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Perverse sheaves and Milnor fibers 
over singular varieties 

Kiyoshi Takeuchi 

Abstract. 

We review some recent applications of perverse sheaves (intersec­
tion cohomologies) in singularity theory. Milnor fibers over general 
complete intersection varieties will be treated. We also give a proof 
of a result announced in (31]. 

§1. Introduction 

The aim of this note is to introduce some recent applications of 
perverse sheaves (intersection cohomologies) to the study of complex 
hypersurface singularities. In the last two decades the theory of Milnor 
fibrations (see for example, Milnor [29], Dimca [7] etc.) was extended to 
the Milnor fibers over singular varieties. In particular, for any holomor­
phic function f with (stratified) isolated singularity on any complete 
intersection variety, Le [21], Siersma [34] and Tibar [35] proved that 
the Milnor fiber of f admits a bouquet decomposition. This result is 
of course a vast generalization of Milnor's result, but the fact that the 
cohomological type of the Milnor fiber of f is the same as that of a bou­
quet of spheres can be easily deduced from the theory of perverse sheaves 
(see Theorem 2.2 below). It seems therefore that the above mentioned 
authors studied the topological or homotopy types of Milnor fibers mo­
tivated by this cohomological result obtained by perverse sheaves. This 
example shows that a general result in the theory of perverse sheaves 
sometimes can become a good guide principle in the study of singularity 
theory. In this short note, we explain some new topological constraints 
of general hypersurface singularities obtained by perverse sheaves. We 
hope that these results will help our understanding of non-isolated hy­
persurface singularities. 
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§2. Milnor fibers over complete intersection varieties 

In this section we review some recent results on the topology of 
Milnor fibers over singular varieties. Let X be an irreducible analytic 
subset (or an algebraic subvariety) of <eN of dimension n + 1 containing 
the origin 0 E ·<eN. Throughout this note, unless otherwise stated, we 
assume moreover that X is locally a complete intersection (we write it 
CI for short) in the ambient affine space <eN. This weak assumption 
is necessary because we use the fact that the shifted constant sheaf 
!Cx[n + 1] on a CI variety X is a perverse sheaf (see Section 4). Now 
let f: X ---+ !C be a (non-constant and reduced) holomorphic function 
on X satisfying the condition 0 E Y = {z E X I f(z) = 0}. Then 
we have a topological fibration over a sufficiently small punctured disk 
D~ = { t E !C I 0 < It I < "'} c !C: 

where Be = {z E eN n X I llzll < .s} is a small open neighborhood 
of 0 E X in X and 0 < "' << c. The general fiber F0 = f- 1(t) n Be 
(0 < It I < ry) is called the Milnor fiber off: X---+ !Cat 0. Note that when 
X is not smooth the Milnor fiber may have singularities. Nevertheless we 
have now a nice bouquet decomposition theorem for the Milnor fibers of 
functions f: X ---+ !C which have stratified isolated singularities at 0 E X 
in the following sense. First take a Whitney stratification X= UaEAXa 
of X and denote it by S. Then the stratified singular locus sings (f) of 
f: X---+ !C w.r.t. Sis defined by sings(!) = UaEAsing(f lx"'). Using 
the Whitney conditons of S we can easily check that sings (f) is a closed 
analytic subset of X. It is also easy to see (essentially by the curve 
selection lemma) that sings (f) is contained in the complex hypersurface 
Y = {z E X I f(z) = 0} C X in an open neighborhood of Y in X 
(see for example Proposition 1.3 of Massey [24]). Now we say that a 
holomorphic function f: X ---+ !C has a stratified isolated singular point 
at 0 E X w.r.t. S if the dimension of sings (f) at 0 E X is zero. Then 
Milnor's bouquet decomposition theorem over non-singular varieties can 
be generalized as follows. 

Theorem 2.1 (Le [21], Siersma [34], Tibar [35]). Let f: X ---+ !C 
be a holomorphic function having a stratified isolated singular point at 
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0 E X w. r. t. a Whitney stratification S of X. Then the Milnor fiber F0 

off at 0 has the homotopy type of a bouquet of n-dimensional spheres: 

Fo ""'h sn V sn V · · · v sn. 

This theorem was obtained by developing the so-called polar curve 
method, which dates back to the work of Le-Perron in [22]. By the 
same method we can also explicitly construct the handle decomposition 
of the Milnor fiber F0 when X is smooth. Namely for smooth X we 
can completely determinethe topological type of Fo, though it might be 
still difficult to compute the Betti numbers of F0 if Y has non-isolated 
singularities at 0. For these important results we recommend the reader 
to see a series of papers by Le or the recent book [25] by Massey etc. 
Note also that Massey's paper [24] gives also a method to compute the 
number of spheres in the above bouquet decomposition (i.e. the gener­
alized Milnor number off at 0). Now let us consider the general case 
where f does not necessarily have a stratified isolated singular point at 
0. Then we have the following cohomological result. 

Theorem 2.2 (the generalized Kato-Matsumoto's theorem). As­
sume that the dimension of the stratified singular locus sings (f) off at 
0 E X is s 2:: 0. Then for the reduced cohomology groups Hi ( Fo; <C) of 
Fo we have 

Hi(Fo;<C) = 0 for "~j <}. [n- s, n]. 

In Section 5 we will show that this theorem can be easily deduced from 
some well-known properties of perverse sheaves. To end this section we 
define the complex link CL(X; 0) of X at 0, which is an important exam­
ple of Milnor fibers over singular varieties. Recall that X is embedded in 
a smooth affine space eN. We take a linear form l: e,N-+ C (l(O) = 0) 
on e,N and consider its restriction l lx to X C e,N. Then we can show 
that for a sufficiently generic linear form l the dimension of the stratified 
singular locus sings (l lx) of l lx at 0 E X is zero. Therefore if we define 
the complex link CL(X; 0) of X at 0 to be the Milnor fiber of such a 
function llx: X-+ Cat 0, then we obtain a bouquet decomposition 

CL(X;O) ""'h sn V sn V · · · V sn 

by Theorem 2.1. Note that the topological type of the complex link does 
not depend on the choice of linear forms l: e,N -+ C nor embeddings 
X ~ e,N. This notion plays an important role also in stratified Morse 
theory (see Goresky-MacPherson [13]). 
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§3. Some results and their generalizations 

In this section we introduce some results obtained in Nang-T [30], 
[31] and Dimca [8]. Recall that X is a CI variety (or a CI analytic 
set) of dimension n + 1. Then for a non-constant holomorphic function 
f: X ---+ C satisfying f(O) = 0 (0 E X) the dimensions of Y = {z E 

X I f(z) = 0} C X and the Milnor fiber F0 are n. We thus have the 
monodromy operators 

for j = 0, n-s, n-s+l, ... , n-1, nat 0 E Y C X (s = dimosing5 (f)). 
Since the lower dimensional monodromy operators 

T(j)o: H1(Fo;C) ~H1 (Fo;C) (j = 0, n- s, ... , n -1) 

are relatively simple as we shall see in Section 5 (in particular 

is the identity map of C), here we focus our attention on the top dimen­
sional monodromy operator T(n) 0 : Hn(F0 ; q ~ Hn(F0 ; q. 

Definition 3.1. For a complex number a E C, we denote by Na 
the number of Jordan blocks with the eigenvalue a in the monodromy 
operator T(n)o: Hn(Fo; C)~ Hn(Fo; C). 

Then we have the following result which gives an upper bound for the 
multiplicities of eigenvalues of the monodromy 

Note that as an upper bound for the sizes of Jordan blocks in the mon­
odromy operators we have the famous monodromy theorem (see the 
references cited in the paper [10]). For a topological space W we denote 
by b1(W) the j-th Betti number of W. 

Theorem 3.2 (Nang-T [30], [31] and Dimca [8]). For any non-
zero complex number a E C we have 

Na :S: bn-1(CL(Y; 0)) + bn(CL(X; 0)). 

In particular if X is smooth (e.g. X= cn+l) then Na :::; bn_ 1(CL(Y; 0)). 
Namely Na 's are bounded by the number of (n- I)-dimensional spheres 
in the bouquet decomposition CL(Y; 0) "'h sn- 1 v ... V sn- 1 of the 
complex link of Y. 
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This theorem was first obtained by Nang-T [30] for X = cn+l and the 
complex numbers a -:/=- 0 satisfying a technical condition. Then Proposi­
tion 6.4.17 of Dimca [8] generalized it to the case of Milnor fibers over 
singular varieties assuming the same condition on a -:/=- 0. Finally N aug-T 
[31] removed this technical assumption. The proof of Theorem 3.2 will be 
given in Section 4. Note that if X is cnH and f is a quasi-homogeneous 
polynomial then the monodromy operators are periodic ( ===} semisim­
ple) and hence Na is nothing but the multiplicity of the eigenvalue a in 
the map T(n)o: Hn(F0 ; C)---=... Hn(F0 ; C). Even in such simplest cases 
Theorem 3.2 seems to be new, because for Y = {z EX I f(z) = 0} with 
a non-isolated singular point at 0 it is in general very difficult to com­
pute the monodromy operators. For general hypersurface singularities 
we can compute only the monodromy zeta function 

n 

ZJ(>..) =IT det(Id ->..T(j)0 )(-l)1 

j=O 

by constructing an embedded resolution of singularities (see Bierstone­
Milman [3] for an algorithm to construct embedded resolutions) of each 
given complex hypersurface Yin X= cn+l (A'Campo [1]). If the hyper­
surface Y c X= cn+l has an isolated singular points at 0, Varchenko's 
formula ([36]) for the characteristic polynomial of T(n)o obtained by 
this monodromy zeta function (and a result of Kouchnirenko [20]) is 
very useful. However to use his formula, the defining function f of Y 
must satisfy the so-called Newton non-degeneracy condition. Hence it 
would be difficult to prove Theorem 3.2 along this line even for all com­
plex hypersurfaces Y c X = cn+l having isolated singular points at 0. 
For such hypersurfaces we have the following corollary. Let L(Y; 0) be 
the real link of Y at 0 E Y. Namely we set 

L(Y;O)=YnSc: (O<c<<1), 

where Sc: C eN is a small sphere centered at 0 with radius c. 

Corollary 3.3. Assume that X = cn+l and the complex hyper­
surface Y = { z E X I f ( z) = 0} C X has an isolated singular point at 
0 E Y. Then we have 

bn-l(L(Y; 0))::::; bn-l(CL(Y; 0)). 

Under the assumptions of this corollary we can easily prove 
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by Alexander duality. Therefore Corollary 3.3 immediately follows from 
Theorem 3.2. In order to understand the topological meaning of Corol­
lary 3.3, recall that if Y has an isolated singular point at 0 E Y then the 
real link L(Y; 0) is a smooth compact orientable (2n-1)-manifold whose 
non-zero Betti numbers are bo, bn-1, bn, b2n-1· Since bo = b2n-1 = 1 
and bn_ 1 = bn by Poincare duality, the only interesting number among 
them is bn_ 1(L(Y; 0)). On the other hand, as we saw in Section 2 
the complex link CL(Y; 0) has only two non-zero Betti numbers bo = 
1, bn-1· So the inequality bn-1(L(Y;O)) :S: bn-1(CL(Y;O)) means that 
the most interesting invariant of the topology of the real link and that 
of the complex link are related each other. Finally we remark that this 
result was generalized in Proposition 6.1.22 and Corollary 6.1.24 of [8] 
to the case where Y is higher-codimensional in X = en+ 1 . 

§4. Proof of Theorem 3.2 

In this section we quickly review the theory of perverse sheaves 
and give a proof of Theorem 3.2. For the detail of the theory of per­
verse sheaves and constructible sheaves, we refer to Beilinson-Bernstein­
Deligne [2], Dimca [8], Hotta-T-Tanisaki [14], Kashiwara-Schapira [18] 
and Schiirmann [33] etc. Now let X be a complex analytic set or an 
algebraic variety (endowed with the classical topology). As usual we 
denote by Db(X) the derived category of bounded complexes of sheaves 
of <Cx-modules on X. The category of perverse sheaves is a full abelian 
subcategory of Db(X) which correponds to that of regular holonomic 
'Dx-modules (when X is smooth) through the Riemann-Hilbert cor­
respondence (see Kashiwara [17] and Hotta-T-Tanisaki [14] etc.). In 
order to recall the definition of perverse sheaves by Beilinson-Bernstein­
Deligne [2], denote by D~(X) the full subcategory of Db(X) consisting 
of complexes of sheaves with <C-constructible cohomology sheaves. 

Definition 4.1 ([2]). Let F E D~(X). Then F is a perverse 
sheaf on X if the following two conditions are satisfied. 

(i) For any i E Z, we have dim[suppHiF]::; -i. 
(ii) The Verdier dual D(F) ofF satisfies the condition 

dim[suppHiD(F)]::; -i for any i E Z. 

We denote by Perv(<Cx) the full subcategory of D~(X) consisting of 
perverse objects. 

As a special class of perverse sheaves we have the following. 
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Theorem 4.2. Assume that X is pure-dimensional and locally a 
Cl. Then the shifted constant sheaf ex[dimX] E D~(X) is a perverse 
sheaf on X. Moreover for any local system (i.e. a locally constant sheaf 
of finite rank over ex) .C, we have .C[dimX] E Perv(ex ). 

For the proof, see for example Sorite 1.8 (page 15) of Brylinski [5] etc. 
The proof of [5] uses V-modules. A purely topological proof can be 
found in Theorem 5.1.20 of [8]. 
Now let us prove Theorem 3.2. For the sake of simplicity let X be an 
( n + 1 )-dimensional CI variety in eN containing the origin 0. Recall that 
f: X---+ e is a holomorphic function s.t. 0 E Y = {z EX I f(z) = 0}. 
We prove the theorem by constructing a special perverse sheaf g· on 
eN which contains the information of the top dimensional monodromy 
operator T(n) 0 : Hn(F0 ; q ..=.. Hn(F0 ; C). To begin with, for the given 
complex number a =/=- 0 we define a local system .Ca on e* = e \ {0} by 
the representation 

1rl(C*) c::o Z ----+ GL(1, C) = C* 
n f---+ an. 

Next consider a local system .Ca on X\ Y obtained by taking the inverse 
image of .Ca by f: X \ Y ---+ e*. Then by Theorem 4.2 the complex of 
sheaves .Ca[n+ 1] is a perverse sheaf on X\ Y. Now let us set j: X\ Y ~ 
X,jo: X\Y ~ X\{O}andj1: X\{0} ~X (j =j1ojo). We will extend 
the perverse sheaf .Ca[n + 1] to the whole eN in three steps. First, since 
j 0 is a Stein map, the direct image Rj0 *.Ca[n + 1] is a perverse sheaf on 
X\ {0} by M. Artin's theorem (see for example Corollary 5.2.17 of [8]). 

Next we define a perverse sheaf :F on X by :F = j 1,(Rjo*.Ca[n+1]). Here 
j 1, ( *) stands for the so-called Deligne-Goresky-MacPherson extension 
functor. By using the truncation functor T~ - 1 ( *) we can rewrite it as 
ju(*) c::o (T~- 1 o Rj1*)(*). Finally we define a perverse sheaf g· on 
eN by g· = L*F) where we set [: X ~ eN. By the Riemann-Hilbert 
correspondence there exists a unique regular holonomic DeN-module M 
which corresponds to the perverse sheaf g·. Then, just as the proof 
of Theorem 5.4 of Nang-T [30] (or Proposition 6.4.17 of Dimca [8]), 
Theorem 3.2 can be proved by calculating the multiplicity m E Z>o of 
M along the conormal bundle T{0}eN C T* X. Namely we obtai~ the 
equality 

m = -Na + {bn-1(CL(Y; 0)) + bn(CL(X; 0)} 

and the theorem follows from the non-negativity of the multiplicity m. 
Q.E.D. 
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§5. Some other consequences of perversity 

In this section, using the notations of previous sections, we intro­
duce some other important consequences of perversity in the topology of 
complex hypersurface singularities. In particular we show that the lower 
dimensional monodromy operators T(j)o: HJ (Fo; C)~ HJ (Fo; C) for 
j = 0, n- s, · · · , n- 1 (s = dim0 sings(!)) are usually much simpler 
than the top dimensional one. First of all, for a given holomorphic 
function f: X ---> C we associate to it the shifted vanishing cycle functor 

satisfying the condition 

HJ(P¢t(Cx))x ~ jjJ- 1(Fx;C) 

for any x E Y = {z E X I f(z) = 0} and j E Z. Here Fx is the 
Milnor fiber of f at x E Y. Then it is well-known that this func­
tor preserves the perversity. For the proof, see for example, Corollary 
10.3.13 of Kashiwara-Schapira [18] and Theorem 6.0.2 of Schi.irmann 
[33] etc. This important result was first obtained by [2] in the algebraic 
case. The proof for the analytic case was given by Kashiwara [16] in 
his study of vanishing cycle functors for D-modules (see also Goresky­
MacPherson [12] for a topological approach to this problem). Now we 
can easily deduce Theorem 2.2 (the generalized Kato-Matsumoto's the­
orem) from this very general result. Indeed, applying it to the perverse 
sheaf Cx[n + 1] (we assume that X is locally a CI) we see that the van­
ishing cycle g· = Pcf;t(Cx[n + 1]) is a perverse sheaf whose support is 
contained in the stratified singular locus sings(!) of f. Then it remains 
to apply the following very elemetary property ofperserse sheaves tog·. 

Lemma 5.1. Let g· be a perverse sheaf on an analytic set X 
whose support is contained in an s-dimensional analytic subset S of X. 
Then we have HJ(Q")x ~ 0 for any x EX and j ¢. [-s, 0]. 

Namely we obtain jjn+j(Fo;C) ~ Hn+j+l(P¢t(Cx))o ~ HJ(g·)o ~ 
0 for j ¢. [-s, OJ (s = dim0 sings(f)). This completes the proof of 
Theorem 2.2. By refining this proof, we can obtain also the follow­
ing interesting results on the propagation of monodromy eigenvalues 
up to the center 0 E Y. Let us consider the monodromy operators 
T(j)x: HJ (Fx; C)~ HJ (Fx; C) at points x E Y outside the origin. 
Then we have 
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Theorem 5.2. Let a E C be a complex number. 

( i) (Corollary 6.1. 7 of Dimca [8]) Assume that a is an eigenvalue of 
a lower dimensional monodromy T(j)0 : HJ (Fo; q ~ HJ (F0 ; q 
(j :::; n- 1) at 0. Then for any open neighborhood U of 0 in Y 
there exists a point x =1- 0 in U \ {0} such that a is an eigenvalue 
ofT(k)x: Hk(Fx;C) ~Hk(Fx;C) for some k. 

(ii) (Theorem 0.4 of Dimca-Saito [9]) Assume that a lower dimen­
sional monodromy T(j)o: HJ(Fo;C) ~HJ(Fo;C) (j:::; n- 1) 
at 0 has a Jordan block with the eigenvalue a of size m. Then 
there exist points Xk =1- 0 sufficiently close to 0 fork :::; j such that 
the monodromy T(k)xk: Hk(Fxk;C) ~Hk(Fxk;C) at Xk has a 
Jordan block with the eigenvalue a of size mk and Lk<;_j mk 2: m. 

To prove (i) of this theorem we use the direct sum decomposition 

P¢t(Cx[n + 1]) ~ E9[P¢J(Cx[n + 1])]a 
aE<C 

in the category Perv(Cy). Here [P¢J(Cx[n + 1])]a denotes the general­
ized eigenspace for the eigenvalue a of the monodromy map 

in Perv(Cy). Namely [P¢1(Cx[n + 1])]a is the kernel of (aid -T)k for 
k > > 0. Then we can easily prove (i) by considering the supports of 
perverse sheaves [P¢t(Cx[n + 1])]a as in the proof of Theorem 2.2. To 
prove ( ii) we use the restriction ofP ¢ f ( C x [ n + 1]) to the real link L (Y; 0) 
of Y and a spectral sequence. See [9] for the precise proof. Q.E.D. 

Roughly speaking, Theorem 5.2 asserts that some important parts of 
the lower dimensional monodromy operators T(j)0 (j :::; n- 1) at 0 
are determined by the monodromy operators at points x E Y, x =1- 0. 
We can observe a similar phenomenon also in Randell's theorem for 
two-dimensional complex hypersurfaces in C3 obtained by deprojectiviz­
ing plane curves (see Oka [32] for a survey of this subject and related 
results). Theorem 5.2 (i) in particular implies that if the singularity 
of Y is normal crossing outside the origin then all the eigenvalues of 
the lower dimensional monodromy operators T(j)0 (j :::; n- 1) at the 
origin are 1 (see Example 6.1.8 of [8]). In this case, if an embedded 
resolution of Y c X = cn+l is given, using the monodromy zeta 
function obtained by the methods of [1] we can determine the multi­
plicities of the eigenvalues a =1- 1 in the top dimensional monodromy 
T(n)o: Hn(Fo; C)~ Hn(Fo; C). 
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Finally let us list up some related subjects that we could not explain 
precisely in this short note. As applications of perverse sheaves (inter­
section cohomologies) in singularity theory we have also the following 
results. 

( i ) We can generalize vanishing theorems (obtained by Esnault­
Schechtman-Viehweg, Kohno and Schechtman-Terao-Varchenko 
etc.) for twisted cohomology groups of the complements to hy­
perplane arrangements. See Cohen-Dimca-Orlik [6] etc. 

( ii) Recently using the theory of perverse sheaves Maxim [28] found 
a new construction of Alexander modules of hypersurface com­
plements (see [23] and [32] for the definition) and generalized the 
results of Libgober [23] to the case where the hypersurface has 
non-isolated singularities. 

(iii) The classical theory of projective duality (i.e. the study of dual 
varieties in projective geometry) was reformuled in terms of con­
structible sheaves. After the fundamental work by Brylinski [5], 
Ernstrom proved that the topological Radon transform of the 
Euler obstruction of a projective variety V is that of the dual 
variety V* modulo constant functions (see also [26] and [27] etc. 
for its generalizations). 
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