

Abstract. 

We consider 2 x 2 --> q type bilinear restriction estimates for trans
verse subsets of the sphere, for all q > n~2 • Moreover, we give its 
application to the wave-Schrodinger system. 

§1. Introduction and main results 

In this paper, we consider bilinear restriction estimates for the sphere 
and its application to the wave-Schrodinger system in the three dimen
sions: 

(1) 

where u and v are complex and real-valued functions on,lR3 x IR, respec
tively. 

The Fourier restriction estimate has been studied by many mathe
maticians, since it is related to many other problems such as the Bochner
Riesz conjecture, the local smoothing conjecture for the wave equation 
and the Kakeya conjecture (see [5]). Also it has many applications to 
PDE. In particular, the author showed that the bilinear restriction es
timate for the sphere plays an important role to improve the local and 
global well-posedness results of the Cauchy problem for (1) (see [1]). 
Thus, itis important to consider the bilinear restriction estimate for the 
sphere. 

We denote the n- 1 dimensional sphere by sn- 1 and its induced 
Lebesgue measure by CT. Let 81 and 82 be any two subsets of sn- 1 with 
boundary. Then we say that the "bilinear adjoint restriction estimate" 
(or bilinear extension estimate) R 8* 8 (p x p---. q) holds, if we have 
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for all smooth functions h and h supported on s1 and s2 respectively, 
where (/jda-)v is the inverse Fourier transform of the measure f1du. 

Now let c be a sufficiently small positive parameter and Pe be a 
smooth cut-off function vanishing on Cc-neighborhood of 2sn-l := { ~ E 
IRn : 1~1 = 2} and Cy'c-neighborhood of the origin, where C is a uni
versal large constant. Then our main result is the following: 

Theorem 1.1. Let n 2: 3, oo 2: q > n~2 and set 

A = max - + ( n + 1) - - -- , - , { 1 [1 n- 1] 1 } 
4 q n+1 + 2 

where [·]+ denotes the nonnegative part. Then we have 

for all fi, h E L 2(sn- 1 ; du), where the implicit constant depends only 
on n and q, and in the case where q = 4~~~;) we have to modify the 
factor cA to c112 llogcl. 

This type of estimate was first given by Bourgain for the cone [3] 
and has applications to PDE (see [4]). To prove the theorem, we need 
the nearly sharp estimates R';h,S2 (2 x 2 ____, q), q > ~' where "nearly 
sharp" means that the estimate fails, if q < n~2 . In [6], Tao proves 
the nearly sharp bilinear restriction estimate for the paraboloid. His 
proof is applicable to hypersurfaces which are small perturbations of the 
paraboloid, in particular, small subsets of the sphere. In this paper, 
we consider the sphere directly and give an explicit dependence on the 
transversality (see Theorem 2.2 below). 

Theorem 1.1 plays an important role to analyze a transverse inter
action in bilinear estimates related to (1). Indeed, combining Theorem 
1.1 with the result of [1], we have the following well-posedness result for 
(1 ). 

Corollary 1.2. The Cauchy problem for the wave-Schrodinger sys
tem { 1) is locally well-posed for initial data u0 E H 81 and ( vo, vl) E 
H S2 HB2-1 •t 1 d 1 M •t 45 x , z s 1 > - 8 an s 2 > - 38 . oreover, z s1, s2 > - 88642 , 

then the global well-posedness holds. 

Throughout this paper, we use Nr(S) to denote the r-neighborhood 
of a setS. Also we use A ;S Band O(A) to denote the estimate IAI :::; CB 
and C A respectively, where C's are constants depending only on n and 
q. A "' B denotes the relation B ;S A ;S B. Moreover, for a large 
parameter R, A~ B denotes the estimate A ;S (logR)" B for all v > 0. 



A sharp bilinear restriction estimate for the sphere 67 

This paper is organized as follows. Section 2 is assigned for the proof 
of Theorem 1.1. In Section 3, we give an important tool, wave packet 
decomposition. In Section 4, we prove the crucial bilinear restriction 
estimate Theorem 2.2 via Proposition 4.1. 

§2. Proof of Theorem 1.1 

Let r E be a finitely overlapping covering of sn- 1 by caps of size y'E, 
where a cap K- of center Wo E sn- 1 and size 0 < r :S 7r is defined by 
""={wE sn- 1 : L(w,wo):::: n. Then weeasilyseethat #fE rv c"21. 
The following proposition shows why PE is needed in the statement of 
Theorem 1.1. 

Proposition 2.1. Let K-1' ""2 E r E. 

{i) If K-1 + K-2 c No( E) (2sn- 1), then L(K-1, K-2) ;S y'E. 
{ii) If K-1 + K-2 C Bo(y'E)(O), then 1r- Cy'E :S L(K-1, K-2) :S 1r for some 
large constant C » 1. 

Proof of Proposition 2.1. 
It is sufficient to prove the case n = 2. The proof is easy and so we 

omit the details. 0 

From Proposition 2.1, we see that PE yields the transversality in (2). 
Now we prove Theorem 1.1. Take any JI, h E L 2 (sn- 1 ; da-). We 

decompose 

(3) 

where suppf,.,i C ""J (j = 1, 2). Then, by the Hausdorff-Young inequal
ity, 

ll(fida * hdu)pEIILq'(IR") 

(4) < 2:.: ll(f,.,ldu)v(f,.,2du)vi1Lq(IR")' 
(""I·""2)Erc: xre 

C:ft-5:_ L("'-1·""2)::;n-- C,jF 

where C » 1 is some constant, in particular we may take C = 10. To 
analyze the effect of angular separation, we estimate the R.H.S. of ( 4) 
by 

(5) 
8E-ve~ (""1·""2)Erexrc: 

Cft-:=;8-:=;n--C:y'€ O~L(K 1 .K- 2 )<0+ft 

To estimate (5), we use the following bilinear restriction estimate: 
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Theorem 2.2. Let n~2 < q :S: oo, 10ylc :S: () :S: 7f - 10ylc and let 
K1, /'\,2 E rc: with() :s: L(K.1, K2) < () + JE. Then the bilinear adjoint 
restriction estimate R~, ... 2 (2 x 2 ----+ q) holds with constant 

{ 
1 1 }(n+l)[~- ~+iJ+ 

Cq,n min ylc(sin ())2 ' (sin ())4 ' 

where Cq,n depends only on q and n. 

We remark that Theorem 2.2 is nearly sharp in the sense that 
R~, ... 2 (2 x 2 ----+ q) fails for q < n~2 , the endpoint case q = n~2 is 
still open. 

(6) 

Applying Theorem 2.2, we estimate (5) by 

BEft~ 
CftS:es;-rr-Cft 

( +1)[' n-1] 
{ 

1 1 } n -q- n+l + 

mm ylc(sin ()) 2 ' (sin ()) 4 

X 

(K-I·""2)Ere: xrc 
O~L(K}.K2)<r9+ft 

Since for given K1 E fc: there are at most 0(1) caps K2 E fc: such that 
() :S: L ( K 1 , K. 2 ) < () + JE, by the Schwarz inequality and the finitely 
over lapping property of r c' ( 6) is estimated by 

(7) 

Set qn = (n + 1) [ %'- ~+i J +. When n :S: 5, we see that (7) is estimated 

by 

if n+2 < q < 4(n+l) 
n 4n-3 ' 
if = 4(n+1) 

q 4n-3 ' 
'f > 4(n+l) 
1 q 4n-3 · 

On the other hand, when n;::: 6, (7) is estimated by C 1/ 2 llhiiL2IIhll£2 
for all q > n~2 • Hence we have completed the proof of Theorem 1.1. 0 

Thus it remains to prove Theorem 2.2. We give the proof in the 
next sections. 
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§3. Wave packet decomposition 

Let R be a positive number with E » 1 I R and let K, E r E:. In 
this section, we expand the Fourier transform of a smooth function FK 
supported on Nl(K) by wave packets adapted to tiles of width VR 

R 

and length R. Let { eUl }f=1 be the standard basis of IRn. For any x E 
JRn, we set x' = 1fJn) (x) and x" = Jfe(n) (x), where 1fJn) and 7fe(n) are 
the projections onto the plane perpendicular to e(n) and the axis e(n), 

respectively. Thus we have x = (x', x") E JRn- 1 x R 
Let r R ("") be a finitely overlapping covering of "" by caps "' of size 

1/VR, center w("') and L(w("'1),w("'2)) "'1/VR for all "'1, "'2 E fR(K). 
Thus we have 

u 
3.1. w-coordinate and w-tiles 

Let w E sn-1 and let Lw be a rotation such that Lww = e(n) ·

(0, · · ·, 1). Then we define the unit vectors {e~)}f= 1 bye~) := L:;,le(ll 

(l = 1, · · · ,n). In particular, e~) = w. We call {e~)} w-coordinate 
system. Set Xw = Lwx for x E IRn. 

Next we introduce w-tiles. For wE sn- 1, we define the fundamental 
n- 1 times 

tile Tw(O) as the VR x ... x VR x R-rectangle centered at the origin, 
the long side is in the direction w. Set X= ,(Rzn-1 andY= RZ. Then 
for a E L:;/(X x Y), we set Tw(a) = Tw(O) +a and call w-tile of center 
a. We denote the set of w-tiles by 'll'(w), namely 'll'(w) := {Tw(O) +a : 
a E L:}(X x Y)}. 

n- 1 times 

For a VR x ... x VR x R-rectangle T, we denote the long side di
rection by w(T), and call the direction ofT. Also we denote the center 
ofT by a(T). We will often use a(T) to denote Lw(T)a(T). 

3.2. Wave packet decomposition for the sphere 

Following Tao's idea [6], we decompose functions into wave packets. 
Let "" E r"' and let F be a smooth function supported on N l (""). We 

R 

decompose 

(8) 
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where F, is smooth and suppF, C N1..(1"£). Now we decompose F;:: into 
R 

wave packets adapted to w(fi:)-tiles. We note that 

F;::(x) = (FoL:),))v(Xw(r;,))· 

We take a Schwartz function r/ on JR.n- 1 such that supp7]1 C B 1;(101r)(O) 
and LkEZn-1 ry'(x'- k) = 1 for all x' E JR_n- 1 (cf. [6]). Moreover, we 
take a Schwartz function 7]11 on JR. such that suppry" C [-1/1071", 1/1011"] 
and LkEzn-t17'(x"- k) = 1 for all x" E JR_n- 1 . Then we decompose 

F;:: (x) = (F, o L;:J,)t (xw(r;,)) 
II II I I 

2::= ry" ( xw(~~- a ) ry' cw(r;,); a ) 

a=(a',a")EXxY VJi 
X (F, o L;:J,))v (xw(r;,)), 

where Xw(~) = (x~(~)' X~(~<)) E JR_n- 1 X R For w E sn- 1 ' we can associate 
a= (a', a") EX X y with thew-tile with center a:= Lw(~)a and thus 
we set 

n+l 1 "[( -1 )V]( 1 ") Cyw(K) (ii) = R 4 M 129M F, 0 Lw(~) a 'a ' 

where M' 129M" is the tensor product of the Hardy-Littlewood maximal 
operators on JR_n- 1 and JR., i.e., 

M' 129 M"[u](x',x") 

1 f ( 1 f I ( I ")I ') II := sup , , sup , u y , y dy dy . 
r">O IDr,(x )I v;:,(x") r>O IDr,(x')l v;,(x') 

Here D~, (x') (resp. D~, (x")) is then -1 dimensional ball (resp. interval 
in JR.) of center x' (resp. x") and radius r' (resp. length 2r"), i.e., 
D~, (x') := {y' E JR_n- 1 : IY'- x'l ~ r'} (resp. D~, (x") := [x"- r", x" + 
r"]). We set 

VJTw(K) (a) (xw(~)) 

1 x" a" x' a' 
C _ 11"( w(r;,~- )11'( w(:;;; )(F~oL;;J~<))v(Xw(~))· 

Tw(K)(a) 

Moreover we set ¢rw('J(ii) = VJTwc,J(ii) o Lw(~<) and thus ¢Twc,J(ii)(x) 

VJTw('J(a)(Xw(~)) for all x E JR.n. Then we represent 

(9) F;:: (x) = 2::= cr¢r(x). 
TE'll'(w(~)) 
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Combining (8) and (9), we obtain a decomposition of Fv: 

(10) Fv = L cr¢r(x), 
TE'][',. 

where']['"":= U~<ErR("")'li'(w(,..)). We call']['"" the tiles associated to K. 

We give properties of the decomposition (10). In particular, we find 
that ¢r is a wave packet concentrated on a tile T. 

Proposition 3.1. (i) The coefficients { cr} in ( 10) obey the bound 

(ii} ForT E ']['""' let l'i:(T) be the cap in rR(K) with the center w(T). 
Then we have 

In particular, taking R sufficiently large, we find that supp ¢r is con
tained in the 2/ R-neighborhood of l'i:(T). 
(iii} For any T E ']['"" and any N, M ~ 0, we have 

where d"!i(x, y) := dist(1rZ:,(x), 1rZ:, (y)) and dw(x, y) := dist(7rw(x), 1l"w(Y)). 
(iv) Le~ ']['~ be any subset of 1I'"" with #'li'~ < oo. Then we have 

Proof of Proposition 3.1. 
The proof is similar to that of Lemma 4.1 in [6] and therefore we omit 
the proof. 0 

§4. Proof of Theorem 2.2 

Let K!,K2 E r, with()~ L(Kt,K2) < O+.JE. Take q bigger 
than and arbitrarily close to ~- For Theorem 2.2, by Lemma 2.4 of 
[8], Proposition 4.3 of [9] and the interpolation with the Tomas-Stein 
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restriction estimate, it suffices to prove the following localized and 1/ R
spread bilinear adjoint restriction estimate: 

(11) 

for all R 2:: 1, a > 0, 0 < v « 1 and all smooth £ 2-normalized functions 
F,. 1 and F,.2 supported on Nt;R(""!) and N 1;R(""2), respectively, where 
the implicit constant depends only on n, q and a. 

We use R~ 1 ,,.2 (2 x 2 --> q, a) to denotes the statement that the 
estimate (11) holds for all R 2:: 1, 1 » v > 0 and some a> 0. 

Our proof of (11) heavily depends on the idea of Tao [6] and Wolff 
[10]. The salient point in our proof is the geometric observation for the 
sphere, see Sections 4.6.3 and 4.6.5. 

In view of Proposition 3.2 of [6], for (11) it suffices to prove the 
following inductive statement. 

Proposition 4.1. Suppose a > 0 such that R~1 ,,. 2 (2 x 2 ----> q, a) 
holds. Then we have 

(12) 

for all 0 < 6, v « 1, where C 's are constants independent of a, r5 and v, 
and Cq,a is some constant depending only on q, n and a. 

Now we prove Proposition 4.1. By the wave packet decomposition 
at the scale R, the L.H.S. of (12) is rewritten as follows: 

(13) II L L crt¢Ttcr2¢r211£q(BR(O))• 

Tt E'f Kt T2 E'f K2 

where 1!',.1 (j = 1, 2) denote the tiles associated to "")· Let n1 be the 
set of directions of 1!' ,.1 , i.e. the set of centers of Kj in r R ( ""1) (j = 1, 2). 

Then we have #n1 ;S (c:R) ";- 1 (j = 1, 2). Now for each w1 E n1 and 
a' EX:= JRzn-l, we define the infinitely long stick of width Vii by 

SwJa') = {T E 'll',.1 (wj) : a(T)' =a'}, 
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where '1!' ... 1 (wj) is the set of wrtiles (see the end of Section 3.1 for the 

notation a(T)). We set §(wj) = {Sw1(a')}a'EX and § ... 1 = U §(wj)· 
WjE!1j 

We denote an element of § ... 1 by Sj and rewrite (13) in terms of sticks: 

(14) II L L . L L crl¢rlcr2¢r211Lq(BR(o))· 
S1ES,.1 S2ES,.2 T1ES1 T2ES2 

In cases of £ 2-norm, we exploit almost orthogonality of wave packets. 
We have the following lemma, which plays an important role to estimate 
(14) ( cf. [6]): 

Lemma 4.2. Let 81 E §"'1 and 82 E §"'2 • Then for any subsets 
S1,sub c S1 and S2,sub c S2, we have 

where the implicit constant depends only on n. 

We omit the proof. 
In the next subsections, we estimate (14). 

4.1. Separating minor and major contributive portions 

We first remove some minor portions from the sum in (14). By the 
triangle inequality, (14) is estimated by the sum of the followings: 

(15) :L cr1 </>r1 cr2 ¢r211Lq(BR(o)), 
minor portion 

(16) :L CT1 </>T1 CT2 </>r2ll Lq(BR(O))' 
major portion 

where the minor portion is the case: lcr1 I ~ R-lOOn or lcr2 1 ~ R-lOOn, 

and the major portion is the remainder case. 
For the minor portion (15) we easily obtain the desired bound . In 

fact, we see that the minor portion (15) is estimated by R-¥;. 
We consider the major portion in the next sections. 

4.2. Major portion 1; coarse-scale decomposition 

By (i) of Proposition 3.1 and the L2-normalization of F ... 1 , we have 

L lcrl 2 ;S 1. Thus the major portion is 
TE'][',.1 

U {Tj E Sj R-loon < lc ·I < 1} - T 1 rv (j = 1,2). 
S1ES,.1 
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Dyadically pigeonholing on the size of lcrj I, we estimate (16) by 

II L 
. R-100n$'"Yt$1; R-10Dn::;.,.2 ,::;t: 

(17) dyadic dyadic 

where S1('y1) := {T1 E 81 : 'Yj:::; lcrjl < 2'Yj}· We easily see that 

#{'Yj; dyadic : R-lOOn :::; "(j ,:S 1} ,:Slog R (j = 1, 2). 

Moreover, we easily see that 

(18) L #Sj('yj) ,:S 'Yj 2 (j = 1,2). 
SjE§><j 

Then we crudely estimate (17) by 

(19) 
X L 

In (19), since lcrjh11 ,:S 1, we can absorb the factor cr)'Y1 harmlessly 
into ¢Tj and thus it suffices to consider 

(20) 
X L 

In what follows, in (20), we concentrate on the factor 

(21) II L L 

for all R-lOOn :::; 'Yll "(2 ,:S 1, and thus, for the desired estimate (12), it 
suffices to estimate (21) by 
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In (21), we may assume that #S1('y1) ~ 1 and #S2('y2) 2: 1. We set 
§,._;(-·yi) = { Si E §,._1 ('yi) #Si ( ''(j) ~ 1 }. We easily see that 

(22) # § ( ·) < -2 
Kj 'YJ rv 'Yj • 

To employ the inductive argument, for any 1 » J > 0, we make a coarse
scale decomposition. Let lB be a finitely overlapping covering of BR(O) 
by balls B of radius R 1- 8 . Then we estimate (21) by 

(23) 2:11 I: 

We will easily see that 

4.3. Major portion 2; local and global portions 

For "(1 , "(2 > 0, we introduce some relation "rv71 ,7 /' between sticks 
in §,._1 ('yt) U §,._2 ('y2) and balls B E JB, which is the same as Tao's one [6] 
except for the dependence on "(1 and 'Y2· 

Let Q be a finitely overlapping covering of BR(O) by balls Q of radius 
v'R.. Then we set 

where R 8Q denotes the ball with the same center as Q and radius R 8v'R.. 
Let J.L1, J.L2 be dyadic numbers ~ 1 or 0. We set 

(25) 
Q(J.L1, J.l2i 'Y1, 'Y2) 

= {Q E Q: J.Lj S #§,._1 (Q;"(j) < 2J.Lj (j = 1,2)}. 

Then we see that J.Lj ranges at most 0 ::=; J.lj ~ cn2 1 Rn2 1 +(n-1}o (j = 
1, 2). Since J.Li dyadically varies, we see that the possible number of J.Li 
~ log R for j = 1, 2, and therefore the possible number of pairs (J.Lt, J.L2) 
~ (logR) 2 • 

Let >.1 be a dyadic number ~ 1 or 0. Then we set 

§,._1(>.1,J.L1,J.L2i'Y1,'Y2) = {81 E §,._l('yt) : 

>.1 S # {Q E Q(J.L1,J.l2i"f1,"f2): 81 nR8Q # 0} < 2>.1}. 
(26) 

Thus each 81 E §,._1(>.1,J.L1,J.L2i'Y1,"f2) intersects about >.1 (slight en
largement of) balls Q E Q(J.L1, J.L2; 'Y1, 'Y2). We easily see that >.1 ranges 
0 ::=; >.1 ~ R'!i and therefore the possible values of >.1 ~log R. 
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Let >.. b f.LI. 112 2': 1 and 1 i2: 1'1, 1'2 2': R-lOOn. For each stick S 1 E 
§,.1 (AI.f.LI.f.12j'/'I.'Y2), let B(S1,>..1,f.11,f.12;)'1,'/'2) be the ball in R which 
maximizes the quantity . 

#{Q EQ(f.11,f.12j'/'1,'/'2) 

S1 n R8Q =1= 0, Q n B(S1, >..1,f.11, 112; 11, 12) =I= 0}. 

(Choose one, if such ball is not unique.) 
We first define the relation '"'"'_x 1 ,1'1 ,112 ;,1 ,-y2 between sticks in §,.1 (1'1) 

and balls in R by defining S1 "'.X 1 ,111 ,.,2 mm B if S1 E §,.1 (>..1, f-11, 112; )'1, 1'2) 
and BE R with B c 10B(S1, >..1, f-11> 112; )'1, '/'2)· Then we define S1 "',1 ,,2 

B if one has sl '"'"'Al ,J.!l ,J.!2 m ,1'2 B for some dyadic numbers AI, f-11' 112 2': 1. 
We also define "'rl m between §,.2 (1'2) and R by a completely symmet
rical procedure. For this relation, we have the following lemma, which 
is the same as Proposition 5.1of [6]. 

Lemma 4.3. Let 1 i2: '/'1, '/'2 2': R-lDOn. Then we have 

#{BE R : S "',1 mB} ;S (logR)3 

for all S E §,.1 (1'1) U §,.2 (1'2). 

Now we estimate (23) by sum of the following two terms: 

(27) Lll L 

(28) 
BEE S1E 0"1h1).S2E3"2("'12) T1ESl(rl)T2ES2(1'2) 

sl ~"'Yl·'"Y2 B or 82 ?''1'1·'1'2 B 

We call (27) local portion and (28) global portion. 
The local portion (27) is estimated by the inductive hypothesis and a 

way similar to Wolff [10]. Thus it remains to estimate the global portion 
(28}. 

(29) 

4.4. Global portion 1; interpolation setting 

Our aim is to bound the global portion (28) by 

· Cli+Cv -1 -1 -1 { 
1 1 }(1-v)(1-t) 

mm y'c(sin 8)2 ' (sin B)4 . R R 11 12 

for all v > 0 and some constants C depending only on n and p. 
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By (24) and the symmetry of the relation "'-y1 ,.'Y2 with respect to 
§,..J-yr) and §,..2 (12 ), it suffices for ( 29) to prove 

(30) 

{ 
1 1 }(1-v)(1-~) < · C8+Cv -1 -1 -1 

"' mm y'E(sin {})2 ' (sin {})4 R R 11 12 ' 

for all BE lffi. 
We prove (30) by interpolating between bilinear £ 1 and £ 2 estimates 

below: 

(31) 

and 

(32) 

I.: I.: I.: I.: 1JT1 1JT2II£1(B) ,:S 111121 

S1E>,.1 (·nl S2ES,.2 (-y2) T1ES1(-yl) T2ES2(-y2) 
sl .o.,l •"'~2 B 

I.: I.: I.: I.: 
s1 ES"'l h1 l 82 ES,.2 b2) T1 ES1 (-yl) T2 ES2 b2) 
8 1 ?"--y1 ,-r2 B 

1JT1 1JT2II£2(B) 

< C8+Cv · { 1 1 }!(1-v) _,!!.H -1 -1 
"'R mm y'E(sin {})2 ' (sin {})4 R 4 11 12 

for some constant C > 0 depending only on n. 

4.5. Global portion 2; bilinear £ 1-estimate 

By the Schwarz inequality, the L.H.S. of (31) is estimated by 

(33) 

By (iv) of Proposition 3.1 and (18), we estimate (33) by 111121, which 
is the desired estimate (31). 

4.6. Global portion 3; bilinear £ 2-estimate 

4.6.1. Fine-scale decomposition. Let Q be a finitely overlapping cov
ering of BR(O) by balls Q with radius JR. Note that 

(34) #Q ,:S R~. 

We make a fine-scale decomposition. Then the squared L.H.S. of (32) is 
estimated by 

(35) 2:11 I.: 
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To obtain the desired estimate (32), we have to show that 

(36) < . 1 1 C8+Cv - n+ 2 -2 -2 { }
1-v 

(35) ,....., mm y'c(sin 8)2 ' (sin 8)4 R R 2 II 12 . 

We divide the sum with respect to Sj into two cases and thus we estimate 
(35) by the sum of the followings: 

(37) L II L L L ¢r, <Pr2III2(Q)' 
QEQ 81 E<~;n·"Y2 8 ("Y 1 ) s 2E3.,2 ("Y2) T,ES,('n) T2ES2(-y2) QC2B 

StnRtiQ=0 or S2nROQ=0 

(38) L II L L L L ¢r, <Pr2III2(Q)' 
QEQ 

St ES~;l ,1'2 B (/'1) S2E 3"2b2l T,ES,(,,) T2ES2(-y2) QC2B s 2nH0 Q#0 
s 1 nH0 Q¥c0 

where §~;l·"Y2 B(rl) denotes the set of sl E §K,(rl) with sl r/-,,,,2 B. 
We call (37) minor global portion and (38) major global portion. 

In (37), by the condition S1 n R 8Q = 0 or S2 n R 8Q = 0, (iii) of 
Proposition 3.1 and (34), we obtain the desired bound. Thus it remains 
to consider (38). 

4.6.2. Major global portion 1; pigeonholing of Q and §K,. We con
sider the major global portion (38). We first do the dyadic pigeonholing 
of Q. Then we have 

l: l: <Pr, 

(39) 
S,E§~~n "Y2B(Q;r,) T,ESI(ri) 

X 

where§~;' .., 2 B ( Q; II) := { S1 E §~;' .., 2 B (ri) : S1 n R 8Q =J 0} and 

§K2 (Q;/2) := { S2 E §1<,2 (/2) : 82 n R 8Q =J 0}. We do the dyadic pi

geonholing of§K,, (II). Note that§~;' .., 2 B (Q; 1I)n§K,, (0, p,1, p,2; 11, 12) = 
0 for all Q E Q(p,1,p,2 ;11,12 ). Thus, the R.H.S. of (39) is estimated by 

X L 
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where §i(Q) := §~;ur28 (Qi/1) n §,..JX11J.1-1,J.I-2i/1,/2) and §2(Q) := 
§,..2 (Qi/2)· Thus, it suffices to show that 

QE:;("dc;liJ"~l·"l2l SrES~(Q) S2ES2(Q) TrESr(rr) T2ES2b2) 

< . { 1 1 } 1
-v Cli+Cv _!.!.H -2 -2 

:::::! mm JE(sin (})2 ' (sin (})4 R R 2 11 12 

(40) 

for all >..1, J.l-1, J.l-2 2: 1. 
4.6.3. Major global portion 2; constraint from the supports of wave 

packets. We first consider the summand of the L.H.S. of (40): 

(41) 

for all Q E Q(J.I-11 J.l-2i 111 /2) with Q C 2B. 
The factor (41) is estimated by the global £ 2-norm and thus, by the 

Plancherel theorem, it suffices to consider 

(42) 
Sr E§~ (Q),S2ES2(Q) S~ E§~ (Q),S2ES2(Q) 

2::: 2::: ¢-:;:};;2 , 2::: 2::: ¢--:;::¢;~ ) £2 · 

TrESr(rr) T2ES2(-y,) T{ES!(Tr) T~ES2(r2) 

l,From the support properties of ¢-:;:};;2 and ¢--:;:J;~, ( 42) is further re
duced to 

S1 E§~ (Q),S2ES2(Q) s1 E>~ (QJ.S2E>2CQl 
( 43) N 2 ; R(><(Sl ))+N2 ; R (><(S2))nN2 / R(K(Sl ))+N2 / R(><(S2 ));1'0 

where 11,( Sj) is the cap in r R ( Kj) whose center corresponds to the direc
tion of the stick sj. 

Now let us consider the constraint 

(44) N2fR(11,(SI)) + N2/R(11,(82)) n N2jR(11,(SD) + N2/R(11,(S~))-=/- 0. 

We denote the center of 11,(81) (resp. 11,(Sj)) by w(S1) (resp. w(Sj)). 
We easily see that 
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and 

for some universal constant C > 0. Therefore, for N2;R(K(Sl)) + 
N2;R(K(S2)) n N2;R(K(Si)) + N2;R(K(S2)) -=1- 0, it is required that 

(45) 
1 

I w(St) + w(S2)- w(SD- w(S~) I ~ ..jli' 

i,From ( 45), we find that 

(46) 

II w(SD _ w(S1) ; w(S2) 1-1 w(Sl) ; w(S2) II 
< 1 
"" ..fRI w(S1) - w(S2) I' 

which is observed by Bourgain in [2]. Note that, by the transversality 
of K(St) and K(S2), I w(St) - w(S2) I ;::: sin~ in the R.H.S. of ( 46). 

Replacing the constraint (44) with (45) in (43), we have 

81 E§~ (Q),82E§2(Q) Sl ES~ (Q).S!,E>2(Q) 
( 4 7) I w(Sl)+w(S2)-(w(8i}+w(S!,)) l$1/vR 

Then, using the Schwarz inequality and the Plancherel theorem, we es
timate ( 4 7) by 

(48) 

81 E§~ (Q),S2ES2 (Q) S~ Eo! (Q).s!, E>2(Q) 
I w(81)+w(S2)-(w(Sl )+w(S!,)) l$1/vR 
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By Lemma 4.2 and (46), 

(48) ~ (sinB)-IR-~#§~(Q)#§~(Q) 

X sup {(8~,8~) E §~(Q) X §~(Q): 
WtEOt 
w2E02 

(49) 1 
-1 WI+ w2- w(8I)- w(82)) I ,:S JR' 

llw(8D- WI ;w21-l WI ;w211 ,:S JR:in~ }, 

where recall that f!j (j = 1,2) is the set of centers of lij E fR(K-j)· 

We estimate the R.H.S. of ( 49) by 

(sin B)-I R-~ #§~ (Q)#§~(Q) 

(50) 
X w~~Rl # { 8I E §~ (Q) : w(8I) E ni n N v'R~n ~ (Y(wb w2))} 

w2E02 

{ 
I 1 1 } x sup # 82 E §2(Q) : I WI+ w2- wi - w(82) I ,:S rn , 

Wt,w'EOt V R 
w2E02 

where 

In (50), we easily see that 

w 1~~~01 # { 82 E §~(Q) : I WI+ W2- W~- w(82) I ,:S ~} ,:S 1. 
w2E02 

Moreover, we have #§~(Q) ,:S /12 for all Q E Q(p,I, P,2; "'(I, 'Y2)· Hence we 
have 

(50)~ (sinB)-IR-"t2 p,2 #§~(Q) 

X ~~Rl # { 8I E §I : w(8I) E ni n N v'R~n 4 (Y(wi, w2))}. 
w2En2 

Now we set 
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For the desired result (40), it remains to prove that 

(51) 

#§~(Q) sup #§~(Q) 
WJEOt 
w2E02 

< RCii+Cv · . -----,--=- 1'1 1'2 { 1 1 } 1-2v -2 -2 
~ m1n . , --,.-, 
~ y'csmO (sm0)3 J.l2 

We prove this combinatorial estimate in the next subsections. 
4.6.4. Combinatorial estimate 1; preliminary estimates. We prove 

the combinatorial estimate (51). The L.H.S. of (51) is estimated by 

(52) sup sup #§~(Q) 
QE:C:(~-tJ,IJ-2;'"Yl·"Y2) WJEOt 

QC2B w2E02 

I: #§~(Q). 

By an estimate similar to that in p.1378 of [6] and (22), we see that 

L #§~(Q) ;S A11'12 
Q EC:(Pl •1'2 ;-yl ·"12) 

QC2B 

and thus (52) is estimated by 

An12 sup sup #§~(Q). 
QE:C:(~-t·I ,.u2 ;··n ,,.2 ) w 1 E0 1 

QC2B w2E02 

Hence, to prove the desired result (51), it suffices to show that 

(53) { }
1-2v -2 

" < Cii+Cv · 1 1 1'2 
#§1 (Q) ~ R mm y'c . 0, ( . 0)3 -, -c sm sm A1/12 

for all Q E Q(J.l1,J.l2i'/'1,1'2) with Q C 2B and all w1 E fl1, W2 E fl2. 
4.6.5. Combinatorial estimate 2; Crucial geometric observation and 

conclusion. Our aim is to prove (53). Now we fix Qo E Q(J.ll, J.l2i ')'1, 1'2) 
with Qo C 2B and recall B(St,A1,J.L1 ,J.l2i'Yll1'2) which is the ball in lB 
maximizing the quantity 

for each 81 E §,._1 (AI,J.lt,J.l2i'YI,')'2). Note that we have 

R-(n+l)iiA1 

(54) ;S inf #{QEQ(J.l1,J.l2i'/'1,'/'2): 
S1ES,.1 (>.l,Jll,/'2;/1()'2) 

81 n R0Q, Q n B(S1, A1, J.l1, J.l2i 1'1, 1'2) =J 0}. 
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Indeed, if not, then we have #{ Q E Q(111, 112; 11, 12) : S1 n R6Q # 
0} « .\1, which contradicts that S1 E §~'> 1 (A 1 ,/i 1 ,/i2;/1 ,/2 ), see (26). 

Now let S1 E §~(Qo). Then, since S1 E §1'>1 (A1,/i1,/i2;/1,/2) and 
S1 f- 11 ,12 B, we have B rt 10B(S1,.\1,/i1,/i2;/1,/2)· From this and 
Q0 c 2B, we have (cf. p.l379 of [6]) 

dist(Qo, 2B(S1, .\1, 111, 112; 11, 12)) 2: R 1- 6 

and therefore, for any Q E Q with Q n B(S1,.\1,/i1,ti2;11,/2) # 0, we 
have 

R 2: dist(Q0 , Q) 2: R 1- 6 , 

where we have used the triangle inequality dist(Q0 ,Q) ~ dist(Q0 ,0) + 
dist(O, Q) ~ R for the upper bound. Thus, by (54), we have, 

R-n6 .\1 ~ inf # { Q E «Jl(/i1, 112; /1, /2) 
StE§"t (>'l,fLt,fL2;1t,12) 

S1 n R 6Q, R 2: dist(Q0 , Q) 2: R1- 6 }. 

On the other hand, by the definition of «Jl(ti1,tl2;/1,/2) (see (25)), for 
each Q E «Jl(/i1, 112; /1, 12) there are at least 112 sticks in §1<02 (r2) which 
intersect R 6 Q. Thus we have 

R-n6 .\1112 

~ inf #{(Q,S2)E«Jl(/i1,/i2;/1,/2)x§t<02 (r2) 
St E§" 1 (.At ,!Lt ,IL2 ;11 .12) 

S1 n R6Q # 0, S2 n R6Q # 0, R;:::: dist(Qo, Q);:::: R1- 6 }. 

Summing over all 51 in §~(Q0 ), we obtain 

R-n6 A1/i2 #§~ ( Qo) 

(55) ~ #{ (Q,S1,S2) E «Jl(/i1,/i2;/1,/2) X §~(Qo) X §t>2 (/2) 

S1 n R6Q # 0, S2 n R6Q =1 0, R;:::: dist(Q0 , Q);:::: R1- 6 }. 

Now we give the following crucial geometric observation. 

Proposition 4.4. For each S2 E §1'>2 , we have 
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We omit the proof. Combining this proposition with (55), we see 
that 

and thus we obtain the desired result (53), since #§ .. 2 (/2) < 122 by 
(22). Hence we have proved Theorem 2.2. 0 
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