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Characteristic classes of (pro )algebraic varieties 
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Dedicated to Jean-Paul Brasselet 
on the occasion of his sixtieth birthday 

§1. Introduction 

Various characteristic classes of singular varieties have been intro
duced and studied. One of them is the so-called Chern-Schwartz
MacPherson class. Its unique existence was conjectured by P. Deligne 
and A. Grothendieck and it was affirmatively solved by R. MacPherson. 
This characteristic class is a fundamental and important characteristic 
class from the viewpoint of investigation of other characteristic classes. 

In this paper, in the first half we make a quick survey on three 
interesting characteristic classes of singular varieties with a nai:ve moti
vation of constructing a "singular version" of the so-called generalized 
Hirzebruch-Riemann-Roch theorem behind, and state a "unification" 
theorem concerning these three characteristic classes and its bivariant
theoretic version. And in the latter half we make a quick survey on 
characrteristic classes of proalgebraic varieties, which are very much re
lated to motivic measure and motivic integration. 

§2. Hirzebruch-Riemann-Roch and Grothendieck-Riemann
Roch 

A characteristic class of a vector bundle over a topological space X is 
defined to be a map from the set of isomorphism classes of vector bundles 
over X to the cohomology group (ring) H*(X; A) with a coefficient ring 
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A, which is supposed to be compatible with the pullback of vector bundle 
and cohomology group for a continuous map. Namely, it is an assignment 
cf: Vect(X) ~ H*(X; A) which satisfies that for a continuous map 
f: X ~ Y the following diagram commutes: 

Vect(Y) 
cl H*(Y; A) -----+ 

rl lr 
Vect(X) -----+ H*(X;A). 

cl 

Here Vect(W) is the set of isomorphism classes of vector bundles over 
W. In this paper we only deal with complex vector bundles. 

If cl is multiplicative, i.e., cl satisfies the Whitney sum condition 

cl(E EB F) = cl(E)cl(F), 

then the contravariant functor Vect can be replaced by the Grothendieck 
K-theory: 

K(Y) 

rl 
K(X) 

~ H*(Y;A) 

lr 
-----+ H*(X; A). 

cl 

For complex vector bundles, the Chern class is essential in the 
sense that any characteristic class is expressed as a polynomial of Chern 
classes. And furthermore any multiplicative characteristic class can 
be described via Hirzebruch's multiplicative sequence of Chern classes 
[Hirl]. 

For a complex manifold M its complex tangent bundle TM is avail
able and thus we can define a characteristic class cl(TM), which is called 
a characteristic class cl(M) of the manifold M. 

Let X be a non-singular complex projective variety and E a holo
morphic vector bundle over X. Let 

x(X, E) = L( -l)i dime Hi(X; n(E)) 
i~O 

be the Euler-Poincare characteristic, where Q(E) is the coherent sheaf of 
germs of sections of E. J.-P. Serre conjectured (in his letter to Kodaira 
and Spencer, dated September 29, 1953): There exists a polynomial 
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P(X, E) of Chern classes of the base variety X and the vector bundle 
E such that 

x(X, E)= i P(X, E) n [X]. 

Within three months (December 9, 1953) F. Hirzebruch solved this 
conjecture: the above looked-for polynomial P(X, E) can be expressed 
as 

P(X, E) = ch(E) u td(X) 

where ch(E) is the total Chern character of E and td(Tx) is the total 
Todd class of the tangent bundle Tx of X. For the sake of later use , we 
recall that for a complex vector bundle V the total cohomology classes 
ch(V) and td(V) are defined as follows: 

and 

rankV 

ch(V) = L e"i 
i=l 

rankV 

td(V) = II O!i . 
1- e-<>, 

i=l 

where a;'s are the Chern roots of V. Namely, we have the following 
celebrated theorem of Hirzebruch: 

Theorem (2.1) (Hirzebruch-Riemann-Roch)(HRR). 

x(X, E)= T(X, E):= i (ch(E) U td(X)) n [X]. 

T(X, E) is called the T-characteristic ([Hirl]). For a more detailed 
historical aspect of HRR, see [Hir2]. 

A. Grothendieck ( cf. [BoSe]) generalized HRR for non-singular qua
si-projective algebraic varieties over any field and proper morphisms with 
Chow cohomology ring theory instead of ordinary cohomology theory. 
For the complex case we can still take the ordinary cohomology theory 
(or the homology theory by the Poincare duality). Here we stick our
selves to complex projective algebraic varieties for the sake of simplicity. 
For a variety X, let G 0 (X) denote the Grothendieck group of algebraic 
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coherent sheaves on X and for a morphism f : X __. Y the pushforward 
f,: Go(X) __. Go(Y) is defined by 

f1 (F) := 2) -1 )iRi f*F, 
i:::o 

where Ri f*F is (the class of) the higher direct image sheaf of F. Then 
G 0 is a covariant functor with the above pushforward (see [Grotl] and 
[Man]). Then Grothendieck showed the existence of a natural trans
formation from the covariant functor G 0 to the Ql-homology covariant 
functor H*( ; Ql) (see [BoSe]): 

Theorem (2.2) (Grothendieck-Riemann-Roch)(GRR). Let the 
transformation T: Go( ) __. H* ( ; Ql) be defined by T(F) = td(X)ch(F)n 
[X] for any smooth variety X. Then T is actually natural, i.e., for any 
morphism f: X __. Y the following diagram commutes: 

Go(X) 
T 

H*(X; Ql) ---4 

/!1 lf· 
Go(Y) ---4 H*(Y; Ql) 

T 

i.e., 

td(Ty )ch(f,F) n [Y] = f* (td(Tx )ch(F) n [X]). 

Clearly HRR is induced from GRR by considering a map from X 
to a point. 

Note that the target of the transformation of the original GRR is 
the cohomology H* ( ; Ql) with the Gysin homomorphism instead of the 
homology H*( ; Ql), but, by the definition of the Gysin homomorphism 
the original GRR can be put in as above. 

§3. The Generalized Hirzebruch-Riemann-Roch 

In Hirzebruch's book [Hirl, §12.1 and §15.5] he has generalized the 
characteristics x(X, E) and T(X, E) to the so-called Xy-characteristic 
Xy(X, E) and Ty-characteristic Ty(X, E) as follows, using a parameter 
y (see also [HBJ, Chapter 5]). 
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Definition (3.1). 

Xy(X, E) : = :2::: (:2:::( -1)q dime Hq(X, O(E) ® APTj:)) yP 
p<::O q<::O 

= :2::: x(X, E l8l APT'i))yP 
p<::O 

where T'iis the dual of the tangent bundle Tx, i.e., the cotangent bundle 
of X. 

Ty(X, E):= i td(y)(Tx)ch(I+y)(E) n [X], 

_ dimX ( ai(1 +y) ) 
td(y)(Tx):= IT 1 _e-a,(l+y) -aiy , 

t=l 

rankE 

ch(I+y) (E) := :2::: e.Bi(l+y), 
j=l 

where a/ s are the Chern roots of Tx and !3/ s are the Chern roots of E. 

F. Hirzebruch [Hirl, §21.3] showed the following theorem: 

Theorem (3.2) (The generalized Hirzebruch-Riemann-Roch)(g-HRR). 

Xy(X, E) = Ty(X, E). 

The above modified Todd class td(y)(Tx) defined above unifies the 
following three important characteristic cohomology classes: 

(y = -1) the total Chern class 

~ 

td(-I)(Tx) = c(Tx), 

(y = 0) the total Todd class 

td(o) (Tx) = td(Tx ), 

(y = 1) the total Thom-Hirzebruch L-class 

td(l) (Tx) = L(Tx ). 

In particular, for E=the trivial line bundle, for these special values 
y = -1, 0, 1 the g-HRR reads as follows: 
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(y = -1) Gauss-Bonnet-Chern Theorem: 

e(X) = L c(Tx) n [X], 

(y = 0) Riemann-Roch: 

x(X) = L td(Tx) n [X], 

(y = 1) Hirzebruch's Signature Theorem: 

a-(X) = L L(Tx) n [X]. 

§4. Characteristic classes of singular varieties 

In the following we consider only compact spaces. 
For a singular complex algebraic or analytic variety X its tangent 

bundle is not available any longer because of the existence of singulari
ties, thus one cannot define its characteristic class cl(X) as in the above 
case of manifolds, although a "tangent-like" bundle such as Zariski tan
gents is available. A main theme for defining reasonable characteristic 
classes for singular varieties is that reasonable ones should be interest
ing enough; for example, they must be geometrically or topologically 
interesting, and they should be quite well related to other well-known 
interesting invariants of varieties (see [Mac3]). 

The theory of characteristic classes of vector bundles is nothing but 
saying that the assignment c£: Vect(X)-> H*(X; A) is a natural trans
formation from the contravariant functor Vect to the contravariant co
homology functor H*( ; A). This naturality is a key for various theories 
of characteristic classes for singular varieties. 

The first example of a characteristic class formulated as a natu
ral transformation was the Stiefel-Whitney class transformation due to 
Dennis Sullivan [Sull] (also see [Fu-Me]). And the complex version of the 
Stiefel-Whitney class, i.e., the first characteristic class of singular com
plex varieties formulated as a natural transformation is MacPherson's 
Chern class transformation [Mac2]. 

Let F(X) be the abelian group of constructible functions on a variety 
X. Then the assignment F : V -> .A is a contravariant functor (from the 
category of varieties to the category of abelian groups) by the usual 
functional pullback: for a morphism f: X -> Y 

j*: F(Y) -> F(X) defined by j*(a) :=a of. 
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For a constructible set Z C X, we define 

x(Z; a):= L nx(Z n a- 1(n)). 
nEZ 

Then it turns out that the assignment F: V -+ A also becomes a covari
ant functor by the following pushforward: 

f*: F(X)-+ F(Y) defined by f*(a)(y) := x(f- 1 (y); a). 

To show this requires a stratification theory (see [Mac2]). 
P. Deligne and A. Grothendieck conjectured (around 1969) and R. 

MacPherson [Mac2] solved the following: 

Theorem ( 4.1) . There exists a unique natural transformation 

from the constructible function covariant functor F to the homology co
varaint functor H* satisfying the "normalization" that the value of the 
characteristic function :n.x of a smooth complex algebraic variety X is 
the Poincare dual of the total Chern cohomology class: 

c*(:n.x) = c(Tx) n [X]. 

The main ingredients are Chern-Mather classes, local Euler obstruc
tions (also see [Br3], [Gon] and [Sa]) and "graph construction" (also see 
[Macl ]). The uniqueness follows from the resolution of singularities. For 
recent investigations on local Euler obstruction, e.g. see [BLS], [BMPS] 
and [STVl, STV2], etc. 

J.-P. Brasselet and M.-H. Schwartz [BrSc] showed that the distin
guished value c*(:n.x) of the characteristic function of a variety embedded 
into a complex manifold is isomorphic under this transformation to the 
Schwartz class [Scl, Sc2] via the Alexander duality. Thus, for a complex 
algebraic variety X, singular or nonsingular, c*(:n.x) is called the total 
Chern-Schwartz-MacPherson class of X and denoted simply by c*(X). 
By considering mapping X to a point, one can get 

which is a singular version of the Gauss-Bonnet-Chern theorem. 
Motivated by the formulation of MacPherson's Chern class transfor

mation, P. Baum, W. Fulton and R. MacPherson [BFM] have extended 
GRR to singular varieties, by introducing the so-called localized Chern 
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character ch-'f (:F) of a coherent sheaf :F with X embedded into a non
singular quasi-projective variety M, as a substitute of ch(F) n [X] in 
the above GRR. Note that if X is smooth ch§:(:F) = ch(F) n [X]. In 
[BFM] they showed the following theorem: 

Theorem ( 4.2) (Baum-Fulton-MacPherson's Riemann-Roch) 
(BFM-RR). (i) td*(:F) := td(i'MTM) nch-'f(:F) is independent of the 
embedding i M : X ---7 M. 
(ii) Let the transformation td*: Go( ) ---7 H*( ; !Ql) be defined by 

td*(:F) = td(i'MTM) n chlf (:F) 

for any variety X. Then td* is actually natural, i.e., for any morphism 
f : X ---7 Y the following diagram commutes: 

Go(X) td. 
H*(X; !Ql) ------+ 

!!1 lf· 
Go(Y) ------+ H*(Y; !Ql) 

td. 

i.e., for any embeddings iM: X ---7 M and iN: Y ---7 N 

For a complex algebraic variety X, singular or nonsingular, td*(X) := 
c*(Ox) is called the Baum-Fulton-MacPherson's Todd homology class 
of X. And we get 

which is a singular version of the Riemann-Roch. 
Using the notion of "perversity", M. Goresky and R. MacPherson 

[GMI, GM2] have introduced Intersection Homology Theory, in which 
almost all properties, such as the Poincare duality, of the (co )homology 
of smooth manifolds are saisfied. Note that the intersection homology 
group is not a homotopy invariant unlike the (co )homology group. For 
the intersection homology theory, e.g., see also [Bor], [Br2] and [Kir]. 

In [GMI], they introduced a homology L-class L?M(X) such that 
if X is nonsingular it becomes the Poincare dual of the original Thom
Hirzebruch L-class: 

L~M(X) = L(TX) n [X]. 
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Later, S. Cappell and J. Shaneson [CS1] (see also [CS2] and [Sh]), 
using some topological aspects of perverse sheaves [BBD], introduced a 
homology L-class transformation L*, which turns out to be a natural 
transformation from the abelian group n of cobordism classes of self
dual constructible complexes to the rational homology group [BSY2] 
(cf. [Y1]): 

Theorem (4.3) (Cappell-Shaneson's homology L-class). There 
exists a natural transformation 

such that for X smooth 

L*(Qx[2dimX]) = L(TX) n [X]. 

Here Qx is the constant sheaf (considered as a complex concentrated at 
degree 0) of X. 

For a complex algebraic variety X, singular or nonsingular, the value 
L*(ICx) of the middle intersection cohomology complex ICx is the 
total Goresky-MacPherson's homology L-class L~M(X) of X and simply 
denoted by L*(X). And we get 

which is a singular version of Hirzebruch's signature theorem. Here a(X) 
is defined by the pairing of the intersection homology group with middle 
perversity. 

For a survey concerning characteristic classes of singular varieties 
other than MacPherson's survey article [Mac3], there are now various 
articles available, e.g., [Alu1], [Br4], [Pa] (also see [PP]), [Su3] (also see 
[Su1, Su2]), [Sch2] (also see [Sch4]), [SY] etc., and also consult various 
papers therein. 

§5. A "unification" theorem 

So far we have seen that the generalized Hirzebruch-Riemann-Roch 
g-HRR unifies the three important and distinguished characteristics (or 
genera): 

(y = -1) the topological Euler-Poincare characteristic e(X), 
(y = 0) the arithmetic genus x(X), 
(y = 1) the signature a(X), 
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and that corresponding to these three invariants there are three dis
tinguished natural transformations of characteristic homology classes of 
possibly singular varieties, which are respectively, 

(y = -1) MacPherson's Chern class transformation c*: F( ) -+ 

H*( ;Z), 
(y = 0) Baum-Fulton-MacPherson's Riemann-Roch td*: Go( ) -+ 

H*( ;IQ), 
(y = 1) Cappell-Shaneson's homology L-class L*: 0( ) -+ H*( ; IQ). 
It seems to be natural to pose the following na"ive problem ( cf. [Mac2] 

and [Y2]): 

Problem (5.1). Is there a theory of characteristic homology clas
ses unifying the above three characteristic homology classes of possibly 
singular varieties '? A naive question is whether or not there is a rea~ 
sonable "singular version" m of the generalized Hirzebruch-Riemann
Roch g-HRR such that 
(y = -1) [[]_ 1 gives rise to the rationalized MacPherson's Chern class 
transformation c* ® IQ, 
(y = 0) m gives rise to the Baum-Fulton-MacPherson's Riemann
Rock td*, and 
(y = 1) [Ij1 gives rise to the Cappell-Shaneson's homology L-class L*. 

An obvious problem for this unification problem is that the source 
covariant functors of these three natural transformations are all different! 

A "reasonable" answer for the above problem has been obtained 
[BSY2] (cf. [BSY3] and [SY]) via the so-called relative Grothendieck ring 
of complex algebraic varieties over X, denoted by K 0 (V/X). This ring 
was introduced by E. Looijenga in [Lo] and further studied by F. Bittner 
in [Bit]. 

The relative Grothendieck group Ko(V /X) (of morphisms over a va
riety X) is the quotient of the free abelian group of isomorphism classes 

of morphisms to X (denoted by [Y -+ X] or [Y ~ X]), modulo the 
following relation: 

h h h [Y --t X]= [Z '---+ Y --t X]+ [Y \ Z '---+ Y --t X] 

for Z C Y a closed subvariety of Y. The ring structure is given by the 

fiber square: for [Y ~X], [W ~X] E Ko(V/X) 

[Y ~X]· [W ~X]:= [Y xxW 1~9 X]. 
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Here Y xx W f~g X is go f' =fog' where f' and g' are as in the 
following diagram 

YxxW 
!' 

-------+ W' 

g'l lg 
y ~X. 

The relative Grothendieck ring Ko(VIX) has the unit lx :=[X~ X]. 
Note that when X = pt is a point, the relative Grothendieck ring 

K 0 (V lpt) is nothing but the usual Grothendieck ring K 0 (V) of V, which 
is the free abelian group generated by the isomorphism classes of varie
ties modulo the subgroup generated by elements of the form [V]- [V']
[V \ V'] for a subvariety V' C V, and the ring structure is given by the 
Cartesian product of varieties. 

For a morphism f: X' --> X, the pushforward 

f*: Ko(V I X') --> Ko(V I X) 

is defined by 

f*[Y ~X']:= [Y f..::!!:. X]. 

With this pushforward, the assignement X f----+ Ko(V I X) is a covariant 
functor. The pullback 

f*: Ko(VIX)--> Ko(VIX') 

is defined as follows: for a fiber square 

Y'~X' 

!' 1 
Y~X 

the pullback f*[Y ~ X] .- [Y' L X']. With this pullback, the 
assignement X f----+ K 0 (V I X) is a contravariant functor. 

Theorem (5.2). Let Ko(V I X) be the Grothendieck group of mor
phisms over X. Then there exists a unique natural transformation 

such that for X nonsingular 

"d -
Ty([X ~X])= td(y)(X) n [X]. 
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And we have the following theorem: 

Theorem (5.3). (y = -1) There exists a unique natural trans

formation t:: Ko(V I ) --t F( ) such that for X nonsingular c:([X ~ 
X]) = lix. And the following diagram commutes 

Ko(V I X)------~ F(X) 

~ /. 
(y = 0) There exists a unique natural transformation "Y: Ko(V I ) --t 

G 0 ( ) such that for X nonsingular "Y([X ~ X]) = [Ox]. And the 
following diagram commutes 

Ko(VIX) ----"~---+Go(X) 

~~ 
(y = 1) There exists a unique natural transformation w: K 0 (V I ) --t 

!1( ) such that for X nonsingular w([X ~X])= [Qx[2 dimXl]. And 
the following diagram commutes 

Ko(VIX) ___ w ___ ~n(X) 

~/. 
An original proof of Theorem (5.2) uses Saito's theory of mixed 

Hodge modules [Sai] and it turns out that it can be also proved without 
it and, instead, via a Bittner-Looijenga's theorem about the relative 
Grothendieck group [Bit]. 

§6. Bivariant Theories 

In [FM] W. Fulton and R. MacPherson introduced the notion of 
Bivariant Theory, which is a simultaneous generalization of a pair of 
covariant and contravariant functors. Most pairs of covariant and con
travariant theories, e.g., such as homology theory, K-theory, etc, extend 
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to bivariant theories. They also introduced the operational bivariant the
ory (also see [Fu]), which can be always constructed from any covariant 
functor. 

A bivariant theory lffi on a category C with values in the category 

of abelian groups is an assignment to each morphism X L Y in the 

category C a graded abelian group lffi(X L Y), which is equipped with 
the following three basic operations: 
(Product operations): For morphisms f: X ~ Y and g: Y ~ Z, the 
product operation 

• : lffi(X L Y) ® B(Y ___!!___. Z) ~ lffi(X ~ Z) 

is defined. 
(Pushforward operations): For morphisms f: X ~ Y and g: Y ~ Z 
with f proper, the pushforward operation 

f*: lffi(X ~ Z) ~ B(Y ___!!___. Z) 

is defined. 
(Pullback operations): For a fiber square 

the pullback operation 

!'1 11 

Y' ----+ Y, 
g 

g*: lffi(X L Y) ~ lffi(X' L Y') 

is defined. And these three operations are required to satisfy the seven 
compatibility axioms (see [FM, Part I, §2.2] for details). 

Let lffi, B' be two bivariant theories on a category C. Then a Grothen
dieck transformation from lffi to lffi' 

"(: lffi~B' 

is a collection of homomorphisms 

lffi(X ~ Y) ~ B'(X ~ Y) 

for a morphism X ~ Y in the category C, which preserves the above 
three basic operations: 
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( i) 'Y(a •!$ (3) = 'Y(a) •!$' 'Y(f3), 
(ii) ')'(/*a)= f*'Y(a), and 
(iii) 'Y(g*a) = g*'Y(a). 
B*(X) := B(X--+ pt) and B*(X) := B(X ~X) become a covari

ant functor and a contravariant functor, respectively. And a Grothen
dieck transformation 'Y: B --+ B' induces natural transformations ~'* : B* 
--+ B~ and 'Y*: B* --+ B'*. If we have a Grothendieck transformation 

')': B --+ B', then via a bivariant class b E B(X __!__. Y) we get the 
commutative diagram 

'Y· 
~ B~(Y) 

1 'Y(b)• 

~ B~(X). 
'Y• 

This is called the Verdier-type Riemann-Roch formula associated to the 
bivariant class b. 

Fulton-MacPherson's bivariant group IF(X L Y) of constructible 
functions consists of all the constructible functions on X which satisfy 
the local Euler condition with respect to f. Here a constructible function 
a E F(X) is said to satisfy the local Euler condition with respect to f 
if for any point x EX and for any local embedding (X, x) --+ (CN, 0) 
the equality a(x) = x (B, n f- 1 (z); a) holds, where B, is a sufficiently 
small open ball of the origin 0 with radius f and z is any point close to 
f(x) (cf. [Brl], [Sa]). In particular, if D.J := D.x belongs to the bivariant 

group IF(X L Y), then the morphism f: X --+ Y is called an Euler 
morphism. For example, a holomorphic submersion between complex 
spaces is an Euler morphism. 

The three operations on IF are defined as follows: 

( i ) the product operation •: IF(X L Y) 1811F(Y _!!__, Z) --+ IF(X -.!!.L 
Z) is defined by 

a • (3 :=a· f* (3, 

( ii) the pushforward operation f*: IF(X -.!!.L Z) --+ IF(Y _!!__, Z) is 
the usual pushforward f*, i.e., 
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(iii) for a fiber square 

X'~X 

!' 1 lf 
Y' ------+ Y, 

g 

313 

the pullback operation g*: JF(X _!__, Y) __, lF(X' L Y') is the func
tional pullback g'*, i.e .. , 

g*(a)(x') := a(g'(x')). 

Note that for any bivariant constructible function a E JF(X _!__, Y), 
the Euler-Poincare characteristic x(f- 1(y);a) = J c*(aiJ-l(y)) of a 
restricted to each fiber f- 1 (y) is locally constant, i.e., constant along 
connected components of the base variety Y; in particular, iff: X __, Y 
is an Euler morphism, then the Euler-Poincare characteristic of the 
fibers are locally constant. 

The correspondence lF8 (X __, Y) := F(X) assigning to a morphism 
f: X__, Y the abelian group F(X) of the source variety X, whatever 
the morphism f is, becomes a bivariant theory with the same operations 
above. This bivariant theory is called the simple bivariant theory of con
structible functions (see [Y3] and [Sch3]). In passing, what we need to 
do to show that the Fulton-MacPherson's group of constructible func
tions satisfying the local Euler condition with respect to a morphism is 
a bivariant theory is to show that the local Euler condition with respect 
to a morphism is preserved by each of the above three operations. 

Let lHI be Fulton-MacPherson's bivariant homology theory, con
structed from the cohomology theory [FM, §3.1]. W. Fulton and R. 
MacPherson conjectured or posed as a question the existence of a so
called bivariant Chern class and J.-P. Brasselet [Brl] solved it: 

Theorem (6.1) (J.-P. Brasselet). For the category of embed
dable complex analytic varieties with cellular morphisms, there exists 
a Grothendieck transformation 

TlF--tlHI 

such that for a morphism f : X __, pt from a nonsingular variety X to a 
point pt and the bivariant constructible function D. f := D.x the following 
normalization condition holds: 

J'(D.t) = c(TX) n [X]. 
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In [Zl, Z2] J. Zhou showed that the bivariant Chern classes con
structed by J.-P. Brasselet [Brl] and by C. Sabbah [Sa] are identical 
in the case when the target variety is a nonsingular curve. And the 
present author showed the following uniqueness theorem of bivariant 
Chern classes for morphisms whose target varieties are nonsingular and 
of any dimension: 

Theorem (6.2}([Y4, Theorem (3.7)]). If there exists a bivariant 
Chern class '"Y: IF ~ lHI, then it is unique when restricted to morphisms 
whose target varieties are nonsingular; explicitly, for a morphism f: X 
~ Y with Y nonsingular and for any bivariant constructible function 

a E IF(X ~ Y) the bivariant Chern class '"Y(a) is expressed by 

where s(TY) := c(TY)- 1 is the Segre class of the tangent bundle. 

See [Sch3] and [Y5, Y6, Y7, Y8, Y9] for other related results. 
And in [BSYl] (see also [BSY4]) the above theorem is furthermore 

generalized to the case when the target variety can be singular but is 
"like a manifold" : 

Theorem (6.3). Let Y be a complex analytic variety which is an 
oriented A-homology manifold. If there exists a bivariant Chern class 
'"Y: IF ~ lHI, then for any morphism f : X ~ Y the bivariant Chern class 

'"Y!: IF(X ~ Y) Q9 A~ JHI(X ~ Y) Q9 A is uniquely determined and it 
is described by 

Here c*(Y) is the unique cohomology class such that c*(liy) = c*(Y) n 
[Y]. (Note that c*(Y) is invertible.) 

Notice that c*(Y) = c(TY) for Y smooth and thus Theorem (6.3) 
indeed generalizes Theorem (6.2). 

Remark (6.4). As to the uniqueness of operational bivariant 
Chern class [EYl, EY2] and operational bivariant Riemann-Roch [FM], 
one can also use a result due to S.-I. Kimura [Kiml] (also see [Kim2]). 

Remark (6.5). In [BSYl] we have also shown that a natural 
transformation of covariant theories extends uniquely to a Grothendieck 
transformation of suitable bivariant subtheories associated to them, pro
vided that the given transformation commutes with exterior products. 
This gives in a sense a positive solution to [FM, §10.9 Uniqueness ques
tions]. For more details of this result and other results, see [BSYl]. 
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Hence it follows from this general result that our natural transformation 
Ty: Ko(V I ) ~ H*( ) Q9 Q[y] can be extended to a suitable bivariant 
version. Here, to get the suitable bivariant subtheories, the bivariant 
theories associated to the covariant functors which we consider are re
spectively the simple bivariant theory ocg(V I X ~ Y) := Ko(V I X), 
just like the simple bivariant theory IF8 of constructible functions as 
above, and the Fulton-MacPherson's bivariant homology theory lBI de
scribed above. 

§7. Proconstructible functions and Euler-Poincare character
istics of proalgebraic varieties 

Let I be a directed set and let C be a given category. Then a 
projective system is, by definition, a system 

consisting of objects Xi E Obj(C), morphisms rrii': Xi' ~Xi E Mor(C) 
for each i < i' and the index set I. The object Xi is called a term and 
the morphism 1rii' : xi' ~ xi a bonding morphism or structure morphism 
([MS]). The projective system 

is sometimes simply denoted by {Xi}iEI· 
Given a category C, Pro-C is the category whose objects are pro

jective systems X = {XihEr in C and whose set of morphisms from 
X= {XihEI toY= {lJ}jEJ is 

Pro-C(X, Y) := fu!!(fu!}C(Xi, lj)). 
J I 

Note that given a projective system X = {XihEI E Pro-C, the 
projective limit X 00 := fu!! Xi may not exist or may not belong to the 
source category C; for a certain sufficient condition for the existence of 
the projective limit in the category C, see [MS] for example. 

An object in Pro-C is called a pro-object. A projective system of 
algebraic varieties is called a pro-algebraic variety or simply pro-variety 
and its projective limit is called a proalgebraic variety or simply prova
riety, which may not be an algebraic variety but simply a topological 
space. 

Remark (7.1). In Etale Homotopy Theory [AM] and Shape The
ory (e.g., see [Boru], [Ed], [MS]) they stay in the pro-category and do 
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not consider limits and colimits, because doing so throw away some geo
metric informations (also see [Grot2]). 

A pro-morphism between two pro-objects is quite complicated. How
ever, it follows from [MSJ that the pro-morphism can be described more 
naturally as a so-called level preserving pro-morphism. Suppose that we 
have two pro-algebraic varieties X= {X'"Y}'"YEr andY= {Y>.h.EA· Then 
a pro-algebraic morphism <P = U>-h.EA: X----+ Y is described as follows: 
there is an order-preserving map~: A----+ r, i.e., ~(>.) < ~(J.-L) for>. < J.-L, 

and for each>. E A there is a morphism fA: X~(>.) ----+ Y>. such that for 
>. < J.-L the following diagram commutes: 

x~<J.'l ''" y~-' -----+ 

P~(>-.)~(1") 1 1n>o.'" 
X~(>.) -----+ Y>., 

!A 

Then, the projective limit of the system {/A} is a morphism from the 
provariety X 00 = fu!!>-EAX>. to the provariety Yoo = fu!!'"YuY>.. It is 
called a promorphism and denoted by foo: X 00 ----+ Yeo. 

From here on, for the sake of simplicity, we only deal with the case 
when the directed set A is the natural numbers N and a pro-morphism 
Un} of two pro-varieties {Xn} and {Yn} is such that for each n the 
following diagram commutes: 

Xn+l 
fn+l 

Yn+l -----+ 

Pn(n+l) 1 1 nn(n+l) 

Xn -----+ Yn. 
fn 

The projective system {Xn} induces the projective system of abelian 
groups of constructible functions: 

{F(Xn), 11"nm*: F(Xm)----+ F(Xn)(n < m)}. 

And a system of morphims f n : Xn ----+ Yn induces the system of homo
morphisms 
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Thus the system of commutative diagrams 

F(Xm) fm* F(Ym) ------+ 

Pnm•1 1nnm* 

F(Xn) ------+ F(Yn), 
fn* 

induces the homomorphism 

n n 

Similarly we get the homomorphism of the projective limits of homology 
groups 

f*oo: li!!lH*(Xn) ______.li!!lH*(Yn)· 
n n 

Furthermore the commutative diagram of Chern-Schwartz-MacPherson 
class homomorphisms 

F(Xm) c. 
H*(Xm) ------+ 

nnm* 1 1 nnm* 

F(Xn) ------+ H*(Xn), 
c. 

induces the projective limit of MacPherson's Chern class transforma
tions: 

n n 

So, we define, for the proalgebraic variety X 00 = ll!!1 >-.EAX>-., 

n n 

If we define pro c* : pro F ______. pro H * to be the above c* 00 and define 
foo* to be the above f*oo' then we have a naive proalgebraic version of 
MacPherson's Chern class transformation 

pro c*: proF______. pro H*, 
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i.e., for a proalgebraic morphism / 00 : Xoo -4 Yoo we have the commu
tative diagram 

Although the above construction by taking the projective limits is 
quite easy, the structure of the progroup pro F(X00 ) is not so obvious 
and also it is not obvious how to capture an element of ll!!! nF(Xn) as a 
function on the proalgebraic variety Xoo = ll!!!nXn. 

Remark (7.2). In [Alu3] P. Aluffi considered the above projec
tive limit for a certain special projective system of morphisms called 
modification system, which is more precisely a projective system of hi
rational morphisms. 

So, we consider the inductive limits: 

Definition (7.3). For a proalgebraic variety Xoo = ~nXn, the 
inductive limit of the inductive system {F(Xn), P~m: F(Xn) -4 F(Xm) 
(n < m)} is denoted by FPro(X00 ); 

ppro(Xoo) := lli!}F(Xn) = UPn (F(Xn)) 
n n 

where pn: F(Xn) -4 lli!}nF(Xn) is the homomorphism sending an to 
its equivalence class [an] of an. An element of the group ppro(Xoo) is 
called a proconstructible function on the proalgebraic variety X 00 • As a 
function on X 00 , the value of [an] at a point (xm) E X 00 is defined by 

The terminology proconstructible is used in [Groml] (cf. [Grom2]), 
but its definition is not given there. 

Lemma (7.4). For each positive integer n, let Gn = Z be the 
integers and 11'n, n+l: Gn -4 Gn+l be the homomorphism defined by mul
tiplication by a non-zero integer Pn, i.e., 11'n,n+I(m) = mpn. Then there 
exists a unique (injective) homomorphism 
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such that the following diagram commutes 

Here we set Po := 1. 

Using this lemma we can show the following theorem: 

Theorem (7.5). Let Xoo = \!!!!nENXn be a provariety such that 
for each n the structure morphism 1l"n(n+l): Xn+l ---+ Xn satisfies the 
condition that the Euler-Poincare characteristics of the fibers of 1l"n, n+l 

are non-zero (which implies the surjectivity of the morphism 1l"n(n+l)) 

and the same; for example, 1l"n(n+l): Xn+l ---+ Xn is a locally trivial 
fiber bundle with fiber variety being Fn and x(Fn) =/=- 0. Let us denote 
the constant Euler-Poincare characteristic of the fibers of the morphism 
1l"n(n+l): Xn+l ---+ Xn by Xn and we set Xo := 1. 

( i) The canonical Euler-Poincare (pro) characteristic homomor
phism, i.e., a "canonical realization" of the inductive limit of the Euler
Poincare characteristic homomorphisms {x: F(Xn) ---+ Z}nEN, is de
scribed as the homomorphism 

defined by 

(Here "canonical realization" means "through the injective homomor
phism in the above lemma".) 

(ii) In particular, if the Euler-Poincare characteristics Xn are all 
the same, say Xn = X for any n, then the canonical Euler-Poincare 
(pro)characteristic homomorphism Xpro: FPro(Xoo) ---+ Q is described by 

xpro ([an])= ~~a_n(. 

In this special case, the target ring Q can be replaced by the ring Z [1/x]. 

In a more special case, the target ring Q in the above theorem can 
be replaced by the Grothendieck ring of varieties. 
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Let K 0 (Vc) be the Grothendieck ring of algebraic varieties, i.e., the 
free abelian group generated by the isomorphism classes of varieties mod
ulo the subgroup generated by elements of the form [V] - [V'J - [V \ V'J 
for a closed subset V' c V with the ring structure [V] · [W] := [V x W]. 
There are distinguished elements in Ko(Vc): :n. is the class [p] of a point 
p and lL is the Tate class [C] of the affine line C. From this definition, 
we can see that any constructible set of a variety determines an element 
in the Grothendieck ring Ko(Vc). Provisionally the element [V] in the 
Grothendieck ring K 0 (Vc) is called the Grothendieck "motivic" class of 
V and let us denote it by f(V). Hence we get the following homomor
phism, called the Grothendieck "motivic" class homomorphism: for any 
variety X 

r: F(X) ---> Ko(Vc), 

which is defined by 

r(a) = 2::: n [a- 1 (n)J . 
nEZ 

Or f("Eav:D.v) := I:av[V] where Vis a constructible set in X and 
av E z. From now on, we somtimes write [a] for r(a) for a constructible 
function a. 

This Grothendieck "motivic" class homomorphism is tautological 
and its more "geometric" one is the Euler-Poincare characteristic ho
momorphsim x: F(X) ---> Z. The above theorem is about extend
ing the Euler-Poincare characteristic homomorphsim x: F(X) ---> Z 
to the category of proalgebraic varieties. Thus a very natural prob
lem is to generalize the Grothendieck "motivic" class homomorphism 
r: F(X) ---> Ko(Vc) to the category of proalgebraic varieties. Here one 
should be a bit careful; the Grothendieck ring K 0 (Vc) is not a domain 
unlike the ring Z of integers as shown recently by B. Poonen [Po, The
orem 1]. 

Theorem (7.6). Let X 00 = \!!!!nENXn be a proalgebraic vari
ety such that each structure morphism 1l"n(n+l): Xn+l ---> Xn satisfies 
the condition that for each n there exists a "fn E K 0 (Vc) such that 
[7rn(n+l) -l(Sn)] = "fn · [Sn] for any constructible set Sn C Xn, for ex
ample, 1l"n(n+l) : Xn+l ---> Xn is a Zariski locally trivial fiber bundle with 
fiber variety being Fn (in which case "fn = [Fn]). 

( i) The canonical Grothendieck "motivic" proclass homomorphism, 
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is described by 

rpro ([an]) = [an] 
/'0 · /'1 · /'2 · · "/'n-1 

Here /'o := n. and Ko(Vc)g is the localization of Ko(Vc) with respect to 
the multiplicative set consisting of all the finite products of l';'j, i.e, 

(ii) In particular, if all the fibers are the same, say l'n = 1' for any 
n, then the canonical Grothendieck "motivic" (in d) class homomorphism 

is described by 

In this special case the quotient ring Ko(Vc)g shall be simply denoted by 
Ko(Vc)--y. 

Thus one can see that the so-called motivic measure (e.g., see [Bit], 
[Cr], [DLl, DL2], [Kon], [Loo], [Ve], etc., and also see [Na]) is a natural 
and reasonable object from the viewpoint of proconstructible functions. 
For a more general case when 1fn(n+1): Xn+1 ---) Xn is not necessarily a 
Zariski locally trivial fiber bundle, see [YlO]. In this sense, our definition 
of proconstructible function is quite reasonable. 

§8. Characteristic classes of proalgebraic varieties 

In this section we make a quick review of the author's recent work on 
characteristic classes of proalgebraic varities (for more details see [YlO, 
Yll]). 

Theorem (7.5) can be extended to a class version c~ro via the Bi
variant Theory, in particular a bivariant Chern class [Brl J. Note that 
for a morphism f: X ---) pt from a variety X to a point pt, T IF(X ---) 
pt) ---) JHI(X ---) pt) is nothing but the original MacPherson's Chern class 
transformation c.: F(X)---) H.(X). 

Theorem (8.1)(Verdier-type Riemann-Roch formula for Chern 

classes) For a bivariant constructible function a E IF(X L Y) we 
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have the following commutative diagram: 

F(Y) c. 
---+ 

In particular, for an Euler morphism we have the following diagram: 

F(Y) c. 
---+ 

c. 

( The homomorphism 'Y ( :0. f) •lHf shall be denoted by f* * . ) 

For example, for a holomorphic submersion f: X ---+ Y of complex 
varieties one gets 'Y(l f )•lHf = c(TJ) n f*, where f* is the smooth pullback 
in homology and Tf is the relative tangent bundle of the morphism f. 

Using this Verdier-Riemann-Roch for Chern class (also see [FM] 
and [Schl]), we can get the following theorem: 

Theorem (8.2). Let Xoo = \!!!! nXn be a proalgebraic variety 
such that for each n < m the structure morphism 7rnm: Xm ---+ Xn is 
an Euler proper morphism (hence surjective) of topologically connected 
algebraic varieties. Let Hf!0 (X00 ) be the inductive limit of the inductive 
system { 1r~;,.: H* (Xn) ---+ H* (Xm)}. Then there exists a proalgebraic 
MacPherson's Chern class homomorphism 

c;ro: Fpro(Xoo)---+ H~!0 (Xoo) defined by c~ro ([an])= pn(c*(an)). 

What we have done so far is the proalgebraic Chern-Schwartz
MacPherson class homomorphism, and our eventual problem is whether 
one can capture this homomorphism as a natural transformation as in 
the original MacPherson's Chern class transformation. 

If the commutative diagram 

Ym 
fm 

Xm ---+ 

Pnm 1 1 ~nm 
Yn ---+ Xn 

fn 

is a fiber square, then we call the pro-morphism Un: Yn ---+ Xn} a fiber
square pro-morphism, abusing words. 
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Theorem (8.3). Let Un: Yn ---+ Xn} be a fiber-square pro-mor
phism between two pro-algebraic varieties with structure morphisms be
ing Euler morphisms. Then we have the following commutative diagram: 

ppro(Yoo) 
c~ro 

Hf!0 (Yoo) -----+ 

f,.,.l lfoo. 
ppro(Xoo) -----+ Hf!0 (Xoo)· 

pro 
c. 

This can be furthermore generalized. First we introduce the fol
lowing notion. For a morphism f : X ---+ Y and a bivariant class b E 

lffi(X --L Y), the pair (!;b) is called a bivariant-class-equipped mor
phism and we just express (!; b) : X ---+ Y. If a system { bnm} of bivariant 
classes satisfies that 

bnm. bln = blm (l < n < m), 

then we call the system a projective system of bivariant classes, abusing 
words. If { 1fnm: Xm ---+ Xn} and {bnm} are projective systems, then 
the system { (7rnmi bnm): Xm---+ Xn} shall be called a projective system 
of bivariant-class-equipped morphisms. 

For a bivariant theory lffi on the category C and for a projective 
system { (7r>.ILi b>.IL): XIL ---+X>.} of bivariant-class-equipped morphisms, 
the inductive limit 

~{B*(Xn), bnm•: B*(Xn)---+ B*(Xm)} 
n 

shall be denoted by 

emphasizing the projective system {bnm} of bivariant classes, because 
the above inductive limit surely depends on the choice of it. For example, 
in Theorem (7.4) we have that 

ppro(X ) = pPro(x . {n }) 
<X> * 00' 'Trnm. • 

Our more general theorem is the following 

Theorem (8.4). ( i) Let -y: B ---+ lffi' be a Grothendieck transfor
mation between two bivariant theories lffi, lffi' : C ---+ C' and let 
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be a projective system of bivariant-class-equipped morphisms. Then we 
get the following pro-version of the natural transformation r•: B. -+ B:: 

~~ro: B~ro(Xoo; {bnm})-+ B~pro(Xoo; {r(bnm)}). 

(ii) Let {fn: Yn -+ Xn} be a fiber-square pro-morphism between 
two projective systems of bivariant-class-equipped morphisms such that 
bnm = t::bnm· Then we have the following commutative diagram: 

B~ro(Yoo) 
')'~ro 

B'~ro(Yoo) --------> 

f=. 1 lf=· 
B~ro(Xoo) --------> B'~ro (Xoo). 

pro 
'Y· 

As remarked in Remark (6.5), the "motivic" characteristic class 
Ty: K 0 (V I ) -+ H.( ) 0 IQ[y] can be extended to a Grothendieck 
transformation of suitable bivariant theories. Therefore it follows from 
the above general Theorem (8.4) that the "motivic" characteristic class 
Ty: K 0 (V I ) -+ H. ( ) ®IQ[y] can be extended in a suitable way to a 
category of provarieties. More details and some other related work will 
be done in a different paper. 

We hope to do further investigations on (motivic) characteristic 
classes of proalgebraic varieties and some applications of them. (Also, 
see recent articles [Alu2, Alu3], [dFLNU], [01, 02], [PM], [To], [Ve] etc.) 
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