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Duality of Euler data for affine varieties 

Mihai Tibar 

Abstract. 

We compare the Euler-Poincare characteristic to the global Euler 
obstruction, in case of singular affine varieties, and point out a cer­
tain duality among their expressions in terms of strata of a Whitney 
stratification. 

The local Euler obstruction was defined by MacPherson [MP], as a 
key ingredient for introducing Chern classes for singular spaces. Results 
on the local Euler obstruction have been obtained during the time by, 
among others, A. Dubson, M.-H. Schwartz, J.-P. Brasselet, G. Gonzalez­
Sprinberg, B. Teissier, Le D.T, J. Schiirmann, J. Seade. Some of them 
are surveyed in [Br] and [Sch2]. For more recent results and generaliza­
tions one can look up [BLS, BMPS, Sch1, STVl, STV2]. 

For a connected singular algebraic closed affine spaceY C eN we 
have defined in [STVl] a global Euler obstruction Eu(Y). The definition 
in the global setting can be traced back to Dubson's viewpoint [Du]. It 
immediately follows that, for a non-singular Y, Eu(Y) equals the Euler 
characteristic x(Y). The natural question that we address here is how 
these two "Euler data" compare to each other whenever Y is singular. 

Both objects, Eu and x, can be viewed as constructible functions 
with respect to some Whitney (b)-regular algebraic stratification of Y. 
Let us fix such a stratification A= {AihEA on Y. We first show how 
Eu(Y) and x(Y) can be expressed in terms of strata such that the for­
mulas are, in a certain sense, dual: 

(0.1) Eu(Y) = L x(Ai) Euy(A), 
iEA 

(0.2) x(Y) = LEu(A)x(NMD(A)). 
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The duality consists in the observation that the formulas are ob­
tained one from another by interchanging Eu with X. To the Euler char­
acteristic x(A;) of some stratum A; in formula (0.1) corresponds the 
global Euler obstruction Eu(A;) of the same stratum in formula (0.2). 
The latter has the following meaning: as it will be explained in §1, the 
Euler obstruction Eu(A;) of the algebraic closure A; of A in c_N is well 
defined and depends only on the open part A;. We may therefore set 
Eu(A) := Eu(A;). In case of a point-stratum {y}, we set Eu({y}) = 1. 

Let us explain how the "normal Euler data" x(NMD(A;)) and 
Euy(A;) fit into this correspondence. Both data are attached to a gen­
eral slice M of complementary dimension of the stratum A; at some 
point p; E A;. 

Firstly, NMD(A;) stands for the normal Morse data of the stratum 
A; (after Goresky-MacPherson's [GM]), i.e. the Morse data of (M, p;), 
see §2. 

Secondly, Euy(A;) denotes the normal Euler obstruction of the stra­
tum A;, i.e. the local Euler obstruction of M at p;. 

It is known that both data are independent on the choices of M and 
of p;. We refer to §2 for the definitions and more details. 

We finally consider the case when Y is a locally complete intersec­
tion with arbitrary singularities. We show (Proposition 3.1) how the 
difference x(Y) - Eu(Y) can be expressed in terms of Betti numbers of 
complex links and the polar invariants ay defined in §1. If the singular­
ities are isolated then the difference x(Y) - Eu(Y) measures the total 
"quantity of slice-singularities" of Y, see (3.3). 

For another comparison of the Euler characteristic, namely to the 
total curvature, in case of an affine hypersurface, we send the reader to 
[ST]. 

§1. Global Euler obstruction 

Since Y C rr:_N is affine, one has a well defined link at infinity of Y, 
denoted by Koo(Y) := y n SR. It follows from Milnor's finiteness argu­
ment [Mi, Cor. 2.8] and from standard isotopy arguments that K 00 (Y) 
does not depend on the radius R, provided that R is large enough. 

Let Y = closure{(x, TxYreg) I x E Yreg} C Y x G(d, N) be the Nash 
blow-up of Y, where G(d, N) is the Grassmannian of complex d-planes 
in c_N. Let v: Y ---> Y denote the natural projection and let T denote 
the restriction over Y of the bundle c_N x U(d, N) ---> rr:_N x G(d, N), 
where U(d, N) is th~ tautological bundle over G(d, N). This is the 
"Nash bundle" over Y. We next consider a continuous, stratified vector 
field v on a subset V C Y. The restriction of v to V has a well-defined 
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canonical lifting v to v-1 (V) as a section of the Nash bundle f --> Y 
(see e.g. [BS], Prop. 9.1). 

We refer to [STV1] for other details concerning the following defini­
tion (which can be traced back to Dubson's approach), and in particular 
for the discussion on the independence on the choices: 

Definition 1.1. Let v be the lifting to a section of the Nash bun­
dle f of a stratified vector field v over K 00 (Y) = Y n SR, which is 
radial with respect to the sphere SR. The obstruction to extend vas a 
nowhere zero section off within v- 1(Y n BR) is a relative cohomology 
class o(v) E H 2d(v-1(Y n BR), v- 1(Y n SR)) ':::::' H 2d(Y). 

One calls global Euler obstruction of Y, and denotes it by Eu(Y), 
the evaluation of o(v) on the fundamental class of the pair (v- 1(YnBR), 
v- 1(Y n SR)). 

By obstruction theory, Eu(Y) is an integer and does not depend on 
the radius of the sphere defining the link at infinity Koo(Y). We have 
shown in [STV1, Theorem 3.4] that Eu(Y) can be expressed in terms of 
polar multiplicities as follows, denoting d = dim Y: 

d+l 

(1.1) Eu(Y) = ·~:) -1)d-i+la~), 
j=l 

where: 

(1.2) a~) :=the number of Morse points 

of a global generic linear function onY;.eg· 

After taking a general hyperplane slice H n Y, the second number is 
a~) := a~~y· This continues by induction and yields a sequence of 
non-negative integers: 

(1) (2) (d) 
ay , ay , ... , ay , 

which we complete by a~+l) := the number of points of the intersection 
of Yreg with a global generic codimension d plane in eN. 

Of course a~) depends on the embedding of y into eN. Neverthe­
less, these invariants (and therefore, by the equality (1.1), Eu(Y) too) 
depend only on some Zariski open part of Y. Now, for a stratum Ai 
from the stratification A= {Ai}iEA of Y, the global Euler obstruction 
Eu(~) of its Zariski closure~ is well-defined. However, since we have 
seen that this depends only on the open part Ai, we can use the notation 
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Eu(Ai) for Eu(Ai)· This convention explains the occurrence of Eu(Ai) 
instead of Eu(Ai) in formula (0.2). 

If the highest dimensional stratum is denoted by Ao, then we have 
Ao = Y and therefore Eu(Y) = Eu(Ao). 

§2. The dual formula 

The equality (0.1) was explained in [STV1]. It follows by Dubson's 
[Du, Theorem 1] applied to our setting. In case of germs of spaces a 
similar formula was proved in [BLS, Theorem 3.1] by using the Lefschetz 
slicing method. A different proof may be derived from [BS, Theorem 
4.1]. For a more general proof, in terms of constructible functions, we 
send to [Sch2, (5.65)]. 

We now give a proof of the equality (0.2). This can be viewed as 
a global index theorem, similar to Kashiwara's local index theorem (see 
for this [Sch2, (5.38), (5.38)]). Our proof will only use the equality (1.1). 

Definition 2.1 (cf. [GM]). The complex link of a space germ 
(X, x) is the general fibre in the local Milnor-Le fibration defined by 
a general (linear) function germ at x. Up to homotopy type, this does 
not depend on the stratification or the choices of the representatives of 
the space or of the general function. 

Let CLy ( Ai) denote the complex link of the stratum A of Y. This is 
by definition the complex link of the germ (Ni, Pi), where Ni is a generic 
slice of Y at some Pi E Ai, of co dimension equal to the dimension of Ai. 
Let us remark that the complex link of a point-stratum {y} is precisely 
the complex link of the germ (Y, y). 

Let Cone(CLy(Ai)) denote the cone over this complex link. We 
denote by NMD(Ai) the normal Morse data at some point of Ai, that 
is the pair of spaces (Cone(CLy(Ai)), CLy(Ai)). After Goresky and 
MacPherson [GM], the local normal Morse data are local invariants up 
to homotopy and do not depend on the various choices in cause. The 
complex link of the highest dimensional stratum Ao is empty, and we 
set by definition x(NMD(Ao)) = 1. In the same case, for the normal 
Euler obstruction we have Euy(Ao) = 1 by definition. 

Theorem 2.2. Let Y C CN be an algebraic closed affine space 
and let A = { Ai hE A be some Whitney stratification of Y. Then: 

(2.1) x(Y) = LEu(Ai)x(NMD(A)). 
iEA 

Proof. Take an affine Lefschetz pencil of hyperplanes in eN defined 
by a linear function lH: eN ___, c. By the genericity of the pencil, there 
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are only finitely many stratified Morse singularities of the pencil, each 
one contained in a different slice. By the definition (1.2), the number 
of stratified Morse points on a stratum A; of dimension > 0 is precisely 

(dim A,) 
a .A, 

According to the Lefschetz slicing method applied to singular spaces 
(see e.g. [GM]), the spaceY is obtained from a generic hyperplane slice 
Y n 1-l of the pencil, to which are attached cones over the complex links 
of each singularity of the pencil. Goresky and MacPherson have proved 
that the Milnor data of a stratified Morse function germ is the (dimAi)­
times suspension of NMD(Ai)· At the level of Euler characteristic, we 
then have: 

(2.2) x(Y) = x(Y n 7-l) + ~) -1)dimA;a~!x(NMD(A;)), 
iEA 

The sign ( -1 )dim A; is due to the repeated suspension of the normal 

Morse data. By convention, for 0 dimensional strata Ai we put a~! := 1, 

and therefore Eu(Ai) = 1. We apply formula (2.2) to Y n 1-l and to the 
successive generic slicings in decreasing dimensions. In the resulting 
equality, we get the sum of all the coeffi.ents of x(NMD(A;)), for each 
i EA. We may then identify this sum to Eu(~) via the formula (1.1). 
This ends our proof. Q.E.D. 

§3. Case of locally complete intersections 

We consider here the case of a locally complete intersection Y c c_N 
of dimension d, with arbitrary singularities. Being a locally complete 
intersection implies however that the complex link of any stratum Ai 
is homotopy equivalent to a bouquet of spheres of dimension equal to 
codimy A;- 1, by Le's result [Le]. Let bd-dimA;-l(CLy(Ai)) denote 
the Betti number of this complex link. One can then write the formula 
(2.2) in the following form: 

(3.1) x(Y) = x(Y n 7-l) + ( -1)d(a~) + ,B~)) 

where ,B~) collects the contributions from all the lower dimensional 
strata in the sum (2.2), more precisely, under our assumption we have: 

,B~) := L a~!bd-dimA;-l(CLy(A;)). 
iEA\{0} 

According to their definitions, a~) and ,aV) are both non-negative in­
tegers. Their sum represents the number of d-cells which have to be 
attached to Y n 1-l in order to obtain Y. 
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Let us define rifl for k ~ 2, by: 

/3 (2) ·- /3(1) 
Y .- YnH 

and so on by induction, for successive slices of Y, as in case of the 
a~) -series defined before. 1 

After repeatedly applying (3.1), and then using (1.1), we get the 
following expression of the difference among the two Euler data: 

Proposition 3.1. 

d 

(3.2) x(Y)- Eu(Y) = L( -1)d-k+113~l. 
k=1 

Remark 3.2. Let us see what becomes this difference in case Y 
is a hypersurface, or a locally complete intersection, with isolated sin­
gularities. For an isolated singular point q E Y, let p,~d- 1 ) (Y) denote 
the Milnor number of the local complete intersection (Y n 7-l, q) which 
is the result of slicing Y by a generic hyperplane 'H. In case Y is a 
hypersurface, this is the second highest Milnor-Teissier number in the 
sequence p,;(Y). We get: 

(3.3) x(Y)- Eu(Y) = ( -1)d L p,~d- 1 l(Y). 
qESingY 

Since by convention a~~)} = 1, and since bd_ 1 (CLy( { q})) = p,~d-l)(Y), 
formula (3.3) is indeed a particular case of formula (3.2). This can be 
also proved by using the local Euler obstruction formula [BLS, Theorem 
3.1]. 
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